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ABSTRACT

Instrumental Variable (IV) regression is an established technique for estimating
causal effects in the presence of unobserved confounders. A core IV assumption is
that we have access to an external variable—called the instrument—which directly
influences the treatment variable. In this work, we consider a more challenging
yet realistic setting where the treatment is latent, and we can only observe a non-
linear transformation of it (e.g. an image). To overcome this problem, we leverage
insights from the Independently Modulated Component Analysis (IMCA), which
is a framework that relaxes the independence assumption in Independent Com-
ponent Analysis (ICA). Specifically, we propose a general contrastive learning
framework to recover the latent treatment up to an affine transformation which
may be related to the instrument by a (non-)linear function. We prove that the
recovered representation is compatible with standard IV techniques. Empirically,
we demonstrate the effectiveness of our method using control function and two-
stage least squares (2SLS) estimators and evaluate the robustness of the learned
estimators in distribution shift setting.

1 INTRODUCTION

Conventional supervised learning techniques, such as ordinary least squares (OLS), are widely used
to model relationships between features and outcomes. To correctly capture causal effects of the pre-
dictors, these methods rely on the assumption that the residuals of the target variable are independent
of the features. This assumption, however, does not generally hold. Consider a setting where we ob-
serve a treatmentX and an outcome Y which can be expressed as Y = f0(X)+ε, with E[ε] = 0 but
E[ε|X] ̸= 0. Such a data generative mechanism violates the standard assumption that the noise is in-
dependent of the features, leading to E[Y |X] ̸= f0(X). Thus, classical supervised learning methods
fail to recover the true causal effect. To address this, Instrumental Variable (IV) regression (Imbens
& Angrist, 1994) assumes the observation of an instrument that affects the outcome only through
the treatment variable and is thus independent from the residuals. While originally formulated for
linear functions f0, nonparametric approaches to IV regression (Newey & Powell, 2003; Ai & Chen,
2003; Darolles et al., 2011) have emerged. Nonparametric instrumental variable (NPIV) regression
is often categorized into two larger areas which consist of conditional moments methods (Bennett
et al., 2019; Saengkyongam et al., 2022; Zhang et al., 2023; Bennett et al., 2023) that aim to solve
a min-max optimization problem exploiting the independence of instrument and residuals, and two-
stage estimators (Newey & Powell, 2003; Hartford et al., 2017; Chen & Christensen, 2018; Singh
et al., 2019; Meunier et al., 2024) that first estimate the relation between instrument A and treatment
X and then regress the outcome Y based on the estimation result of stage one. The latter approach
has its roots in two-stage least squares (2SLS) (Angrist & Imbens, 1995) discussed in Section 2.

In contrast to the majority of prior work, we assume that we only observe X := g0(Z), where
Z is the latent treatment variable and X is generated from Z through an injective mixing function
g0: Z → X (cf. Figure 1a). Most closely related to our setting are deep feature IV (DFIV) (Xu et al.,
2021) and REP4EX (Saengkyongam et al., 2024). DFIV follows the 2SLS approach whereas the re-
gression steps are performed through deep neural networks which are jointly optimized. REP4EX
tackles a similar setting as shown in the graph in Figure 1a with the requirement that the func-
tion from A to Z is linear. Under these assumptions, REP4EX learns a representation of Z based
on an autoencoder and adapts a control variable approach (Newey et al., 1999) to perform inter-
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(a) Assumed Causal Graph (b) Overview of InfoIV workflow

Figure 1: On the left (a) we show the causal graph corresponding to our assumed data generative
mechanism, where Z is the latent treatment, X the observed potentially high-dimensional treat-
ment, A the observed instruments, Y the outcome, and V represents the unobserved confounder
(sometimes implicit in ε). The right plot (b) provides an overview of our method InfoIV that learns
an encoder ψ inverting g0 in Phase 1 (example picture from dSprites (Matthey et al., 2017)) and
supplements the estimated Ẑ to either 2SLS or a control function approach in Phase 2.

vention extrapolation—connecting to a large body of work that studies causal approaches for out-
of-distribution prediction (Rojas-Carulla et al., 2018; Arjovsky et al., 2019; Dominik Rothenhäusler
et al., 2021; Shen & Meinshausen, 2024). In this paper, our goal is to both be able to handle nonlinear
relations between instrument A and treatment Z, as well as allow for potentially high-dimensional
treatments X that are the result of a nonlinear mixing of the latent treatment variable Z. To address
this challenge, we connect instrument variables to causal representation learning.

Similarly to IV regression, the field of causal representation learning (CRL) (Schölkopf et al., 2021)
often relies on some extra information such as an observed auxiliary variable to learn representa-
tions that are suitable for performing causal downstream tasks. A core problem in CRL is nonlin-
ear independent component analysis (ICA) (Hyvärinen et al., 2001; 2024), which aims to recover
independent sources Z from nonlinearly mixed signals X . A central question in ICA is that of
identifiability—whether the sources can be recovered from observational data alone. This task is
not feasible without additional assumptions on the data generative process (Hyvärinen & Pajunen,
1999). For contrastive learning, (blockwise) identification results have been derived by leveraging
self-supervision (Zimmermann et al., 2021; Von Kügelgen et al., 2021), multi-modality (Daunhawer
et al., 2023), or multi-view data (Gresele et al., 2020; Yao et al., 2024; Heurtebise et al., 2025). More
closely related to our problem are frameworks relying on auxiliary variables. Just as an instrumental
variable enables identification of a causal effect, identifiability of nonlinear ICA can be achieved by
introducing an auxiliary variable (Hyvärinen et al., 2019; Khemakhem et al., 2020a), under the as-
sumption that the latent variables are independent conditioned on the auxiliary. Potential examples
for such an auxiliary variable include, e.g., the time index or the history in temporal data, as well as
the class label in a classification context (Hyvärinen et al., 2019).

The key idea of our approach is simple yet powerful. We show that under weak assumptions, in-
struments A can be equivalently used as auxiliary variable to recover the latent treatments Z up to
a linear transformation from X via nonlinear ICA (see Figure 1b). Despite this indeterminacy, the
recovered latents can then be plugged into standard approaches based on 2SLS, as well as control
functions to estimate the causal effect of X on Y , providing a general framework for a range of
NPIV approaches. We further show that suitable latent representations can be learned by adopting
contrastive learning—in particular the popular InfoNCE objective (van den Oord et al., 2019). An-
other twist to our approach is that we do not require the strong independence assumption of ICA,
which would restrict the types of confounding that we can account for. Instead, we opt to ground our
work in Independent Modulated Component Analysis (IMCA) (Khemakhem et al., 2020b), which
provides us with weaker assumptions on the data generative process. To showcase the capabilities of
this approach, we introduce our method, called InfoIV, and benchmark it in terms of representation
learning capabilities both for tabular and image data. Further, we instantiate it via 2SLS and control
functions for causal effect estimation and extrapolation, respectively.1

1The code is attached to the submission and will be made publicly available upon acceptance.
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The remainder of the paper is organized as follows. In Section 2, we review IV regression. Sec-
tion 3 links IV regression to representation learning. Subsequently, in Section 4, we propose InfoIV,
show its suitability for IV regression and discuss how to instantiate it for 2SLS and control function
approaches. In Section 5, we empirically evaluate InfoIV, and we conclude in Section 6.

2 INSTRUMENT VARIABLE REGRESSION

Instrument variable (IV) regression assumes that we observe a treatment X ∈ X ⊂ RdX and an
outcome Y ∈ Y generated according to the following structural causal model (SCM)

Y := f0(X) + ε, (1)

where f0 denotes the structural function and ε is a residual term with zero mean and finite vari-
ance. In contrast to the standard supervised learning setting—where ε are assumed to be i.i.d. and
independent of X—the IV framework allows for the presence of confounder, which implies that the
residual term is correlated with the treatment, i.e., E[ε|X] ̸= 0. In this case, regressing Y on X does
not generally identify the true structural function, since f0(x) ̸= E[Y |X = x]. To account for the
confounding variable, we assume that we observe an instrument variable A ∈ RdA which satisfies
the following conditions.
Assumption 2.1. An instrument A ∈ RdA satisfies the following conditions: (i) A has a direct
causal influence on treatment (Relevance), i.e., P (X|A) is not constant in A. (ii) A is uncorrelated
with the confounder (Exogeneity), i.e., E[ε|A] = 0.

Based on Assumption 2.1 the ground-truth structural function satisfies E[Y |A] = E[f0(X)|A],
which allows us to derive the following prominent result, which we recite for completeness.
Theorem 2.2 (Newey & Powell (2003)). AssumeX , Y generated according to Equation (1), and let
A be an instrument satisfying Assumption 2.1. Further assume that the distribution ofX conditional
onA is exponential. Then, if f0 and f̂ are differentiable, E[f0(X)|A] = E[f̂(X)|A] implies f0 = f̂ .

Simply put, if an estimator f̂ reproduces the ground-truth conditional expectation of the structural
function given A, then it coincides with f0. Since directly minimizing this conditional expectation
is generally ill-posed (Nashed & Wahba, 1974), more practical estimators have been derived.

Two-stage Least Square Estimator. To solve for this problem, Newey & Powell (2003) propose
to use a two-stage least square (2SLS) regression (Angrist & Imbens, 1995) to optimize the following
optimization problem:

f̂ = argmin
f∈F

L(f), L(f) = EY,A[(Y − E[f(X)|A])2]. (2)

A common approach is to parametrize the structural function as f0(x) = θT f(x) where θ is a learn-
able coefficient vector and f(x) is a dictionary of functions (Newey & Powell, 2003; Blundell et al.,
2007; Chen & Christensen, 2018). In the first stage, 2SLS estimates E[f(X)|A] by regressing f(X)
onA, and in the second stage the coefficient vector θ is obtained from the closed-form solution of the
linear regression of Y on the estimated E[f(X)|A]. In a linear 2SLS setting the chosen dictionary is
the identity f(x) = x while more flexible methods like Kernel IV (Singh et al., 2019) leverage non-
linear functions in reproducing kernel Hilbert spaces (RKHS). Those methods, however, suffer from
limited expressivity since the dictionary is pre-defined. To address this limitation, DeepIV (Hartford
et al., 2017) proposes to leverage neural networks in both stages: first to approximate the conditional
distribution of X given A, and second to approximate the structural function. Bennett et al. (2019)
have shown that those methods usually fail in a high-dimension setting, for example when X is an
image. Another approach, deep feature IV (DFIV) overcomes some of this limitations by jointly
optimizing both networks (Xu et al., 2021), yielding an advantage compared to fixed-feature estima-
tors (Kim et al., 2025). To avoid the problem of having to learn a powerful conditional generative
model, we instead propose to approximate the conditional distribution in the latent space.

Control Function Estimator. While 2SLS ignores the residual variation, the control function
approach explicitly models the endogenous noise associated with the treatment and uses it as an
additional regressor in the outcome model. For intuition, consider the SCM in Equation (1) and

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

assume we observe an instrumentA that satisfies the conditions in Assumption 2.1. Further, suppose
that the treatment and outcome are confounded through a residual term, i.e., X := h(A)+V , where
the residual term of Y is ε := l(V ) + η. Thus, the conditional expectation of Y given X and V
yields:

E[Y | X,V ] = E[f0(X) + l(V ) + η | X,V ] = f0(X) + l(V ), (3)
since E[η | Z, V ] = 0. This equality motivates the control function method. First, we regress X on
A to obtain the predicted component XA = E[X | A], analogous to the first stage of 2SLS. Then,
because A⊥⊥V , the residuals can be consistently estimated as V̂ := X −XA. Finally, we perform
an additive regression of Y on X and V̂ to estimate f0 and l. In particular, Newey et al. (1999)
showed that, under the assumption that f0 and l are differentiable, the ground-truth causal effect
f0 can be recovered up to an additive constant. Further, Saengkyongam et al. (2024) show that the
control function approach could be leveraged in order to perform extrapolation over unseen values
of A, under the assumption that treatment X and instrument A are linearly related. In comparison
to 2SLS, however, X has to be available at test time.

3 DATA GENERATIVE PROCESS

In contrast with the classic IV setting introduced previously, We consider a representation-based
variant where the treatment Z ∈ Z ⊂ RdZ is a low-dimensional latent representation of an observed
higher-dimensional variable X ∈ X . The outcome Y ∈ Y ⊂ R and instrument variable A ∈
A ⊂ RdA are observed. A summary of the corresponding causal graph is provided in Figure 1a.
Throughout the paper, we assume that our data are generated according to the following SCM:

S :

{
X := g0(Z)

Y := f0(Z) + ε,
(4)

where ε is a residual term with zero mean and finite variance but correlated with treatment Z, i.e.,
E[ε|Z] ̸= 0, g0 : Z → X is a nonlinear injective mixing function, and f0 : Z → R is the structural
function. Since Z is not observed, our first goal is to recover the latent treatment Z up to some
indeterminacy exploiting the instrument A as an auxiliary variable.

3.1 INSTRUMENT- AND AUXILIARY VARIABLES

It is well-known that in the general case, nonlinear ICA is infeasible (Hyvärinen & Pajunen, 1999),
however, the instrument variable setting as introduced before assumes the observation of a variable
A with direct causal influence on Z. Similarly, the nonlinear ICA literature often relies on an
observed auxiliary variable Hyvärinen et al. (2019) with direct causal influence on latent variable
to guarantee its identifiability. We build upon theory from Khemakhem et al. (2020a;b) to show that
the latent treatment Z can be recovered up to an affine transformation, with a few assumptions on
the distribution of Z which are compatible with the general IV framework. Let us define an encoder
ϕ : X → Z , typically parametrized as a neural network, whose goal is to approximate the inverse
mixing function g−1

0 . Let pϕ(x|a) be the posterior distribution of X̃ := ϕ−1(Z) given A, then we
define affine identifiability as (introduced in Saengkyongam et al. (2024)):
Definition 3.1 (Latent Identifiability). We say that the latent features Z are identified up to an affine
transformation and pointwise transformation if there exist an encoder ϕ : X → Z such that:

ϕ ◦ g0(z) = RT (z) + c, ∀z ∈ Z
with T a pointwise function, R an invertible matrix and c ∈ RdZ .

While classic identifiability results usually rely on the mutual independence of the Z components
when conditioned on A, which would restrict the types of confounding that we can consider, we
build upon the results of Khemakhem et al. (2020b), who proof identifiability in a more general
exponential factorial case. Let us first define the conditional exponential family.
Definition 3.2 (Conditional Exponentially Factorial Distribution). We say that a multivariate ran-
dom variable Z is conditional exponentially factorial if its conditional density has the form

pT,λ(z|a) := µ(z) exp

(
dZ∑
i=1

Ti(zi)
⊤λi(a)− Γ(a)

)
, (5)
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where Ti : R → Rk are called the sufficient statistics.
Remark 3.3. Note that the base measure µ(z) captures the part of the variation in Z not explained
by A, i.e., the confounding. Due to this component, we do not have to assume that the components
in Z are conditionally independent given A. Further, the distributional assumption is rather general,
as the exponential family includes a lot of classic distributions like Gaussian, Binomial, Beta and
Chi-deux.

Next, we show that under these model assumptions, we can extend the identification result of Khe-
makhem et al. (2020b) to our instrument variable setting, and show that InfoNCE (van den Oord
et al., 2019) is a suitable loss to train an encoder satisfying Definition 3.1.

4 INFOIV

Algorithm 1: InfoIV (Sketch)
input : Data drawn from P (A,X, Y )
// Phase 1 (Representation Learning)

1 Obtain ϕ∗,W ∗ = argminϕ,W LNCE(ϕ, ψ)

2 Estimate latent treatment Ẑ = ϕ∗(X)
// Phase 2a (2SLS)

3 Estimate E[Ẑ|A]— obtaining ẐA

4 Estimate f̂0 from the regression of Y on ẐA

// Phase 2b (Control Function)
5 Estimate E[Ẑ|A]— obtaining ẐA

6 Obtain V̂ = Ẑ − ẐA

7 Estimate f̂0, l̂ from the additive regression
of Y based on Ẑ and V̂

For the data generative process defined in
the previous section, we propose a two-phase
method to perform IV regression and extrap-
olation which we sketch in Algorithm 1. In
Phase 1, the instrument A is used as an aux-
iliary variable to recover the sufficient statistic
of the latent treatment variable Z up to an in-
vertible affine transformation (cf. Section 4.1).
Specifically, we train an encoder ϕ by min-
imizing a contrastive loss inspired from In-
foNCE (van den Oord et al., 2019), for which
we prove that it identifies the true inverse mix-
ing function g−1

0 up to an affine transforma-
tion and coordinatewise nonlinearities defined
by the sufficient statistics. Subsequently, in
Section 4.2, we show that we can leverage the
learned representations for a 2SLS approach
(Phase 2a), as well as for extrapolation (Section 4.3) via the control function approach (Phase 2b)
similar to the autoencoder-based method proposed by Saengkyongam et al. (2024). The overall
workflow of InfoIV is also sketched in Figure 1b.

4.1 RECOVERING SUITABLE REPRESENTATIONS FOR IV REGRESSION

To recover Z up to a permutation suitable for IV regression, we train an encoder ϕ to maximize the
similarity between our estimated latent treatments ẑ := ϕ(x) and its corresponding instrument a.
Accordingly, we modify the well-known InfoNCE loss as follows:

LNCE(ϕ,W ) = EA,X

[
− log

e−ϕ(X)WA/τ∑
Ã∼PA

e−ϕ(X)WA/τ

]
, (6)

where W is a learnable matrix ∈ RdZ×dA and τ is the temperature.

We show that under assumptions of sufficient variability of Z w.r.t. the auxiliary variable A, upon
convergence of the loss, the corresponding encoder weakly identifies the latent treatment Z.
Theorem 4.1. Let the conditional Z | A follow the conditional factorial distribution introduced in
Definition 3.2, with parameters (T, λ). Further, let g0 : Z → X be a (non-linear) injective mixing
function and X := g0(Z). Consider that the following conditions hold:

1. The sufficient statistic T (z) = (Ti(zi))
dZ
i=1 is differentiable almost everywhere.

2. There exist dZ + 1 distinct points u0, ..., udZ such that the matrix

Lλ(u) = (λ(u1)− λ(u0), ...., λ(un)− λ(u0)) is invertible.

3. We train ϕ∗ an encoder with universal approximation capability andW ∗ ∈ RdZ×dA on the
loss stated in Equation (6).

Then in the limit of infinite data, ϕ∗(X) identifies Z up to an invertible linear transformation and
pointwise nonlinearities defined by its sufficient statistics.

5
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Remark 4.2. Hyvärinen et al. (2019) introduce a related contrastive loss that enables weak identifi-
cation of latent variables under the same assumptions. Their method trains a logistic regression head
on top of the encoder, using as input both the learned latent representation and the instrument, in
order to discriminate between positive pairs (sampled from the joint distribution) and negative pairs
(sampled independently). The weak identifiability of this approach in the general conditional expo-
nentially factorial distribution was established by Khemakhem et al. (2020b). In contrast, we show
experimentally that our method based on the InfoNCE loss converges faster. We hypothesize that
this improvement arises because, at each SGD iteration, our approach compares each point against
all other negative pairs within the batch, making it computationally more stable.

4.2 INFOIV-2SLS

The previous result establishes that we can recover the latent treatment up to an invertible linear
transformation of the sufficient statistic in the conditional exponential case. We now show that this
level of indeterminacy suffices to uniquely identify the causal effect, by extending Theorem 2.2
(Newey & Powell, 2003).

Lemma 4.3. Let (Z, Y ) be generated according to Equation (4). Suppose we observe an instrument
A that satisfies Assumption 2.1 with respect to Z. Let T be differentiable almost everywhere, R an
invertible matrix, and c a vector, defining a mapping τ : RdZ → RdZ by τ(z) = RT (z) + c. Then:

E[f0 ◦ τ(Z) | A] = E[f̂ ◦ τ(Z) | A] ⇒ f0 ◦ τ = f̂ ◦ τ. (7)

Proof. Since R is invertible and T is differentiable almost everywhere, the mapping τ is differen-
tiable almost everywhere as well. Hence, both f0 ◦ τ and f̂ ◦ τ are differentiable and satisfy the
conditions of Newey & Powell (2003). By the completeness property of the exponential family, the
conditional expectation equality implies the functional equality, establishing the claim.

In summary, Theorem 4.1 and Lemma 4.3 ensure that 2SLS approaches are applicable on the learned
representation that we recover based on the loss stated in Equation (6). Additionally to standard IV
assumptions, A has to fulfill the IMCA assumption with respect to Z (Definition 3.2). As outlined
in Algorithm 1, we first train the encoder and subsequently perform 2SLS. In practice, we perform
both regression steps independently with neural networks.

4.3 INFOIV-CF

We now show that Phase 1 of InfoIV also recovers suitable features for extrapolation tasks, where
we aim to predict the result of an intervention on an action variable A, when this intervention was
not observed in the training support. Using do-notation (Pearl, 2009), this corresponds to estimating
E[Y |do(A := a∗)]. In particular, we build upon the results of Saengkyongam et al. (2024) who relied
on an autoencoder trained via moment constraints to obtain the latent features. Saengkyongam et al.
(2024) show that one can extrapolate over unseen values of A if we restrict the effect of A on Z to
be linear. In particular, let us consider the following SCM:

S1 :


Z :=M0A+ V

X := g0(Z)

Y := f0(Z) + l(V ) + ε,

(8)

with A⊥⊥V, ε whose support’s interior is convex. Here, ε is a noise term with zero mean and finite
variance independent from Z. We further assume M0 ∈ RdZ×dA to be full-rank and g0 injective.
Note that in comparison to Equation (4), the dependence to the confounder V is modeled explicitly,
while previously it was absorbed in the noise term.

Most relevant for us is that Saengkyongam et al. (2024) show that if we can train an encoder ϕ that
recovers Z up to an affine-transformation, then one can leverage the control function approach to
estimate the true causal-effect f0 and perform extrapolation on A, i.e., estimate E[Y |do(A := a∗)]
for all a∗ ∈ A.2 Consequently, we need to show that we can recover the latent treatment Z up to an
affine-transformation for the SCM above.

2For completeness, we recite a shortened version of their theorem in Section A.1.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Corollary 4.4. Assume Z := M0A + V with M0 full-rank and V ∼ N (0,Σ). Let X := g0(Z)
with g0 an injective function. Assume that there exist dZ + 1 linearly independent distinct points
in supp(A). Then, in the limit of infinite data an encoder ϕ∗ trained to minimize loss Equation (6)
provides a consistent estimator of Z up to an invertible affine transformation.

As can be noted, in comparison to 2SLS, we need to restrict the function from A to Z to be linear
and need to add some distributional assumptions to ensure that the extrapolation task is well-defined.
Similar to 2SLS, all regression steps are performed independently based on neural networks. This
concludes our theoretical results. Next, we empirically evaluate the different components of InfoIV.

5 EXPERIMENTS

In the following, we compare InfoIV to state-of-the-art approaches for IV regression for tabular
and image data, and extrapolation, as well as evaluate InfoIV purely for representation learning.
We start with the tabular setting (Section 5.1), then we evaluate our approach on a synthetic image
experiment (Section 5.2), and last we evaluate its extrapolation capacity (Section 5.2).

5.1 SIMULATING ON CORRELATED CONFOUNDING

For the experiments shown in the following subsections, we simulate data according to the follow-
ing data-generating process. The instrumental variable A is drawn independently from a uniform
distribution. The latent treatment variable Z is then generated according to a conditionally expo-
nential family distribution as defined in Definition 3.2: Z := µ̃(A) + diag

(
σ̃1(A), . . . , σ̃dZ

(A)
)
ε,

where ε ∼ N (0,Σ) is sampled independently of A. The functions µ̃ and σ̃i are nonlinear mappings
RdA → RdZ , implemented as randomly initialized neural networks.

Here, ε corresponds to the base measure µ(z), i.e., the part of the variation in Z not explained by A.
In particular, if we enforce conditional independence of the components of Z given A, we set Σ to
be diagonal, so that ε follows an isotropic Gaussian distribution. Since we consider a more general
case, we instead draw Σ as a symmetric positive-definite matrix. The observed treatment is then
defined as X := g0(Z), where g0 is a neural network with enforced injectivity. Finally, the outcome
variable is generated as Y := f0(Z) + ρRε + η, where R ∈ RdZ is a vector, η is Gaussian noise,
and ρ ∈ [0, 1] is a parameter controlling the strength of confounding. Additional details about the
data-generating process are provided in Section B.2. Prior to all experiments, we evaluate and fix
the temperature τ of the InfoNCE loss as described in Section B.4.

5.1.1 RECOVERING LATENT TREATMENTS

We first evaluate Phase 1 of InfoIV, i.e., we evaluate how well we can recover the latent treatments
by exploiting the instrument A as a proxy variable. As detailed in Section 4.1 this step is performed
by minimizing an adaptation of the InfoNCE loss tailored to our setting. We further ablate our
method by adding a decoder and a reconstruction term to the loss (cf. Section B.4). Both variants
are benchmarked against two baselines: iVAE (Khemakhem et al., 2020a) and vanilla auxiliary
contrastive learning (vACL) (Hyvärinen et al., 2019), whose descriptions and implementation details
are provided in Section B.1. An advantage of our method is its efficiency: it requires training only
a matrix of dimension dZ × dA on top of the encoder, unlike most latent identification methods
that require training a decoder (Khemakhem et al., 2020a; Saengkyongam et al., 2024) or a logistic
regression head (Hyvärinen et al., 2019).

We sample 20 datasets with 5, 000 data points each, where we set the dimensions d of the involved
variables so that dZ = 8, dA = 10, and dX = 12. Each method is trained for 50 epochs and we
report the mean correlation coefficient (MCC) of the estimated latent variables with the ground-truth
Z. A higher MCC indicates better recovery of the true latent structure. The results are shown in
Figure 6a. We see that our InfoNCE variant to perform Phase 1 of Algorithm 1 outperforms both
iVAE and vACL. Our ablation study in which we add a decoder and a reconstruction term to the loss,
provides additional benefits, increasing the mean MCC by approximately 0.015. While helping in
terms of reconstruction, however, we observe that increasing the weight for the reconstruction term
decreases the performance for the estimation of causal effects, as shown in Section B.4.
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(a) Average MCC (latent recovery). (b) Average R2 (extrapolation task).

Figure 2: [Latent Recovery] On the left (a), we show the results for latent recovery in terms of MCC
(higher is better) for the experiment described in Section 5.1.1. The plot on the right (b) shows the
recovery of the latent features in terms of R2 in comparison to MMR (used within REP4EX) for the
experiment described in Section 5.3.

5.1.2 RECOVERING CAUSAL EFFECT

Once the latent treatment is recovered up to an acceptable indeterminacy, we proceed to estimate the
causal effect. In particular, we always train for 50 epochs in Phase 1. To estimate the causal effect,
we proceed in two stages: First, we regress the estimated latent treatments on the instrument A to
obtain a proxy latent. Second, we regress this proxy variable on the outcome Y to recover the causal
effect. In both stages, we train neural networks using the standard mean squared error (MSE) loss
(cf. Section B.4). To evaluate the ability of our method to recover the true causal effect, we compute
the out-of-sample mean squared error (o.o.s. MSE), defined as

MSEoos =
1

n

n∑
i=1

∥ŷi − f0(xi)∥2, (9)

where ŷi denotes the models prediction and f0(xi) the ground-truth outcome. We generate 10
datasets for each confounder strength ρ ∈ {0.1, 0.5, 1} generating 5, 000 datapoints each.

Method ρ = 0.1 ρ = 0.5 ρ = 1

DeepGMM (1.11 ± 0.08) × 10−3 (4.44 ± 0.12) × 10−3 (5.25 ± 0.10) × 10−3

DFIV (4.49 ± 0.07) × 10−4 (1.13 ± 0.07) × 10−3 (1.73 ± 0.15) × 10−3

KIV (1.11 ± 0.06) × 10−3 (1.17 ± 0.08) × 10−3 (1.19 ± 0.07) × 10−3

InfoIV-2SLS (ours) (1.11 ± 0.12) × 10−3 (2.24 ± 0.30) × 10−3 (3.35 ± 0.30) × 10−3

Table 1: MSEoos results (mean ± std) across different ρ values (confounder strength). Each method
is trained for 100 epochs on 5,000 data points. Bold values indicate best performance per column.

We compare InfoIV-2SLS to the state-of-the-art for nonparametric IV regression, i.e. KIV (Singh
et al., 2019), DeepGMM (Bennett et al., 2019), and DFIV (Xu et al., 2021) and show the results
in Table 1. We note that although the second phase of InfoIV-2SLS is not highly optimized in
comparison to the baselines, our method still achieves comparable results. When moving to image
data, in the next section, we showcase the advantages of InfoIV-2SLS.

5.2 IV REGRESSION ON IMAGE DATA

To evaluate our method in the context of high-dimensional treatments, we conduct experiments on
the dSprites dataset (Matthey et al., 2017), where each 64 × 64 image is described by five latent
factors: scale, rotation, shape, x-position, and y-position. In our setup, the treatments X are the
images, while the outcome Y is a scalar function of the latent factors Z, confounded by the y-
position variable (details are provided in Section B.3).

We compare InfoIV-2SLS to DeepGMM Bennett et al. (2019) and DFIV Xu et al. (2021). We
adapt the same training procedure for Phase 1 (train for 50 epochs). We used convolution layers
for feature extractor, all methods were run with a similar architecture. Each method on 5,000 data

8
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(a) MSEoos for dSprites (b) Average MSE for extrapolation

Figure 3: [Left] Figure (a) shows the performance for causeal effect estimation on the dSprites
example in terms of mean MSEoos. InfoIV-2SLS clearly outperforms the baselines. [Right] Figure
(b) show the result on the extrapolation task with increasing shift γ. We compare InfoIV-CF to
REP4EX, an oracle and a naive baseline (OLS). InfoIV-CF is on par with REP4EX up to γ = 4.

points. We trained InfoIV-2SLS and DFIV for 100 epochs and DeepGMM for 50 epochs since
it tended to overfit quickly. Results are reported over 10 different random seeds and for different
confounding strength. We observe that our method outperforms both DFIV and DeepGMM by
orders of magnitude, while DeepIV and KIV failed to converge to reasonable solutions and are
therefore excluded from the plot.

5.3 EXTRAPOLATION

We also evaluate our method in the REP4EX setting (Saengkyongam et al., 2024), where we as-
sume linearity between features and instrument. Particularly, we evaluate the capacity of the con-
trol function approach to perform extrapolation. We sample data according to the SCM provided
in Equation (8), where g0 is an injective neural network, f0 and l are MLPs, M0 is a full-rank
matrix and V and ε are uncorrelated Gaussian noise variables. For the training data, we sample
A ∼ U([−1, 1]dA), where dA = 10, dZ = 8, and dX = 12. We follow the control function ap-
proach described in Section 4.3 and evaluate the learned causal effect on an extrapolation task where
we sample A ∼ U([−(γ + 1), γ + 1]) with γ ∈ {0, 1, 8}. We sample 5 datasets with 10, 000 obser-
vations each and apply InfoIV-CF, REP4EX, and ordinary least squares (OLS) as a naive baseline.
Both InfoIV-CF and REP4EX are trained for 50 epochs each in all phases. The results are shown
in Figure 3b. We see that the representations learned by InfoIV are suitable for extrapolation via
the control function approach—strongly outperforming the naive baseline while only being slightly
outperformed by the specialized method REP4EX for shifts larger than 4. We also provide some
example plots for extrapolation in Section B.5.

We also verify that our InfoNCE loss satisfies the affine identifiability assumption necessary to
perform extrapolation (cr. Figure 2b). We compare it to the MMR loss employed by REP4EX,
which is outperformed by both of our variants based on InfoNCE.

6 DISCUSSION AND CONCLUSION

In this paper, we studied a representation-based setting for instrumental variable regression in which
we cannot directly access the treatment variable, but only observe a potentially high-dimensional
mixing of it. Within this setting, we proved the suitability of a two-phase approach in which we
first recover the latent treatments up to an affine transformation via a variant of contrastive learning
that leverages the instrument as an auxiliary. We implement our method, InfoIV, which exploits the
learned latent variables for IV regression via 2SLS, and for extrapolation based on a control function
approach in Phase 2 of InfoIV. To recover the latent treatments in Phase 1, we adapt the InfoNCE loss
to our setting. Through an extensive empirical evaluation, we demonstrate that InfoIV is on par with
state-of-the-art 2SLS approaches on tabular data while having an advantage on image data. Further,
we demonstrate that InfoIV can be used for extrapolation, being only marginally outperformd by
REP4EX specializing on this task. For future work, we aim to evaluate the extrapolation capacities
of InfoIV on vision datasets, as well as explore more principled approaches for 2SLS such as DFIV
in Phase 2 of our approach.
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Reproducibility Statement. To ensure reproducibility of our work, we followed common guide-
lines and ensured to run each experiment with multiple seeds, attached the code as a supplementary
file to the submission, and provide details to the experimental setup as well as the hyperparameters of
InfoIV and all baselines in Appendix B. All proofs of theoretical claims are provided in Appendix A.
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A THEORY

A.1 IDENTIFIABILITY PROOFS

Theorem 4.1. Let the conditional Z | A follow the conditional factorial distribution introduced in
Definition 3.2, with parameters (T, λ). Further, let g0 : Z → X be a (non-linear) injective mixing
function and X := g0(Z). Consider that the following conditions hold:

1. The sufficient statistic T (z) = (Ti(zi))
dZ
i=1 is differentiable almost everywhere.

2. There exist dZ + 1 distinct points u0, ..., udZ such that the matrix

Lλ(u) = (λ(u1)− λ(u0), ...., λ(un)− λ(u0)) is invertible.

3. We train ϕ∗ an encoder with universal approximation capability andW ∗ ∈ RdZ×dA on the
loss stated in Equation (6).

Then in the limit of infinite data, ϕ∗(X) identifies Z up to an invertible linear transformation and
pointwise nonlinearities defined by its sufficient statistics.

Proof. As argued in van den Oord et al. (2019), in the limit of infinite data with ϕ and ψ having
universal approximation capacity, if:

ϕ∗,W ∗ = argmin
ϕ,W

LNCE,

then

eϕ
∗(x)W∗a ∝ p(x|a)

p(x)
.

Let us recall that we assume g0 to be injective, therefore it admits a left inverse on its image space
contained in X that we denote g−1

0 . Under the assumption that g−1
0 has full-rank Jacobian, one

can apply the change of variable formula with the volume matrix vol A :=
√

det ATA (Ben-Israel,
1999).

ϕ∗(x)W ∗a = log c+ log p(x|a)− log p(x) (10)

= log c+ log pZ(g
−1
0 (x)|a)− log pZ

(
g−1
0 (x)

)
(11)

= log c+ log p(z|a)− log p(z) (12)

We use the change of variable formula to go from 10 to 11 and notice that the Jacobian volumes
cancel themselves. We define c the proportionality constant that is not dependent on a or x. At
line 12 we simply set z := g−1

0 (x). By assumption, {Zi}i=1,...,dZ
given A follow an exponential

distribution (Definition 3.2), thus, following the proof of Khemakhem et al. (2020b)[Theorem 9]:

ϕ∗(x)W ∗a = log pT,λ(z|a)− log pZ
(
z
)
+ log c (13)

= log c+ T (z)λ(a) + logµ(z)− Γ(a)− p(z), (14)

By collecting these equations for every ak, k ∈ {0, ..., dZ} as defined in assumption 3. and taking
out the case a0, we obtain for all k ∈ {1, ..., dZ}:

ϕ∗(x)W ∗(ak − a0) = T (z)
(
λ(ak)− λ(a0)

)
+
(
Γ(a0)− Γ(ak)

)
, (15)

which yield the following matrix form:

ϕ∗(x)Ψ = T (z)L+ C, (16)

with Ψ a RdZ×dA matrix whose k-th row is given by ak − a0 which is non-zero by assumption, L
is defined as in assumption 3 and C is a vector of dimension dZ whose k-th element is given by
Γ(a0)− Γ(ak). By assumption, L is invertible thus we can multiply both side by its inverse, which
yields the following result:

ϕ∗(x)R = T (z) + C̃, (17)

with C̃ := CL−1 and R := ΨL−1.

Finally, by assumption T has full-rank Jacobian and is thus non-degenerate. As a consequence, the
mapping z 7→ zR has to cover the full-space and thus cannot be degenerate. Since R is a square
matrix we deduce its invertibility.
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After stating the identifiability of InfoNCE in the general IMCA case, we can now state its more
refined identifiability in the Gaussian case. Since this result is required for extrapolation, we first
recite the corresponding theorem enabeling extrapolation of Saengkyongam et al. (2024).
Theorem A.1 (Saengkyongam et al. (2024), Theorem 4). Assume Setting 8 with f0 and l differen-
tiable. Let ϕ be an encoder that identifies g−1

0 up to an affine transformation. Let:

(Wϕ, αϕ) := argmin
W∈RdZ×dA ,α∈RdZ

E[∥ϕ(X)− (WA+ α)∥2]. (18)

and the estimated noise term Vϕ := ϕ(X)− (WϕA+ αϕ). Finally, let ν and ψ be the the estimated
functions obtained from additive regression of Y on ϕ(X) and Vϕ. Then:

∀a∗ ∈ A,E[Y |do(A = a∗)] = E[ν(Wϕa
∗ + αϕ + Vϕ)]− (E[ν(ϕ(X))]− E[Y ]). (19)

Corollary 4.4. Assume Z := M0A + V with M0 full-rank and V ∼ N (0,Σ). Let X := g0(Z)
with g0 an injective function. Assume that there exist dZ + 1 linearly independent distinct points
in supp(A). Then, in the limit of infinite data an encoder ϕ∗ trained to minimize loss Equation (6)
provides a consistent estimator of Z up to an invertible affine transformation.

Proof. Let us recall that we sample data from the following SCM:

S :


V∼N (0,Σ)

Z :=M0A+ V

X := g0(Z)

with g0 injective and M0 full row rank. We have:

p(z|a) = pV (z −M0a) (20)

= (2π)−dZ/2det(Σ)−1/2 exp
[
− 1

2
(z −M0a)

TΣ−1(z −M0a)
]

(21)

= (2π)−dZ/2det(Σ)−1/2 exp−1

2

[
zTΣ−1z − zTΣ−1M0a− aTMT

0 Σ−1z + aTMT
0 Σ−1M0a

]
(22)

= (2π)−dZ/2det(Σ)−1/2 exp
[
− 1

2
zTΣ−1z

]
exp

[
zΣ−1M0a

]
exp

[
− 1

2
aTMT

0 Σ−1M0a
]

(23)

= µ(z) exp
[
zΣ−1M0a− Γ(a)

]
(24)

where we go from Eq. 22 to 23 by noticing that the two terms are scalar and the transpose of the other,
in Eq. 24 we set µ(z) := (2π)−dZ/2det(Σ)−1/2 exp

[
− 1

2z
TΣ−1z

]
and Γ := 1

2a
TMT

0 Σ−1M0a.
This derivation allows us to identify a conditional exponential family with parameters (T, λ), as
introduced in Definition 3.2. In particular, we obtain ∀i = 1, ..., dZ :{

Ti(t) = t, ∀t ∈ R
λi(u) = Σ−1M0u, ∀u ∈ RdA

It remains to prove that this parametrization validates the assumptions of Theorem 4.1. Let us choose
u0, . . . , udZ in supp(A), assumed to exist, such that these dZ + 1 points are distinct and linearly
independent. Define

U ∈ RdA×dZ , U =
(
u1 − u0, . . . , udZ − u0

)
.

By construction, the columns of U are linearly independent, so U has full column rank, i.e.,
rank(U) = dZ .

Since Σ is invertible, we have rank(L) = rank(M0U). Moreover, M0 is assumed to be full row
rank of dimension dZ . Therefore,

rank(M0U) = min{rank(M0), rank(U)} = min{dZ , dZ} = dZ .

ThusM0U is square and invertible, which implies that L is also invertible. This verifies the full-rank
condition required in Theorem 4.1.
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B EXPERIMENTS

B.1 BASELINE METHODS

Latent recovery We perform evaluation of our latent recovery method against three existing meth-
ods: vanilla auxiliary constrastive learning (vACL) (Hyvärinen et al., 2019), iVAE (Khemakhem
et al., 2020a) and first stage of Rep4Ex-CF (Saengkyongam et al., 2024). We use the same encoder
and decoder architecture for each method, as well as the neural network architecture for each method
to estimate the causal effects. Additionally, vACL includes a logistic regression head that we im-
plement as an MLP with two hidden layers with ReLU activation, trained on cross-entropy loss. All
three methods are implemented in our code that is appended to the submission. The network archi-
tecture for each method consists of the following blocks: 3 blocks of Linear - Batch normalization
- LeakyRelu layers, with dropout at a rate of 0.2. The hidden dimensions are fixed at 16, 32 and 64
throughout both IMCA and extrapolation experiments.

IV baseline comparison We use the implementation of DeepGMM Bennett et al. (2019),
KIV Singh et al. (2019) and DFIV Xu et al. (2021) provided in https://github.com/
liyuan9988/DeepFeatureIV. We include an adapted version in our code, particularly new
model specs as well as our data generative process. For the dSprites experiments we use an Image
extractor (Table 3) for both DeepGMM and DFIV with a similar architecture as the encoder used for
first stage of our method.

ConvBlockDown(Cin → Cout) Operations
Conv2d(Cin → Cout, kernel=3, stride=2, padding=1) Downsampling conv

BatchNorm2d(Cout) Normalization
Activation (LeakyReLU(0.2) by default) Non-linearity

Dropout2d(0.1) Regularization

Table 2: Definition of ConvBlockDown.

Layer Output Shape
Input (1 × 64 × 64) 1 × 64 × 64

ConvBlockDown(1→32) 32 × 32 × 32
ConvBlockDown(32→64) 64 × 16 × 16

ConvBlockDown(64→128) 128 × 8 × 8
ConvBlockDown(128→256) 256 × 4 × 4

Flatten 4096
Dense(4096 → 6) 6

Table 3: Image feature extractor used for DeepGMM, DFIV, and InfoIV in the dSprites experiment.

B.2 IMCA DATA GENERATIVE PROCESS

Injectivity of g0. Our identifiability result stated in Theorem 4.1 relies on the assumption that the
ground-truth mixing function g0 is injective. To enforce this property in our data-generating process,
we use LeakyReLU activations and initialize the weight matrices of the linear layers to be full-rank.
Particulary, g0 has 2 hidden layers of dimension [32, 64]. Similarly, ground-truth causal effect f0 is
a 2 hidden layers neural network with tanh activations.

B.3 DSPRITES DATA GENERATIVE PROCESS

We now describe the data generative process for dSprites data. We first sample a proxy between
instrument and treatment in order to avoid inverting the causal direction by defining the instrument
as a function of the treatment.

1. Sample a proxy variable Q uniformly in a ball around the extremal values of Z.

2. Map Q to the nearest existing latent value to define the latent treatment Z.

3. Compute the instrument A as a nonlinear mapping of the components of Q except for the
one associated with position-y.

4. Obtain the observed treatment X as the corresponding images from the dSprites dataset.
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Figure 4: Average MCC on validation set (1,000 samples) over 20 runs for each temperature value.
dA = 10, dZ = 8, dX = 12. The training set includes 5,000 data points and the encoders are trained
for 50 epochs on InfoNCE loss solely. Light blue area represents the 90% confidence interval.

5. Define the outcome as

Y = fstruct(Z) +R(posY − 0.5) + η,

where fstruct is a randomly initialized neural network, R is a vector, and η is Gaussian
noise.

B.4 INFOIV HYPERPARAMETERS TUNING

One advantage of our method over autoencoder-based approaches is that it depends on only a single
hyperparameter: the temperature in the InfoNCE loss. We tune this parameter by evaluating the
validation MCC 4, and notice the best performance is achieved with a temperature of 0.3, which we
use for all subsequent experiments.

As mentioned earlier, we also explored adding a reconstruction term to our loss by training a decoder
(mirrored architecture to the encoder) to reconstruct the input X . The resulting loss is:

L(ϕ, ψ,W ) = LNCE(ϕ,W ) + λrec ∥ψ ◦ ϕ(X)−X∥2.

We conducted a study on the IMCA dataset, evaluating the learned latents against the ground truth
using the MCC metric for different values of λrec. The latent features were then used in the second
step of InfoIV-2SLS for causal effect estimation, which we evaluated using the out-of-sample MSE
(MSEoos, Figure 5). While values of λrec > 1 generally improve the consistency of the learned
representation (increasing MCC by up to 0.2), they also lead to a deterioration in causal effect
estimation, raising the MSE by an average of 1.5× 10−2.

Figure 5: Average MCC (in purple) and out-of-sample MSE (in green) per reconstruction regular-
ization parameter. The temperature for the InfoNCE loss term is fixed at 0.3.
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(a) (b) (c)

Figure 6: Estimated causal effect with InfoIV-CF (in red), ground-truth causal effect (in orange),
OLS model (in green), (Z;Y) (in grey).

B.5 EXTRAPOLATION PLOTS

We additionally evaluate our method in a setting where both Z and X are scalar, while A is sampled
from a two-dimensional uniform distribution. Figure 6 shows the learned causal-effect. We consider
three scenarios: a) corresponds to the case of a linear causal effect; b) corresponds to a nonlinear
causal effect implemented as a linear layer with hidden dimension 16, followed by a tanh activation
and a final linear layer; and c) corresponds to a similar architecture where the nonlinear activation is
the absolute value function instead of tanh. We follow our standard training procedure for InfoIV-
CF. InfoIV recovers the ground-truth causal effect f0 up to an affine indeterminacy that arises from
latent variable estimation. To account for this, we learn an affine transformation that aligns the
estimated latent representation with the ground-truth Z, and we report the causal effect after apply-
ing this transformation. For comparison, we also fit an OLS model mapping the ground-truth Z to
the outcome Y . The OLS estimator fails to recover the causal effect, as Z is confounded with the
residual variation in Y . Importantly, despite the affine indeterminacy, our method still yields a valid
estimate of the causal relationship from the observed X to Y .
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