
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE CANONICALIZATION WITH APPLICATION
TO INVARIANT ANISOTROPIC GEOMETRIC NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Canonicalization is a widely used strategy in equivariant machine learning, en-
forcing symmetry in neural networks by mapping each input to a standard form.
Yet, it often introduces discontinuities that can affect stability during training,
limit generalization, and complicate universal approximation theorems. In this
paper, we address this by introducing adaptive canonicalization, a general frame-
work in which the canonicalization depends both on the input and the network.
Specifically, we present the adaptive canonicalization based on prior maximiza-
tion, where the standard form of the input is chosen to maximize the predictive
confidence of the network. We prove that this construction yields continuous and
symmetry-respecting models that admit universal approximation properties.
We propose two applications of our setting: (i) resolving eigenbasis ambiguities in
spectral graph neural networks, and (ii) handling rotational symmetries in point
clouds. We empirically validate our methods on molecular and protein classifi-
cation, as well as point cloud classification tasks. Our adaptive canonicalization
outperforms the three other common solutions to equivariant machine learning:
data augmentation, standard canonicalization, and equivariant architectures.

1 INTRODUCTION

Equivariant machine learning (Gerken et al., 2023; Villar et al., 2021; Han et al., 2022; Keriven
& Peyré, 2019) has been accentuated in geometric representation learning (Bronstein et al., 2017),
motivated by the need to build models that respect symmetry inherent in data. For example, permu-
tation equivariance in graphs (Gilmer et al., 2017; Zaheer et al., 2017; Xu et al., 2018), translation
equivariance in images (LeCun & Bengio, 1998; Cohen & Welling, 2016a), and SO(3) or SE(3)
equivariance for 3D objects and molecules (Thomas et al., 2018; Fuchs et al., 2020; Batzner et al.,
2022; Satorras et al., 2021). The symmetry is built into the method so that transforming the input
induces a predictable transformation of the output. This inductive bias reduces sample complexity,
curbs overfitting to arbitrary poses, and often improves robustness on distribution shifts where the
same object appears in a different orientation or ordering (Kondor & Trivedi, 2018; Wang et al., 2022;
Park et al., 2022; Bronstein et al., 2021; Bietti & Mairal, 2019; Kaba & Ravanbakhsh, 2023).

There are three principal approaches to handling symmetry in machine learning. The first involves
designing equivariant architectures (Cohen & Welling, 2016b; Weiler et al., 2018a; Weiler & Cesa,
2019; Geiger & Smidt, 2022; Maron et al., 2019a; Lippmann et al., 2024): neural network layers are
constructed to commute with the symmetry. The second approach is data augmentation, where each
datapoint is presented to the model at an arbitrary pose (Chen et al., 2020; Brandstetter et al., 2022).
The third strategy is canonicalization (Kaba et al., 2023; Ma et al., 2023; 2024; Lim et al., 2022;
2023; Mondal et al., 2023; Lawrence et al., 2025; Sareen et al., 2025; Luo et al., 2022): each input
is mapped to a standard form and then processed by a non-equivariant network. Another common
approach to equivariant machine learning is frame averaging (Puny et al., 2021), which averages the
network’s output over a set of input transformations.

A well-known problem in canonicalization is that in many cases it unavoidably leads to an end-to-end
architecture which is discontinuous with respect to the input (Dym et al., 2024; Zhang et al., 2019a;
Lim et al., 2022). This inevitably leads to problems in stability during training and in generalization,
as very similar inputs can lead to very different outputs (Dym et al., 2024; Tahmasebi & Jegelka,
2025a;b). Moreover, the discontinuity of the network makes universal approximation properties less

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Input x

Optimal transformation
ωx,!1

Optimal transformation
ωx,!2

Optimal transformation
ωx,!D

Classifier
!1

Classifier
!2

Classifier
!D

Sum of D binary
cross-entropies loss

Prior of classifier
h1(!1)

Prior of classifier
h2(!2)

Prior of classifier
hD(!D)

ε(ωx,!1)x

ε(ωx,!2
)x

ε(ωx,!D
)x

Prior maximization (class 1)

Prior maximization (class 2)

Prior maximization (class D)

Figure 1: Illustration of prior maximization adaptive canonicalization in classification. The adaptive
canonicalization optimizes the transformations βx,Ψj

of the inputs x to the classifiers Ψj , while,
during training, Ψj are simultaneously trained w.r.t. the adaptively canonicalized inputs π(βx,Ψj

)x.

natural, as one approximates continuous symmetry preserving functions with discontinuous networks
(Dym et al., 2024; Kaba et al., 2023; Wagstaff et al., 2022).

Our Contribution. In this paper, we show that the continuity problem in canonicalization can be
solved if, instead of canonicalizing only as a function of the input, one defines a canonicalization
that depends both on the input and the network. We propose such a general setting, which we call
adaptive canonicalization, and show that it leads to continuous end-to-end models that respect the
symmetries of the data and have universal approximation properties. Our theory does not only lead to
superior theoretical properties w.r.t. standard canonicalization, but often also to superior empirical
performance, specifically, in molecular, protein, and point cloud classification.

We focus on a specific class of adaptive canonicalizations that we call prior maximizers. To explain
these methods, we offer the following illustrative example. Suppose that we would like to train a
classifier of images into cats, dogs and horses. Suppose as well that each image x can appear in
the dataset in any orientation, i.e., as π(α)x for any α ∈ [0, 2π] where π(α) is rotation by α. One
standard approach for respecting this symmetry is to design an equivariant architecture Θ, which
gives the same class probabilities to all rotations of the same image, i.e., Θ(π(α)x) = Θ(π(α′)x) for
any to angles α, α′. Another simple approach for improving the classifier is to train a symmetryless
network Ψ, and augment the training set with random rotations π(α)x for each input x. Yet another
standard approach is to canonicalize the input, namely, to rotate each input image x by an angle
βx that depends on x in such a way that all rotated versions of the same image would have the
exact same standard form, i.e., π(βπ(α)x)π(α)x = π(βπ(α′)x)π(α

′)x for any two angles α, α′. Then,
the canonicalized image π(βx)x is plugged into a standard symmetryless neural network Ψ, and
the end-to-end architecture Ψ(π(βx)x) is guaranteed to be invariant to rotations. We propose a
fourth approach, where the canonicalized rotation π(βx,Ψ) depends both on the image x and on the
(symmetryless) neural network Ψ.

To motivate this approach, consider a neural network Ψ which, by virtue of being symmetriless,
may perform better on some orientations of x than others. For illustration, it is easier for humans
to detect an image as a horse if its limbs point downwards. Suppose that Ψ(x) = (Ψj(x))

3
j=1 =

(Ψdog(x),Ψcat(x),Ψhorse(x)) is a sequence of binary classifiers with values in [0, 1] each. The
output of Ψ is defined to be the class with highest probability. Suppose moreover that for each j, the
network Ψj is granted the ability to rotated x freely, and probe the output Ψj(π(α)x) for each α.
The network then chooses the orientation α∗ such that Ψj(π(α∗)x) is maximized. As an analogy,
one can imagine an image on a piece of paper being handed at a random orientation to a person
with visual system Ψ. To detect if there is a horse in the image, the person would rotate the paper,
searching for an orientation which looks like a horse. Namely, if there is an orientation α∗ where
Ψhorse(π(α∗)x) is high then there is a horse in the image, and otherwise there is non. This process
would be repeated for all other classes, and eventually the image would be classified as the j∗ such
that maxα Ψj∗(π(α)x) is greater than maxα Ψj(π(α)x) for all other j ̸= j∗. This is the process
that we call prior maximization adaptive canonicalization. This process is inspired by ideas from
cognitive psychology, where the human visual system is believed to learn canonical mental models of
objects and to discard redundant variation due to symmetries by mentally “rotating” perceived stimuli
into alignment with these canonical views (Shepard & Metzler, 1971; Cooper & Shepard, 1973; Tarr
& Pinker, 1989). Our example of a person rotating a sheet of paper to recognize whether it contains a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

horse is directly inspired by this line of work: prior maximization adaptive canonicalization can be
viewed as a neural analogue of mental rotation, where the network searches over transformations to
align inputs with its learned canonical views. We note that some previous models in machine learning
were also inspired by this process (Palmer, 1981; Harris et al., 2001; Graf, 2006; Gomez et al., 2008;
Konkle & Oliva, 2011; Risko & Gilbert, 2016; Tacchetti et al., 2018; Schmidt & Stober, 2024).

We note that the inputs are adaptively canonicalized also during training, so Ψ needs not learn to
respect any symmetry on its own. In fact, Ψ can benefit from being symmetryless. For example, it
may search for “horse head” patterns only diagonally above where it detects “horse limbs” patterns,
and rely on the prior maximization to orient horses accordingly.

We show that adaptive canonicalization leads to a continuous symmetry preserving end-to-end
classifier that can approximate any symmetry preserving continuous function when Ψ are non-
equivariant neural networks. As an application, we propose adaptive canonicalization methods for 1)
spectral graph neural networks, where the symmetry is in the choice of the eigenbasis of the graph
shift operator, and 2) point clouds, with rotation symmetries. We show that adaptive canonicalization
in these cases outperforms both standard canonicalization and equivariant networks, as well as
augmentation methods. See Fig. 1 for an illustration of prior maximization.

2 RELATED WORK

Canonicalization has been studied in several forms. For example, in computer vision and geometric
deep learning methods, inputs are often first transformed into a standardized pose or reference frame
before classification (Lowe, 2004; Jaderberg et al., 2015). More recent work formalizes this as an
explicit canonicalization map feeding a downstream network (Lim et al., 2022; Ma et al., 2024) or as
energy-based canonicalization (Kaba et al., 2023) in which one learns an energy over group elements
and takes the minimizer as the canonical transformation. The latter has been further developed on
symmetries defined by general Lie group actions (Shumaylov et al., 2025). Canonicalization has
also been used for data alignment (Mondal et al., 2023; Schmidt & Stober, 2025) and for test-time
optimization over transformations, where one searches over group actions to select a canonical
representation before downstream inference (Singhal et al., 2025; Schmidt & Stober, 2024). A related
line of work is frame averaging (Puny et al., 2020), which averages a network’s output over a set of
group transformations, and its extension to weighted frame averaging (Dym et al., 2024), where each
datapoint is equipped with a probability distribution over the group and averaging is performed with
respect to this measure, yielding continuity guarantees. In our work, we instead study canonicalization
as a function of both the input and the network, and we establish continuity guarantees for symmetry-
preserving continuous functions realized by our construction. Moreover, our approach is not restricted
to symmetries defined via group actions, and allows working with more general augmentations for
transforming datapoints. We refer to App. A for further discussion and comparison with related work.

3 ADAPTIVE CANONICALIZATION

In this section, we develop the general theory of adaptive canonicalization, and prove that it leads to
continuous symmetry preserving networks with universal approximation properties.

3.1 BASIC DEFINITIONS AND BACKGROUND

The function that maps each input x to the output f(x) is denoted by x 7→ f(x). The free variable
of a univariate function is denoted by (·), and by (·, ··) for a function of two variables. For example,
the function (x, y) 7→ sin(x) exp(y) is also denoted by sin(·) exp(··). We denote the infinity norm of
x = (xd)

D
d=1 ∈ RD by |x| := max1≤d≤D |xd|. We define the infinity norm of a continuous function

f : K → RD over a topological space K by ∥f∥∞ = supx∈K |f(x)|. If ∥f − y∥∞ < ϵ we say that y
approximates f uniformly up to error ϵ. The set of all subsets of a set K, i.e., the power set, is denoted
by 2K. When defining general metric spaces, we allow the distance between points to be∞. This
does not affect most of the common properties of metric spaces (see Burago et al. (2001)).

Function Spaces. We develop the definitions of adaptive canonicalization in general locally com-
pact Hausdorff spaces. Two important examples of such a space is a compact metric space or RJ .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 1. Let K be a locally compact Hausdorff space, and D ∈ N.

• A function f : K → RD is said to vanish at infinity if for every ϵ > 0 there exists a compact set
K ⊂ K such that |f(x)| < ϵ for every x ∈ K \K.

• The space of all continuous functions f : K → RD that vanish at infinity, with the supremum
norm ∥f∥∞ = maxx∈K |f(x)| is denoted by C0(K,RD).

In adaptive canonicalization, we consider families of continuous functions where the ϵ−δ formulation
of continuity is uniform over the whole family, as defined next.
Definition 2. Let X and Y be two metric spaces with metrics dX and dY respectively. A family F of
function f : X → Y is called equicontinuous if for every x ∈ X and every ϵ > 0, there exists δ > 0
such that every z ∈ X which satisfies dX (x, z) < δ also satisfies

∀f ∈ F : dY(f(x), f(z)) < ϵ.

Universal Approximation. Universal approximation theorems (UAT) state that any continuous
function over some topological space can be approximated by a neural network. In such a case, the
neural networks are said to be universal approximators, as defined next.
Definition 3. Let K be a locally compact Hausdorff space and D ∈ N. A set of continuous functions
N (K,RD) ⊂ C0(K,RD) is said to be a universal approximator of C0(K,RD) if for every f ∈
C0(K,RD) and ϵ > 0 there is a function θ ∈ N (K,RD) such that

∀x ∈ K : |f(x)− θ(x)| < ϵ.

In the above definition, we interpret N (K,RD) as a space of neural networks. A UAT is hence any
theorem which shows that some set of neural networks is a universal approximator. Two examples of
UATs are: 1) multilayer perceptrons (MLP) are universal approximators of C0(K,RD) for compact
subset K of the Euclidean space RD (Hornik et al., 1989; Cybenko, 1989), and 2) DeepSets (Zaheer
et al., 2017) are universal approximators of continuous functions from multi-sets to Rd. See App. B
for more details.

3.2 ADAPTIVE CANONICALIZATION

In the general setting of adaptive canonicalization, we have a domain of inputs G which need not
have any structure apart for being a set, e.g., the set of graphs. We consider continuous functions
f : K → RL over a “nice” domain K, e.g., K = RJ . Such functions can be approximated by neural
networks. We then pull-back f to be a function from G to RL using a mapping ρf : G 7→ K that
depends on (is adapted to) f . Namely, we consider f(ρf (·)) : G → RD. The following definitions
assure that such a setting leads to functions with nice properties, as we show in subsequent sections.
Definition 4. Let K be a locally compact Hausdorff space, G be a set, and D ∈ N. A mapping
ρ = ρ(·)(··) : C0(K,RD)× G → K, (f, g) 7→ ρf (g), is called an adaptive canonicalization if the set
of functions

{f 7→ f ◦ ρf (g) | g ∈ G}
is equicontinuous (as functions C0(K,R)→ RD). Here, f ◦ ρf (g) := f(ρf (g)).

Next, we define the function space that we would like to approximate using adaptive canonicalization.
Definition 5. Let K be a locally compact Hausdorff space, G be a set, and D ∈ N. Let ρ be an
adaptive canonicalization, and let f ∈ C0(K,RD). The function

f ◦ ρf : G → RD, g 7→ f
(
ρf (g)

)
is called an adaptive canonicalized continuous function, or a canonicalized function in short.

In Sec. 3.4, we show that for an important class of adaptive canonicalizations the set of adaptive
canonicalized continuous functions is exactly the set of all symmetry preserving continuous functions.

It is now direct to prove the following universal approximation theorem.
Theorem 6 (Universal approximation of adaptive canonicalized functions). Let N (K,RD) be a
universal approximator of C0(K,RD), and f ◦ ρf an adaptive canonicalized continuous function.
Then, for every ϵ > 0, there exists a network θ ∈ N (K,RD) such that for every g ∈ G

|f ◦ ρf (g)− θ ◦ ρθ(g)| < ϵ.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Proof. Let ϵ > 0. By Def. 4, there exists δ > 0 such that

∀y ∈ C0(K,RD) : ∥f − y∥∞ < δ ⇒
(
∀g ∈ G : |f ◦ ρf (g)− y ◦ ρy(g)| < ϵ

)
. (1)

By the the universal approximation property, there exists a network θ such that ∥f −θ∥∞ < δ. Hence,
by (1), ∀g ∈ G : |f ◦ ρf (g)− θ ◦ ρθ(g)| < ϵ.

3.3 PRIOR MAXIMIZATION ADAPTIVE CANONICALIZATION

Prior maximization is a special case of adaptive canonicalization, where ρf is chosen to maximize
some prior on the output of f . The maximization is done over a space of transformations κu : G → K
parameteried by u, i.e., maximizing the prior of f(κu(g)) w.r.t. u.

Let U be metric space, and for every u ∈ U , let
κ(·)(··) : U × G → K, (u, g) 7→ κu(g) ∈ K.

Suppose that κu(g) is continuous in u for every g ∈ G. We call κ a transformation family, trans-
forming objects in G into points in K, where different u ∈ U define different transformations. Let
H = (h1, . . . , hD), where hd : R→ R for each d, be a sequence of continuous monotonic functions,
that we call the ensemble of priors. We call each hd a prior. We denote H ◦ f := (hd ◦ fd)Dd=1.

For every f = (f1, . . . , fD) ∈ C0(K,RD), g ∈ G and d, assume that hd ◦ fd(κ(·)(g)) attains a
maximum in U . This is the case for example when U is compact. Define

ρf (g) =
(
ρdfd(g)

)D
d=1

:=
({

κu∗(g)
∣∣ hd◦fd

(
κu∗(g)

)
= max

u∈U
hd◦fd

(
κu(g)

)})D
d=1
∈
(
2K
)D

. (2)

Note that ρf : G → (2K)D. By abuse of notation, we also denote by ρf the mapping that returns
some arbitrary sequence of points (xd ∈ ρdfd(g))

D
d=1 ∈ KD for each g ∈ G. The choice of the specific

point in ρdfd(g) does not affect the analysis. We interpret ρf as a function that takes an input g and
canonicalize it separately with respect to each output channel fd, adaptively to fd.

When used for classification, we interpret each output channel fd ◦ ρdfd(g) ∈ [0, 1] as a binary
classifier, i.e., representing the probability of g being in class d vs. not being in class d. This
multiclass classification setting is called one vs. rest, where a standard loss is a sum of D binary
cross-entropies (Rifkin & Klautau, 2004; Galar et al., 2011; Allwein et al., 2000).

Definition 7. Consider the above setting. The mapping ρ defined by (2) is called prior maximization.
If in addition G has a metric such that for every f ∈ C0(K,RD) the family {g 7→ f(κu(g))}u∈U is
equicontinuous, ρ is called continuous prior maximization.

In Thm. 8 we show that prior maximization is indeed adaptive canonicalization.

Note that the condition of g 7→ f(κu(g)) being equicontinuous is satisfied for well known settings
of equivariant machine learning. For example, let U = SO(3) be the space of 3D rotations, and
G = K = BN the set of sequences of N points in the 3D unit ball B, i.e., the space of point clouds.
We consider the rotation g 7→ κu(g) of the point cloud g by u ∈ U . Since G and U are compact
metric spaces, and (g, u) 7→ κu(g) is continuous, κ and f must be uniformly continuous. Hence,
{g 7→ f(κu(g))}u∈U is equicontinuous. In fact, whenever G is compact and κ continuous w.r.t. (u, g),
it is automatically also uniformly continuous, so ρ is a continuous prior maximization. See App. C
for additional examples of continuous prior maximization.

Properties of Prior Maximization.
Theorem 8. In prior maximization, each ρd : C0(K,R)× G → K is adaptive canonicalization.

Proof. Consider without loss of generality the case where the output dimension is D = 1. Since
the specific values of H = h1 do not matter, only if it is ascending or descending, without loss of
generality suppose H(x) = x, in which case prior maximization maximizes directly the output of
f ◦κu(g) with respect to u. Consider an arbitrary maximizer ρf (g) ∈ argmaxu∈U f(κu(g)) for each
f ∈ C0(K,R). The choice of the maximizer does not affect the analysis. Now, if f, y ∈ C0(K,R)
satisfy ∥f − y∥∞ < ϵ, then also for every u ∈ U , |f(κu(g))− y(κu(g))| < ϵ. Let u0 ∈ U be a
maximizer of f(κu(g)). We have y(κu0(g)) > f(κu0(g))− ϵ, so

max
u

y(κu(g)) > max
u

f(κu(g))− ϵ.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Similarly, we have maxu f(κu(g)) > maxu y(κu(g))− ϵ. Together,∣∣∣∣max
u∈U

f ◦ κu(g)−max
u∈U

y ◦ κu(g)

∣∣∣∣ < ϵ. (3)

Hence, f 7→ f ◦ ρf (g) is Lipschitz continuous with Lipschitz constant 1 for every g ∈ G, and
therefore equicontinuous over the parameter g ∈ G.

This immediately gives a universal approximation theorem for prior maximization as a corollary of
Thm. 6. Moreover, we can show that continuous prior maximization gives functions continuous in G.
This is one of the main distinctions between prior maximization and standard canonicalization.
Theorem 9. Consider a continuous prior maximization ρ (Def. 7). Then, f ◦ ρf is continuous.
Proof. Let ϵ > 0. For every g ∈ G there is δ = δϵ,g > 0 such that for every g′ ∈ G with d(g, g′) < δ
and every u ∈ U we have |f(κu(g))− f(κu(g

′))| < ϵ. Now, by the same argument as in (3),∣∣∣max
u

f(κu(g))−max
u

f(κu(g
′))
∣∣∣ < ϵ.

3.4 SYMMETRY PRESERVING PRIOR MAXIMIZATION

Consider the following additional assumptions on the construction of continuous prior maximization.
Suppose that the space G is a disjoint union of metric spaces Gj with finite distances, i.e., G = ∪· jGj .
Here, j may run on a finite or infinite index set. We define the metric d in G as follows. For gj ∈ Gj
and gi ∈ Gi, d(gj , gi) =∞ if j ̸= i and d(gj , gi) = dj(gj , gi) <∞ if i = j, where dj is the metric
in Gj . In the theory of metric spaces, the spaces Gj are called galaxies of G. This construction is
useful for data which does not have a uniform notion of dimension, e.g., graphs. For example, each
galaxy in this case can be the space of adjacency matrices of a fixed dimension with a standard matrix
distance.

For each j, let Uj be a group acting continuously on Gj by πj(uj)gj . Namely, πj(uj) : Gj → Gj
is continuous for every uj ∈ Uj , and for every u′

j ∈ Uj and gj ∈ Gj we have πj(u
′
j)πj(uj)gj =

πj(u
′
juj)gj and πj(ej)gj = gj , where ej is the identity of Gj . Define U = ∪· jUj . Namely, U is the

metric space with galaxies Uj similarly to the construction of G. Let π be a mapping that we formally
call an action of U on G, defined for u = ui ∈ Ui ⊂ U and g = gj ∈ Gj ⊂ G by π(u)g = πi(ui)(gj)
if i = j and π(u)g = g if i ̸= j.
Definition 10. Consider the above setting and a continuous prior maximization ρ. Let P : G → K
be continuous, and suppose that the transformation family κ is of the form κu = P ◦ π(u). We call κ
a symmetry preserving transformation family, and ρ a symmetry preserving prior maximization.

Note that whenever the spaces Uj are compact, the functions u 7→ hd◦fd
(
κu(g)

)
of (2) are guaranteed

to attain a maximum, even though the space U = ∪· jUj is in general not compact. Hence, the above
setting with compact Uj is an example of prior maximization. More generally, if the restriction of the
setting to Uj and Gj is (continuous) prior maximization for a single j, then the setting for U and G is
also a (continuous) prior maximization.
Definition 11. We call a function Q : G → RD continuous symmetry preserving if there exists
F : K → RD in C0(K;RD) such that for all u ∈ U and g ∈ G, Q(g) = F (P (π(u)(g))).

When K = G = G1 and P is the identity, a symmetry preserving continuous function is a continuous
function which is invariant to the action of u, i.e., the classical case in equivariant machine learning.

Properties of Symmetry Preserving Prior Maximization. We already know by Thm. 9 that f ◦ρf
is a continuous function when ρ is a symmetry preserving prior maximization. We next show that the
set of functions of the form f ◦ ρf exhaust the space of all continuous symmetry preserving functions.
Theorem 12. Let ρ be a symmetry preserving adaptive canonicalization. Then,

1. Any continuous symmetry preserving function can be written as f ◦ρf for some f ∈ C0(K,RD).
2. For any f ∈ C0(K;RD), the function f ◦ ρf : G → RD is continuous symmetry preserving.

Proof. Without loss of generality, consider the case D = 1 and H(x) = x.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1. For Q(g) = F (P (π(u)(g))), take f = F . Then, by definition of symmetry preservation, for
every u ∈ U : f ◦ ρf (g) = maxv F (P ◦ π(v)g) = F (P ◦ π(u)g) = Q(g).

2. For any u = ui ∈ Ui, since πi(ui) is an action, for any g = gj ∈ Gj ,
f ◦ ρf (π(u)g) = max

vj∈Uj

f(P ◦ πj(vj)πi(ui)gj) = max
vj∈Uj

f(P ◦ πj(vj)gj) = f ◦ ρf (g).

This leads to the following UAT.

Theorem 13. Consider a symmetry preserving prior maximization and let N (K,RD) be a uni-
versal approximator of C0(K,RD) . Then, any continuous symmetry preserving function can be
approximated uniformly by θ ◦ ρθ for some network θ ∈ N (K,RD).

4 APPLICATION OF ADAPTIVE CANONICALIZATION TO ANISOTROPIC
GEOMETRIC NETWORKS

In this section, we propose two architectures based on adaptive canonicalization which can be inter-
preted as anisotropic. First, a spectral graph neural network (GNN) which is sensitive to directionality
within eigenspaces. Then, a 3D point cloud network which is sensitive to 3D directions.

Basic Notations for Graphs and Vectors. We denote by N0 the set of nonnegative integers. We
denote matrices and 2D arrays by boldface capital letters, e.g., B ∈ RN×T . We denote [N] =
{1, . . . , N} for N ∈ N. We denote by B(:, j) and B(j, :) the j’th column and row of the matrix B
respectively. A graph is denoted by G = ([N],A,S), where [N] is the set of N vertices, A ∈ RN×N

is the adjacency matrix, and S ∈ RN×T is an array representing the signal. Namely, S(n, :) ∈ RT is
the feature at node n. A graph shift operator (GSO) is a self-adjoint operator that respects in some
sense the graph’s connectivity, e.g., a graph Laplacian or the adjacency matrix.

4.1 ANISOTROPIC NONLINEAR SPECTRAL FILTERS

Consider graphs with a self-adjoint GSO L (e.g., a graph Laplacian or the adjacency matrix) and T -
channel signals (over the nodes). The number of nodes N varies between graphs. Consider predefined
bands b0 < b1 < . . . < bB ∈ R, and their indicator functions Pk := 1[bk−1,bk) : R → R+

1. For
each k ∈ [B], consider the space of signals Xk in each band [bk−1, bk), namely, the range of the
orthogonal projection Pk(L). Let Mk be the dimension of Xk. We also call Xk the k’th band. See
App. D for details on how to plug operators into functions via functional calculus. Consider an
orthogonal basis Xk = (Xk(:, j))j ∈ RN×Mk for each band Xk. In this setting, the symmetry is
the choice of the orthogonal basis within each band Xk. Namely, for Xk ∈ RN×Mk and orthogonal
matrix Uk ∈ RMk×Mk , the bases Xk and XkUk are treated as different vectorial representations of
the same linear space Xk.

In the above setting, the galaxies Gj are defined as follows. Each galaxy is indexed by j = (N,M) :=
(N ;M1, . . . ,MB) where N ∈ N is the size of the graph, and Mk ∈ N0 for k ∈ [B] are the dimensions
of the bands, satisfying

∑
k Mk ≤ N . Each GN,M is the space of pairs of a signal S ∈ RN×T and

a sequence of K orthogonal matrices of height N and widths M1, . . . ,MB . We denote the matrix
with dimension 0 by ∅. For two signals S,Q and orthogonal bases sequences X,Y, the metric
d
(
(X,S), (Y,Q)

)
is defined to satisfy

d(X,Y)2 = ∥S−Q∥22 +
B∑

k=1

Mk∑
j=1

∥Xk[:, j]−Yk[:, j]∥22 = ∥S−Q∥22 + ∥X−Y∥22,

where for z = (zn)n, ∥z∥22 =
∑

n z
2
n. By definition, the distance between any two points from two

different galaxies is∞.

The transfomation family κU apply unitary operators Uk ∈ O(Mk) form the right on each X(:, k),
where O(Mk) is the group of orthogonal matrices in RMk×Mk . Namely, UN ;M :=

∏B
k=1O(Mk).

1
1[bk−1,bk)(x) is the function that returns 1 if x ∈ [bk−1, bk) and 0 otherwise.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We now define the operator C that computes the spectral coefficients of the signal S with respect to
the spectral basis X. Namely,

C(X,S) =
(
Ck(X,S)

)B
k=1

:= (X(:, k)⊤S ∈ RMk×T)Bk=1.

In anisotropic nonlinear spectral filters (A-NLSF), we consider a symmetryless neural network Ψ
that operates on the space of spectral coefficients of the signal, e.g., a multilayer perceptron (MLP).
To define Ψ consistently, over a Euclidean space of fixed dimension, we extend or truncate the
sequence of spectral coefficients as follows. Let J1, . . . , JB be a predefined sequence of integers,
and denote J =

∑
k Jk. We define P as the mapping that takes (X,S) as input, first compute the

spectral coefficients
(
Ck(X,S)

)B
k=1

, and then truncates or pads with zeros each Ck(X,S) to be in

RJk×T . Namely, P (X,S) =
(
Pk(X,S) ∈ RJk×T

)B
k=1
∈ RJ×T . Here, the matrix ∅ is padded to the

zero matrix 0 ∈ RJk×T . Hence, the symmetryless network Ψ maps RJ×T to RD. A more detailed
derivation of the construction is given in App. E.3.

We call this architecture anisotropic for the following reason. Consider for example the grid graph
with N × N vertices. Since spectral filters are based on functional calculus (see App. D), they
are invariant to graph automorphism, and hence to rotations. This means that spectral filters treat
the x and y axes equally, and any filter is isotropic in the spatial domain. On the other hand, our
symmetryless network Ψ can operate differently on the x and y axes, and we can implement general
directional filters on images with Ψ. In the general case, Ψ can operate differently on Fourier modes
from the same eigenspace, which we interpret as directions within the eigenspace, while standard
GNNs cannot. See App. G.2 for more details.

4.2 ANISOTROPIC POINT CLOUD NETWORKS

Here, we present a point cloud network which is a combination of an equivariant network with
adaptive canonicalization. Namely, we consider a permutation invariant network Ψ like DeepSet
(Zaheer et al., 2017) or DGCNN (Wang et al., 2019), and to attain 3D rotation invariance in addition
we incorporate prior maximization. Together, the method is invariant both to permutations and
rotations. We call this method anisotropic since Ψ does not respect the rotation symmetries, and is
hence sensitive to directions in the x, y, z space.

We restrict the analysis to multi-sets of a fixed number of points N . Multisets are sets where repetitions
of elements are allowed. Here, we formally define a multi-set as an equivalence class of arrays up
to permutation. To define this, let SN be the symmetric group of N elements, i.e., the group of
permutations. given s ∈ S and X ∈ RN×J , let ρ(s)X be the permutation that changes the order
of the rows X according to s. We say that X ∼ Y if there is s ∈ SN such that X = ρ(s)Y. The
equivalence class [X] is defined as {Y ∈ RN×J | Y ∼ X}, and the space of equivalence classes,
also called the quotient space, is denoted by (RN×J/ ∼) := {[X] | X ∈ RN×J}. We identify the
space (RN×J/ ∼) with the space of multisets.

In App. B.2 we show that the quotient space has a natural metric. We hence take G = K consisting of
a single galaxy GN = (RN×J/ ∼). We moreover show in App. B.2 that any universal approximator
of permutation invariant functions in C0(RN×J ,RD), e.g., DeepSet (Zaheer et al., 2017), canonically
gives a universal approximator of general continuous functions in C0(RN×J/ ∼,RD).

The symmetry in our adaptive canonicalization is 3D rotations π(u) ∈ R3×3, where u is in the
rotation group SO(3). Namely, we consider J = 3, and rotated the rows of X ∈ RN×3 via Xπ(u−1).
We take P as the identity. Note that this construction can be easily extended to multisets of arbitrary
sizes, by considering the galaxies GN = RN×3/ ∼ and groups UN = SN for all N ∈ N. For details
on the theoretical construction see App. B.2, and for details on the architecture see App. E.4.

4.3 ADDITIONAL APPLICATIONS OF ADAPTIVE CANONICALUZATION

Our adaptive canonicalization is a general framework and is not limited to the two applications
considered above. For example, it can be instantiated for image truncation with a pretrained network,
where the symmetry corresponds to different crops and prior maximization selects the crop on which
the model is most confident (see App. E.5). Note that our setting and theoretical results also apply
to pretrained networks on downstream tasks. Our formulation also accommodates several instances

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Classification performance on grid signal orientation task and graph classification benchmarks
from TUDataset. The highest accuracy in and the second highest in .

Toy Example TUDataset

MUTAG PTC ENZYMES PROTEINS NCI1

MLP 50.03±0.1 79.31±3.5 63.98±2.0 42.17±2.8 75.08±3.4 77.34±1.6

GCN 50.01±0.1 81.63±3.1 60.22±1.9 43.66±3.4 75.17±3.7 76.29±1.8

GAT 49.95±0.0 83.17±4.4 62.31±1.4 39.83±3.7 74.72±4.1 74.01±4.3

GIN 50.00±0.1 83.29±3.6 63.25±2.3 45.69±2.6 76.02±2.9 79.84±1.2

ChebNet 50.12±0.1 82.15±1.6 64.06±1.2 50.42±1.4 74.28±0.9 76.98±0.7

FA+GIN 49.99±0.1 84.07±2.4 66.58±1.8 52.64±2.2 79.53±2.5 80.23±0.9

OAP+GIN 50.03±0.0 84.95±2.0 67.35±1.1 58.40±1.6 83.41±1.4 80.97±1.1

NLSF 50.07±0.1 84.13±1.5 68.17±1.0 65.94±1.6 82.69±1.9 80.51±1.2

S2GNN 49.93±0.1 82.70±2.1 67.34±1.5 63.26±2.8 78.52±1.9 75.62±2.0

A-NLSF 99.38±0.2 87.94±0.9 73.16±1.2 73.01±0.8 85.47±0.6 82.01±0.9

of continuous prior maximization, e.g., unbounded point clouds under rotations and continuous-
to-discrete image settings with rotations and other image transformations (see App. C). Finally, to
broadening the applicability of our approach beyond classification, we explore using the adaptive
canonicalization mechanism for point cloud segmentation, further (see App. G.10).

5 EXPERIMENTS

We evaluate the anisotropic nonlinear spectral filters (Sec. 4.1) on toy problems and graph classi-
fication, and test the anisotropic point cloud network (Sec. 4.2) on point cloud classification. The
experimental details, including experimental setups and hyperparameters, are in App. F. Additional
experiments, e.g., ablation study, are in App. G.

Maximization method. We approximate the prior maximization by sampling a finite set of trans-
formations from a probability measure on the transformation space, evaluating the prior for all
candidates, and retaining the transformation that yields the largest prior value with the one-vs-rest
classification objective. We then refine the selected candidate locally by running a few steps of
gradient descent from the best sampled transformation (see App. E.2).

5.1 EXPERIMENTAL EVALUATION OF ANISOTROPIC NONLINEAR SPECTRAL FILTERS

Illustrative Toy Problems: Grid Signal Orientation Task. To showcase the effectiveness of
A-NLSF, we study a toy classification task on a grid-split channel orientation. We consider a square
grid on the torus, and each node has two channels. In addition, the grid is further partitioned vertically
into two equal disjoint halves. Channel 1 is nonzero only on the left half, and Channel 2 is only
on the right half. In class 0, both channels are 1-frequency along x, and in class 1, Channel 1 is
1-frequency along x and Channel 2 is 1-frequency along y. The task is to decide if the frequency at
the two channels is in the same orientation. See App. F for further details.

We compare A-NLSF with the following baselines: (i) MLP, (ii) GCN (Kipf, 2016), (iii) GAT
(Veličković et al., 2017), (iv) GIN (Xu et al., 2018), (v) ChebNet (Defferrard et al., 2016a), (vi)
NLSF (Lin et al., 2024a), and (vii) S2GNN (Geisler et al., 2024). In addition, we test canonicalization
baselines by combining GIN with frame averaging (FA) (Puny et al., 2021) and orthogonalized axis
projection (OAP) (Ma et al., 2024). Tab. 1 reports the classification results. We see that competing
methods remain at chance level while A-NLSF achieves high accuracy by adaptively resolving
ambiguities, showing the advantage for orientation-sensitive learning on disjoint supports.

Graph Classification on TUDataset. We further evaluate A-NLSF on graph classification bench-
marks from TUDataset (Morris et al., 2020): MUTAG, PTC, ENZYMES, PROTEINS, and NCI1, and
follow the experimental setup (Ma et al., 2019; Ying et al., 2018; Zhang et al., 2019b) (see App. F).
We compare with the same baselines as in the grid signal orientation tasks. Tab. 1 summarizes

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

the classification performance. Canonicalization baselines generally improve over GIN. Notably,
we observe that A-NLSF outperforms competing baselines, suggesting that our AC provides more
informative representations compared to a fixed, precomputed canonical form or isotropic filters.

Table 2: Molecular and protein classification per-
formance on OGB datasets.

ogbg-molhiv ogbg-molpcba ogbg-ppa

AUROC ↑ Avg. Precision ↑ Accuracy ↑
GCN 0.7599±0.0119 0.2424±0.0034 0.6857±0.0061

GIN 0.7707±0.0149 0.2703±0.0023 0.7037±0.0107

GatedGCN 0.7687±0.0136 0.2670±0.0020 0.7531±0.0083

PNA 0.7905±0.0132 0.2838±0.0035 -

GraphTrans - 0.2761±0.0029 -
SAT - - 0.7522±0.0056

GPS 0.7880±0.0101 0.2907±0.0028 0.8015±0.0033

SAN 0.7785±0.2470 0.2765±0.0042 -

OAP+GatedGCN 0.7802±0.0128 0.2783±0.0024 0.7745±0.0098

A-NLSF 0.8019±0.0152 0.2968±0.0022 0.8149±0.0067

Molecular Classification on OGB Datasets.
To further assess the effectiveness of A-NLSF,
we evaluate on large-scale molecular and pro-
tein benchmarks from Open Graph Benchmark
(OGB) (Hu et al., 2020): ogbg-molhiv, ogbg-
molpcba, and ogbg-ppa. We compare with GCN,
GIN, GatedGCN (Bresson & Laurent, 2017),
PNA (Corso et al., 2020), GraphTrans (Wu et al.,
2021), SAT (Chen et al., 2022), GPS (Rampášek
et al., 2022), SAN (Kreuzer et al., 2021), and
the canonicalization method OAP+GatedGCN.
The molecular classification results are reported
in Tab. 2. We see that our method achieves con-
sistent improvements across these datasets, leading to improved generalization in classification.

5.2 EXPERIMENTAL EVALUATION OF ANISOTROPIC POINT CLOUD NETWORKS

Table 3: Classification re-
sults on ModelNet40. Re-
sults of competing meth-
ods marked with * are
taken from Deng et al.
(2021); Luo et al. (2022);
Kaba et al. (2023).

Accuracy

PointNet 74.7∗
DGCNN 88.6∗

PointNet-Aug 75.8±0.9

DGCNN-Aug 89.0±1.0

VN-PointNet 77.2∗

VN-DGCNN 90.2∗

CN-PointNet 79.7±1.3 ∗

CN-DGCNN 90.0±1.1 ∗

AC-PointNet 81.1±0.7

AC-DGCNN 91.6±0.6

To evaluate adaptive canonicalization on point cloud classification, we
test ModelNet40 (Wu et al., 2015). The dataset consists of 12,311 shapes
from 40 categories, with 9,843 samples for training and 2,468 for testing.
We build on two point cloud architectures, PointNet (Qi et al., 2017a)
and DGCNN (Wang et al., 2019), and apply adaptive canonicalization
into their pipeline, denoted respectively AC-PointNet and AC-DGCNN
(see Sec. 4.2 and App. E.4). Following Esteves et al. (2018); Deng et al.
(2021), we perform on-the-fly rotation augmentation during training,
where the dataset size remains unchanged, and for the test set, each
test example is arbitrarily rotated. We compare with PointNet, DGCNN,
equivariant networks VN-PointNet and VN-DGCNN from Deng et al.
(2021), canonicalization methods CN-PointNet and CN-DGCNN from
Kaba et al. (2023), and traditional augmentation baselines where the
training set is statically expanded with pre-generated rotated samples,
denoted PointNet-Aug and DGCNN-Aug. For further details, see App. F.
Tab. 3 shows the classification performance. We observe that our method
outperforms the competing baselines and it allows the model to learn both
local geometric features and optimal reference alignments for each class.

6 CONCLUSIONS

We introduce adaptive canonicalization based on prior maximization, a general framework for
equivariant machine learning in which the standard form depends on both the input and the network.
We prove that our method is continuous, symmetry preserving, and has universal approximation
properties. We demonstrate the applicability of our theory in two settings: resolving eigenbasis
ambiguities in spectral graph neural networks, and handling rotational symmetries in point clouds.

Limitations and Future Work. Our framework is naturally suited to classification tasks, and at
the current scope of the paper, we did not address regression tasks. We will extend the adaptive
canonicalization to regression in future work. Another limitation of our approach is that prior
maximization requires solving D optimizations at runtime for the D classes. In future work, we will
reduce this to a single optimization to improve efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work introduces a novel method for handling symmetry for equivariant machine learning, with a
focus on theory and with application to spectral graph neural networks and point cloud networks. The
experiments are conducted using simulated toy problems and public datasets, and therefore there is
no concerns related to privacy, consent, or potential harm to living subjects. As the data employed
are technical and free from sensitive or identifiable content, the research does not raise any apparent
ethical concerns. Accordingly, no additional ethical approval was required for this study.

REPRODUCIBILITY STATEMENT

For the theoretical results, we include the main proofs in the paper and present additional analysis
and illustrative examples in App. B and App. C. For the empirical study, the implementation details
are reported in App. F. The source code will be released on GitHub upon publication.

REFERENCES

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
Princeton University Press, 2008.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Erin L Allwein, Robert E Schapire, and Yoram Singer. Reducing multiclass to binary: A unifying
approach for margin classifiers. Journal of machine learning research, 1(Dec):113–141, 2000.

Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. Advances in neural information processing systems, 32, 2019.

Matan Atzmon, Koki Nagano, Sanja Fidler, Sameh Khamis, and Yaron Lipman. Frame averaging
for equivariant shape space learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 631–641, 2022.

László Babai and Eugene M Luks. Canonical labeling of graphs. In Proceedings of the fifteenth
annual ACM symposium on Theory of computing, pp. 171–183, 1983.

Sourya Basu, Pulkit Katdare, Prasanna Sattigeri, Vijil Chenthamarakshan, Katherine Driggs-
Campbell, Payel Das, and Lav R Varshney. Efficient equivariant transfer learning from pretrained
models. Advances in Neural Information Processing Systems, 36:4213–4224, 2023.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Kornbluth,
Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature communications, 13(1):2453, 2022.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Alberto Bietti and Julien Mairal. Group invariance, stability to deformations, and complexity of deep
convolutional representations. Journal of Machine Learning Research, 20(25):1–49, 2019.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks meet
transformers. In The Eleventh International Conference on Learning Representations, 2023.

Ron Bracewell and Peter B Kahn. The fourier transform and its applications. American Journal of
Physics, 34(8):712–712, 1966.

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Ge-
ometric and physical quantities improve E(3) equivariant message passing. arXiv preprint
arXiv:2110.02905, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation
for neural PDE solvers. In International Conference on Machine Learning, pp. 2241–2256. PMLR,
2022.

Xavier Bresson and Thomas Laurent. Residual gated graph ConvNets. arXiv preprint
arXiv:1711.07553, 2017.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:
Going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Dmitri Burago, Iu. D. Burago, and S. B. Ivanov. A course in metric geometry / Dmitri Burago, Yuri
Burago, Sergei Ivanov. Graduate studies in mathematics vol. 33. American Mathematical Society,
Providence, R.I, 2001. ISBN 0821821296.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International conference on machine learning, pp. 3469–3489. PMLR,
2022.

Shuxiao Chen, Edgar Dobriban, and Jane H Lee. A group-theoretic framework for data augmentation.
Journal of Machine Learning Research, 21(245):1–71, 2020.

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference
on machine learning, pp. 2990–2999. PMLR, 2016a.

Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant convolutional
networks and the icosahedral CNN. In International conference on Machine learning, pp. 1321–
1330. PMLR, 2019.

Taco S Cohen and Max Welling. Steerable CNNs. arXiv preprint arXiv:1612.08498, 2016b.

Lynn A Cooper and Roger N Shepard. Chronometric studies of the rotation of mental images. In
Visual information processing, pp. 75–176. Elsevier, 1973.

Matthieu Cordonnier, Nicolas Keriven, Nicolas Tremblay, and Samuel Vaiter. Convergence of
message-passing graph neural networks with generic aggregation on large random graphs. Journal
of Machine Learning Research, 25(406):1–49, 2024.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in neural information processing systems, 33:
13260–13271, 2020.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Thomas Dagès, Michael Lindenbaum, and Alfred M Bruckstein. Metric convolutions: A unifying
theory to adaptive convolutions. arXiv preprint arXiv:2406.05400, 2024.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016a.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NeurIPS. Curran Associates Inc., 2016b. ISBN
9781510838819.

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J
Guibas. Vector neurons: A general framework for SO(3)-equivariant networks. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 12200–12209, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Weitao Du, He Zhang, Yuanqi Du, Qi Meng, Wei Chen, Nanning Zheng, Bin Shao, and Tie-Yan Liu.
SE(3) equivariant graph neural networks with complete local frames. In International Conference
on Machine Learning, pp. 5583–5608. PMLR, 2022.

Alexandre Duval, Simon V Mathis, Chaitanya K Joshi, Victor Schmidt, Santiago Miret, Fragkiskos D
Malliaros, Taco Cohen, Pietro Lio, Yoshua Bengio, and Michael Bronstein. A hitchhiker’s guide
to geometric gnns for 3D atomic systems. arXiv preprint arXiv:2312.07511, 2023a.

Alexandre Agm Duval, Victor Schmidt, Alex Hernández-Garcıa, Santiago Miret, Fragkiskos D
Malliaros, Yoshua Bengio, and David Rolnick. Faenet: Frame averaging equivariant gnn for
materials modeling. In International Conference on Machine Learning, pp. 9013–9033. PMLR,
2023b.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Nadav Dym, Hannah Lawrence, and Jonathan W Siegel. Equivariant frames and the impossibility of
continuous canonicalization. In International Conference on Machine Learning, pp. 12228–12267.
PMLR, 2024.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning SO(3)
equivariant representations with spherical cnns. In Proceedings of the european conference on
computer vision (ECCV), pp. 52–68, 2018.

William T Freeman, Edward H Adelson, et al. The design and use of steerable filters. IEEE
Transactions on Pattern analysis and machine intelligence, 13(9):891–906, 1991.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. SE(3)-transformers: 3D roto-
translation equivariant attention networks. Advances in neural information processing systems, 33:
1970–1981, 2020.

Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, and Francisco Herrera.
An overview of ensemble methods for binary classifiers in multi-class problems: Experimental
study on one-vs-one and one-vs-all schemes. Pattern Recognition, 44(8):1761–1776, 2011.

Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks. arXiv preprint arXiv:2207.09453,
2022.

Simon Markus Geisler, Arthur Kosmala, Daniel Herbst, and Stephan Günnemann. Spatio-spectral
graph neural networks. Advances in Neural Information Processing Systems, 37:49022–49080,
2024.

Jan E Gerken, Jimmy Aronsson, Oscar Carlsson, Hampus Linander, Fredrik Ohlsson, Christoffer
Petersson, and Daniel Persson. Geometric deep learning and equivariant neural networks. Artificial
Intelligence Review, 56(12):14605–14662, 2023.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. Pmlr, 2017.

Pablo Gomez, Jennifer Shutter, and Jeffrey N Rouder. Memory for objects in canonical and non-
canonical viewpoints. Psychonomic bulletin & review, 15(5):940–944, 2008.

John C Gower. Generalized Procrustes analysis. Psychometrika, 40(1):33–51, 1975.

Markus Graf. Coordinate transformations in object recognition. Psychological bulletin, 132(6):920,
2006.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jiaqi Han, Yu Rong, Tingyang Xu, and Wenbing Huang. Geometrically equivariant graph neural
networks: A survey. arXiv preprint arXiv:2202.07230, 2022.

Irina M Harris, Justin A Harris, and Diana Caine. Object orientation agnosia: A failure to find the
axis? Journal of Cognitive Neuroscience, 13(6):800–812, 2001.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Snir Hordan, Maya Bechler-Speicher, Gur Lifshitz, and Nadav Dym. Spectral graph neural networks
are incomplete on graphs with a simple spectrum. arXiv preprint arXiv:2506.05530, 2025.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. Advances
in neural information processing systems, 28, 2015.

Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent developments.
Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sci-
ences, 374(2065):20150202, 2016.

Sékou-Oumar Kaba and Siamak Ravanbakhsh. Symmetry breaking and equivariant neural networks.
arXiv preprint arXiv:2312.09016, 2023.

Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh.
Equivariance with learned canonicalization functions. In International Conference on Machine
Learning, pp. 15546–15566. PMLR, 2023.

Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz. Rotation invariant spherical
harmonic representation of 3D shape descriptors. In Symposium on geometry processing, volume 6,
pp. 156–164, 2003.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Advances in neural information processing systems, 32, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

TN Kipf. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 4015–4026, 2023.

Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J. Burghouts, Efstratios Gavves,
Cees G. M. Snoek, and David W. Zhang. Graph neural networks for learning equivariant represen-
tations of neural networks. In The Twelfth International Conference on Learning Representations,
2024.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural
networks to the action of compact groups. In International conference on machine learning, pp.
2747–2755. PMLR, 2018.

Talia Konkle and Aude Oliva. Canonical visual size for real-world objects. Journal of Experimental
Psychology: human perception and performance, 37(1):23, 2011.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Hannah Lawrence, Vasco Portilheiro, Yan Zhang, and Sékou-Oumar Kaba. Improving equivariant
networks with probabilistic symmetry breaking. arXiv preprint arXiv:2503.21985, 2025.

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 1998.

Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural Networks,
6(6):861–867, 1993.

Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph con-
volutional neural networks with complex rational spectral filters. IEEE Transactions on Signal
Processing, 67(1):97–109, 2018.

Heng Li, Zhaopeng Cui, Shuaicheng Liu, and Ping Tan. RAGO: Recurrent graph optimizer for
multiple rotation averaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15787–15796, 2022.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3D atomistic
graphs. In The Eleventh International Conference on Learning Representations, 2023.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie
Jegelka. Sign and basis invariant networks for spectral graph representation learning. arXiv
preprint arXiv:2202.13013, 2022.

Derek Lim, Joshua Robinson, Stefanie Jegelka, and Haggai Maron. Expressive sign equivariant
networks for spectral geometric learning. Advances in Neural Information Processing Systems, 36:
16426–16455, 2023.

Ya-Wei Eileen Lin, Ronen Talmon, and Ron Levie. Equivariant machine learning on graphs with
nonlinear spectral filters. Advances in Neural Information Processing Systems, 37:128182–128226,
2024a.

Yuchao Lin, Jacob Helwig, Shurui Gui, and Shuiwang Ji. Equivariance via minimal frame averaging
for more symmetries and efficiency. arXiv preprint arXiv:2406.07598, 2024b.

Peter Lippmann, Gerrit Gerhartz, Roman Remme, and Fred A Hamprecht. Beyond canonicalization:
How tensorial messages improve equivariant message passing. arXiv preprint arXiv:2405.15389,
2024.

Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional neural
network for point cloud analysis. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 8895–8904, 2019.

David G Lowe. Distinctive image features from scale-invariant keypoints. International journal of
computer vision, 60(2):91–110, 2004.

Shitong Luo, Jiahan Li, Jiaqi Guan, Yufeng Su, Chaoran Cheng, Jian Peng, and Jianzhu Ma. Equiv-
ariant point cloud analysis via learning orientations for message passing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18932–18941, 2022.

George Ma, Yifei Wang, and Yisen Wang. Laplacian canonization: A minimalist approach to sign
and basis invariant spectral embedding. Advances in Neural Information Processing Systems, 36:
11296–11337, 2023.

George Ma, Yifei Wang, Derek Lim, Stefanie Jegelka, and Yisen Wang. A canonicalization perspective
on invariant and equivariant learning. Advances in Neural Information Processing Systems, 37:
60936–60979, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph convolutional networks with
eigenpooling. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 723–731, 2019.

Stephane G Mallat. A theory for multiresolution signal decomposition: the wavelet representation.
IEEE transactions on pattern analysis and machine intelligence, 11(7):674–693, 2002.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2019a.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International conference on machine learning, pp. 4363–4371. PMLR, 2019b.

Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic convo-
lutional neural networks on Riemannian manifolds. In Proceedings of the IEEE international
conference on computer vision workshops, pp. 37–45, 2015.

Sohir Maskey, Ali Parviz, Maximilian Thiessen, Hannes Stärk, Ylli Sadikaj, and Haggai Maron.
Generalized Laplacian positional encoding for graph representation learning. arXiv preprint
arXiv:2210.15956, 2022.

Francesco Mezzadri. How to generate random matrices from the classical compact groups. arXiv
preprint math-ph/0609050, 2006.

Arnab Kumar Mondal, Siba Smarak Panigrahi, Oumar Kaba, Sai Rajeswar Mudumba, and Siamak
Ravanbakhsh. Equivariant adaptation of large pretrained models. Advances in Neural Information
Processing Systems, 36:50293–50309, 2023.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model CNNs. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5115–5124,
2017.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Richard S Palais and Chuu-Lian Terng. A general theory of canonical forms. Transactions of the
American Mathematical Society, 300(2):771–789, 1987.

Stephen E Palmer. Cannonical perspective and the perception of objects. Attention and performance,
9:135–151, 1981.

Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan Willem van de Meent, and Robin Walters. Learning
symmetric embeddings for equivariant world models. arXiv preprint arXiv:2204.11371, 2022.

Saro Passaro and C Lawrence Zitnick. Reducing SO(3) convolutions to SO(2) for efficient equivariant
gnns. In International conference on machine learning, pp. 27420–27438. PMLR, 2023.

Stefanos Pertigkiozoglou, Evangelos Chatzipantazis, Shubhendu Trivedi, and Kostas Daniilidis.
Improving equivariant model training via constraint relaxation. Advances in Neural Information
Processing Systems, 37:83497–83520, 2024.

Omri Puny, Heli Ben-Hamu, and Yaron Lipman. Global attention improves graph networks general-
ization. arXiv preprint arXiv:2006.07846, 2020.

Omri Puny, Matan Atzmon, Heli Ben-Hamu, Ishan Misra, Aditya Grover, Edward J Smith, and
Yaron Lipman. Frame averaging for invariant and equivariant network design. arXiv preprint
arXiv:2110.03336, 2021.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep learning on point sets
for 3D classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017a.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information processing systems, 30,
2017b.

Guocheng Qian, Hasan Hammoud, Guohao Li, Ali Thabet, and Bernard Ghanem. ASSANet: An
anisotropic separable set abstraction for efficient point cloud representation learning. Advances in
Neural Information Processing Systems, 34:28119–28130, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal of machine
learning research, 5(Jan):101–141, 2004.

Evan F Risko and Sam J Gilbert. Cognitive offloading. Trends in cognitive sciences, 20(9):676–688,
2016.

Olinde Rodrigues. Des lois géométriques qui régissent les déplacements d’un système solide dans
l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépen-
damment des causes qui peuvent les produire. Journal de mathématiques pures et appliquées, 5:
380–440, 1840.

Kusha Sareen, Daniel Levy, Arnab Kumar Mondal, Sékou-Oumar Kaba, Tara Akhound-Sadegh, and
Siamak Ravanbakhsh. Symmetry-aware generative modeling through learned canonicalization.
arXiv preprint arXiv:2501.07773, 2025.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks.
In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

Johann Schmidt and Sebastian Stober. Tilt your head: Activating the hidden spatial-invariance of
classifiers. In Forty-first International Conference on Machine Learning, 2024.

Johann Schmidt and Sebastian Stober. Robust canonicalization through bootstrapped data re-
alignment. arXiv preprint arXiv:2510.08178, 2025.

Kristof T Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R Müller, and Alexandre Tkatchenko.
Quantum-chemical insights from deep tensor neural networks. Nature communications, 8(1):
13890, 2017.

Claude E Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21,
2006.

Roger N Shepard and Jacqueline Metzler. Mental rotation of three-dimensional objects. Science, 171
(3972):701–703, 1971.

Ken Shoemake. Uniform random rotations. In Graphics Gems III (IBM Version), pp. 124–132.
Elsevier, 1992.

Zakhar Shumaylov, Peter Zaika, James Rowbottom, Ferdia Sherry, Melanie Weber, and Carola-
Bibiane Schönlieb. Lie algebra canonicalization: Equivariant neural operators under arbitrary lie
groups. In The Thirteenth International Conference on Learning Representations, 2025.

Utkarsh Singhal, Ryan Feng, Stella X. Yu, and Atul Prakash. Test-time canonicalization by foundation
models for robust perception. In Forty-second International Conference on Machine Learning,
2025.

Daniel Spielman. Spectral graph theory. Combinatorial scientific computing, 18(18), 2012.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Andrea Tacchetti, Leyla Isik, and Tomaso A Poggio. Invariant recognition shapes neural representa-
tions of visual input. Annual review of vision science, 4(1):403–422, 2018.

Behrooz Tahmasebi and Stefanie Jegelka. Generalization bounds for canonicalization: A com-
parative study with group averaging. In The Thirteenth International Conference on Learning
Representations, 2025a.

Behrooz Tahmasebi and Stefanie Jegelka. Regularity in canonicalized models: A theoretical perspec-
tive. In The 28th International Conference on Artificial Intelligence and Statistics, 2025b.

Michael J Tarr and Steven Pinker. Mental rotation and orientation-dependence in shape recognition.
Cognitive psychology, 21(2):233–282, 1989.

Erik Henning Thiede, Truong Son Hy, and Risi Kondor. The general theory of permutation equivarant
neural networks and higher order graph variational encoders. arXiv preprint arXiv:2004.03990,
2020.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation-and translation-equivariant neural networks for 3D point clouds.
arXiv preprint arXiv:1802.08219, 2018.

Lloyd N Trefethen and David Bau. Numerical linear algebra. SIAM, 2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
neural networks with structural message-passing. Advances in neural information processing
systems, 33:14143–14155, 2020.

Soledad Villar, David W Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars are
universal: Equivariant machine learning, structured like classical physics. Advances in neural
information processing systems, 34:28848–28863, 2021.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

Edward Wagstaff, Fabian B Fuchs, Martin Engelcke, Michael A Osborne, and Ingmar Posner.
Universal approximation of functions on sets. Journal of Machine Learning Research, 23(151):
1–56, 2022.

Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly
symmetric dynamics. In International Conference on Machine Learning, pp. 23078–23091.
PMLR, 2022.

Rui Wang, Elyssa Hofgard, Han Gao, Robin Walters, and Tess E Smidt. Discovering symmetry
breaking in physical systems with relaxed group convolution. arXiv preprint arXiv:2310.02299,
2023.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics (tog), 38(5):
1–12, 2019.

Maurice Weiler and Gabriele Cesa. General E(2)-equivariant steerable CNNs. Advances in neural
information processing systems, 32, 2019.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3D steer-
able CNNs: Learning rotationally equivariant features in volumetric data. Advances in Neural
information processing systems, 31, 2018a.

Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation
equivariant CNNs. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 849–858, 2018b.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling. Coordinate independent convolutional
networks–isometry and gauge equivariant convolutions on Riemannian manifolds. arXiv preprint
arXiv:2106.06020, 2021.

Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, and Klaus Hildebrandt. DeltaConv: anisotropic
operators for geometric deep learning on point clouds. ACM Transactions on Graphics (TOG), 41
(4):1–10, 2022.

Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Harmonic
networks: Deep translation and rotation equivariance. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5028–5037, 2017.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
neural information processing systems, 34:13266–13279, 2021.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3D ShapeNets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in
3d shape collections. ACM Transactions on Graphics (ToG), 35(6):1–12, 2016.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. Learning representations of sets through
optimized permutations. arXiv preprint arXiv:1812.03928, 2018.

Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. FSPool: Learning set representations with
featurewise sort pooling. arXiv preprint arXiv:1906.02795, 2019a.

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu, and Can Wang.
Hierarchical graph pooling with structure learning. arXiv preprint arXiv:1911.05954, 2019b.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Appendix

A RELATED WORK

We provide an extended discussion of related work for equivariant machine learning.

A.1 CANONICALIZATION

Canonicalization (Babai & Luks, 1983; Palais & Terng, 1987; Ma et al., 2023; 2024) is a classical
strategy for handling symmetry in data, especially for tasks where invariance or equivariance to group
actions is desirable (Gerken et al., 2023). It preprocesses each input by mapping it to a standard
form prior to downstream learning and inference, so that all symmetry-equivalent inputs are treated
identically by the subsequent model. There are two common ways for canonicalization: fixed or
learned approaches.

• Fixed Canonicalization. Fixed canonicalization uses deterministic and often analytic procedures
to assign a unique representative to each symmetry orbit. For example, principal component
analysis (PCA) (Jolliffe & Cadima, 2016) alignment canonically orients an object (e.g., a point
cloud or molecule) by rotating it so its principal components align with the coordinate axes
(Kazhdan et al., 2003). Procrustes analysis (Gower, 1975) canonically orients sets of points
by finding the optimal rotation, translation, and scale that minimizes squared point-to-point
distances to a reference. For sets and graphs, canonicalization can be achieved by reordering
nodes, atoms, or features so that isomorphic inputs share a single labeling. In spectral methods
and spectral graph neural networks where eigenvectors are fundamental (Kipf, 2016; Defferrard
et al., 2016a; Von Luxburg, 2007; Belkin & Niyogi, 2003; Dwivedi et al., 2023; Maskey et al.,
2022), canonicalization of spectral decomposition (Lim et al., 2022; 2023; Ma et al., 2023;
2024) addresses eigenbasis ambiguity (Chung, 1997; Spielman, 2012) by processing each
eigenspace independently and selecting representative eigenvectors or directions by applying
orthogonal or axis-based projections, typically as a graph preprocessing step. An alternative
approach is eigenbasis canonicalization via the input signal, where the signal itself is used to
define a canonical spectral representation, making the spectral transformation independent of
the arbitrary choice of eigenvectors (Lin et al., 2024a; Geisler et al., 2024).

• Learned Canonicalization. Learned canonicalization (Zhang et al., 2018; Kaba et al., 2023;
Luo et al., 2022) seeks to overcome the rigidity and inflexibility of fixed rules with a trainable
mapping that selects a representative for each symmetry orbit. The canonicalizer is parameterized
(typically as a neural network and trained to produce canonical forms. For example, Kaba et al.
(2023) developed a neural network that learns the canonicalization transformation, which enables
plug-and-play equivariance, e.g., orthogonalizing learned features via the Gram-Schmidt process
(Trefethen & Bau, 2022). Their results show that the learned canonicalizers outperform fixed
canonicalizers.

However, Dym et al. (2024) pointed out that regardless of whether the canonicalizations are learned
or not, a continuous canonicalization does not exist for many common groups (e.g. Sn, SO(d), O(d)
on point clouds n ≥ d). Therefore, while learned canonicalization improves empirical performance,
it remains generally discontinuous and can induce instability, hinder generalization, limit model
reliability on boundary cases, or out-of-distribution data. In contrast, our adaptive canonicalization
framework learns the optimal transformation for each input by maximizing the predictive confidence
of the network, resulting in a continuous and symmetry preserving mapping. We include a detailed
comparison of most related canonicalization work with our method below.

A.1.1 EQUIVARIANCE WITH LEARNED CANONICALIZATION FUNCTIONS

Recently, Kaba et al. (2023) introduced energy-based canonicalization. The central idea is to learn an
energy function over samples and group elements, and define the canonicalization as minimizing this
energy with respect to the group, given a fixed datapoint. Specifically, their energy minimization is
related to our prior maximization adaptive canonicalization method. However, there are several impor-
tant conceptual and technical differences between their approach and our adaptive canonicalization.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

First, their energy s is not the task neural network like in our analysis, but rather some other trainable
neural network. Similarly to our approach, training s end-to-end with the task neural network can
be seen as canonicalization that depends on the task network, if one considers the full end-to-end
architecture consisting both of the energy minimization and the task network. However, the approach
in Kaba et al. (2023) does not give continuity guarantees as opposed to our approach. Second, in their
work, they consider symmetries based on group actions, while we consider a more general setting of
canonicalization transformations (or augmentations) that need not be based on groups. This makes
our approach much more applicable across different domains. Moreover, in their framework, there is
one canonical form for each datapoint and network, while in our approach, each output channel of
the network defines a different canonical form of the datapoint. This allows our approach to preserve
continuity. Notably, Kaba et al. (2023) do not attempt to study the continuity of the end-to-end
predictor.

Another difference in Kaba et al. (2023) is that when training is initialized, the canonicalizing energy
s is random. This leads each datapoint to be randomly transformed, so the task neural network initially
has to perform well at all orientations of the data. This can lead the task network to ultimately learn
an “average behavior,” not specializing in any special orientation but rather performing reasonably
well on all orientations of the data. In other words, the limited set of trainable parameters has to
simultaneously specialize in many orientations, which reduces the network’s expressive power. In
contrast, in our prior maximization approach, from the beginning of training, the network only pays
a price for not performing well on the single best orientation per datapoint (on which the network
performs the best). This encourages the network to specialize on one canonical orientation per
datapoint, and not learn an average behavior. Hence, in our approach, all trainable parameters of the
task network can focus on performing well only on the sole canonical orientation of each datapoint.

A.1.2 CANONICALIZATION AND DATA RE-ALIGNMENTS

As discussed in App. A.1.1, in the energy-based canonicalization framework of (Kaba et al., 2023),
the canonicalizing energy s is random at initialization. As a result, it leads each datapoint to be
randomly transformed and the task neural network initially has to perform well at all orientations.
This can lead the task network to ultimately learn an “average behavior,” not specializing in any
special orientation but rather performing reasonably well on all orientations of the data. To address
this effect, Mondal et al. (2023) biases the canonical transformation of each datapoint to be the
identity, assuming that the datapoints in the training set already have a small orientation variance. On
top of that, Schmidt & Stober (2025) iteratively reduces the orientation variance of the training set by
iteratively reorienting datapoints that lead to a large loss. We note that these approaches are rather
different from our prior maximization method, and they do not try to address the continuity problem
in canonicalization.

A.1.3 WEIGHTED CANONICALIZATION

The energy-based canonicalization (Kaba et al., 2023) was further explored and extended in (Shu-
maylov et al., 2025) on symmetries defined by general Lie group actions. Similarly to our work,
Shumaylov et al. (2025) also discusses continuity preservation, but their approach is different from
ours. In the work of Shumaylov et al. (2025), they define the notion of weighted canonicalization,
which is a similar concept to the weighted frame introduced by Dym et al. (2024). Here, to each data-
point there is an assigned probability measure over the orbit of the datapoint. Namely, the distribution
is over the space of data instead of over the group like in the weighted frames of Dym et al. (2024).
With respect to energy minimization, this approach is not very different from Kaba et al. (2023). The
main difference is in the minimization algorithm, which minimizes over the Lie algebra instead of
the Lie group. It is important to note that their work does not train the energy end-to-end with the
neural network. Hence, in their work, the canonicalization depends on the whole training set, but not
on the task network, which is quite different from our approach. Moreover, in their setup, one has to
learn an approximation of the data distribution, which is invariant to the group action. This is a highly
nontrivial approach to implement. In contrast, our prior maximization is simple and direct.

A.1.4 TEST-TIME CANONICALIZATION

Another recent extension of canonicalization, (Singhal et al., 2025) , explores a set of transformations
at test time and uses the scoring functions of large pre-trained foundation models like CLIP (Radford

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

et al., 2021) or SAM (Kirillov et al., 2023) to select the most “canonical” representation upon which
downstream inference is performed. Note that the work in Singhal et al. (2025) does not involve
network retraining, uses the foundation models as is, and performs canonicalization entirely at
inference by optimizing over transformations. While it achieves strong empirical performance, its
canonicalization mapping is not guaranteed to be continuous, and in fact, continuity is not discussed.
Therefore, small input changes may cause abrupt switches in the selected canonical view.

A related line of work is inverse transformation search (Schmidt & Stober, 2024), which also performs
test-time optimization over transformations to exploit invariances. Their method focuses on the
standard action of the special linear group on images (rotations, scalings, and shear transformations),
i.e., purely group-based symmetries, and similar to Singhal et al. (2025), does not address continuity.
In addition, their method does not train the model simultaneously with the canonicalization. While
their energy-induced confidence is similar to our prior-maximization formulation in the classification
setting, it does not lead to a continuity guarantee. In contrast, our work rigorously develops sufficient
conditions on the canonicalizer for the canonicalized network to be continuous and have a universal
approximation property. Specifically, our one-vs.-all setting is a different type of energy that does
lead to continuous end-to-end classifiers.

A.2 FRAME AVERAGING

Frame averaging (Puny et al., 2021) achieves equivariance to group symmetries by averaging a
network’s output over a set of group transformations (known as a “frame”). It is built on the classical
group averaging operator, which guarantees symmetries by summing a function over all group ele-
ments. Frame averaging has two main advantages: 1) it allows adaptation of standard non-equivalent
network architectures to handle symmetry, similar to canonicalization methods, and 2) it avoids
computational intractability of full group averaging, especially for large or continuous groups. Recent
work (Lin et al., 2024b) proposes minimal frame averaging that attains strong symmetry coverage with
small frames. Domain-specific frame averaging methods (Duval et al., 2023b; Atzmon et al., 2022)
show that it can be deployed in material modeling and geometric shape analysis. However, it requires
a careful selection of a suitable frame. In addition, frame averaging uses a fixed set of transformations
independent of the input or task, potentially leading to sub-optimal or less discriminative feature
representations. In contrast, our adaptive canonicalization learns the optimal transformation for each
input in a data- and network-dependent way, yielding symmetry preserving continuous functions that
can improve representation quality and empirical task performance.

A related work that addresses continuity is the weighted frame averaging proposed by Dym et al.
(2024). They first prove that in many well-known cases, continuous canonicalization is impossible.
This does not contradict our work, as in Dym et al. (2024) the canonicalization is a function solely
of the datapoint, and not the task network. Then, they define a variant of frame averaging, called
weighted frame averaging, in which to each datapoint there is an associated probability distribution
over the group, and the frame averaging is performed with respect to this measure. This construction
yields continuity guarantees. However, their focus is fundamentally different from ours: they study
frame averaging while we focus on canonicalization. Moreover, the weighted frame averaging is a
function only of the data, not the neural network, as opposed to our method. We next compare our
framework to weighted frame averaging in more detail.

• In our method, data need not come from a vector space of a fixed dimension (see e.g., the
application for graphs). In contrast, weighted frame averaging requires working with data that
comes from a vector space of a fixed dimension.

• In our work, symmetries need not be based on group representations. Our notion of symmetry is
called a transformation family, and our “symmetries” are not even required to be invertible or
based on a group action. See, for example, the image truncation transformation in App. E.5. On
the other hand, the symmetries in weighted frame averaging are required to be representations
of compact groups.

• In the framework of weighted frame averaging, the requirement that the weighted frame is
robust is sufficient for continuity of the canonicalized function. However, this requirement
is quite strong, and constructing robust frames could be challenging. In contrast, we achieve
continuity of the canonicalized function even though the maximizer in prior maximization
need not be continuous in any sense (as a function of the datapoint). The maximizer need
not even be uniquely defined. Hence, practitioners can use our method out of the box on new

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

domains with new symmetries without having to prove any nontrivial mathematical results. In
weighted frame averaging, employing the method in a new setting typically requires carefully
constructing a problem-specific weighted frame and proving that it is robust. It often involves
nontrivial mathematical work and there is no general recipe for doing so. In our case, once an
architecture and a symmetry setting are chosen, prior-maximization adaptive canonicalization
is straightforward to implement and does not require additional sophisticated proofs from
the practitioner. The only assumption that needs to be checked is continuity of the chosen
transformations, which is usually easy to verify.

• Robust weighted frames often require averaging the predicting network over many transfor-
mations of the input. In practice, our prior maximization approach works with fewer random
argmax candidates. For comparison, frame averaging for rotations of n points in a 3D point
cloud requires an order of n2 transformations (where n = 1024 in the ModelNet40 dataset
for example), while, in practice, prior maximization performs well with a total of 50 random
transformations.

These differences imply that our framework is more flexible in terms of the data types and symmetry
structures it can accommodate, while also imposing a lighter mathematical burden on practitioners
who wish to apply it. This gives much more freedom for future practitioners, and may lead to a wider
adaptation of the method.

We note that the earlier work (Basu et al., 2023) proposed a similar idea to weighted frame averaging,
but did not study continuity preservation.

A.3 EQUIVARIANT ARCHITECTURES

Equivariant architectures are a class of models explicitly designed to respect symmetry groups acting
on the data. Formally, a network is equivariant to a group of transformations if, when the input is
transformed by a symmetry group action, the output transforms via the same group action. That is,
for a group G and a function f , equivariance guarantees f(g · x) = g · f(x) for all g ∈ G and input x.
It has been developed across images (Cohen & Welling, 2016a;b; Kondor & Trivedi, 2018; Worrall
et al., 2017; Weiler et al., 2018b), graphs (Bronstein et al., 2017; Zaheer et al., 2017; Gilmer et al.,
2017; Maron et al., 2019a; Kofinas et al., 2024; Thiede et al., 2020; Vignac et al., 2020; Keriven
& Peyré, 2019), molecules (Thomas et al., 2018; Brandstetter et al., 2021; Anderson et al., 2019;
Fuchs et al., 2020; Satorras et al., 2021; Duval et al., 2023a; Schütt et al., 2017; Liao & Smidt, 2023;
Hordan et al., 2025; Du et al., 2022; Passaro & Zitnick, 2023), and manifolds (Masci et al., 2015;
Monti et al., 2017; Cohen et al., 2019; Weiler et al., 2021). Notably, Maron et al. (2019b) studies the
universal approximation property for equivariant architectures. Notably, equivariant networks often
demand group-specific designs that rely on group theory, representation theory, and tensor algebra.
This can reduce flexibility and raise compute and memory costs (Pertigkiozoglou et al., 2024; Wang
et al., 2023; Liao & Smidt, 2023). Making nonlinearities, pooling, and attention strictly equivariant
further constrains layer choices and can increase parameter count and runtime. Moreover, imposing
symmetry throughout the stack may limit the expressivity when data only approximately respect the
assumed symmetry or contain symmetry-breaking noise (Wang et al., 2022; Lawrence et al., 2025).
In contrast, our approach handles symmetry by learning an input- and task-dependent canonical
form through prior maximization and apply a standard backbone. By construction, this mapping is
continuous and symmetry preserving. Our adaptive canonicalization removes heavy group-specific
layers, reduces per-layer equivariant cost, and keeps ordinary nonlinearities and pooling.

B UNIVERSAL APPROXIMATION THEOREMS

B.1 UNIVERSAL APPROXIMATION OF EUCLIDEAN FUCNTIONS

Here, we cite a classical result stating that multilayer perceptrons (MLPs) are universal approximators
of functions over compact sets in Euclidean spaces.

Theorem 14 (Universal Approximation Theorem (Leshno et al., 1993)). Let σ : R → R be a
continuous, non-polynomial function. Then, for every M,L ∈ N, compact K ⊆ RM , continuous
function f : K → RL , and ε > 0, there exist D ∈ N,W1 ∈ RD×M , b1 ∈ RD and W2 ∈ RL×D s.t.

sup
x∈K

|f(x)−W2σ (W1x+ b1)| ≤ ε. (4)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.2 UNIVERSAL APPROXIMATION OF MULTI-SETS FUNCTIONS

Multisets are sets where repetitions of elements are allowed. Formally, a multiset of N elements in
RJ can be defined as a set of pairs (x, i) where x denotes a point and i the number of times the point
x appears in the multiset.

Standard universal approximation analysis of multi-set functions goes along the following lines. First,
we represent multisets as 2D arrays X ∈ RN×J , where each row Xn,: ∈ RJ represents one point in
the multiset. Note that the same multi-set can be represented by many arrays. In fact, two arrays X
and X′ represent the same multi-set if and only if one is a permutation of the other.

To formulate this property, let SN be the symmetric group of N elements, i.e., the group of permu-
tations of N elements. Given s ∈ S and X ∈ RN×J , let ρ(s)X denote the permutation of X via
s. By convention, permutations change the order of the N rows of X, and keeps each row intact.
Now, X and X′ represent the same multi-set if and only if there is a permutation s ∈ SN such that
X = ρ(s)X′.

Now, for a function y : RN×J → RD to represent a multi-set function, it should be invariant to
permutations, i.e., for every s ∈ SN we have y(ρ(s)X) = y(X). Hence, standard UATs of multi-set
functions are formulated based on the following notion of universal approximation.

Definition 15. Let K ⊂ RN×J be an invariant compact domain, i.e., ρ(s)X ∈ K for every X ∈ K
and s ∈ SN . A set of invariant functions N (K,RD) ⊂ C0(K,RD) is called an invariant universal
approximator of C0(K,RD) equivariant functions if for every invariant function y ∈ C0(K,RD) and
ϵ > 0 where is θ ∈ N (K,RD) such that for every X ∈ K

|θ(X)− y(X)| < ϵ.

For example, DeeptSets are universal approximators of invariant C0(K,RD) functions (Wagstaff
et al., 2022).

In this section, we describe an alternative, but equivalent, approach to model multisets of size N
and their universal approximation theorems using the notion of quotient. The motivation is that our
main UAT, Theorem 13, is based on the standard symmetryless notion of universal approximation,
Definition 3. While it is possible to develop our adaptive canonicalization theory for functions that
preserve symmetries, and obtain an analogous theorem to Theorem 13 based on invariant universal
approximators, there is no need for such complications. Instead, we can use the standard definition
of universal approximation (Definition 3), and directly encode the symmetries in the domain using
quotient spaces, as we develop next.

Quotient Spaces. Let X be a topological space, and x ∼ y an equivalence relation between pairs
of points. The equivalence class [x] of x ∈ X is defined to be the set

[x] := {y ∈ X x ∼ y}.
Definition 16 (Quotient topology). Let X be a topological space, and ∼ an equivalence relation on
X . The quotient set is defined to be

X/ ∼:= {[x] | x ∈ X}.
The quotient set is endowed with the quotient topology. The quotient topology is the finest (largest)
topology making the mapping ν : x 7→ [x] continuous. In other words, the open sets B ⊂ (X/ ∼)
are those sets such that ∪[x]∈B [x] is open in X .

The mapping ν : X → (X/ ∼), defined by ν(x) = [x], is called the canonical projection.

Multi-Sets as Equivalence Classes and UATs. Define the equivalence relation: X ∼ Y if there
exists s ∈ SN such that X = ρ(s)Y. Now, a multi-set of N elements can be defined as RN×J/ ∼.
As opposed to the definition of multisets as sets of pairs (x, i), the quotient definition automatically
gives a topology to the sets of multisets, namely, the quotient topology. In fact, it can be shown that
the quotient topology is induced by the following metric.

Definition 17 (Multi-Set Metric). Given [X], [Y] ∈ (RN×J/ ∼), their distance is defined to be
d([X], [Y]) := min

X′∈[X],Y′∈[Y]
∥X′ −Y′∥.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

It is easy to see that
d([X], [Y]) := min

s∈SN

∥X− ρ(s)Y∥.

One can show that the above distance is indeed a metric, and that the topology induced by this metric
is exactly the quotient topology, i.e., d metrizes (RN×J/ ∼).
Theorem 18. The metric d([X], [Y]) metrizes the quotient topology RN×J/ ∼.

A set K ⊂ RN×J is called invariant if for every X ∈ K and s ∈ SN we have ρ(s)X ∈ K. Consider
the quotient space

K/ ∼= {[X] |X ∈ K} ⊂ RN×J/ ∼ .

We now have the following proposition about continuity of symmetric functions.
Proposition 19. Let K ⊂ RN×J be an invariant compact domain. For every continuous invariant
mapping y : K → RD there exists a unique continuous mapping y : (K/ ∼)→ RD such that

y = y ◦ ν,
where ν is the canonical projection. On the other hand, for every function z ∈ C0(K/ ∼,RD), we
have that z ◦ ν is a continuous invariant function in C0(K,RD).

Let K ⊂ RN×j be an invariant domain. For a set of continuous invariant functions N ⊂ C0(K,RD),
we denote

(N/ ∼) := {y | y ∈ N} ⊂ C0(K/ ∼,RD).

Note that by Proposition 19 (
C0(K,RD)/ ∼

)
= C0

(
K/ ∼,RD

)
.

This immediately leads to a UAT theorem for multi-set continuous functions in which every continuous
multi-set function can be approximated by a neural network.
Theorem 20. Let K ⊂ RN be an invariant compact domain, and let N (K,RD) ⊂ C0(K,RD) be
an invariant universal approximator of C0(K,RD) equivariant functions. Then N (K,RD)/ ∼ is a
universal approximator C0(K/ ∼,RD).

Note that in the above UAT the symmetries are directly encoded in the quotient spaces, and, hence,
there is no need to encode any symmetry in the spaces of functions. Hence, Theorem 20 is based
on the standard symmetryless definition of universal approximation – Definition 3 – rather than the
symmetry driven construction of Definition 15. As a result, we can directly use our theory of adaptive
canonicalization on multi-set functions. Specifically, we can use Theorem 13, where the space K in
the theorem is taken as K/ ∼ in our above analysis.

Now, we immediately obtain that the set of neural networks θ where θ is a DeepSet is a universal
approximator of the space of continuous multi-set functions.

C ADDITIONAL EXAMPLES OF CONTINUOUS PRIOR MAXIMIZATION

We first note that when K is a locally compact metric space, functions in C0(K,RD) must be
uniformly continuous.

Unbounded Point Clouds and Rotations. Let U = SO(3) be the space of 3D rotations, and
G = K = RN×3 the set of sequences of N points in R3, i.e. the space of point clouds. Consider the
L2 metric in G. Consider the rotation g 7→ κu(g) of the point cloud g by u ∈ U .

Let f ∈ C0(G,RD). Next we show that f must be uniformly continuous. Let ϵ > 0. By the fact that
f vanishes at infinity, there exists a compact domain K ⊂ RN×3 such that for every x /∈ K we have
|f(x)| < ϵ/2. By the fact that U×K is compact and κ continuous, κ is uniformly continuous on U×K.
Hence, there exists δϵ > 0 such that every g, g′ ∈ K with d(g, g′) < δϵ satisfy d(f(g), f(g′)) < ϵ.
Let κ′ be the compact space consisting of all point of distance less or equal to δϵ from K. There exists
0 < δ′ϵ < δϵ such that every g, g′ ∈ K′ with d(g, g′) < δ′ϵ satisfy d(f(g), f(g′)) < ϵ.

Now, let g, g′ ∈ G satisfy d(g, g′) < δ′ϵ. If one of the point g or g′ lies outside K′, then both of them
lie outside K, so

d(f(g), f(g′)) ≤ ∥f(g)∥+ ∥f(g′)∥ < ϵ.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Otherwise, both lie in K′, so d(f(g), f(g′)) < ϵ. Both cases together mean that f is uniformly
continuous.

As a result of uniform continuity, {g 7→ f(κu(g))})u ∈ U is equicontinuous, and this is a setting of
continuous prior maximization.

In fact, this analysis shows that whenever G = K and κ is continuous in (u, g), then it’s corresponding
ρ is continuous prior maximization.

Continuous to Discrete Images with Rotations and Other Image Transformations. Consider
the “continuous” space of images G = L2(R2) and the discrete space K = RN×N of images of
N ×N pixels.

Let U be the unit circle. For g ∈ G and u ∈ U let π(u)g be the rotation of the image g by angle u. To
define the discretizing mapping P : L2(R2)→ RN×N , consider the partition of [−1, 1] into the N
intervals

In = [−1 + 2n/N,−1 + 2(n+ 1)/N), n = 0, . . . N − 1.

Consider the closed linear subspace D(R2) ⊂ L2(R2) consisting of images that are zero outside
[−1, 1]2 and piecewise constant on the squares {In × Im}N−1

n,m=0. Now, P is the operator that takes
g ∈ L2(R2) first orthogonally projects it upon D(R2) to get g′, and then returns

P (g) = {g′(−1 + 2n/N,−1 + 2m/N)}N−1
n,m=0 ∈ RN×N .

Define the mapping κu as follows: κu(g) = P (π(u)g). By the fact that πu is an isometry for every
u ∈ U and P is non-expansive (as an orthogonal projection), κu : G → RN×N is Lipschitz 1 for
every u. Hence, {g 7→ f(κu(g))}u∈U is equicontinuous.

As a result, the corresponding prior minimization is a continuous prior minimization.

This setting can be extended to other image deformation based on diffeomorphisms of the domain
R2, parameterized by compact spaces U , For example, one can take dilations up to some uniformly
bounded scale. More generally, one can consider a compact set U of matrices in R2×2, and define
π(u)g(x) = g(§U) for U ∈ U , g ∈ L2(R2) and x ∈ R2.

Discrete to Discrete Images with Rotations and Other Image Transformations. One can replace
G by D(R2) in the above analysis. Since now D(R2) is compact, ρ must be a continuous prior
maximization.

The above examples can be naturally extended to additional image transformation, like translations
and dilations. Notably, translations and dilations do not form a compact group, but still they satisfy
the conditions of our theory, which requires no compactness assumptions.

D FUNCTIONAL CALCULUS AND SPECTRAL FILTERS

In this section, we recall the theory of plugging self-adjoint operators inside functions.

Spectral Theorem. Let L be a self-adjoint operator on a finite-dimensional Hilbert space (e.g.,
L ∈ CN×N with L = L∗). There exists a unitary matrix V and a real diagonal matrix Λ =
diag(λ1, . . . , λN) such that L = V ΛV ∗. The columns vi of V form an orthonormal eigenbasis with
Lvi = λivi.

Functional Calculus. For any function f : R→ C defined on the spectrum σ(L) = {λ1, . . . , λN}:
f(L) := V f(Λ)V ∗, f(Λ) = diag

(
f(λ1), . . . , f(λN)

)
.

Equivalently, we can write the spectral projections Pi := viv
∗
i ,

f(L) =

N∑
i=1

f(λi)Pi.

We can plug a self-adjoint matrix into a function by: 1) diagonalize L, 2) apply f to the eigenvalues,
and 3) conjugate back.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Algorithm 1 Random maximization
Input: Input g, backbone network f , scalar prior h(x), sampler Sample_U() for u ∼ P sampled
from a probability measure over U , number of random samples K, gradient descent step GD_Step

function Random_Maximization(g, f, h, Sample_U,K, use_GD, T, η, project_to_U)
{u1, . . . , uK} ← Sample_U(K)
u∗ ← argmax

{u1,...,uK}
h ◦ f(κui(g))

u∗ ← GD_Step(u∗)

return u∗

Take f = 1I for a Borel set I ⊂ R. The indicator function 1I(L) is an orthogonal projection, since
1I(L)2 = 1I(L) and 1I(L)∗ = 1I(L).

Spectral Graph Filters. A graph shift operator (GSO) is a self-adjoint matrix that reflects the
graph’s connectivity, such as a (normalized) graph Laplacian or a symmetrized adjacency. Let L
be such a GSO with eigenpairs {(λi, vi)}Ni=1 and V = [v1, . . . , vN]. For a T -channel node signal
X ∈ RN×T and a matrix-valued frequency response g : R→ Rd′×T , the spectral filter

g(L)X :=

N∑
i=1

viv
⊤
i X g(λi)

⊤

applies the graph convolution theorem (Bracewell & Kahn, 1966) with d′ output channel: each Fourier
mode vi is preserved in space, while channels are mixed by g(λi) in the spectral domain. In the scalar
case (T = d′ = 1) with f : R → R, the spectral filter simply reduces to the functional-calculus
operator acting on X:

f(L)X =

N∑
i=1

f(λi) viv
⊤
i X = V f(Λ)V ⊤X.

Spectral graph neural networks (Defferrard et al., 2016b; Kipf, 2016; Levie et al., 2018) compose
such filters with pointwise nonlinearities, using trainable g at each layer.

E APPLICATION OF ADAPTIVE CANONICALIZATION: TUTORIAL FOR
PRACTITIONERS

In this section, we present the construction details of the application of adaptive canonicalization to
anisotropic geometric networks. We start by describing the one vs. rest classifier and our maximization
method.

E.1 ONE VS. REST CLASSIFIERS

In our setting, each output channel fd ◦ ρdfd(g) ∈ [0, 1] is a binary classifier, i.e., representing the
probability of g being in class d vs. not being in class d (Rifkin & Klautau, 2004; Galar et al., 2011;
Allwein et al., 2000). The per-class score is obtained by ŷd = σ(fd ◦ ρdfd(g)), where σ is a sigmoid
function. Note that the vector (ŷ1, . . . , ŷD) is not a probability measure, since each entry represents
the independent probability of class c being present. We use binary cross-entropy per class and sum
over classes

∑D
d=1(− yd log ŷd − (1− yd) log(1− ŷd)), where yd denotes the true class.

E.2 RANDOM MAXIMIZATION

We estimate the prior maximization by searching over a transformation space (e.g., unitary orientations
per spectral band or rotation for point clouds) and selecting the orientation that maximizes the chosen
prior with the classification objective (i.e., one vs. rest). Specifically, we consider a probability measure
on the space Uj and draw i.i.d samples {ui

j}Ki=1 from it. The argmax of {hd ◦ fd
(
κuj (g)

)
}uj∈Uj of

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Eq. (2) is estimated as the argmax of

{hd ◦ fd
(
κui

j
(g)
)
}Ki=1.

For example, in anisotropic nonlinear spectral filters, we draw a finite pool of candidate transfor-
mations from the Haar measure on Uj (Mezzadri, 2006). For anisotropic point cloud networks, the
search over rotations can be implemented with quaternion (Shoemake, 1992) or Rodrigues’ formula
(Rodrigues, 1840). For each input, we evaluate the prior objective for all candidates in the pool and
keep only the maximizing orientation when computing the forward pass and gradients. In this way,
the prior maximization is implemented as a randomized search: we sample a set of transformations,
apply them in parallel, and pick the one giving the best prior value. Note that this sampling-based
maximization is best thought of as one convenient implementation of our framework rather than a
requirement, as other optimization strategies over Uj could be implemented and plugged as long as
they approximately solve the same maximization problem.

To understand how well this random maximization approximates the ideal maximization over the full
transformation space, we can adapt the analysis from Cordonnier et al. (2024). Their results provide
a tail bound for approximating a maximum over a probability space by the maximum over random
i.i.d. samples.

We first recall the notion of the volume retaining probability space introduced by Cordonnier et al.
(2024).

Definition 21 (Volume retaining property (Cordonnier et al., 2024)). Let X ⊂ Rd and let P be a
probability measure on X . We say that the probability space (X,P) has the (r0, κ)-volume retaining
Lebesgue measure if there exist constants r0 > 0 and κ > 0 such that for any r ≤ r0 and any x ∈ X

P (B(x, r) ∩X) ≥ κλd(B(x, r)),

where λd is the d-dimensional Lebesgue measure and B(x, r) is the ball center at x with radius r.

In our case, points are randomly sampled from some canonical measure over Uj (i.e., the Haar
measure), and in all of our example applications Uj has the volume retaining property.

On a volume retaining space, Cordonnier et al. (2024) prove the following concentration inequality
for maxima.

Lemma 22 (Concentration inequality for volume retaining space (Cordonnier et al., 2024)). Let
(X,P) be a probability space with the (r0, κ)-volume retaining property and let g : X2 → Rq

be Kg-Lipschitz. For any ρ ≥ exp(−nκrd02d), for any random variables X1, . . . , Xn
i.i.d.∼ P , with

probability at least 1− ρ, it holds

∥ max
1≤i≤n

g(x,Xi)− sup g(x, ·)∥∞ ≤
Kg

2

(
ln(q/ρ)

nκ

)1/d

.

Applying this lemma to our setting, g is the output of the task neural network on some class. Since
typical neural networks are Lipschitz continuous (e.g., any multilayer perceptron based on a Lipschitz
activation function), this immediately gives a guarantee that our random maximization method
approximates the true maximum. We plan to extend this analysis for future work.

We note that prior maximization can be strengthened by locally refining the sample points ui
j .

Specifically, we initialize with random transformations drawn from the probability measure, perform
the sampling-based prior maximization to select a candidate, and then run a few steps of gradient
descent to further decrease the objective locally. If U is a manifold embedded in Euclidean space,
one can apply the vanilla Euclidean gradient descent and then project the obtained transformation
back to U , or apply Riemannian gradient descent (Absil et al., 2008) to stay on U . We summarize
the random maximization in Alg. 1. In our experiments, we use 32 sampled transformations for
anisotropic nonlinear spectral filters and use 50 sampled transformations for point clouds.

Finally, we note that when the prior maximization has error e (which is a random variable), this leads
to an additive term e in universal approximation. Namely, for any ϵ > 0, any continuous function can
be approximated by θ ◦ ρθ up to error ϵ+ e instead of ϵ in Theorem 6.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.3 CONSTRUCTION DETAILS FOR ANISOTROPIC NONLINEAR SPECTRAL FILTERS

In spectral methods for graphs, we often use eigenvectors as a core component for graph representation
learning. However, these eigenvectors are not uniquely defined. For each eigenvector we can flip its
sign, and when an eigenvalue has multiplicity larger than one, any orthogonal basis of its eigenspace
is valid. In practice, this means that the same graph can produce different eigenvectors depending on
the eigensolver or numerical details, and a spectral graph neural network that takes these eigenvectors
as input may give different outputs for the same graph, which affects stability and can reduce
performance. Since the model should depend only on the graph structure and not on arbitrary choices
of eigenvector bases, i.e., it should be invariant to the choice of the eigenbasis, it is important to
remove such ambiguities. In this work, we focus on graph classification tasks with D classes and
study how to resolve eigenbasis ambiguities in this setting.

To study this, we work in the following setup. Consider a graph G = ([N],A,S), where [N]
is the set of N vertices, A ∈ RN×N is the adjacency matrix, and S ∈ RN×T is an array of
node features (row n us the T -dimensional feature at node n). We consider the normalized graph
Laplacian L = I −D− 1

2AD− 1
2 as the graph shift operator (GSO)2 in our experiments, where D

is a diagonal degree matrix with diagonal entries (di)i ∈ RN , where di is the degree of node i.
The eigendecomposition of L is given by L = V(G)ΛV(G)⊤, where V(G) = (vi)i ∈ RN×N is an
orthogonal matrix of eigenvectors as the columns (i.e., an eigenbasis) and Λ = diag(λ1, . . . , λN) is
the diagonal matrix of eigenvalues, where 0 ≤ λ1 ≤ . . . ≤ λN ≤ 2. We then group the spectrum into
predefined bands with boundaries b0 < b1 < · · · < bB contained in [0, 2], where B ∈ N is the total
number of bands. The total band [b0, bB] is a subset od [0, 2] since the spectrum of the normalized
Laplacian lies in this interval3. In our implementation, we use a dyadic partitioning scheme. Given a
decay rate 0 < r < 1, we set

b0 = 0, bk = 2rB−k for k = 1, . . . , B − 1, bB = 2,

and define the k-th band as [bk−1, bk). A larger B yields narrower bands and hence finer spectral
resolution. For example, taking B = 5 and r = 0.5 gives five bands: [0, 0.125), [0.125, 0.25),
[0.25, 0.5), [0.5, 1) and [1, 2).

We now make explicit the symmetry we want the model to respect. Recall that the eigendecomposition
of the normalized Laplacian is L = V(G)ΛV(G)⊤, where V(G) = (vi)i ∈ RN×N collects the
eigenvectors and Λ = diag(λ1, . . . , λN) the eigenvalues. Given the band boundaries b0 < · · · <
bB , we define for each band k the index set Ik(G) := {i ∈ [N] : λi ∈ [bk−1, bk)}, and let
V

(G)
k ∈ RN×Mk(G) be the submatrix of V(G) whose columns are the eigenvectors (vi)i∈Ik(G).

Therefore, we can write V(G) = [V
(G)
1 | · · · |V(G)

B]. For each band we denote the associated
Paley-Wiener space by Xk(G) := span{vi : i ∈ Ik(G)} = Im(V

(G)
k). The ambiguity we want

to handle comes from changing the orthonormal basis inside each band. Any other basis that of
the k-th band has the form Ṽ

(G)
k = V

(G)
k U

(G)
k , where U

(G)
k ∈ RMk(G)×Mk(G) is a unitary matrix.

Equivalently, we can write a full orthonormal basis of RN whose columns are partitioned into
subsequences corresponding to the bands, and each subsequence spans the associated Paley-Wiener
space Xk(G). We can write this condition in matrix form as: RN×N ∋ Ṽ(G) = V(G)U(G), where
U(G) := diag(U

(G)
1 , . . . ,U

(G)
B) ∈ RN×N , i.e., the a block matrix with diagonal blocks U(G)

k . The
set of block-diagonal unitary matrices U (G) = {U(G) = diag(U

(G)
1 , . . . ,U

(G)
B)} constitutes the

band-preserving transformations, i.e., the unitary matrices that keep the Paley-Wiener spaces (or
bands) invariant in the sense that U(G)v ∈ Xk(G), ∀ k ∈ [B], ∀v ∈ Xk(G). The space of these
matrices constitute the symmetry space in our setting.

The above construction is defined for a single graph, but in our setting we work with a collection of
graphs. The spectral support of the bands, that is, the intervals [bk−1, bk), is fixed across all graphs.
However, for a given graph G, the k-th band, i.e, the linear span of the eigenvectors whose eigenvalues
lie in [bk−1, bk), and this subspace depends on G. Different graphs can have a different number of
eigenvalues in the same interval, so the dimension of the k-th band is not constant across graphs. We
denote by Mk(G) the dimension of the k-th band for the graph G.

2Note that any other self-adjoint GSO can be chosen.
3For other GSOs, different bands can be chosen to match their spectral range, or to cover a subset of the

spectrum.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

In order to apply a task network given by a standard neural network architecture, such as an MLP,
we require that all inputs lie in a common vector space of fixed dimension, independent of the
particular graph G. The variability of the band dimensions Mk(G) across graphs violates this
requirement. To resolve this, we introduce a padding operator that standardizes the size of each band.
Implementation-wise, for each band k we fix for each band k the size to be the largest value of
Mk(G) over the dataset and denote this value by Jk, and we zero-pad bands that are smaller than
this size. Let J1, . . . , JB be these integers, and denote J =

∑B
k=1 Jk. For a graph G with signal

S ∈ RN×T , let Ck(G,S) ∈ RMk(G)×T be the matrix of spectral coefficients in the k-th band (one
row per eigenvector in the band and T channels). Since Mk(G) ≤ Jk by construction, we define the
band-wise padding operator Pk by

Pk(G,S) :=

[
Ck(G,S)

0(Jk−Mk(G))×T

]
∈ RJk×T .

Collecting all bands, we obtain the global operator P (G,S) := (Pk(G,S))Bk=1 ∈ RJ×T . By con-
struction, P maps every graph–signal pair (G,S) to a spectral representation in the fixed-dimensional
vector space RJ×T , so that we can apply the same task network Ψ : RJ×T → RD (e.g., an
MLP) uniformly across all graphs. After standardizing the band sizes to Jk and writing J =∑B

k=1 Jk, we use the same parameterization with {U = diag(U1, . . . ,UB) ∈ RJ×J , where Uk ∈
RJk×Jk is unitary}, which gives a parameterization of the space of unitary operators that keep the
bands invariant.

To resolve the band-wise eigenbasis ambiguity, we introduce the anisotropic nonlinear spectral filters
as follows. Consider a symmetryless neural network Ψ : RJ×T → RD that operates on the space
of spectral coefficients of the signal. We denote Ψ = (Ψd)

D
d=1 where Ψd : RJ×T → R. The prior

maximization for each class d ∈ {1, . . . , D} is performed by

{U□(d)
1 , . . . ,U

□(d)
B } = argmax

U
(d)
1 ,...,U

(d)
B

hd(Ψd(U
(d)
1 (G,S)), . . . ,U

(d)
B (PB(G,S)))),

where U
(d)
k ∈ RJk×Jk is a unitary matrix and hd(x) = x is class-d prior. Once we obtain the

set of the optimal unitary matrices {U□(d)
1 , . . . ,U

□(d)
B }, the class d score is then computed by

Ψd(U
□(d)
1 (P1(V

(G),S)), . . . ,U
□(d)
B (PB(V

(G),S))) are then passed through a sigmoid nonlinearity
to obtain class probabilities. The training loss is the sum of D binary cross-entropies.

E.4 CONSTRUCTION DETAILS FOR ANISOTROPIC POINT CLOUD NETWORKS

We next apply adaptive canonicalization in the spatial domain, where inputs are multisets of points in
R3 with (x, y, z) coordinates. Specifically, we focus on multiset networks applied to classification
tasks. Standard multiset networks, e.g., DeepSet (Zaheer et al., 2017) and PointNet (Qi et al., 2017a),
which take the 3D coordinates of the points as their features, suffer from an inherent anisotropy
problem (Wiersma et al., 2022; Qian et al., 2021): the classification outcomes for a point cloud and
for a rotated version of the same point cloud do not coincide in general. To address this sensitivity
to orientation in multiset networks, we introduce an adaptive canonicalization module that searches
over the 3D rotation group SO(3).
Let X ∈ RN×3 represent a point cloud of N points in R3 and let Ψ : RN×3 → RD be a multiset
neural network. In classification, D is the number of classes. We denote Ψ = (Ψd)

D
d=1 where

Ψd : RN×3 → R. Here, Ψ is invariant to permutations of the N points, but not invariant to 3D
rotations of the point cloud. The prior maximization for each class d ∈ {1, . . . , D} is performed by

R□
d = argmax

R∈SO(3)

hd(Ψd(XR⊤)),

where class-d prior is hd(x) = x. Once we found the canonical form R□
d , the class scores in our

anisotropic point cloud network are computed as sd = Ψd(XR□⊤
d) and are then passed through a

sigmoid nonlinearity to obtain class probabilities. The training loss is the sum of D binary cross-
entropies.

The canonicalization setting is independent of the specific multiset neural network architecture. Below,
we present three widely used multiset neural networks equipped with adaptive canonicalization.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Adaptive Canonicalization Applied to DeepSet (AC-DeepSet). We begin by briefly recalling
DeepSet (Zaheer et al., 2017), which is a general framework for learning functions on sets and
has UAT (Wagstaff et al., 2022). Given a point cloud represented as {x1, . . . ,xN} ⊂ R3, DeepSet
computes a permutation-invariant representation by encoding each point with an MLP ϕ, aggregating
features with summation, and applying a global function ξ:

x′ = ξ

(
N∑
i=1

ϕ(xi)

)
.

To apply adaptive canonicalization to DeepSet, we define, for each class d ∈ {1, . . . , D}, a class-
dependent canonical rotation by

R□
d = argmax

R∈SO(3)

hd

(
Ψd

(
ξ

(
N∑
i=1

ϕ(xiR
⊤)

)))
,

where Ψd is the one-vs-rest classifier for class d, and hd(x) = x is the prior. Once R□
d is obtained,

the class scores are computed as sd = Ψd(ξ(
∑N

i=1 ϕ(xiR
□⊤
d))) for all d ∈ {1, . . . , D}, and passed

through sigmoids to obtain class-wise probabilities. The network is then trained using the sum of D
binary cross-entropy losses.

Adaptive Canonicalization Applied to PointNet (AC-PointNet). Given a point cloud
{x1, . . . ,xN} ∈ R3, PointNet (Qi et al., 2017a) processes each point independently with a shared
MLP ϕ, and then aggregates points features using a symmetric function (e.g., max-pooling)

x′ = Pool(ϕ(x1), . . . , ϕ(xN)).

To equip PointNet with adaptive canonicalization, we define a class-specific orientation R□
d for each

class d obtained by

R□
d = argmax

R∈SO(3)

hd(Ψd(Pool(ϕ(x1R
⊤), . . . , ϕ(xNR⊤)))),

where hd(x) = x is the class-d prior and Ψd is the class-specific classifier conducting binary
classification in the one vs. rest manner. Once having R□

d , the scoring head is denoted by sd =

Ψd(Pool(ϕ(x1R
□⊤
d), . . . , ϕ(xNR□⊤

d))). Then we define the per-class head score by a sigmoid and
use binary cross-entropy per class and sum over classes as the training loss.

Adaptive Canonicalization Applied to DGCNN (AC-DGCNN). Consider the input X ∈ RN×3

as a point cloud with points {x1, . . . ,xN} ∈ R3. DGCNN (Wang et al., 2019) constructs dynamic
k-nearest graphs by computing G = (V,E) where E = {(i, j) : j ∈ kNN(xi, k)}. Then, the edge
convolution is performed by computing the edge features and applying a max pooling:

x′
i = Pool(i,j)∈E(ReLU(Ψ(xj − xi,xi))).

Applying adaptive canonicalization to the DGCNN architecture, we define a class-specific orientation
R□

d obtained by optimizing a class-dependent prior hd(x) = x:

R□
d = argmax

R∈SO(3)

hd(Ψd(Pool(i,j)∈E(ReLU(Ψ((xj − xi)R
⊤,xiR

⊤))))), (5)

where Ψd is the class-d classifier. Then, the classifier is applied to the output under R□
d for comput-

ing sd = Ψd(Pool(i,j)∈E(ReLU(Ψ((xj − xi)R
□⊤,xiR

□⊤)))). The per-class head score is then
computed by a sigmoid, and the sum over D binary cross-entropies is used as the training loss.

E.5 TRUNCATION CANONICALIZATION

We introduce truncation-based prior maximization on images as an additional application of our
adaptive canonicalization framework. Intuitively, many image classes are invariant under removing
uninformative regions: as long as the object of interest remains in the field of view, the class label
should not change. We consider, in this case, the truncation as our “symmetry” and apply prior
maximization over this family of transformations to select a canonical truncation. We note that this
transformation family is not based on a group action.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

We model images as elements of a set of G in the following way. Given N ∈ N, consider the regular
grid on the unit square [0, 1]2 given by the pixels Qi,j = [i

N , i+1
N) × [j

N , j+1
N)) for 0 ≤ i, j < N .

We define G to be the set of all functions g ∈ L2(R2) such that supp(g) ⊂ [0, 1]2 and g is
piecewise constant on the grid, i.e., there exist coefficients vi,j ∈ [0, 1] such that g(x) = vi,j for
all x ∈ {Qi,j}. Since each image g ∈ G is uniquely determined by its collection of pixel values
(vi,j)0≤i,j<N ∈ [0, 1]N

2

, we can identify (via an isometric isomorphism) G with with the box
[0, 1]N

2 ⊂ RN2

. Since closed and bounded subsets of finite-dimensional Euclidean spaces are
compact, the box [0, 1]N

2 ⊂ RN2

is compact. Because G is isometrically isomorphic to [0, 1]N
2

, the
set G is also compact (and therefore locally compact).

The truncation is parameterized by four coordinates collected in a vector u = (xL, yT, xR, yB) ∈
U ⊂ [0, 1]4, where we impose the constraints 0 ≤ xL ≤ xR ≤ 1 and 0 ≤ yT ≤ yB ≤ 1. We consider
the standard Euclidean metric in U . Since U is a closed and bounded subset of [0, 1]4, it is compact.

We now define the truncation transformation. For a parameter u = (xL, yT, xR, yB) ∈ U , we
view u as encoding the top-left and bottom-right corners of an axis-aligned rectangle: R(u) =
[xL, xR] × [yT, yB] ⊂ [0, 1]2. As u varies in the compact box U , this truncation window moves
continuously inside the domain containing all images. Given an image g ∈ G, we define the truncation
by

x 7→
{
g(x), x ∈ R(u),

0, x ̸∈ R(u).

After truncation, the function lies in L2(R2) but not in G in general. We then project it back onto
the finite-dimensional subspace G of piecewise constant functions by the orthogonal projection
P : L2(R2)→ G defined by

(Pg)(x) =

N∑
i,j=1

ḡij 1Qij
(x), ḡij = N2

∫
Qij

g(y)dy.

We then define κu(g) := P (g1R(u)) ∈ G.

We now verify that this truncation family satisfies our assumptions. By construction, U is compact,
and the image space G is compact. In our setting we have K = G, so K is also compact. The map

κ(·)(··) : U × G → K, (u, g) 7→ κu(g) ∈ K
is continuous, and hence, by compactness of the product U × G, it is uniformly continuous. This
implies that {g 7→ f(κu(g))}u∈U is equicontinuous. Thus, the truncation transformation family
satisfies the conditions for continuous canonicalization.

We focus on the image classification task with D classes and take axis-aligned truncations as the
transformation family. Let X ∈ RN×N be an image. A truncation is specified by a side-length
s ∈ [smin, smax] ⊂ [0.5, 1.0] and a discrete top-left corner. For a given s, we set the truncation
side length to M(s) = ⌊sN⌋, and require the window to lie inside the image domain, i.e., 1 ≤
i0 ≤ N −M(s) + 1 and 1 ≤ j0 ≤ N −M(s) + 1. The corresponding axis-aligned window is
{(i, j) ∈ {1, . . . , N}2

∣∣ i0 ≤ i ≤ i0 + M(s) − 1, j0 ≤ j ≤ j0 + M(s) − 1}. The truncation
then keeps only the pixels inside the window and zeros out the rest, which yields a truncated patch
C(i0,j0,s)(X) ∈ RM(s)×M(s). To keep the input dimension fixed, we then rescale this cropped
patch back to the original resolution N ×N using a standard interpolation scheme. We denote this
resizing operator by Rs : RM(s)×M(s) → RN×N . The truncation operator is therefore defined as
the composition T(i0,j0,s)(X) = Rs(C(i0,j0,s)(X)) ∈ RN×N . The transformation family used in our
method is

T = {T(i0,j0,s) | s ∈ [smin, smax], (i0, j0) admissible as above},

and in practice random truncations are obtained by sampling s and (i0, j0) from a suitable distribution
under these constraints.

We introduce the truncation canonicalization as follows. Consider a symmetryless neural network
Ψ : RN×N → RD that operates on the images. We denote Ψ = (Ψd)

D
d=1 where Ψd : RN×N → R.

The prior maximization for each class d ∈ {1, . . . , D} is performed by

T□
(i0,j0,s)

= argmax
T(i0,j0,s)∈T

hd(Ψd(T(i0,j0,s)(X))),

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

where h(x) = x. Once we obtain T□
(i0,j0,s)

, the class d score is then computed by Ψd(T
□
(i0,j0,s)

(X))

are then passed through a sigmoid nonlinearity to obtain class probabilities. The training loss is the
sum of D binary cross-entropies.

F EXPERIMENTAL DETAILS

In this section, we describe the experimental setups and implementation details used in Sec. 5.

F.1 ILLUSTRATIVE TOY PROBLEMS: GRID SIGNAL ORIENTATION TASKS

Toy Problem and Experimental Setup. We consider square grid on the torus with a 2-channel
signal. The first channel contains a sinusoidal signal aligned with the x-axis, given by sin(2πx/T).
The second channel depends on the class label: in Class 0 it is aligned with the x-axis, while in
Class 1 it encodes a sinusoidal signal along the y-axis, sin(2πy/T). Independent Gaussian noise with
variance σ2 is added to each channel. In addition, it introduces an additional challenge by spatially
restricting the support of the channels. The grid is vertically partitioned into two disjoint halves. The
first channel is supported only on the left half. The second channel is supported only on the right half.
The task is to decide if the frequency at the two channels is in the same orientation. The grid size is
fixed at N = 402, the sinusoidal period is set to T = 20, and the noise level is chosen as σ = 0.1.
We generate 1000 samples. Evaluation is carried out using 10-fold cross-validation.

Competing Methods. The competing methods include: MLP, GCN, GAT, GIN, ChebNet, NLSF,
S2GNN, FA+GIN, and OAP+GIN.

Hyperparameters. We use a three-layer network with a hidden feature dimension chosen from
{32, 64, 128} and ReLU activation functions. The learning rate is selected from {10−3, 10−4, 10−5}.
Batch size 100. All models are implemented in PyTorch and optimized with the Adam optimizer
(Kingma & Ba, 2014). Experiments are conducted on an Nvidia DGX A100. The output of the GNN
is then passed to an MLP, followed by a softmax classifier.

F.2 GRAPH CLASSIFICATION ON TUDATASET

Datasets and Experimental Setup. We consider five graph classification benchmarks from TU-
Dataset (Morris et al., 2020): MUTAG, PTC, ENZYMES, PROTEINS, and NCI1. The dataset statistic
is reported in Tab. 4. Following the random split protocol (Ma et al., 2019; Ying et al., 2018; Zhang
et al., 2019b), we partition the dataset into 80% training, 10% validation, and 10% testing. Results
are averaged over 10 random splits, with mean accuracy and standard deviation reported.

Competing Baselines. We evaluate on medium-scale graph classification benchmarks from TU-
Dataset, using the same set of competing methods as in grid signal orientation tasks. The baselines
include MLP, GCN, GAT, GIN, ChebNet, NLSF, S2GNN, FA+GIN, and OAP+GIN.

Hyperparameters. The hidden dimension is set to be 128. The models are implemented using
PyTorch, optimized with the Adam optimizer (Kingma & Ba, 2014). An early stopping strategy is
applied, where training halts if the validation loss does not improve for 100 consecutive epochs. The
hyperparameters are selected through a grid search, conducted via Optuna (Akiba et al., 2019), with
with the learning rate and weight decay explored in the set {1e−2, 1e−3, 1e−4}, the pooling ratio
varying within [0.1, 0.9] with step 0.1, and the number of layers ranging from 2 to 9 in a step size of 1.
The output representations are then passed into an MLP followed by a softmax layer, and predictions
are obtained by optimizing a cross-entropy loss function. Experiments are conducted on an Nvidia
DGX A100.

F.3 MOLECULAR CLASSIFICATION ON OGB DATASETS

Datasets and Experimental Setup. We evaluate on larger-scale benchmarks from the Open Graph
Benchmark (OGB) dataset (Hu et al., 2020) for classification tasks, including ogbg-molhiv, ogbg-

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 4: Datasets statistics.

Dataset # Graphs # Classes Avg.# Nodes Avg.# Edges

MUTAG 188 2 17.93 19.79
PTC 344 2 14.29 14.69
ENZYMES 600 6 32.63 64.14
PROTEINS 1113 2 39.06 72.82
NCI1 4110 2 29.87 32.30

ogbg-molhiv 41127 2 25.5 27.5
ogbg-molpcba 437929 128 26.0 28.1
ogbg-ppa 158100 37 243.4 2266.1

molpcba, and ogbg-ppa. Dataset statistics are summarized in Tab. 4 The evaluation settings are
followed by the OGB protocol (Hu et al., 2020).

Competing Baselines. For large-scale graph classification, we include GCN, GIN, GatedGCN,
PNA, GraphTrans, SAT, GPS, SAN, and the canonicalization-based variant OAP+GatedGCN as the
competing methods. These approaches have previously demonstrated strong performance on OGB
benchmarks, and their reported results are taken from prior work4.

Hyperparameters. The models are implemented in PyTorch and optimized with the Adam opti-
mizer, with training capped at a maximum of 1000 epochs and controlled by an early stopping criterion.
The hidden dimension is selected from the set {128, 256, 512}, while the number of layers varies from
2 to 10 in steps of 1. Dropout rates are explored within the range [0, 0.1, . . . , 0.5], the learning rate is
tuned within the interval [0.0001, 0.001], and the warmup is set as 5 or 10. Additionally, the batch
size is chosen from {32, 64, 128, 256} and the weight decay is chosen from {10−4, 10−5, 10−6}. All
hyperparameters are tuned using Optuna (Akiba et al., 2019). The experiments are conducted on an
NVIDIA A100 GPU.

F.4 MODELNET40 POINT CLOUD CLASSIFICATION

Datasets and Experimental Setup. Our evaluation for point cloud classification was carried out on
the ModelNet40 dataset (Wu et al., 2015), which consists of 40 object categories and a total of 12,311
3D models. Following prior studies (Wang et al., 2019; Deng et al., 2021), we allocated 9,843 models
for training and 2,468 models for testing in the classification task. For each model, 1,024 points were
uniformly sampled from its mesh surface, using only the xyz coordinates of the sampled points. We
apply on-the-fly rotation augmentation during training, following Esteves et al. (2018); Deng et al.
(2021), such that the dataset size remains unchanged. At test time, each example is rotated by an
arbitrary rotation. Note that on-the-fly augmentation essentially changes the training data distribution
during the learning process. The purpose of comparing under rotation protocols is to assess a model’s
invariance to rotational changes.

Competing Baselines. For point cloud classification tasks, we compare our anisotropic geometric
method with point cloud approaches, including PointNet and DGCNN architectures, as well as equiv-
ariant models based on the vector neuron framework, i.e., VN-PointNet and VN-DGCNN. We further
include canonicalization baselines, CN-PointNet and CN-DGCNN, and traditional augmentation
baselines in which the training set is expanded with pre-generated rotations (PointNet-Aug, DGCNN-
Aug) with a factor of five (×5). The experimental results of PointNet, DGCNN, VN-PointNet, and
VN-DGCNN are taken from Wang et al. (2019); Deng et al. (2021).

Hyperparameters. We follow the published hyperparameters and training protocol of PointNet
and DGCNN. For PointNet, we uses identical channel widths to PointNet (64, 64, 64, 128, 1024).
We use Adam optimizer with learning rate 0.001 and batch size 32 with a weight decay 1× 10−4

and dropout 0.3. For DGCNN, each input comprises 1,024 uniformly sampled points, and the k-NN
graph uses neighborhood size k = 20. DGCNN uses four EdgeConv layers (with per-layer MLPs of

4https://ogb.stanford.edu/docs/leader_graphprop/

34

https://ogb.stanford.edu/docs/leader_graphprop/

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

sizes 64, 64, 128, 256). We train with stochastic gradient descent (initial learning rate 0.1) and apply
a cosine annealing schedule of 0.001. Training runs for 250 epochs with a batch size of 32, and we
use a dropout rate of 0.5 in the fully connected layers.

G ADDITIONAL RESULTS

In this section, we present additional results of our adaptive canonicalization, including experimental
trade-offs of sampling-based and optimization-based construction, anisotropic nonlinear spectral
filters for node-level representation, and out-of-sample rotation generalization for point clouds.

G.1 SAMPLING-BASED VS OPTIMIZATION-BASED IMPLEMENTATION

To evaluate the trade-offs between sampling-based and our sample-and-refine (optimization-based)
implementation, we conduct experiments on the TUDataset graph classification benchmarks. Tab. 5
reports the classification performance of TUDaset under sampling-based and optimization-based
adaptive caninocalization. We see that the optimization-based implementation consistently performs
better than the sampling-based one. While increasing the sampling candidates (from 1× to 5×
or 10×) improves the performance, the sample-and-refine strategy is more memory-efficient than
massive sampling approaches. Rather than storing and evaluating hundreds of rotation matrices
simultaneously, it processes a smaller working set through iterative refinement, reducing memory
pressure (Li et al., 2022). In terms of computation time, the sampling-based method grows linearly
with the number of candidates, while the optimization-based method add a small overhead to the
inner steps. We see that in practice, a modest refinement (a few steps) surpasses the accuracy of large
sampling budgets at a lower time, offering a better accuracy-time trade-off.

Table 5: Comparison of sampling-based vs. optimization-based adaptive canonicalization. Classifi-
cation accuracy across TUDataset. Sampling methods use different numbers of random candidates,
while the optimization approach combines sampling with local refinement via gradient descent.

MUTAG PTC ENZYMES PROTEINS NCI1

A-NLSF (sampling) 84.23±1.4 69.05±1.8 70.10±1.5 82.94±1.6 80.64±1.2

A-NLSF (sampling ×5) 85.17±1.3 72.21±1.3 71.59±1.0 83.57±1.8 80.92±1.3

A-NLSF (sampling ×10) 85.54±1.3 72.78±1.5 72.42±1.2 85.03±1.2 80.94±0.8

A-NLSF (optimization) 87.94±0.9 73.16±1.2 73.01±0.8 85.47±0.6 82.01±0.9

G.2 NODE-LEVEL ANISOTROPIC NONLINEAR FILTERS

We introduce the adaptive canonicalization applied to spectral graph neural networks for learning
graph-level representation in Sec. 4.1 and App. E.3. The adaptive canonicalization can also be applied
to node-level representation, where the node-level representation proceeds by mapping the input
signal to the spectral domain (Mallat, 2002) in a band-wise manner with an oriented basis within
each band’s eigenspace, and performing a synthesis step that transforms the learned coefficients back
to the node domain.

On a square grid, each x Fourier mode has a corresponding y Fourier mode of the same response.
Therefore, standard spectral methods are inherently isotropic as they cannot distinguish between
horizontal and vertical directional information. On the other hand, adaptive canonicalization is
anisotropic and our method can learn distinct orientations. The resulting spatial operator can therefore
implement any directional filter that a convolutional neural network can achieve (Shannon, 2006;
LeCun & Bengio, 1998; Freeman et al., 1991; Dagès et al., 2024).

In graph-level tasks, the canonicalized node-level embeddings can serve as the intermediate represen-
tation from which graph-level features are derived. Specifically, the resulting node embeddings can be
aggregated through standard pooling operations to have a graph-level representation. We evaluate the
node-to-graph construction on TUDataset for graph classification tasks. The results are summarized
in Tab. 6. We see that the node-to-graph construction achieves performance closely aligned with, and
in some cases approaching, that of the direct graph-level canonicalization. We attribute the slightly
worse performance to the potential pooling loss.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 6: Graph classification performance on TUDataset using adaptive canonicalization. Comparison
between direct graph-level representations (Graph) and node-to-graph constructions (Node-to-graph).

MUTAG PTC ENZYMES PROTEINS NCI1

Node-to-graph 87.02±1.1 72.14±1.5 71.26±1.2 84.87±0.8 81.64±1.2

Graph 87.94±0.9 73.16±1.2 73.01±0.8 85.47±0.6 82.01±0.9

G.3 OUT-OF-SAMPLE ROTATION GENERALIZATION IN POINT CLOUDS

We adopt the z/SO(3) protocol (Esteves et al., 2018; Deng et al., 2021): training with on-the-fly
azimuthal rotations (z-axis) augmentation, and evaluation applies under arbitrary rotations to each
test shape. In this setting, we assess out-of-sample rotation generalization by constraining training
data rotations while testing on the full rotation group. The classification performance on ModelNet40
under z/SO(3) protocol is reported in Tab. 7. Standard PointNet and DGCNN drop sharply under
this shift. Equivariant vector-neuron variants recover much of the loss, and canonicalization base-
lines are comparable. Our adaptive canonicalization outperforms both equivariant architecture and
canonicalization baselines in both backbones.

Table 7: Classification accuracy on ModelNet40 under z/SO(3) protocol.

PointNet DGCNN VN-PointNet VN-DGCNN CN-PointNet CN-DGCNN AC-PointNet AC-DGCNN

Accuracy 19.6 33.8 77.5 89.5 79.6 88.8 81.4 91.8

G.4 ABLATION STUDIES

We conduct ablation studies on the spectral band partitioning and the choice of GSO for A-NLSF, as
well as on the impact of different point cloud backbones in our anisotropic point cloud networks.

G.4.1 SPECTRAL BAND PARTITION

In our experiment, we adopt a dyadic partitioning scheme (see App. E.3). In this section, we conduct
an ablation using a uniform partitioning of the eigenvalues with the same number of bands and report
the graph classification performance in Tab. 8. We see that using the dyadic partitions performs better
than using the uniform partition. tion provided by dyadic bands, which could more effectively isolate
band-wise unitary actions that commute with the chosen GSO. We also note that spectral band design
can be realized in more flexible and expressive ways, for example, through attention as in SpecFormer
(Bo et al., 2023). Investigating such learned or adaptive band-selection strategies is an important
direction for future work and may further strengthen our adaptive canonicalization framework.

Table 8: Graph classification performance using uniform and dyadic spectral band partitioning.

MUTAG PTC ENZYMES PROTEINS NCI1

Uniform 81.36±1.2 66.20±0.8 62.84±1.4 80.01±1.3 79.62±1.0

Dyadic 87.94±0.9 73.16±1.2 73.01±0.8 85.47±0.6 82.01±0.9

G.4.2 GRAPH SHIFT OPERATOR

We evaluate the graph Laplacian as an alternative GSO. Tab. 9 reports the graph classification
performance of A-NLSF when instantiated with the graph Laplacian versus the normalized graph
Laplacian. We observe that using the normalized graph Laplacian in our method yields better
performance than the graph Laplacian. We attribute this to the properties of the normalized Laplacian:
(i) the normalized Laplacian removes degree-related scaling effects, leading to a comparable spectral
domain across graphs with different degree distributions, and (ii) its eigenvalues lie in the fixed interval
[0, 2], providing a controlled and interpretable frequency range, and making dyadic partitioning better
aligned across different graphs.

G.4.3 POINT CLOUD BACKBONES

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 9: Graph classification performance of A-NLSF with different GSO.

MUTAG PTC ENZYMES PROTEINS NCI1

Graph Laplacian 83.76±1.0 67.23±1.4 62.60±1.2 82.64±1.6 78.59±0.8

Normalized graph Laplacian 87.94±0.9 73.16±1.2 73.01±0.8 85.47±0.6 82.01±0.9

Table 10: Classification re-
sults on ModelNet40 for dif-
ferent point cloud backbones.
Results of competing meth-
ods marked with * are taken
from Deng et al. (2021); Luo
et al. (2022).

Accuracy

PointNet 74.7∗

AC-PointNet 81.1±0.7

PointNet++ 85.0∗

AC-PointNet++ 87.4±0.4

RSCNN 82.6∗

AC-RSCNN 87.6±0.3

DGCNN 88.6∗

AC-DGCNN 91.6±0.6

In order to assess the impact of the backbone choice on the perfor-
mance of our anisotropic point cloud networks, we extended our
experiments to include two additional and widely used point cloud
backbones, PointNet++ (Qi et al., 2017b) and RSCNN (Liu et al.,
2019), in addition to PointNet and DGCNN reported in Tab. 3. We de-
note the corresponding variants by AC-PointNet++ and AC-RSCNN.
The ablation results are reported in Tab. 10. We see that the choice of
backbone does influence the overall point cloud classification perfor-
mance. However, we observe that our adaptive canonicalization frame-
work consistently improves the classification performance across these
backbones. Moreover, when comparing methods built on the same
backbone (e.g., PointNet or DGCNN), our approach outperforms
equivariant models, data augmentation, and standard canonicalization
(see Tab. 3). This indicates that our method is robust across different
point cloud backbones and can further benefit from stronger back-
bones when they are available.

G.5 SENSITIVITY ANALYSIS

To examine the effect of different hyperparameters, we conduct a hyperparameter sensitivity study
covering grid size, sinusoidal period, noise level, and hidden dimension. For each hyperparameter,
we swept over a range of values while keeping all other settings fixed. The results of the sensitivity
analysis are summarized in Fig. 2. Overall, we observe that our method is reasonably robust. For
grid size and sinusoidal period, performance remains stable across the tested ranges. For the noise
level, small to moderate noise leads to similar performance, with a degradation only when the noise
becomes large enough that it effectively corrupts the underlying structure of the data. For the hidden
dimension, small dimensions impact the performance, but performance stabilizes once we enter a
standard regime of model capacity.

Figure 2: Hyperparameter sensitivity with respect to grid size, noise level, and hidden dimension.

G.6 TRUNCATION CANONICALIZATION WITH A PRETRAINED CLASSIFIER

We introduce in App. E.5 an application of our adaptive canonicalization on truncation prior maximiza-
tion. We now illustrate the applicability of this setup with a pretrained image classifier. Specifically,
we take a ResNet-18 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009). We freeze the
backbone, and train only the classifier using the CIFAR-10 or CIFAR-100 (Krizhevsky et al., 2009)
training set. The experiment is conducted with ten independent runs, and the resulting image clas-
sification performance is reported in the Tab. 11. We see that truncation-based prior maximization
improves classification performance over the standard vanilla baseline. This implies that our method
enables the model to adaptively select a canonical truncation that enhances downstream performance.
In addition, we observe that the selected canonical crops tend to tightly focus on the main object while
discarding background and irrelevant context. It matches the intuition behind our prior maximization:
by optimizing over the truncation family, the model chooses a representative transformed image that

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

best aligns with its prior over the class. This experiment demonstrates that our adaptive canonical-
ization framework can be instantiated with a truncation symmetry and benefit from off-the-shelf
pretrained models. It also highlights the potential of transformation families as a practical way to
improve pretrained models via adaptive canonicalization.

Table 11: Image classification accuracy on CIFAR-10 and CIFAR-100 using a ResNet18 pretrained
on ImageNet, with and without truncation canonicalization.

CIFAR-10 CIFAR-100

Vanilla 72.09±1.0 56.94±0.8

Truncation canonicalization 74.92±0.6 60.38±0.5

G.7 COMPUTATIONAL REQUIREMENT COMPARISON

Tab. 12 the training time per epoch with the number of parameters. We see that A-NLSF uses a similar
number of parameters as the other methods and fewer than the spectral method. Its computational
requirements are comparable to the other methods and does not rely on a significantly larger training
budget than the competing methods.

Table 12: Running time per epoch(s)/number of parameters.

MUTAG PTC ENZYMES PROTEINS NCI1

MLP 0.07/105K 0.10/114K 0.13/125K 0.37/129K 1.01/134K
GCN 0.40/116K 0.66/120K 0.81/137K 1.92/142K 5.84/149K
GAT 0.62/138K 0.87/149K 0.96/154K 2.34/159K 4.93/167K
GIN 0.14/105K 0.37/106K 0.52/107K 0.94/106K 1.97/121K
ChebNet 0.79/185K 1.25/189K 1.72/191K 3.64/217K 11.52/245K
FA+GIN 0.57/120K 1.04/123K 1.35/126K 2.55/130K 4.31/142K
OAP+GIN 0.22/105K 0.39/104K 0.57/109K 1.21/110K 2.36/124K
A-NLSF 0.44/132K 0.89/140K 1.29/145K 2.20/148K 4.37/151K

G.8 TRAINING STABILITY

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ge
od

es
ic

di
st

an
ce

Figure 3: Mean geodesic distance on SO(3) between the
canonicalizations between consecutive epochs.

To quantify the training stability of
our method, we track the canonical
rotations of a subset of 1500 ran-
domly chosen training examples in
the point cloud classification exper-
iment. At each epoch, we measure the
mean geodesic distance on SO(3) be-
tween the canonicalizations between
consecutive epochs. Fig. 3 reports
the mean geodesic distance between
epochs. We observe that this distance
decreases during the training and then
remains stable, indicating that the canonical representatives stabilize with no rapid switching.

G.9 CANONICALIZED POINT CLOUDS

Fig. 4 shows the canonicalized point clouds for the chair class in the point cloud classification
experiment. We randomly select 20 examples from this class and visualize them after applying the
optimal transformations. We observe that the examples in this class share a similar orientation after
canonicalization.

G.10 SHAPENET PART SEGMENTATION

To expand our experimental study on point cloud data, we further conduct experiments on the
ShapeNet part segmentation benchmark (Yi et al., 2016). The dataset consists of 16 shape categories
annotated with a total of 50 parts, where each category is labeled with between two and six parts. Note
that our prior maximization adaptive canonicalization method was naturally suited to classification
tasks. Extending it to the segmentation task is not trivial, as the segmentation task requires predicting

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Figure 4: The canonicalized point clouds for the chair class.

Table 13: Part segmentation
performance on the ShapeNet
part dataset. The metric is re-
ported with the average cate-
gory mean IoU Results of com-
peting methods marked with
* are taken from Deng et al.
(2021); Kaba et al. (2023).

PointNet 62.3∗

DGCNN 78.6∗

VN-PointNet 72.8∗

VN-DGCNN 81.4∗

CN-PointNet 73.6±1.1 ∗

CN-DGCNN 78.5±0.9 ∗

AC-PointNet 76.0±0.6

AC-DGCNN 80.9±0.7

a label for each point in the point cloud, and applying prior maxi-
mization to each point would be computationally inefficient. There-
fore, in order to adapt our adaptive canonicalization to the seg-
mentation task, we consider the adaptive canonicalization with the
minimal entropy prior summing over nodes. This modification pre-
serves the spirit of the adaptive canonicalization while making it
compatible with per-point prediction. Tab. 13 reports the segmen-
tation performance. For the PointNet backbone, we see that, similar
to the point cloud classification task, the entropy-based adaptive
canonicalization yields advantageous segmentation performance
compared to equivariant architectures and standard canonicalization
baselines. For the DGCNN backbone, our method attains perfor-
mance comparable to equivariant architectures while outperforming
existing canonicalization methods. These results demonstrate that
our approach has potential beyond classification. Note that one of
the main contributions of our work is to construct continuous and
symmetry-respecting models. In the entropy prior adaptive canon-
icalization, the continuity property is not straightforward. We plan to investigate the continuity
properties of this adapted approach in future work.

H USE OF LARGE LANGUAGE MODELS

Following the ICLR 2026 policy that requires disclosure of use of Large Language Models (LLMs),
we state that an LLM was used for editing purposes, such as grammar, spelling, phrasing, and stylistic
polish.

39

	Introduction
	Related Work
	Adaptive Canonicalization
	Basic Definitions and Background
	Adaptive Canonicalization
	Prior Maximization Adaptive Canonicalization
	Symmetry Preserving Prior Maximization

	Application of Adaptive Canonicalization to Anisotropic Geometric Networks
	Anisotropic nonlinear spectral filters
	Anisotropic Point Cloud Networks
	Additional Applications of Adaptive Canonicaluzation

	Experiments
	Experimental Evaluation of Anisotropic Nonlinear Spectral Filters
	Experimental Evaluation of Anisotropic Point Cloud Networks

	Conclusions
	Related Work
	Canonicalization
	Equivariance with Learned Canonicalization Functions
	Canonicalization and Data Re-Alignments
	Weighted Canonicalization
	Test-Time Canonicalization

	Frame Averaging
	Equivariant Architectures

	Universal Approximation Theorems
	Universal Approximation of Euclidean Fucntions
	Universal Approximation of Multi-Sets Functions

	Additional Examples of Continuous Prior Maximization
	Functional Calculus and Spectral Filters
	Application of Adaptive Canonicalization: Tutorial for Practitioners
	One vs. Rest Classifiers
	Random Maximization
	Construction Details for Anisotropic Nonlinear Spectral Filters
	Construction Details for Anisotropic Point Cloud Networks
	Truncation Canonicalization

	Experimental Details
	Illustrative Toy Problems: Grid Signal Orientation Tasks
	Graph Classification on TUDataset
	Molecular Classification on OGB Datasets
	ModelNet40 Point Cloud Classification

	Additional Results
	Sampling-based VS Optimization-based Implementation
	Node-Level Anisotropic Nonlinear Filters
	Out-of-Sample Rotation Generalization in Point Clouds
	Ablation Studies
	Spectral Band Partition
	Graph Shift Operator
	Point cloud backbones

	Sensitivity Analysis
	Truncation Canonicalization with a pretrained classifier
	Computational requirement comparison
	Training stability
	 Canonicalized point clouds
	ShapeNet Part Segmentation

	Use of Large Language Models

