

ADAPTIVE CANONICALIZATION WITH APPLICATION TO INVARIANT ANISOTROPIC GEOMETRIC NETWORKS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Canonicalization is a widely used strategy in equivariant machine learning, en-
 012 forcing symmetry in neural networks by mapping each input to a standard form.
 013 Yet, it often introduces discontinuities that can affect stability during training,
 014 limit generalization, and complicate universal approximation theorems. In this
 015 paper, we address this by introducing *adaptive canonicalization*, a general frame-
 016 work in which the canonicalization depends both on the input and the network.
 017 Specifically, we present the adaptive canonicalization based on prior maximiza-
 018 tion, where the standard form of the input is chosen to maximize the predictive
 019 confidence of the network. We prove that this construction yields continuous and
 020 symmetry-respecting models that admit universal approximation properties.

021 We propose two applications of our setting: (i) resolving eigenbasis ambiguities in
 022 spectral graph neural networks, and (ii) handling rotational symmetries in point
 023 clouds. We empirically validate our methods on molecular and protein classifi-
 024 cation, as well as point cloud classification tasks. Our adaptive canonicalization
 025 outperforms the three other common solutions to equivariant machine learning:
 026 data augmentation, standard canonicalization, and equivariant architectures.

1 INTRODUCTION

030 Equivariant machine learning (Gerken et al., 2023; Villar et al., 2021; Han et al., 2022; Keriven
 031 & Peyré, 2019) has been accentuated in geometric representation learning (Bronstein et al., 2017),
 032 motivated by the need to build models that respect symmetry inherent in data. For example, permu-
 033 tation equivariance in graphs (Gilmer et al., 2017; Zaheer et al., 2017; Xu et al., 2018), translation
 034 equivariance in images (LeCun & Bengio, 1998; Cohen & Welling, 2016a), and SO(3) or SE(3)
 035 equivariance for 3D objects and molecules (Thomas et al., 2018; Fuchs et al., 2020; Batzner et al.,
 036 2022; Satorras et al., 2021). The symmetry is built into the method so that transforming the input
 037 induces a predictable transformation of the output. This inductive bias reduces sample complexity,
 038 curbs overfitting to arbitrary poses, and often improves robustness on distribution shifts where the
 039 same object appears in a different orientation or ordering (Kondor & Trivedi, 2018; Wang et al., 2022;
 040 Park et al., 2022; Bronstein et al., 2021; Bietti & Mairal, 2019; Kaba & Ravanbakhsh, 2023).

041 There are three principal approaches to handling symmetry in machine learning. The first involves
 042 designing equivariant architectures (Cohen & Welling, 2016b; Weiler et al., 2018a; Weiler & Cesa,
 043 2019; Geiger & Smidt, 2022; Maron et al., 2019a; Lippmann et al., 2024): neural network layers are
 044 constructed to commute with the symmetry. The second approach is data augmentation, where each
 045 datapoint is presented to the model at an arbitrary pose (Chen et al., 2020; Brandstetter et al., 2022).
 046 The third strategy is canonicalization (Kaba et al., 2023; Ma et al., 2023; 2024; Lim et al., 2022;
 047 2023; Mondal et al., 2023; Lawrence et al., 2025; Sareen et al., 2025; Luo et al., 2022): each input
 048 is mapped to a standard form and then processed by a non-equivariant network. Another common
 049 approach to equivariant machine learning is frame averaging (Puny et al., 2021), which averages the
 050 network’s output over a set of input transformations.

051 A well-known problem in canonicalization is that in many cases it unavoidably leads to an end-to-end
 052 architecture which is discontinuous with respect to the input (Dym et al., 2024; Zhang et al., 2019a;
 053 Lim et al., 2022). This inevitably leads to problems in stability during training and in generalization,
 054 as very similar inputs can lead to very different outputs (Dym et al., 2024; Tahmasebi & Jegelka,
 055 2025a;b). Moreover, the discontinuity of the network makes universal approximation properties less

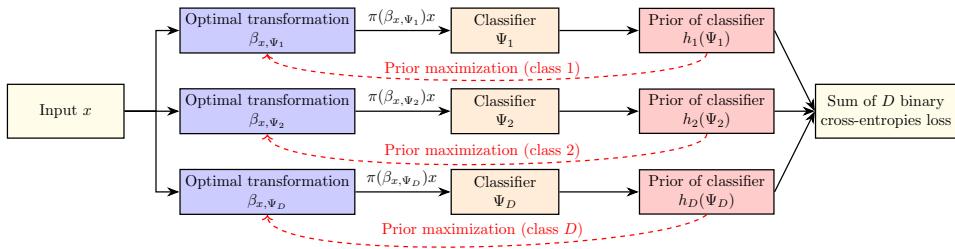


Figure 1: Illustration of prior maximization adaptive canonicalization in classification. The adaptive canonicalization optimizes the transformations β_{x,Ψ_j} of the inputs x to the classifiers Ψ_j , while, during training, Ψ_j are simultaneously trained w.r.t. the adaptively canonicalized inputs $\pi(\beta_{x,\Psi_j})x$.

natural, as one approximates continuous symmetry preserving functions with discontinuous networks (Dym et al., 2024; Kaba et al., 2023; Wagstaff et al., 2022).

Our Contribution. In this paper, we show that the continuity problem in canonicalization can be solved if, instead of canonicalizing only as a function of the input, one defines a canonicalization that depends both on the input and the network. We propose such a general setting, which we call *adaptive canonicalization*, and show that it leads to continuous end-to-end models that respect the symmetries of the data and have universal approximation properties. Our theory does not only lead to superior theoretical properties w.r.t. standard canonicalization, but often also to superior empirical performance, specifically, in molecular, protein, and point cloud classification.

We focus on a specific class of adaptive canonicalizations that we call *prior maximizers*. To explain these methods, we offer the following illustrative example. Suppose that we would like to train a classifier of images into *cats*, *dogs* and *horses*. Suppose as well that each image x can appear in the dataset in any orientation, i.e., as $\pi(\alpha)x$ for any $\alpha \in [0, 2\pi]$ where $\pi(\alpha)$ is rotation by α . One standard approach for respecting this symmetry is to design an *equivariant architecture* Θ , which gives the same class probabilities to all rotations of the same image, i.e., $\Theta(\pi(\alpha)x) = \Theta(\pi(\alpha')x)$ for any to angles α, α' . Another simple approach for improving the classifier is to train a symmetryless network Ψ , and *augment* the training set with random rotations $\pi(\alpha)x$ for each input x . Yet another standard approach is to *canonicalize* the input, namely, to rotate each input image x by an angle β_x that depends on x in such a way that all rotated versions of the same image would have the exact same standard form, i.e., $\pi(\beta_{\pi(\alpha)x})\pi(\alpha)x = \pi(\beta_{\pi(\alpha')x})\pi(\alpha')x$ for any two angles α, α' . Then, the canonicalized image $\pi(\beta_x)x$ is plugged into a standard symmetryless neural network Ψ , and the end-to-end architecture $\Psi(\pi(\beta_x)x)$ is guaranteed to be invariant to rotations. We propose a fourth approach, where the canonicalized rotation $\pi(\beta_{x,\Psi})$ depends both on the image x and on the (symmetryless) neural network Ψ .

To motivate this approach, consider a neural network Ψ which, by virtue of being symmetriless, may perform better on some orientations of x than others. For illustration, it is easier for humans to detect an image as a horse if its limbs point downwards. Suppose that $\Psi(x) = (\Psi_j(x))_{j=1}^3 = (\Psi_{\text{dog}}(x), \Psi_{\text{cat}}(x), \Psi_{\text{horse}}(x))$ is a sequence of binary classifiers with values in $[0, 1]$ each. The output of Ψ is defined to be the class with highest probability. Suppose moreover that for each j , the network Ψ_j is granted the ability to rotated x freely, and probe the output $\Psi_j(\pi(\alpha)x)$ for each α . The network then chooses the orientation α_* such that $\Psi_j(\pi(\alpha_*)x)$ is maximized. As an analogy, one can imagine an image on a piece of paper being handed at a random orientation to a person with visual system Ψ . To detect if there is a horse in the image, the person would rotate the paper, searching for an orientation which looks like a horse. Namely, if there is an orientation α_* where $\Psi_{\text{horse}}(\pi(\alpha_*)x)$ is high then there is a horse in the image, and otherwise there is non. This process would be repeated for all other classes, and eventually the image would be classified as the j_* such that $\max_\alpha \Psi_{j_*}(\pi(\alpha)x)$ is greater than $\max_\alpha \Psi_j(\pi(\alpha)x)$ for all other $j \neq j_*$. This is the process that we call *prior maximization adaptive canonicalization*. This process is inspired by ideas from cognitive psychology, where the human visual system is believed to learn canonical mental models of objects and to discard redundant variation due to symmetries by mentally “rotating” perceived stimuli into alignment with these canonical views (Shepard & Metzler, 1971; Cooper & Shepard, 1973; Tarr & Pinker, 1989). Our example of a person rotating a sheet of paper to recognize whether it contains a

108 horse is directly inspired by this line of work: prior maximization adaptive canonicalization can be
 109 viewed as a neural analogue of mental rotation, where the network searches over transformations to
 110 align inputs with its learned canonical views. We note that some previous models in machine learning
 111 were also inspired by this process (Palmer, 1981; Harris et al., 2001; Graf, 2006; Gomez et al., 2008;
 112 Konkle & Oliva, 2011; Risko & Gilbert, 2016; Tacchetti et al., 2018; Schmidt & Stober, 2024).

113 We note that the inputs are adaptively canonicalized also during training, so Ψ needs not learn to
 114 respect any symmetry on its own. In fact, Ψ can benefit from being symmetryless. For example, it
 115 may search for “horse head” patterns only diagonally above where it detects “horse limbs” patterns,
 116 and rely on the prior maximization to orient horses accordingly.

117 We show that adaptive canonicalization leads to a continuous symmetry preserving end-to-end
 118 classifier that can approximate any symmetry preserving continuous function when Ψ are non-
 119 equivariant neural networks. As an application, we propose adaptive canonicalization methods for 1)
 120 spectral graph neural networks, where the symmetry is in the choice of the eigenbasis of the graph
 121 shift operator, and 2) point clouds, with rotation symmetries. We show that adaptive canonicalization
 122 in these cases outperforms both standard canonicalization and equivariant networks, as well as
 123 augmentation methods. See Fig. 1 for an illustration of prior maximization.

125 2 RELATED WORK

127 Canonicalization has been studied in several forms. For example, in computer vision and geometric
 128 deep learning methods, inputs are often first transformed into a standardized pose or reference frame
 129 before classification (Lowe, 2004; Jaderberg et al., 2015). More recent work formalizes this as an
 130 explicit canonicalization map feeding a downstream network (Lim et al., 2022; Ma et al., 2024) or as
 131 energy-based canonicalization (Kaba et al., 2023) in which one learns an energy over group elements
 132 and takes the minimizer as the canonical transformation. The latter has been further developed on
 133 symmetries defined by general Lie group actions (Shumaylov et al., 2025). Canonicalization has
 134 also been used for data alignment (Mondal et al., 2023; Schmidt & Stober, 2025) and for test-time
 135 optimization over transformations, where one searches over group actions to select a canonical
 136 representation before downstream inference (Singhal et al., 2025; Schmidt & Stober, 2024). A related
 137 line of work is frame averaging (Puny et al., 2020), which averages a network’s output over a set of
 138 group transformations, and its extension to weighted frame averaging (Dym et al., 2024), where each
 139 datapoint is equipped with a probability distribution over the group and averaging is performed with
 140 respect to this measure, yielding continuity guarantees. In our work, we instead study canonicalization
 141 as a function of both the input and the network, and we establish continuity guarantees for symmetry-
 142 preserving continuous functions realized by our construction. Moreover, our approach is not restricted
 143 to symmetries defined via group actions, and allows working with more general augmentations for
 144 transforming datapoints. We refer to App. A for further discussion and comparison with related work.

146 3 ADAPTIVE CANONICALIZATION

148 In this section, we develop the general theory of adaptive canonicalization, and prove that it leads to
 149 continuous symmetry preserving networks with universal approximation properties.

151 3.1 BASIC DEFINITIONS AND BACKGROUND

152 The function that maps each input x to the output $f(x)$ is denoted by $x \mapsto f(x)$. The free variable
 153 of a univariate function is denoted by (\cdot) , and by (\cdot, \cdot) for a function of two variables. For example,
 154 the function $(x, y) \mapsto \sin(x) \exp(y)$ is also denoted by $\sin(\cdot) \exp(\cdot)$. We denote the infinity norm of
 155 $x = (x_d)_{d=1}^D \in \mathbb{R}^D$ by $|x| := \max_{1 \leq d \leq D} |x_d|$. We define the infinity norm of a continuous function
 156 $f : \mathcal{K} \rightarrow \mathbb{R}^D$ over a topological space \mathcal{K} by $\|f\|_\infty = \sup_{x \in \mathcal{K}} |f(x)|$. If $\|f - y\|_\infty < \epsilon$ we say that y
 157 approximates f uniformly up to error ϵ . The set of all subsets of a set \mathcal{K} , i.e., the *power set*, is denoted
 158 by $2^{\mathcal{K}}$. When defining general metric spaces, we allow the distance between points to be ∞ . This
 159 does not affect most of the common properties of metric spaces (see Burago et al. (2001)).

160 **Function Spaces.** We develop the definitions of adaptive canonicalization in general locally
 161 compact Hausdorff spaces. Two important examples of such a space is a compact metric space or \mathbb{R}^J .

162 **Definition 1.** Let \mathcal{K} be a locally compact Hausdorff space, and $D \in \mathbb{N}$.
 163

- 164 • A function $f : \mathcal{K} \rightarrow \mathbb{R}^D$ is said to vanish at infinity if for every $\epsilon > 0$ there exists a compact set
 165 $K \subset \mathcal{K}$ such that $|f(x)| < \epsilon$ for every $x \in \mathcal{K} \setminus K$.
- 166 • The space of all continuous functions $f : \mathcal{K} \rightarrow \mathbb{R}^D$ that vanish at infinity, with the supremum
 167 norm $\|f\|_\infty = \max_{x \in \mathcal{K}} |f(x)|$ is denoted by $C_0(\mathcal{K}, \mathbb{R}^D)$.

168 In adaptive canonicalization, we consider families of continuous functions where the $\epsilon - \delta$ formulation
 169 of continuity is uniform over the whole family, as defined next.

170 **Definition 2.** Let \mathcal{X} and \mathcal{Y} be two metric spaces with metrics $d_{\mathcal{X}}$ and $d_{\mathcal{Y}}$ respectively. A family \mathcal{F} of
 171 function $f : \mathcal{X} \rightarrow \mathcal{Y}$ is called equicontinuous if for every $x \in \mathcal{X}$ and every $\epsilon > 0$, there exists $\delta > 0$
 172 such that every $z \in \mathcal{X}$ which satisfies $d_{\mathcal{X}}(x, z) < \delta$ also satisfies

$$173 \quad \forall f \in \mathcal{F} : \quad d_{\mathcal{Y}}(f(x), f(z)) < \epsilon.$$

175 **Universal Approximation.** Universal approximation theorems (UAT) state that any continuous
 176 function over some topological space can be approximated by a neural network. In such a case, the
 177 neural networks are said to be *universal approximators*, as defined next.

178 **Definition 3.** Let \mathcal{K} be a locally compact Hausdorff space and $D \in \mathbb{N}$. A set of continuous functions
 179 $\mathcal{N}(\mathcal{K}, \mathbb{R}^D) \subset C_0(\mathcal{K}, \mathbb{R}^D)$ is said to be a universal approximator of $C_0(\mathcal{K}, \mathbb{R}^D)$ if for every $f \in$
 180 $C_0(\mathcal{K}, \mathbb{R}^D)$ and $\epsilon > 0$ there is a function $\theta \in \mathcal{N}(\mathcal{K}, \mathbb{R}^D)$ such that

$$181 \quad \forall x \in \mathcal{K} : \quad |f(x) - \theta(x)| < \epsilon.$$

183 In the above definition, we interpret $\mathcal{N}(\mathcal{K}, \mathbb{R}^D)$ as a space of neural networks. A UAT is hence any
 184 theorem which shows that some set of neural networks is a universal approximator. Two examples of
 185 UATs are: 1) multilayer perceptrons (MLP) are universal approximators of $C_0(\mathcal{K}, \mathbb{R}^D)$ for compact
 186 subset \mathcal{K} of the Euclidean space \mathbb{R}^D (Hornik et al., 1989; Cybenko, 1989), and 2) DeepSets (Zaheer
 187 et al., 2017) are universal approximators of continuous functions from multi-sets to \mathbb{R}^d . See App. B
 188 for more details.

189 3.2 ADAPTIVE CANONICALIZATION

191 In the general setting of adaptive canonicalization, we have a domain of inputs \mathcal{G} which need not
 192 have any structure apart for being a set, e.g., the set of graphs. We consider continuous functions
 193 $f : \mathcal{K} \rightarrow \mathbb{R}^L$ over a “nice” domain \mathcal{K} , e.g., $\mathcal{K} = \mathbb{R}^J$. Such functions can be approximated by neural
 194 networks. We then pull-back f to be a function from \mathcal{G} to \mathbb{R}^L using a mapping $\rho_f : \mathcal{G} \mapsto \mathcal{K}$ that
 195 depends on (is adapted to) f . Namely, we consider $f(\rho_f(\cdot)) : \mathcal{G} \rightarrow \mathbb{R}^D$. The following definitions
 196 assure that such a setting leads to functions with nice properties, as we show in subsequent sections.

197 **Definition 4.** Let \mathcal{K} be a locally compact Hausdorff space, \mathcal{G} be a set, and $D \in \mathbb{N}$. A mapping
 198 $\rho = \rho_{(\cdot)} : C_0(\mathcal{K}, \mathbb{R}^D) \times \mathcal{G} \rightarrow \mathcal{K}$, $(f, g) \mapsto \rho_f(g)$, is called an adaptive canonicalization if the set
 199 of functions

$$200 \quad \{f \mapsto f \circ \rho_f(g) \mid g \in \mathcal{G}\}$$

201 is equicontinuous (as functions $C_0(\mathcal{K}, \mathbb{R}) \rightarrow \mathbb{R}^D$). Here, $f \circ \rho_f(g) := f(\rho_f(g))$.

203 Next, we define the function space that we would like to approximate using adaptive canonicalization.

204 **Definition 5.** Let \mathcal{K} be a locally compact Hausdorff space, \mathcal{G} be a set, and $D \in \mathbb{N}$. Let ρ be an
 205 adaptive canonicalization, and let $f \in C_0(\mathcal{K}, \mathbb{R}^D)$. The function

$$206 \quad f \circ \rho_f : \mathcal{G} \rightarrow \mathbb{R}^D, \quad g \mapsto f(\rho_f(g))$$

207 is called an adaptive canonicalized continuous function, or a canonicalized function in short.

209 In Sec. 3.4, we show that for an important class of adaptive canonicalizations the set of adaptive
 210 canonicalized continuous functions is exactly the set of all symmetry preserving continuous functions.

211 It is now direct to prove the following universal approximation theorem.

213 **Theorem 6** (Universal approximation of adaptive canonicalized functions). Let $\mathcal{N}(\mathcal{K}, \mathbb{R}^D)$ be a
 214 universal approximator of $C_0(\mathcal{K}, \mathbb{R}^D)$, and $f \circ \rho_f$ an adaptive canonicalized continuous function.
 215 Then, for every $\epsilon > 0$, there exists a network $\theta \in \mathcal{N}(\mathcal{K}, \mathbb{R}^D)$ such that for every $g \in \mathcal{G}$

$$216 \quad |f \circ \rho_f(g) - \theta \circ \rho_\theta(g)| < \epsilon.$$

216 *Proof.* Let $\epsilon > 0$. By Def. 4, there exists $\delta > 0$ such that

$$218 \quad \forall y \in C_0(\mathcal{K}, \mathbb{R}^D) : \|f - y\|_\infty < \delta \Rightarrow \left(\forall g \in \mathcal{G} : |f \circ \rho_f(g) - y \circ \rho_y(g)| < \epsilon \right). \quad (1)$$

219 By the the universal approximation property, there exists a network θ such that $\|f - \theta\|_\infty < \delta$. Hence,
220 by (1), $\forall g \in \mathcal{G} : |f \circ \rho_f(g) - \theta \circ \rho_\theta(g)| < \epsilon$. \square

222 3.3 PRIOR MAXIMIZATION ADAPTIVE CANONICALIZATION

224 Prior maximization is a special case of adaptive canonicalization, where ρ_f is chosen to maximize
225 some prior on the output of f . The maximization is done over a space of transformations $\kappa_u : \mathcal{G} \rightarrow \mathcal{K}$
226 parameterized by u , i.e., maximizing the prior of $f(\kappa_u(g))$ w.r.t. u .

227 Let \mathcal{U} be metric space, and for every $u \in \mathcal{U}$, let

$$228 \quad \kappa_{(\cdot)}(\cdot) : \mathcal{U} \times \mathcal{G} \rightarrow \mathcal{K}, \quad (u, g) \mapsto \kappa_u(g) \in \mathcal{K}.$$

230 Suppose that $\kappa_u(g)$ is continuous in u for every $g \in \mathcal{G}$. We call κ a *transformation family*, trans-
231 forming objects in \mathcal{G} into points in \mathcal{K} , where different $u \in \mathcal{U}$ define different transformations. Let
232 $H = (h_1, \dots, h_D)$, where $h_d : \mathbb{R} \rightarrow \mathbb{R}$ for each d , be a sequence of continuous monotonic functions,
233 that we call the ensemble of *priors*. We call each h_d a *prior*. We denote $H \circ f := (h_d \circ f_d)_{d=1}^D$.

234 For every $f = (f_1, \dots, f_D) \in C_0(\mathcal{K}, \mathbb{R}^D)$, $g \in \mathcal{G}$ and d , assume that $h_d \circ f_d(\kappa_{(\cdot)}(g))$ attains a
235 maximum in \mathcal{U} . This is the case for example when \mathcal{U} is compact. Define

$$236 \quad \rho_f(g) = (\rho_{f_d}^d(g))_{d=1}^D := \left(\left\{ \kappa_{u_*}(g) \mid h_d \circ f_d(\kappa_{u_*}(g)) = \max_{u \in \mathcal{U}} h_d \circ f_d(\kappa_u(g)) \right\} \right)_{d=1}^D \in (2^{\mathcal{K}})^D. \quad (2)$$

238 Note that $\rho_f : \mathcal{G} \rightarrow (2^{\mathcal{K}})^D$. By abuse of notation, we also denote by ρ_f the mapping that returns
239 some arbitrary sequence of points $(x_d \in \rho_{f_d}^d(g))_{d=1}^D \in \mathcal{K}^D$ for each $g \in \mathcal{G}$. The choice of the specific
240 point in $\rho_{f_d}^d(g)$ does not affect the analysis. We interpret ρ_f as a function that takes an input g and
241 canonicalize it separately with respect to each output channel f_d , adaptively to f_d .

242 When used for classification, we interpret each output channel $f_d \circ \rho_{f_d}^d(g) \in [0, 1]$ as a binary
243 classifier, i.e., representing the probability of g being in class d vs. not being in class d . This
244 multiclass classification setting is called *one vs. rest*, where a standard loss is a sum of D binary
245 cross-entropies (Rifkin & Klautau, 2004; Galar et al., 2011; Allwein et al., 2000).

247 **Definition 7.** Consider the above setting. The mapping ρ defined by (2) is called prior maximization.
248 If in addition \mathcal{G} has a metric such that for every $f \in C_0(\mathcal{K}, \mathbb{R}^D)$ the family $\{g \mapsto f(\kappa_u(g))\}_{u \in \mathcal{U}}$ is
249 equicontinuous, ρ is called continuous prior maximization.

250 In Thm. 8 we show that prior maximization is indeed adaptive canonicalization.

252 Note that the condition of $g \mapsto f(\kappa_u(g))$ being equicontinuous is satisfied for well known settings
253 of equivariant machine learning. For example, let $\mathcal{U} = \mathcal{SO}(3)$ be the space of 3D rotations, and
254 $\mathcal{G} = \mathcal{K} = \mathcal{B}^N$ the set of sequences of N points in the 3D unit ball \mathcal{B} , i.e., the space of point clouds.
255 We consider the rotation $g \mapsto \kappa_u(g)$ of the point cloud g by $u \in \mathcal{U}$. Since \mathcal{G} and \mathcal{U} are compact
256 metric spaces, and $(g, u) \mapsto \kappa_u(g)$ is continuous, κ and f must be uniformly continuous. Hence,
257 $\{g \mapsto f(\kappa_u(g))\}_{u \in \mathcal{U}}$ is equicontinuous. In fact, whenever \mathcal{G} is compact and κ continuous w.r.t. (u, g) ,
258 it is automatically also uniformly continuous, so ρ is a continuous prior maximization. See App. C
259 for additional examples of continuous prior maximization.

260 Properties of Prior Maximization.

262 **Theorem 8.** In prior maximization, each $\rho^d : C_0(\mathcal{K}, \mathbb{R}) \times \mathcal{G} \rightarrow \mathcal{K}$ is adaptive canonicalization.

263 *Proof.* Consider without loss of generality the case where the output dimension is $D = 1$. Since
264 the specific values of $H = h_1$ do not matter, only if it is ascending or descending, without loss of
265 generality suppose $H(x) = x$, in which case prior maximization maximizes directly the output of
266 $f \circ \kappa_u(g)$ with respect to u . Consider an arbitrary maximizer $\rho_f(g) \in \arg \max_{u \in \mathcal{U}} f(\kappa_u(g))$ for each
267 $f \in C_0(\mathcal{K}, \mathbb{R})$. The choice of the maximizer does not affect the analysis. Now, if $f, y \in C_0(\mathcal{K}, \mathbb{R})$
268 satisfy $\|f - y\|_\infty < \epsilon$, then also for every $u \in \mathcal{U}$, $|f(\kappa_u(g)) - y(\kappa_u(g))| < \epsilon$. Let $u_0 \in \mathcal{U}$ be a
269 maximizer of $f(\kappa_u(g))$. We have $y(\kappa_{u_0}(g)) > f(\kappa_{u_0}(g)) - \epsilon$, so

$$\max_u y(\kappa_u(g)) > \max_u f(\kappa_u(g)) - \epsilon.$$

270 Similarly, we have $\max_u f(\kappa_u(g)) > \max_u y(\kappa_u(g)) - \epsilon$. Together,

$$272 \quad \left| \max_{u \in \mathcal{U}} f \circ \kappa_u(g) - \max_{u \in \mathcal{U}} y \circ \kappa_u(g) \right| < \epsilon. \quad (3)$$

274 Hence, $f \mapsto f \circ \rho_f(g)$ is Lipschitz continuous with Lipschitz constant 1 for every $g \in \mathcal{G}$, and
275 therefore equicontinuous over the parameter $g \in \mathcal{G}$. \square

277 This immediately gives a universal approximation theorem for prior maximization as a corollary of
278 Thm. 6. Moreover, we can show that continuous prior maximization gives functions continuous in \mathcal{G} .
279 This is one of the main distinctions between prior maximization and standard canonicalization.

280 **Theorem 9.** *Consider a continuous prior maximization ρ (Def. 7). Then, $f \circ \rho_f$ is continuous.*

281 *Proof.* Let $\epsilon > 0$. For every $g \in \mathcal{G}$ there is $\delta = \delta_{\epsilon, g} > 0$ such that for every $g' \in \mathcal{G}$ with $d(g, g') < \delta$
282 and every $u \in \mathcal{U}$ we have $|f(\kappa_u(g)) - f(\kappa_u(g'))| < \epsilon$. Now, by the same argument as in (3),

$$284 \quad \left| \max_u f(\kappa_u(g)) - \max_u f(\kappa_u(g')) \right| < \epsilon.$$

285 \square

287 3.4 SYMMETRY PRESERVING PRIOR MAXIMIZATION

289 Consider the following additional assumptions on the construction of continuous prior maximization.
290 Suppose that the space \mathcal{G} is a disjoint union of metric spaces \mathcal{G}_j with finite distances, i.e., $\mathcal{G} = \cup_j \mathcal{G}_j$.
291 Here, j may run on a finite or infinite index set. We define the metric d in \mathcal{G} as follows. For $g_j \in \mathcal{G}_j$
292 and $g_i \in \mathcal{G}_i$, $d(g_j, g_i) = \infty$ if $j \neq i$ and $d(g_j, g_i) = d_j(g_j, g_i) < \infty$ if $i = j$, where d_j is the metric
293 in \mathcal{G}_j . In the theory of metric spaces, the spaces \mathcal{G}_j are called *galaxies* of \mathcal{G} . This construction is
294 useful for data which does not have a uniform notion of dimension, e.g., graphs. For example, each
295 galaxy in this case can be the space of adjacency matrices of a fixed dimension with a standard matrix
296 distance.

297 For each j , let \mathcal{U}_j be a group acting continuously on \mathcal{G}_j by $\pi_j(u_j)g_j$. Namely, $\pi_j(u_j) : \mathcal{G}_j \rightarrow \mathcal{G}_j$
298 is continuous for every $u_j \in \mathcal{U}_j$, and for every $u'_j \in \mathcal{U}_j$ and $g_j \in \mathcal{G}_j$ we have $\pi_j(u'_j)\pi_j(u_j)g_j =$
299 $\pi_j(u'_j u_j)g_j$ and $\pi_j(e_j)g_j = g_j$, where e_j is the identity of \mathcal{G}_j . Define $\mathcal{U} = \cup_j \mathcal{U}_j$. Namely, \mathcal{U} is the
300 metric space with galaxies \mathcal{U}_j similarly to the construction of \mathcal{G} . Let π be a mapping that we formally
301 call an action of \mathcal{U} on \mathcal{G} , defined for $u = u_i \in \mathcal{U}_i \subset \mathcal{U}$ and $g = g_j \in \mathcal{G}_j \subset \mathcal{G}$ by $\pi(u)g = \pi_i(u_i)(g_j)$
302 if $i = j$ and $\pi(u)g = g$ if $i \neq j$.

303 **Definition 10.** *Consider the above setting and a continuous prior maximization ρ . Let $P : \mathcal{G} \rightarrow \mathcal{K}$
304 be continuous, and suppose that the transformation family κ is of the form $\kappa_u = P \circ \pi(u)$. We call κ
305 a symmetry preserving transformation family, and ρ a symmetry preserving prior maximization.*

306 Note that whenever the spaces \mathcal{U}_j are compact, the functions $u \mapsto h_d \circ f_d(\kappa_u(g))$ of (2) are guaranteed
307 to attain a maximum, even though the space $\mathcal{U} = \cup_j \mathcal{U}_j$ is in general not compact. Hence, the above
308 setting with compact \mathcal{U}_j is an example of prior maximization. More generally, if the restriction of the
309 setting to \mathcal{U}_j and \mathcal{G}_j is (continuous) prior maximization for a single j , then the setting for \mathcal{U} and \mathcal{G} is
310 also a (continuous) prior maximization.

311 **Definition 11.** *We call a function $Q : \mathcal{G} \rightarrow \mathbb{R}^D$ continuous symmetry preserving if there exists
312 $F : \mathcal{K} \rightarrow \mathbb{R}^D$ in $C_0(\mathcal{K}; \mathbb{R}^D)$ such that for all $u \in \mathcal{U}$ and $g \in \mathcal{G}$, $Q(g) = F(P(\pi(u)(g)))$.*

313 When $\mathcal{K} = \mathcal{G} = \mathcal{G}_1$ and P is the identity, a symmetry preserving continuous function is a continuous
314 function which is invariant to the action of u , i.e., the classical case in equivariant machine learning.

316 **Properties of Symmetry Preserving Prior Maximization.** We already know by Thm. 9 that $f \circ \rho_f$
317 is a continuous function when ρ is a symmetry preserving prior maximization. We next show that the
318 set of functions of the form $f \circ \rho_f$ exhaust the space of all continuous symmetry preserving functions.

319 **Theorem 12.** *Let ρ be a symmetry preserving adaptive canonicalization. Then,*

- 321 1. Any continuous symmetry preserving function can be written as $f \circ \rho_f$ for some $f \in C_0(\mathcal{K}, \mathbb{R}^D)$.
- 322 2. For any $f \in C_0(\mathcal{K}; \mathbb{R}^D)$, the function $f \circ \rho_f : \mathcal{G} \rightarrow \mathbb{R}^D$ is continuous symmetry preserving.

323 *Proof.* Without loss of generality, consider the case $D = 1$ and $H(x) = x$.

324 1. For $Q(g) = F(P(\pi(u)(g)))$, take $f = F$. Then, by definition of symmetry preservation, for
 325 every $u \in \mathcal{U}$: $f \circ \rho_f(g) = \max_v F(P \circ \pi(v)g) = F(P \circ \pi(u)g) = Q(g)$.
 326 2. For any $u = u_i \in \mathcal{U}_i$, since $\pi_i(u_i)$ is an action, for any $g = g_j \in \mathcal{G}_j$,
 327
$$f \circ \rho_f(\pi(u)g) = \max_{v_j \in \mathcal{U}_j} f(P \circ \pi_j(v_j) \pi_i(u_i)g_j) = \max_{v_j \in \mathcal{U}_j} f(P \circ \pi_j(v_j)g_j) = f \circ \rho_f(g).$$

 328

□

331 This leads to the following UAT.
 332

333 **Theorem 13.** *Consider a symmetry preserving prior maximization and let $\mathcal{N}(\mathcal{K}, \mathbb{R}^D)$ be a uni-
 334 versal approximator of $C_0(\mathcal{K}, \mathbb{R}^D)$. Then, any continuous symmetry preserving function can be
 335 approximated uniformly by $\theta \circ \rho_\theta$ for some network $\theta \in \mathcal{N}(\mathcal{K}, \mathbb{R}^D)$.*

336
 337 **4 APPLICATION OF ADAPTIVE CANONICALIZATION TO ANISOTROPIC
 338 GEOMETRIC NETWORKS**
 339

340 In this section, we propose two architectures based on adaptive canonicalization which can be inter-
 341 preted as anisotropic. First, a spectral graph neural network (GNN) which is sensitive to directionality
 342 within eigenspaces. Then, a 3D point cloud network which is sensitive to 3D directions.
 343

344 **Basic Notations for Graphs and Vectors.** We denote by \mathbb{N}_0 the set of nonnegative integers. We
 345 denote matrices and 2D arrays by boldface capital letters, e.g., $\mathbf{B} \in \mathbb{R}^{N \times T}$. We denote $[N] =$
 346 $\{1, \dots, N\}$ for $N \in \mathbb{N}$. We denote by $\mathbf{B}(:, j)$ and $\mathbf{B}(j, :)$ the j 'th column and row of the matrix \mathbf{B}
 347 respectively. A graph is denoted by $G = ([N], \mathbf{A}, \mathbf{S})$, where $[N]$ is the set of N vertices, $\mathbf{A} \in \mathbb{R}^{N \times N}$
 348 is the adjacency matrix, and $\mathbf{S} \in \mathbb{R}^{N \times T}$ is an array representing the signal. Namely, $\mathbf{S}(n, :) \in \mathbb{R}^T$ is
 349 the feature at node n . A graph shift operator (GSO) is a self-adjoint operator that respects in some
 350 sense the graph's connectivity, e.g., a graph Laplacian or the adjacency matrix.
 351

352 **4.1 ANISOTROPIC NONLINEAR SPECTRAL FILTERS**
 353

354 Consider graphs with a self-adjoint GSO \mathcal{L} (e.g., a graph Laplacian or the adjacency matrix) and T -
 355 channel signals (over the nodes). The number of nodes N varies between graphs. Consider predefined
 356 bands $b_0 < b_1 < \dots < b_B \in \mathbb{R}$, and their indicator functions $P_k := \mathbb{1}_{[b_{k-1}, b_k)} : \mathbb{R} \rightarrow \mathbb{R}_+^1$. For
 357 each $k \in [B]$, consider the space of signals \mathcal{X}_k in each band $[b_{k-1}, b_k)$, namely, the range of the
 358 orthogonal projection $P_k(\mathcal{L})$. Let M_k be the dimension of \mathcal{X}_k . We also call \mathcal{X}_k the k 'th band. See
 359 App. D for details on how to plug operators into functions via functional calculus. Consider an
 360 orthogonal basis $\mathbf{X}_k = (\mathbf{X}_k(:, j))_j \in \mathbb{R}^{N \times M_k}$ for each band \mathcal{X}_k . In this setting, the symmetry is
 361 the choice of the orthogonal basis within each band \mathcal{X}_k . Namely, for $\mathbf{X}_k \in \mathbb{R}^{N \times M_k}$ and orthogonal
 362 matrix $\mathbf{U}_k \in \mathbb{R}^{M_k \times M_k}$, the bases \mathbf{X}_k and $\mathbf{X}_k \mathbf{U}_k$ are treated as different vectorial representations of
 363 the same linear space \mathcal{X}_k .
 364

365 In the above setting, the galaxies \mathcal{G}_j are defined as follows. Each galaxy is indexed by $j = (N, \mathbf{M}) :=$
 366 $(N; M_1, \dots, M_B)$ where $N \in \mathbb{N}$ is the size of the graph, and $M_k \in \mathbb{N}_0$ for $k \in [B]$ are the dimensions
 367 of the bands, satisfying $\sum_k M_k \leq N$. Each $\mathcal{G}_{N, \mathbf{M}}$ is the space of pairs of a signal $\mathbf{S} \in \mathbb{R}^{N \times T}$ and
 368 a sequence of K orthogonal matrices of height N and widths M_1, \dots, M_B . We denote the matrix
 369 with dimension 0 by \emptyset . For two signals \mathbf{S}, \mathbf{Q} and orthogonal bases sequences \mathbf{X}, \mathbf{Y} , the metric
 370 $d((\mathbf{X}, \mathbf{S}), (\mathbf{Y}, \mathbf{Q}))$ is defined to satisfy

$$371 d(\mathbf{X}, \mathbf{Y})^2 = \|\mathbf{S} - \mathbf{Q}\|_2^2 + \sum_{k=1}^B \sum_{j=1}^{M_k} \|\mathbf{X}_k(:, j) - \mathbf{Y}_k(:, j)\|_2^2 = \|\mathbf{S} - \mathbf{Q}\|_2^2 + \|\mathbf{X} - \mathbf{Y}\|_2^2,$$

372 where for $\mathbf{z} = (z_n)_n$, $\|\mathbf{z}\|_2^2 = \sum_n z_n^2$. By definition, the distance between any two points from two
 373 different galaxies is ∞ .
 374

375 The transformation family $\kappa_{\mathbf{U}}$ apply unitary operators $\mathbf{U}_k \in \mathcal{O}(M_k)$ form the right on each $\mathbf{X}(:, k)$,
 376 where $\mathcal{O}(M_k)$ is the group of orthogonal matrices in $\mathbb{R}^{M_k \times M_k}$. Namely, $\mathcal{U}_{N, \mathbf{M}} := \prod_{k=1}^B \mathcal{O}(M_k)$.
 377

¹ $\mathbb{1}_{[b_{k-1}, b_k)}(x)$ is the function that returns 1 if $x \in [b_{k-1}, b_k)$ and 0 otherwise.

378 We now define the operator C that computes the spectral coefficients of the signal \mathbf{S} with respect to
 379 the spectral basis \mathbf{X} . Namely,

$$380 \quad 381 \quad C(\mathbf{X}, \mathbf{S}) = (C_k(\mathbf{X}, \mathbf{S}))_{k=1}^B := (\mathbf{X}(:, k)^\top \mathbf{S} \in \mathbb{R}^{M_k \times T})_{k=1}^B.$$

382 In *anisotropic nonlinear spectral filters (A-NLSF)*, we consider a symmetryless neural network Ψ
 383 that operates on the space of spectral coefficients of the signal, e.g., a multilayer perceptron (MLP).
 384 To define Ψ consistently, over a Euclidean space of fixed dimension, we extend or truncate the
 385 sequence of spectral coefficients as follows. Let J_1, \dots, J_B be a predefined sequence of integers,
 386 and denote $J = \sum_k J_k$. We define P as the mapping that takes (\mathbf{X}, \mathbf{S}) as input, first compute the
 387 spectral coefficients $(C_k(\mathbf{X}, \mathbf{S}))_{k=1}^B$, and then truncates or pads with zeros each $C_k(\mathbf{X}, \mathbf{S})$ to be in
 388 $\mathbb{R}^{J_k \times T}$. Namely, $P(\mathbf{X}, \mathbf{S}) = (P_k(\mathbf{X}, \mathbf{S}) \in \mathbb{R}^{J_k \times T})_{k=1}^B \in \mathbb{R}^{J \times T}$. Here, the matrix \emptyset is padded to the
 389 zero matrix $\mathbf{0} \in \mathbb{R}^{J_k \times T}$. Hence, the symmetryless network Ψ maps $\mathbb{R}^{J \times T}$ to \mathbb{R}^D . A more detailed
 390 derivation of the construction is given in App. E.3.
 391

392 We call this architecture anisotropic for the following reason. Consider for example the grid graph
 393 with $N \times N$ vertices. Since spectral filters are based on functional calculus (see App. D), they
 394 are invariant to graph automorphism, and hence to rotations. This means that spectral filters treat
 395 the x and y axes equally, and any filter is isotropic in the spatial domain. On the other hand, our
 396 symmetryless network Ψ can operate differently on the x and y axes, and we can implement general
 397 directional filters on images with Ψ . In the general case, Ψ can operate differently on Fourier modes
 398 from the same eigenspace, which we interpret as directions within the eigenspace, while standard
 399 GNNs cannot. See App. G.2 for more details.
 400

401 4.2 ANISOTROPIC POINT CLOUD NETWORKS

402 Here, we present a point cloud network which is a combination of an equivariant network with
 403 adaptive canonicalization. Namely, we consider a permutation invariant network Ψ like DeepSet
 404 (Zaheer et al., 2017) or DGCNN (Wang et al., 2019), and to attain 3D rotation invariance in addition
 405 we incorporate prior maximization. Together, the method is invariant both to permutations and
 406 rotations. We call this method anisotropic since Ψ does not respect the rotation symmetries, and is
 407 hence sensitive to directions in the x, y, z space.

408 We restrict the analysis to multi-sets of a fixed number of points N . Multisets are sets where repetitions
 409 of elements are allowed. Here, we formally define a multi-set as an equivalence class of arrays up
 410 to permutation. To define this, let \mathcal{S}_N be the symmetric group of N elements, i.e., the group of
 411 permutations. given $s \in \mathcal{S}$ and $\mathbf{X} \in \mathbb{R}^{N \times J}$, let $\rho(s)\mathbf{X}$ be the permutation that changes the order
 412 of the rows \mathbf{X} according to s . We say that $\mathbf{X} \sim \mathbf{Y}$ if there is $s \in \mathcal{S}_N$ such that $\mathbf{X} = \rho(s)\mathbf{Y}$. The
 413 equivalence class $[\mathbf{X}]$ is defined as $\{\mathbf{Y} \in \mathbb{R}^{N \times J} \mid \mathbf{Y} \sim \mathbf{X}\}$, and the space of equivalence classes,
 414 also called the *quotient space*, is denoted by $(\mathbb{R}^{N \times J} / \sim) := \{[\mathbf{X}] \mid \mathbf{X} \in \mathbb{R}^{N \times J}\}$. We identify the
 415 space $(\mathbb{R}^{N \times J} / \sim)$ with the space of multisets.

416 In App. B.2 we show that the quotient space has a natural metric. We hence take $\mathcal{G} = \mathcal{K}$ consisting of
 417 a single galaxy $\mathcal{G}_N = (\mathbb{R}^{N \times J} / \sim)$. We moreover show in App. B.2 that any universal approximator
 418 of permutation invariant functions in $C_0(\mathbb{R}^{N \times J}, \mathbb{R}^D)$, e.g., DeepSet (Zaheer et al., 2017), canonically
 419 gives a universal approximator of general continuous functions in $C_0(\mathbb{R}^{N \times J} / \sim, \mathbb{R}^D)$.

420 The symmetry in our adaptive canonicalization is 3D rotations $\pi(u) \in \mathbb{R}^{3 \times 3}$, where u is in the
 421 rotation group $\mathcal{SO}(3)$. Namely, we consider $J = 3$, and rotated the rows of $\mathbf{X} \in \mathbb{R}^{N \times 3}$ via $\mathbf{X}\pi(u^{-1})$.
 422 We take P as the identity. Note that this construction can be easily extended to multisets of arbitrary
 423 sizes, by considering the galaxies $\mathcal{G}_N = \mathbb{R}^{N \times 3} / \sim$ and groups $\mathcal{U}_N = \mathcal{S}_N$ for all $N \in \mathbb{N}$. For details
 424 on the theoretical construction see App. B.2, and for details on the architecture see App. E.4.
 425

426 4.3 ADDITIONAL APPLICATIONS OF ADAPTIVE CANONICALIZATION

428 Our adaptive canonicalization is a general framework and is not limited to the two applications
 429 considered above. For example, it can be instantiated for image truncation with a pretrained network,
 430 where the symmetry corresponds to different crops and prior maximization selects the crop on which
 431 the model is most confident (see App. E.5). Note that our setting and theoretical results also apply
 to pretrained networks on downstream tasks. Our formulation also accommodates several instances

432 Table 1: Classification performance on grid signal orientation task and graph classification benchmarks
 433 from TUDataset. The highest accuracy in and the second highest in .

	Toy Example	TUDataset					
		MUTAG	PTC	ENZYMES	PROTEINS	NCI1	
437	MLP	50.03 \pm 0.1	79.31 \pm 3.5	63.98 \pm 2.0	42.17 \pm 2.8	75.08 \pm 3.4	77.34 \pm 1.6
438	GCN	50.01 \pm 0.1	81.63 \pm 3.1	60.22 \pm 1.9	43.66 \pm 3.4	75.17 \pm 3.7	76.29 \pm 1.8
439	GAT	49.95 \pm 0.0	83.17 \pm 4.4	62.31 \pm 1.4	39.83 \pm 3.7	74.72 \pm 4.1	74.01 \pm 4.3
440	GIN	50.00 \pm 0.1	83.29 \pm 3.6	63.25 \pm 2.3	45.69 \pm 2.6	76.02 \pm 2.9	79.84 \pm 1.2
441	ChebNet	50.12 \pm 0.1	82.15 \pm 1.6	64.06 \pm 1.2	50.42 \pm 1.4	74.28 \pm 0.9	76.98 \pm 0.7
442	FA+GIN	49.99 \pm 0.1	84.07 \pm 2.4	66.58 \pm 1.8	52.64 \pm 2.2	79.53 \pm 2.5	80.23 \pm 0.9
443	OAP+GIN	50.03 \pm 0.0	84.95 \pm 2.0	67.35 \pm 1.1	58.40 \pm 1.6	83.41 \pm 1.4	80.97 \pm 1.1
444	NLSF	50.07 \pm 0.1	84.13 \pm 1.5	68.17 \pm 1.0	65.94 \pm 1.6	82.69 \pm 1.9	80.51 \pm 1.2
445	S ² GNN	49.93 \pm 0.1	82.70 \pm 2.1	67.34 \pm 1.5	63.26 \pm 2.8	78.52 \pm 1.9	75.62 \pm 2.0
446	A-NLSF	99.38 \pm 0.2	87.94 \pm 0.9	73.16 \pm 1.2	73.01 \pm 0.8	85.47 \pm 0.6	82.01 \pm 0.9

448 of continuous prior maximization, e.g., unbounded point clouds under rotations and continuous-
 449 to-discrete image settings with rotations and other image transformations (see App. C). Finally, to
 450 broadening the applicability of our approach beyond classification, we explore using the adaptive
 451 canonicalization mechanism for point cloud segmentation, further (see App. G.10).

5 EXPERIMENTS

456 We evaluate the anisotropic nonlinear spectral filters (Sec. 4.1) on toy problems and graph classi-
 457 fication, and test the anisotropic point cloud network (Sec. 4.2) on point cloud classification. The
 458 experimental details, including experimental setups and hyperparameters, are in App. F. **Additional**
 459 **experiments, e.g., ablation study, are in App. G.**

460 **Maximization method.** We approximate the prior maximization by sampling a finite set of trans-
 461 formations from a probability measure on the transformation space, evaluating the prior for all
 462 candidates, and retaining the transformation that yields the largest prior value with the one-vs-rest
 463 classification objective. We then refine the selected candidate locally by running a few steps of
 464 gradient descent from the best sampled transformation (see App. E.2).

5.1 EXPERIMENTAL EVALUATION OF ANISOTROPIC NONLINEAR SPECTRAL FILTERS

468 **Illustrative Toy Problems: Grid Signal Orientation Task.** To showcase the effectiveness of
 469 A-NLSF, we study a toy classification task on a grid-split channel orientation. We consider a square
 470 grid on the torus, and each node has two channels. In addition, the grid is further partitioned vertically
 471 into two equal disjoint halves. Channel 1 is nonzero only on the left half, and Channel 2 is only
 472 on the right half. In class 0, both channels are 1-frequency along x , and in class 1, Channel 1 is
 473 1-frequency along x and Channel 2 is 1-frequency along y . The task is to decide if the frequency at
 474 the two channels is in the same orientation. See App. F for further details.

475 We compare A-NLSF with the following baselines: (i) MLP, (ii) GCN (Kipf, 2016), (iii) GAT
 476 (Veličković et al., 2017), (iv) GIN (Xu et al., 2018), (v) ChebNet (Defferrard et al., 2016a), (vi)
 477 NLSF (Lin et al., 2024a), and (vii) S²GNN (Geisler et al., 2024). In addition, we test canonicalization
 478 baselines by combining GIN with frame averaging (FA) (Puny et al., 2021) and orthogonalized axis
 479 projection (OAP) (Ma et al., 2024). Tab. 1 reports the classification results. We see that competing
 480 methods remain at chance level while A-NLSF achieves high accuracy by adaptively resolving
 481 ambiguities, showing the advantage for orientation-sensitive learning on disjoint supports.

482 **Graph Classification on TUDataset.** We further evaluate A-NLSF on graph classification bench-
 483 marks from TUDataset (Morris et al., 2020): MUTAG, PTC, ENZYMES, PROTEINS, and NCI1, and
 484 follow the experimental setup (Ma et al., 2019; Ying et al., 2018; Zhang et al., 2019b) (see App. F).
 485 We compare with the same baselines as in the grid signal orientation tasks. Tab. 1 summarizes

486 the classification performance. Canonicalization baselines generally improve over GIN. Notably,
 487 we observe that A-NLSF outperforms competing baselines, suggesting that our AC provides more
 488 informative representations compared to a fixed, precomputed canonical form or isotropic filters.
 489

490 Molecular Classification on OGB Datasets.

491 To further assess the effectiveness of A-NLSF,
 492 we evaluate on large-scale molecular and protein
 493 benchmarks from Open Graph Benchmark
 494 (OGB) (Hu et al., 2020): ogbg-molhiv, ogbg-
 495 molpcba, and ogbg-ppa. We compare with GCN,
 496 GIN, GatedGCN (Bresson & Laurent, 2017),
 497 PNA (Corso et al., 2020), GraphTrans (Wu et al.,
 498 2021), SAT (Chen et al., 2022), GPS (Rampášek
 499 et al., 2022), SAN (Kreuzer et al., 2021), and
 500 the canonicalization method OAP+GatedGCN.
 501 The molecular classification results are reported
 502 in Tab. 2. **We see that our method achieves con-
 503 sistent improvements across these datasets, leading to improved generalization in classification.**

504 5.2 EXPERIMENTAL EVALUATION OF ANISOTROPIC POINT CLOUD NETWORKS

505 To evaluate adaptive canonicalization on point cloud classification, we
 506 test ModelNet40 (Wu et al., 2015). The dataset consists of 12,311 shapes
 507 from 40 categories, with 9,843 samples for training and 2,468 for testing.
 508 We build on two point cloud architectures, PointNet (Qi et al., 2017a)
 509 and DGCNN (Wang et al., 2019), and apply adaptive canonicalization
 510 into their pipeline, denoted respectively AC-PointNet and AC-DGCNN
 511 (see Sec. 4.2 and App. E.4). Following Esteves et al. (2018); Deng et al.
 512 (2021), we perform on-the-fly rotation augmentation during training,
 513 where the dataset size remains unchanged, and for the test set, each
 514 test example is arbitrarily rotated. We compare with PointNet, DGCNN,
 515 equivariant networks VN-PointNet and VN-DGCNN from Deng et al.
 516 (2021), canonicalization methods CN-PointNet and CN-DGCNN from
 517 Kaba et al. (2023), and traditional augmentation baselines where the
 518 training set is statically expanded with pre-generated rotated samples,
 519 denoted PointNet-Aug and DGCNN-Aug. For further details, see App. F.
 520 Tab. 3 shows the classification performance. We observe that our method
 521 outperforms the competing baselines and it allows the model to learn both
 522 local geometric features and optimal reference alignments for each class.
 523

524 6 CONCLUSIONS

525 We introduce adaptive canonicalization based on prior maximization, a general framework for
 526 equivariant machine learning in which the standard form depends on both the input and the network.
 527 We prove that our method is continuous, symmetry preserving, and has universal approximation
 528 properties. We demonstrate the applicability of our theory in two settings: resolving eigenbasis
 529 ambiguities in spectral graph neural networks, and handling rotational symmetries in point clouds.
 530

531 **Limitations and Future Work.** Our framework is naturally suited to classification tasks, and at
 532 the current scope of the paper, we did not address regression tasks. We will extend the adaptive
 533 canonicalization to regression in future work. Another limitation of our approach is that prior
 534 maximization requires solving D optimizations at runtime for the D classes. In future work, we will
 535 reduce this to a single optimization to improve efficiency.
 536

537 Table 2: Molecular and protein classification per-
 538 formance on OGB datasets.

	ogbg-molhiv	ogbg-molpcba	ogbg-ppa
	AUROC \uparrow	Avg. Precision \uparrow	Accuracy \uparrow
GCN	0.7599 \pm 0.0119	0.2424 \pm 0.0034	0.6857 \pm 0.0061
GIN	0.7707 \pm 0.0149	0.2703 \pm 0.0023	0.7037 \pm 0.0107
GatedGCN	0.7687 \pm 0.0136	0.2670 \pm 0.0020	0.7531 \pm 0.0083
PNA	0.7905 \pm 0.0132	0.2838 \pm 0.0035	-
GraphTrans	-	0.2761 \pm 0.0029	-
SAT	-	-	0.7522 \pm 0.0056
GPS	0.7880 \pm 0.0101	0.2907 \pm 0.0028	0.8015 \pm 0.0033
SAN	0.7785 \pm 0.2470	0.2765 \pm 0.0042	-
OAP+GatedGCN	0.7802 \pm 0.0128	0.2783 \pm 0.0024	0.7745 \pm 0.0098
A-NLSF	0.8019 \pm 0.0152	0.2968 \pm 0.0022	0.8149 \pm 0.0067

539 Table 3: Classification re-
 540 sults on ModelNet40. **Re-
 541 sults of competing meth-
 542 ods marked with *** are
 543 taken from Deng et al.
 544 (2021); Luo et al. (2022);
 545 Kaba et al. (2023).

	Accuracy
PointNet	74.7*
DGCNN	88.6*
PointNet-Aug	75.8 \pm 0.9
DGCNN-Aug	89.0 \pm 1.0
VN-PointNet	77.2*
VN-DGCNN	90.2*
CN-PointNet	79.7 \pm 1.3 *
CN-DGCNN	90.0 \pm 1.1 *
AC-PointNet	81.1 \pm 0.7
AC-DGCNN	91.6 \pm 0.6

540
541
ETHICS STATEMENT

542 This work introduces a novel method for handling symmetry for equivariant machine learning, with a
 543 focus on theory and with application to spectral graph neural networks and point cloud networks. The
 544 experiments are conducted using simulated toy problems and public datasets, and therefore there is
 545 no concerns related to privacy, consent, or potential harm to living subjects. As the data employed
 546 are technical and free from sensitive or identifiable content, the research does not raise any apparent
 547 ethical concerns. Accordingly, no additional ethical approval was required for this study.

548
549
REPRODUCIBILITY STATEMENT
550

551 For the theoretical results, we include the main proofs in the paper and present additional analysis
 552 and illustrative examples in App. B and App. C. For the empirical study, the implementation details
 553 are reported in App. F. The source code will be released on GitHub upon publication.

554
555
REFERENCES
556

557 P-A Absil, Robert Mahony, and Rodolphe Sepulchre. *Optimization algorithms on matrix manifolds*.
 558 Princeton University Press, 2008.

559

560 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
 561 A next-generation hyperparameter optimization framework. In *Proceedings of the 25th ACM
 562 SIGKDD international conference on knowledge discovery & data mining*, pp. 2623–2631, 2019.

563

564 Erin L Allwein, Robert E Schapire, and Yoram Singer. Reducing multiclass to binary: A unifying
 565 approach for margin classifiers. *Journal of machine learning research*, 1(Dec):113–141, 2000.

566

567 Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
 568 networks. *Advances in neural information processing systems*, 32, 2019.

569

570 Matan Atzmon, Koki Nagano, Sanja Fidler, Sameh Khamis, and Yaron Lipman. Frame averaging
 571 for equivariant shape space learning. In *Proceedings of the IEEE/CVF Conference on Computer
 Vision and Pattern Recognition*, pp. 631–641, 2022.

572

573 László Babai and Eugene M Luks. Canonical labeling of graphs. In *Proceedings of the fifteenth
 574 annual ACM symposium on Theory of computing*, pp. 171–183, 1983.

575

576 Sourya Basu, Pulkit Katdare, Prasanna Sattigeri, Vijil Chenthamarakshan, Katherine Driggs-
 577 Campbell, Payel Das, and Lav R Varshney. Efficient equivariant transfer learning from pretrained
 578 models. *Advances in Neural Information Processing Systems*, 36:4213–4224, 2023.

579

580 Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Kornbluth,
 581 Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks for
 582 data-efficient and accurate interatomic potentials. *Nature communications*, 13(1):2453, 2022.

583

584 Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
 585 representation. *Neural computation*, 15(6):1373–1396, 2003.

586

587 Alberto Bietti and Julien Mairal. Group invariance, stability to deformations, and complexity of deep
 588 convolutional representations. *Journal of Machine Learning Research*, 20(25):1–49, 2019.

589

590 Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks meet
 591 transformers. In *The Eleventh International Conference on Learning Representations*, 2023.

592

593 Ron Bracewell and Peter B Kahn. The fourier transform and its applications. *American Journal of
 594 Physics*, 34(8):712–712, 1966.

595

596 Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Ge-
 597 ometric and physical quantities improve E(3) equivariant message passing. *arXiv preprint
 598 arXiv:2110.02905*, 2021.

594 Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation
 595 for neural PDE solvers. In *International Conference on Machine Learning*, pp. 2241–2256. PMLR,
 596 2022.

597

598 Xavier Bresson and Thomas Laurent. Residual gated graph ConvNets. *arXiv preprint*
 599 *arXiv:1711.07553*, 2017.

600 M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:
 601 Going beyond euclidean data. *IEEE Signal Processing Magazine*, 34(4):18–42, 2017.

602

603 Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
 604 Grids, groups, graphs, geodesics, and gauges. *arXiv preprint arXiv:2104.13478*, 2021.

605

606 Dmitri Burago, Iu. D. Burago, and S. B. Ivanov. *A course in metric geometry / Dmitri Burago, Yuri*
 607 *Burago, Sergei Ivanov*. Graduate studies in mathematics vol. 33. American Mathematical Society,
 608 Providence, R.I, 2001. ISBN 0821821296.

609 Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
 610 representation learning. In *International conference on machine learning*, pp. 3469–3489. PMLR,
 611 2022.

612 Shuxiao Chen, Edgar Dobriban, and Jane H Lee. A group-theoretic framework for data augmentation.
 613 *Journal of Machine Learning Research*, 21(245):1–71, 2020.

614

615 Fan RK Chung. *Spectral graph theory*, volume 92. American Mathematical Soc., 1997.

616

617 Taco Cohen and Max Welling. Group equivariant convolutional networks. In *International conference*
 618 *on machine learning*, pp. 2990–2999. PMLR, 2016a.

619 Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant convolutional
 620 networks and the icosahedral CNN. In *International conference on Machine learning*, pp. 1321–
 621 1330. PMLR, 2019.

622

623 Taco S Cohen and Max Welling. Steerable CNNs. *arXiv preprint arXiv:1612.08498*, 2016b.

624 Lynn A Cooper and Roger N Shepard. Chronometric studies of the rotation of mental images. In
 625 *Visual information processing*, pp. 75–176. Elsevier, 1973.

626

627 Matthieu Cordonnier, Nicolas Keriven, Nicolas Tremblay, and Samuel Vaiter. Convergence of
 628 message-passing graph neural networks with generic aggregation on large random graphs. *Journal*
 629 *of Machine Learning Research*, 25(406):1–49, 2024.

630

631 Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
 632 neighbourhood aggregation for graph nets. *Advances in neural information processing systems*, 33:
 633 13260–13271, 2020.

634

635 George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of control,*
 636 *signals and systems*, 2(4):303–314, 1989.

637

638 Thomas Dages, Michael Lindenbaum, and Alfred M Bruckstein. Metric convolutions: A unifying
 639 theory to adaptive convolutions. *arXiv preprint arXiv:2406.05400*, 2024.

640

641 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
 642 graphs with fast localized spectral filtering. *Advances in neural information processing systems*,
 643 29, 2016a.

644

645 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
 646 graphs with fast localized spectral filtering. In *NeurIPS*. Curran Associates Inc., 2016b. ISBN
 647 9781510838819.

648

649 Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J
 650 Guibas. Vector neurons: A general framework for $SO(3)$ -equivariant networks. In *Proceedings of*
 651 *the IEEE/CVF International Conference on Computer Vision*, pp. 12200–12209, 2021.

648 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 649 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 650 pp. 248–255. Ieee, 2009.

651 Weitao Du, He Zhang, Yuanqi Du, Qi Meng, Wei Chen, Nanning Zheng, Bin Shao, and Tie-Yan Liu.
 652 SE(3) equivariant graph neural networks with complete local frames. In *International Conference
 653 on Machine Learning*, pp. 5583–5608. PMLR, 2022.

654 Alexandre Duval, Simon V Mathis, Chaitanya K Joshi, Victor Schmidt, Santiago Miret, Fragkiskos D
 655 Malliaros, Taco Cohen, Pietro Lio, Yoshua Bengio, and Michael Bronstein. A hitchhiker’s guide
 656 to geometric gnns for 3D atomic systems. *arXiv preprint arXiv:2312.07511*, 2023a.

657 Alexandre Agm Duval, Victor Schmidt, Alex Hernández-García, Santiago Miret, Fragkiskos D
 658 Malliaros, Yoshua Bengio, and David Rolnick. Faenet: Frame averaging equivariant gnn for
 659 materials modeling. In *International Conference on Machine Learning*, pp. 9013–9033. PMLR,
 660 2023b.

661 Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
 662 Xavier Bresson. Benchmarking graph neural networks. *Journal of Machine Learning Research*, 24
 663 (43):1–48, 2023.

664 Nadav Dym, Hannah Lawrence, and Jonathan W Siegel. Equivariant frames and the impossibility of
 665 continuous canonicalization. In *International Conference on Machine Learning*, pp. 12228–12267.
 666 PMLR, 2024.

667 Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning SO(3)
 668 equivariant representations with spherical cnns. In *Proceedings of the european conference on
 669 computer vision (ECCV)*, pp. 52–68, 2018.

670 William T Freeman, Edward H Adelson, et al. The design and use of steerable filters. *IEEE
 671 Transactions on Pattern analysis and machine intelligence*, 13(9):891–906, 1991.

672 Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. SE(3)-transformers: 3D roto-
 673 translation equivariant attention networks. *Advances in neural information processing systems*, 33:
 674 1970–1981, 2020.

675 Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, and Francisco Herrera.
 676 An overview of ensemble methods for binary classifiers in multi-class problems: Experimental
 677 study on one-vs-one and one-vs-all schemes. *Pattern Recognition*, 44(8):1761–1776, 2011.

678 Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks. *arXiv preprint arXiv:2207.09453*,
 679 2022.

680 Simon Markus Geisler, Arthur Kosmala, Daniel Herbst, and Stephan Günnemann. Spatio-spectral
 681 graph neural networks. *Advances in Neural Information Processing Systems*, 37:49022–49080,
 682 2024.

683 Jan E Gerken, Jimmy Aronsson, Oscar Carlsson, Hampus Linander, Fredrik Ohlsson, Christoffer
 684 Petersson, and Daniel Persson. Geometric deep learning and equivariant neural networks. *Artificial
 685 Intelligence Review*, 56(12):14605–14662, 2023.

686 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 687 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 688 1263–1272. Pmlr, 2017.

689 Pablo Gomez, Jennifer Shutter, and Jeffrey N Rouder. Memory for objects in canonical and non-
 690 canonical viewpoints. *Psychonomic bulletin & review*, 15(5):940–944, 2008.

691 John C Gower. Generalized Procrustes analysis. *Psychometrika*, 40(1):33–51, 1975.

692 Markus Graf. Coordinate transformations in object recognition. *Psychological bulletin*, 132(6):920,
 693 2006.

702 Jiaqi Han, Yu Rong, Tingyang Xu, and Wenbing Huang. Geometrically equivariant graph neural
 703 networks: A survey. *arXiv preprint arXiv:2202.07230*, 2022.

704

705 Irina M Harris, Justin A Harris, and Diana Caine. Object orientation agnosia: A failure to find the
 706 axis? *Journal of Cognitive Neuroscience*, 13(6):800–812, 2001.

707

708 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 709 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 710 pp. 770–778, 2016.

711

712 Snir Hordan, Maya Bechler-Speicher, Gur Lifshitz, and Nadav Dym. Spectral graph neural networks
 713 are incomplete on graphs with a simple spectrum. *arXiv preprint arXiv:2506.05530*, 2025.

714

715 Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
 716 universal approximators. *Neural networks*, 2(5):359–366, 1989.

717

718 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 719 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in
 720 neural information processing systems*, 33:22118–22133, 2020.

721

722 Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. *Advances
 723 in neural information processing systems*, 28, 2015.

724

725 Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent developments.
 726 *Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences*,
 727 374(2065):20150202, 2016.

728

729 Sékou-Oumar Kaba and Siamak Ravanbakhsh. Symmetry breaking and equivariant neural networks.
 730 *arXiv preprint arXiv:2312.09016*, 2023.

731

732 Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh.
 733 Equivariance with learned canonicalization functions. In *International Conference on Machine
 734 Learning*, pp. 15546–15566. PMLR, 2023.

735

736 Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz. Rotation invariant spherical
 737 harmonic representation of 3D shape descriptors. In *Symposium on geometry processing*, volume 6,
 738 pp. 156–164, 2003.

739

740 Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
 741 *Advances in neural information processing systems*, 32, 2019.

742

743 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 744 arXiv:1412.6980*, 2014.

745

746 TN Kipf. Semi-supervised classification with graph convolutional networks. *arXiv preprint
 747 arXiv:1609.02907*, 2016.

748

749 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 750 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings
 751 of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

752

753 Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J. Burghouts, Efstratios Gavves,
 754 Cees G. M. Snoek, and David W. Zhang. Graph neural networks for learning equivariant represen-
 755 tations of neural networks. In *The Twelfth International Conference on Learning Representations*,
 2024.

756

757 Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural
 758 networks to the action of compact groups. In *International conference on machine learning*, pp.
 759 2747–2755. PMLR, 2018.

760

761 Talia Konkle and Aude Oliva. Canonical visual size for real-world objects. *Journal of Experimental
 762 Psychology: human perception and performance*, 37(1):23, 2011.

756 Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
 757 Rethinking graph transformers with spectral attention. *Advances in Neural Information Processing*
 758 *Systems*, 34:21618–21629, 2021.

759

760 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

761 Hannah Lawrence, Vasco Portilheiro, Yan Zhang, and Sékou-Oumar Kaba. Improving equivariant
 762 networks with probabilistic symmetry breaking. *arXiv preprint arXiv:2503.21985*, 2025.

763

764 Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series. *The*
 765 *handbook of brain theory and neural networks*, 1998.

766 Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
 767 networks with a nonpolynomial activation function can approximate any function. *Neural Networks*,
 768 6(6):861–867, 1993.

769

770 Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph con-
 771 volutional neural networks with complex rational spectral filters. *IEEE Transactions on Signal*
 772 *Processing*, 67(1):97–109, 2018.

773 Heng Li, Zhaopeng Cui, Shuaicheng Liu, and Ping Tan. RAGO: Recurrent graph optimizer for
 774 multiple rotation averaging. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 775 *Pattern Recognition*, pp. 15787–15796, 2022.

776

777 Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3D atomistic
 778 graphs. In *The Eleventh International Conference on Learning Representations*, 2023.

779

780 Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie
 781 Jegelka. Sign and basis invariant networks for spectral graph representation learning. *arXiv*
 782 *preprint arXiv:2202.13013*, 2022.

783

784 Derek Lim, Joshua Robinson, Stefanie Jegelka, and Haggai Maron. Expressive sign equivariant
 785 networks for spectral geometric learning. *Advances in Neural Information Processing Systems*, 36:
 786 16426–16455, 2023.

787

788 Ya-Wei Eileen Lin, Ronen Talmon, and Ron Levie. Equivariant machine learning on graphs with
 789 nonlinear spectral filters. *Advances in Neural Information Processing Systems*, 37:128182–128226,
 790 2024a.

791

792 Yuchao Lin, Jacob Helwig, Shurui Gui, and Shuiwang Ji. Equivariance via minimal frame averaging
 793 for more symmetries and efficiency. *arXiv preprint arXiv:2406.07598*, 2024b.

794

795 Peter Lippmann, Gerrit Gerhartz, Roman Remme, and Fred A Hamprecht. Beyond canonicalization:
 796 How tensorial messages improve equivariant message passing. *arXiv preprint arXiv:2405.15389*,
 797 2024.

798

799 Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional neural
 800 network for point cloud analysis. In *Proceedings of the IEEE/CVF conference on computer vision*
 801 *and pattern recognition*, pp. 8895–8904, 2019.

802

803 David G Lowe. Distinctive image features from scale-invariant keypoints. *International journal of*
 804 *computer vision*, 60(2):91–110, 2004.

805

806 Shitong Luo, Jiahua Li, Jiaqi Guan, Yufeng Su, Chaoran Cheng, Jian Peng, and Jianzhu Ma. Equiv-
 807 iariant point cloud analysis via learning orientations for message passing. In *Proceedings of the*
 808 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18932–18941, 2022.

809

810 George Ma, Yifei Wang, and Yisen Wang. Laplacian canonization: A minimalist approach to sign
 811 and basis invariant spectral embedding. *Advances in Neural Information Processing Systems*, 36:
 812 11296–11337, 2023.

813

814 George Ma, Yifei Wang, Derek Lim, Stefanie Jegelka, and Yisen Wang. A canonicalization perspective
 815 on invariant and equivariant learning. *Advances in Neural Information Processing Systems*, 37:
 816 60936–60979, 2024.

810 Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph convolutional networks with
 811 eigenpooling. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge*
 812 *discovery & data mining*, pp. 723–731, 2019.

813

814 Stephane G Mallat. A theory for multiresolution signal decomposition: the wavelet representation.
 815 *IEEE transactions on pattern analysis and machine intelligence*, 11(7):674–693, 2002.

816

817 Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
 818 networks. In *International Conference on Learning Representations*, 2019a.

819

820 Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
 821 networks. In *International conference on machine learning*, pp. 4363–4371. PMLR, 2019b.

822

823 Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic convolutional
 824 neural networks on Riemannian manifolds. In *Proceedings of the IEEE international conference on computer vision workshops*, pp. 37–45, 2015.

825

826 Sohir Maskey, Ali Parviz, Maximilian Thiessen, Hannes Stärk, Ylli Sadikaj, and Haggai Maron.
 827 Generalized Laplacian positional encoding for graph representation learning. *arXiv preprint arXiv:2210.15956*, 2022.

828

829 Francesco Mezzadri. How to generate random matrices from the classical compact groups. *arXiv preprint math-ph/0609050*, 2006.

830

831 Arnab Kumar Mondal, Siba Smarak Panigrahi, Oumar Kaba, Sai Rajeswar Mudumba, and Siamak
 832 Ravanbakhsh. Equivariant adaptation of large pretrained models. *Advances in Neural Information
 833 Processing Systems*, 36:50293–50309, 2023.

834

835 Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
 836 Bronstein. Geometric deep learning on graphs and manifolds using mixture model CNNs. In
 837 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 5115–5124,
 2017.

838

839 Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 840 Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. *arXiv preprint arXiv:2007.08663*, 2020.

841

842 Richard S Palais and Chuu-Lian Terng. A general theory of canonical forms. *Transactions of the
 843 American Mathematical Society*, 300(2):771–789, 1987.

844

845 Stephen E Palmer. Canonical perspective and the perception of objects. *Attention and performance*,
 846 9:135–151, 1981.

847

848 Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan Willem van de Meent, and Robin Walters. Learning
 849 symmetric embeddings for equivariant world models. *arXiv preprint arXiv:2204.11371*, 2022.

850

851 Saro Passaro and C Lawrence Zitnick. Reducing $SO(3)$ convolutions to $SO(2)$ for efficient equivariant
 852 gnns. In *International conference on machine learning*, pp. 27420–27438. PMLR, 2023.

853

854 Stefanos Pertigkiozoglou, Evangelos Chatzipantazis, Shubhendu Trivedi, and Kostas Daniilidis.
 855 Improving equivariant model training via constraint relaxation. *Advances in Neural Information
 856 Processing Systems*, 37:83497–83520, 2024.

857

858 Omri Puny, Heli Ben-Hamu, and Yaron Lipman. Global attention improves graph networks general-
 859 ization. *arXiv preprint arXiv:2006.07846*, 2020.

860

861 Omri Puny, Matan Atzmon, Heli Ben-Hamu, Ishan Misra, Aditya Grover, Edward J Smith, and
 862 Yaron Lipman. Frame averaging for invariant and equivariant network design. *arXiv preprint
 863 arXiv:2110.03336*, 2021.

864

865 Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep learning on point sets
 866 for 3D classification and segmentation. In *Proceedings of the IEEE conference on computer vision
 867 and pattern recognition*, pp. 652–660, 2017a.

864 Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
 865 learning on point sets in a metric space. *Advances in neural information processing systems*, 30,
 866 2017b.

867 Guocheng Qian, Hasan Hammoud, Guohao Li, Ali Thabet, and Bernard Ghanem. ASSANet: An
 868 anisotropic separable set abstraction for efficient point cloud representation learning. *Advances in
 869 Neural Information Processing Systems*, 34:28119–28130, 2021.

870 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 871 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 872 models from natural language supervision. In *International conference on machine learning*, pp.
 873 8748–8763. PMLR, 2021.

874 Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
 875 minique Beaini. Recipe for a general, powerful, scalable graph transformer. *Advances in Neural
 876 Information Processing Systems*, 35:14501–14515, 2022.

877 Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. *Journal of machine
 878 learning research*, 5(Jan):101–141, 2004.

879 Evan F Risko and Sam J Gilbert. Cognitive offloading. *Trends in cognitive sciences*, 20(9):676–688,
 880 2016.

881 Olinde Rodrigues. Des lois géométriques qui régissent les déplacements d'un système solide dans
 882 l'espace, et de la variation des coordonnées provenant de ces déplacements considérés indépen-
 883 damment des causes qui peuvent les produire. *Journal de mathématiques pures et appliquées*, 5:
 884 380–440, 1840.

885 Kusha Sareen, Daniel Levy, Arnab Kumar Mondal, Sékou-Oumar Kaba, Tara Akhoud-Sadegh, and
 886 Siamak Ravanchahsh. Symmetry-aware generative modeling through learned canonicalization.
 887 *arXiv preprint arXiv:2501.07773*, 2025.

888 Víctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks.
 889 In *International conference on machine learning*, pp. 9323–9332. PMLR, 2021.

890 Johann Schmidt and Sebastian Stober. Tilt your head: Activating the hidden spatial-invariance of
 891 classifiers. In *Forty-first International Conference on Machine Learning*, 2024.

892 Johann Schmidt and Sebastian Stober. Robust canonicalization through bootstrapped data re-
 893 alignment. *arXiv preprint arXiv:2510.08178*, 2025.

894 Kristof T Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R Müller, and Alexandre Tkatchenko.
 895 Quantum-chemical insights from deep tensor neural networks. *Nature communications*, 8(1):
 896 13890, 2017.

897 Claude E Shannon. Communication in the presence of noise. *Proceedings of the IRE*, 37(1):10–21,
 898 2006.

899 Roger N Shepard and Jacqueline Metzler. Mental rotation of three-dimensional objects. *Science*, 171
 900 (3972):701–703, 1971.

901 Ken Shoemake. Uniform random rotations. In *Graphics Gems III (IBM Version)*, pp. 124–132.
 902 Elsevier, 1992.

903 Zakhar Shumaylov, Peter Zaika, James Rowbottom, Ferdia Sherry, Melanie Weber, and Carola-
 904 Bibiane Schönlieb. Lie algebra canonicalization: Equivariant neural operators under arbitrary lie
 905 groups. In *The Thirteenth International Conference on Learning Representations*, 2025.

906 Utkarsh Singhal, Ryan Feng, Stella X. Yu, and Atul Prakash. Test-time canonicalization by foundation
 907 models for robust perception. In *Forty-second International Conference on Machine Learning*,
 908 2025.

909 Daniel Spielman. Spectral graph theory. *Combinatorial scientific computing*, 18(18), 2012.

918 Andrea Tacchetti, Leyla Isik, and Tomaso A Poggio. Invariant recognition shapes neural representa-
 919 tions of visual input. *Annual review of vision science*, 4(1):403–422, 2018.
 920

921 Behrooz Tahmasebi and Stefanie Jegelka. Generalization bounds for canonicalization: A com-
 922 parative study with group averaging. In *The Thirteenth International Conference on Learning
 923 Representations*, 2025a.

924 Behrooz Tahmasebi and Stefanie Jegelka. Regularity in canonicalized models: A theoretical perspec-
 925 tive. In *The 28th International Conference on Artificial Intelligence and Statistics*, 2025b.
 926

927 Michael J Tarr and Steven Pinker. Mental rotation and orientation-dependence in shape recognition.
 928 *Cognitive psychology*, 21(2):233–282, 1989.
 929

930 Erik Henning Thiede, Truong Son Hy, and Risi Kondor. The general theory of permutation equivariant
 931 neural networks and higher order graph variational encoders. *arXiv preprint arXiv:2004.03990*,
 932 2020.

933 Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
 934 Tensor field networks: Rotation-and translation-equivariant neural networks for 3D point clouds.
 935 *arXiv preprint arXiv:1802.08219*, 2018.

936 Lloyd N Trefethen and David Bau. *Numerical linear algebra*. SIAM, 2022.
 937

938 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 939 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.
 940

941 Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
 942 neural networks with structural message-passing. *Advances in neural information processing
 943 systems*, 33:14143–14155, 2020.

944 Soledad Villar, David W Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars are
 945 universal: Equivariant machine learning, structured like classical physics. *Advances in neural
 946 information processing systems*, 34:28848–28863, 2021.

947 Ulrike Von Luxburg. A tutorial on spectral clustering. *Statistics and computing*, 17(4):395–416,
 948 2007.
 949

950 Edward Wagstaff, Fabian B Fuchs, Martin Engelcke, Michael A Osborne, and Ingmar Posner.
 951 Universal approximation of functions on sets. *Journal of Machine Learning Research*, 23(151):
 952 1–56, 2022.

953 Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly
 954 symmetric dynamics. In *International Conference on Machine Learning*, pp. 23078–23091.
 955 PMLR, 2022.
 956

957 Rui Wang, Elyssa Hofgard, Han Gao, Robin Walters, and Tess E Smidt. Discovering symmetry
 958 breaking in physical systems with relaxed group convolution. *arXiv preprint arXiv:2310.02299*,
 959 2023.

960 Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
 961 Dynamic graph CNN for learning on point clouds. *ACM Transactions on Graphics (tog)*, 38(5):
 962 1–12, 2019.
 963

964 Maurice Weiler and Gabriele Cesa. General E(2)-equivariant steerable CNNs. *Advances in neural
 965 information processing systems*, 32, 2019.

966 Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3D steer-
 967 able CNNs: Learning rotationally equivariant features in volumetric data. *Advances in Neural
 968 information processing systems*, 31, 2018a.
 969

970 Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation
 971 equivariant CNNs. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
 972 Recognition*, pp. 849–858, 2018b.

972 Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling. Coordinate independent convolutional
 973 networks–isometry and gauge equivariant convolutions on Riemannian manifolds. *arXiv preprint*
 974 *arXiv:2106.06020*, 2021.

975 Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, and Klaus Hildebrandt. DeltaConv: anisotropic
 976 operators for geometric deep learning on point clouds. *ACM Transactions on Graphics (TOG)*, 41
 977 (4):1–10, 2022.

978 Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Harmonic
 979 networks: Deep translation and rotation equivariance. In *Proceedings of the IEEE conference on*
 980 *computer vision and pattern recognition*, pp. 5028–5037, 2017.

981 Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
 982 Representing long-range context for graph neural networks with global attention. *Advances in*
 983 *neural information processing systems*, 34:13266–13279, 2021.

984 Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
 985 Xiao. 3D ShapeNets: A deep representation for volumetric shapes. In *Proceedings of the IEEE*
 986 *conference on computer vision and pattern recognition*, pp. 1912–1920, 2015.

987 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 988 networks? *arXiv preprint arXiv:1810.00826*, 2018.

989 Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
 990 Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in
 991 3d shape collections. *ACM Transactions on Graphics (ToG)*, 35(6):1–12, 2016.

992 Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
 993 archical graph representation learning with differentiable pooling. *Advances in neural information*
 994 *processing systems*, 31, 2018.

995 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
 996 Alexander J Smola. Deep sets. *Advances in neural information processing systems*, 30, 2017.

997 Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. Learning representations of sets through
 998 optimized permutations. *arXiv preprint arXiv:1812.03928*, 2018.

1000 Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. FSPool: Learning set representations with
 1001 featurewise sort pooling. *arXiv preprint arXiv:1906.02795*, 2019a.

1002 Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu, and Can Wang.
 1003 Hierarchical graph pooling with structure learning. *arXiv preprint arXiv:1911.05954*, 2019b.

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026
1027
1028
1029

Appendix

1030

A RELATED WORK

1031 We provide an extended discussion of related work for equivariant machine learning.

1032
1033

A.1 CANONICALIZATION

1034 Canonicalization (Babai & Luks, 1983; Palais & Terng, 1987; Ma et al., 2023; 2024) is a classical
1035 strategy for handling symmetry in data, especially for tasks where invariance or equivariance to group
1036 actions is desirable (Gerken et al., 2023). It preprocesses each input by mapping it to a standard
1037 form prior to downstream learning and inference, so that all symmetry-equivalent inputs are treated
1038 identically by the subsequent model. There are two common ways for canonicalization: fixed or
1039 learned approaches.1040
1041

- 1042 • **Fixed Canonicalization.** Fixed canonicalization uses deterministic and often analytic procedures
1043 to assign a unique representative to each symmetry orbit. For example, principal component
1044 analysis (PCA) (Jolliffe & Cadima, 2016) alignment canonically orients an object (e.g., a point
1045 cloud or molecule) by rotating it so its principal components align with the coordinate axes
1046 (Kazhdan et al., 2003). Procrustes analysis (Gower, 1975) canonically orients sets of points
1047 by finding the optimal rotation, translation, and scale that minimizes squared point-to-point
1048 distances to a reference. For sets and graphs, canonicalization can be achieved by reordering
1049 nodes, atoms, or features so that isomorphic inputs share a single labeling. In spectral methods
1050 and spectral graph neural networks where eigenvectors are fundamental (Kipf, 2016; Defferrard
1051 et al., 2016a; Von Luxburg, 2007; Belkin & Niyogi, 2003; Dwivedi et al., 2023; Maskey et al.,
1052 2022), canonicalization of spectral decomposition (Lim et al., 2022; 2023; Ma et al., 2023;
1053 2024) addresses eigenbasis ambiguity (Chung, 1997; Spielman, 2012) by processing each
1054 eigenspace independently and selecting representative eigenvectors or directions by applying
1055 orthogonal or axis-based projections, typically as a graph preprocessing step. An alternative
1056 approach is eigenbasis canonicalization via the input signal, where the signal itself is used to
1057 define a canonical spectral representation, making the spectral transformation independent of
1058 the arbitrary choice of eigenvectors (Lin et al., 2024a; Geisler et al., 2024).
- 1059 • **Learned Canonicalization.** Learned canonicalization (Zhang et al., 2018; Kaba et al., 2023;
1060 Luo et al., 2022) seeks to overcome the rigidity and inflexibility of fixed rules with a trainable
1061 mapping that selects a representative for each symmetry orbit. The canonicalizer is parameterized
1062 (typically as a neural network and trained to produce canonical forms. For example, Kaba et al.
1063 (2023) developed a neural network that learns the canonicalization transformation, which enables
1064 plug-and-play equivariance, e.g., orthogonalizing learned features via the Gram-Schmidt process
1065 (Trefethen & Bau, 2022). Their results show that the learned canonicalizers outperform fixed
1066 canonicalizers.

1067 However, Dym et al. (2024) pointed out that regardless of whether the canonicalizations are learned
1068 or not, a continuous canonicalization does not exist for many common groups (e.g. S_n , $SO(d)$, $O(d)$
1069 on point clouds $n \geq d$). Therefore, while learned canonicalization improves empirical performance,
1070 it remains generally discontinuous and can induce instability, hinder generalization, limit model
1071 reliability on boundary cases, or out-of-distribution data. In contrast, our adaptive canonicalization
1072 framework learns the optimal transformation for each input by maximizing the predictive confidence
1073 of the network, resulting in a continuous and symmetry preserving mapping. **We include a detailed
1074 comparison of most related canonicalization work with our method below.**1075
1076

A.1.1 EQUIVARIANCE WITH LEARNED CANONICALIZATION FUNCTIONS

1077 Recently, Kaba et al. (2023) introduced energy-based canonicalization. The central idea is to learn an
1078 energy function over samples and group elements, and define the canonicalization as minimizing this
1079 energy with respect to the group, given a fixed datapoint. Specifically, their energy minimization is
related to our prior maximization adaptive canonicalization method. However, there are several important
conceptual and technical differences between their approach and our adaptive canonicalization.

1080 First, their energy s is not the task neural network like in our analysis, but rather some other trainable
 1081 neural network. Similarly to our approach, training s end-to-end with the task neural network can
 1082 be seen as canonicalization that depends on the task network, if one considers the full end-to-end
 1083 architecture consisting both of the energy minimization and the task network. However, the approach
 1084 in Kaba et al. (2023) does not give continuity guarantees as opposed to our approach. Second, in their
 1085 work, they consider symmetries based on group actions, while we consider a more general setting of
 1086 canonicalization transformations (or augmentations) that need not be based on groups. This makes
 1087 our approach much more applicable across different domains. Moreover, in their framework, there is
 1088 one canonical form for each datapoint and network, while in our approach, each output channel of
 1089 the network defines a different canonical form of the datapoint. This allows our approach to preserve
 1090 continuity. Notably, Kaba et al. (2023) do not attempt to study the continuity of the end-to-end
 1091 predictor.

1092 Another difference in Kaba et al. (2023) is that when training is initialized, the canonicalizing energy
 1093 s is random. This leads each datapoint to be randomly transformed, so the task neural network initially
 1094 has to perform well at all orientations of the data. This can lead the task network to ultimately learn
 1095 an “average behavior,” not specializing in any special orientation but rather performing reasonably
 1096 well on all orientations of the data. In other words, the limited set of trainable parameters has to
 1097 simultaneously specialize in many orientations, which reduces the network’s expressive power. In
 1098 contrast, in our prior maximization approach, from the beginning of training, the network only pays
 1099 a price for not performing well on the single best orientation per datapoint (on which the network
 1100 performs the best). This encourages the network to specialize on one canonical orientation per
 1101 datapoint, and not learn an average behavior. Hence, in our approach, all trainable parameters of the
 1102 task network can focus on performing well only on the sole canonical orientation of each datapoint.

1103 A.1.2 CANONICALIZATION AND DATA RE-ALIGNMENTS

1104 As discussed in App. A.1.1, in the energy-based canonicalization framework of (Kaba et al., 2023),
 1105 the canonicalizing energy s is random at initialization. As a result, it leads each datapoint to be
 1106 randomly transformed and the task neural network initially has to perform well at all orientations.
 1107 This can lead the task network to ultimately learn an “average behavior,” not specializing in any
 1108 special orientation but rather performing reasonably well on all orientations of the data. To address
 1109 this effect, Mondal et al. (2023) biases the canonical transformation of each datapoint to be the
 1110 identity, assuming that the datapoints in the training set already have a small orientation variance. On
 1111 top of that, Schmidt & Stober (2025) iteratively reduces the orientation variance of the training set by
 1112 iteratively reorienting datapoints that lead to a large loss. We note that these approaches are rather
 1113 different from our prior maximization method, and they do not try to address the continuity problem
 1114 in canonicalization.

1115 A.1.3 WEIGHTED CANONICALIZATION

1116 The energy-based canonicalization (Kaba et al., 2023) was further explored and extended in (Shu-
 1117 maylov et al., 2025) on symmetries defined by general Lie group actions. Similarly to our work,
 1118 Shumaylov et al. (2025) also discusses continuity preservation, but their approach is different from
 1119 ours. In the work of Shumaylov et al. (2025), they define the notion of weighted canonicalization,
 1120 which is a similar concept to the weighted frame introduced by Dym et al. (2024). Here, to each data-
 1121 point there is an assigned probability measure over the orbit of the datapoint. Namely, the distribution
 1122 is over the space of data instead of over the group like in the weighted frames of Dym et al. (2024).
 1123 With respect to energy minimization, this approach is not very different from Kaba et al. (2023). The
 1124 main difference is in the minimization algorithm, which minimizes over the Lie algebra instead of
 1125 the Lie group. It is important to note that their work does not train the energy end-to-end with the
 1126 neural network. Hence, in their work, the canonicalization depends on the whole training set, but not
 1127 on the task network, which is quite different from our approach. Moreover, in their setup, one has to
 1128 learn an approximation of the data distribution, which is invariant to the group action. This is a highly
 1129 nontrivial approach to implement. In contrast, our prior maximization is simple and direct.

1130 A.1.4 TEST-TIME CANONICALIZATION

1131 Another recent extension of canonicalization, (Singhal et al., 2025), explores a set of transformations
 1132 at test time and uses the scoring functions of large pre-trained foundation models like CLIP (Radford
 1133

et al., 2021) or SAM (Kirillov et al., 2023) to select the most “canonical” representation upon which downstream inference is performed. Note that the work in Singhal et al. (2025) does not involve network retraining, uses the foundation models as is, and performs canonicalization entirely at inference by optimizing over transformations. While it achieves strong empirical performance, its canonicalization mapping is not guaranteed to be continuous, and in fact, continuity is not discussed. Therefore, small input changes may cause abrupt switches in the selected canonical view.

A related line of work is inverse transformation search (Schmidt & Stober, 2024), which also performs test-time optimization over transformations to exploit invariances. Their method focuses on the standard action of the special linear group on images (rotations, scalings, and shear transformations), i.e., purely group-based symmetries, and similar to Singhal et al. (2025), does not address continuity. In addition, their method does not train the model simultaneously with the canonicalization. While their energy-induced confidence is similar to our prior-maximization formulation in the classification setting, it does not lead to a continuity guarantee. In contrast, our work rigorously develops sufficient conditions on the canonicalizer for the canonicalized network to be continuous and have a universal approximation property. Specifically, our one-vs.-all setting is a different type of energy that does lead to continuous end-to-end classifiers.

A.2 FRAME AVERAGING

Frame averaging (Puny et al., 2021) achieves equivariance to group symmetries by averaging a network’s output over a set of group transformations (known as a “frame”). It is built on the classical group averaging operator, which guarantees symmetries by summing a function over all group elements. Frame averaging has two main advantages: 1) it allows adaptation of standard non-equivalent network architectures to handle symmetry, similar to canonicalization methods, and 2) it avoids computational intractability of full group averaging, especially for large or continuous groups. Recent work (Lin et al., 2024b) proposes minimal frame averaging that attains strong symmetry coverage with small frames. Domain-specific frame averaging methods (Duval et al., 2023b; Atzmon et al., 2022) show that it can be deployed in material modeling and geometric shape analysis. However, it requires a careful selection of a suitable frame. In addition, frame averaging uses a fixed set of transformations independent of the input or task, potentially leading to sub-optimal or less discriminative feature representations. In contrast, our adaptive canonicalization learns the optimal transformation for each input in a data- and network-dependent way, yielding symmetry preserving continuous functions that can improve representation quality and empirical task performance.

A related work that addresses continuity is the weighted frame averaging proposed by Dym et al. (2024). They first prove that in many well-known cases, continuous canonicalization is impossible. This does not contradict our work, as in Dym et al. (2024) the canonicalization is a function solely of the datapoint, and not the task network. Then, they define a variant of frame averaging, called weighted frame averaging, in which to each datapoint there is an associated probability distribution over the group, and the frame averaging is performed with respect to this measure. This construction yields continuity guarantees. However, their focus is fundamentally different from ours: they study frame averaging while we focus on canonicalization. Moreover, the weighted frame averaging is a function only of the data, not the neural network, as opposed to our method. We next compare our framework to weighted frame averaging in more detail.

- In our method, data need not come from a vector space of a fixed dimension (see e.g., the application for graphs). In contrast, weighted frame averaging requires working with data that comes from a vector space of a fixed dimension.
- In our work, symmetries need not be based on group representations. Our notion of symmetry is called a transformation family, and our “symmetries” are not even required to be invertible or based on a group action. See, for example, the image truncation transformation in App. E.5. On the other hand, the symmetries in weighted frame averaging are required to be representations of compact groups.
- In the framework of weighted frame averaging, the requirement that the weighted frame is robust is sufficient for continuity of the canonicalized function. However, this requirement is quite strong, and constructing robust frames could be challenging. In contrast, we achieve continuity of the canonicalized function even though the maximizer in prior maximization need not be continuous in any sense (as a function of the datapoint). The maximizer need not even be uniquely defined. Hence, practitioners can use our method out of the box on new

1188 domains with new symmetries without having to prove any nontrivial mathematical results. In
 1189 weighted frame averaging, employing the method in a new setting typically requires carefully
 1190 constructing a problem-specific weighted frame and proving that it is robust. It often involves
 1191 nontrivial mathematical work and there is no general recipe for doing so. In our case, once an
 1192 architecture and a symmetry setting are chosen, prior-maximization adaptive canonicalization
 1193 is straightforward to implement and does not require additional sophisticated proofs from
 1194 the practitioner. The only assumption that needs to be checked is continuity of the chosen
 1195 transformations, which is usually easy to verify.

1196 • Robust weighted frames often require averaging the predicting network over many transfor-
 1197 mations of the input. In practice, our prior maximization approach works with fewer random
 1198 argmax candidates. For comparison, frame averaging for rotations of n points in a 3D point
 1199 cloud requires an order of n^2 transformations (where $n = 1024$ in the ModelNet40 dataset
 1200 for example), while, in practice, prior maximization performs well with a total of 50 random
 1201 transformations.

1202 These differences imply that our framework is more flexible in terms of the data types and symmetry
 1203 structures it can accommodate, while also imposing a lighter mathematical burden on practitioners
 1204 who wish to apply it. This gives much more freedom for future practitioners, and may lead to a wider
 1205 adaptation of the method.

1206 We note that the earlier work (Basu et al., 2023) proposed a similar idea to weighted frame averaging,
 1207 but did not study continuity preservation.

1208 A.3 EQUIVARIANT ARCHITECTURES

1209 Equivariant architectures are a class of models explicitly designed to respect symmetry groups acting
 1210 on the data. Formally, a network is equivariant to a group of transformations if, when the input is
 1211 transformed by a symmetry group action, the output transforms via the same group action. That is,
 1212 for a group G and a function f , equivariance guarantees $f(g \cdot x) = g \cdot f(x)$ for all $g \in G$ and input x .
 1213 It has been developed across images (Cohen & Welling, 2016a,b; Kondor & Trivedi, 2018; Worrall
 1214 et al., 2017; Weiler et al., 2018b), graphs (Bronstein et al., 2017; Zaheer et al., 2017; Gilmer et al.,
 1215 2017; Maron et al., 2019a; Kofinas et al., 2024; Thiede et al., 2020; Vignac et al., 2020; Keriven
 1216 & Peyré, 2019), molecules (Thomas et al., 2018; Brandstetter et al., 2021; Anderson et al., 2019;
 1217 Fuchs et al., 2020; Satorras et al., 2021; Duval et al., 2023a; Schütt et al., 2017; Liao & Smidt, 2023;
 1218 Hordan et al., 2025; Du et al., 2022; Passaro & Zitnick, 2023), and manifolds (Masci et al., 2015;
 1219 Monti et al., 2017; Cohen et al., 2019; Weiler et al., 2021). Notably, Maron et al. (2019b) studies the
 1220 universal approximation property for equivariant architectures. Notably, equivariant networks often
 1221 demand group-specific designs that rely on group theory, representation theory, and tensor algebra.
 1222 This can reduce flexibility and raise compute and memory costs (Pertigkiozoglou et al., 2024; Wang
 1223 et al., 2023; Liao & Smidt, 2023). Making nonlinearities, pooling, and attention strictly equivariant
 1224 further constrains layer choices and can increase parameter count and runtime. Moreover, imposing
 1225 symmetry throughout the stack may limit the expressivity when data only approximately respect the
 1226 assumed symmetry or contain symmetry-breaking noise (Wang et al., 2022; Lawrence et al., 2025).
 1227 In contrast, our approach handles symmetry by learning an input- and task-dependent canonical
 1228 form through prior maximization and apply a standard backbone. By construction, this mapping is
 1229 continuous and symmetry preserving. Our adaptive canonicalization removes heavy group-specific
 1230 layers, reduces per-layer equivariant cost, and keeps ordinary nonlinearities and pooling.

1232 B UNIVERSAL APPROXIMATION THEOREMS

1234 B.1 UNIVERSAL APPROXIMATION OF EUCLIDEAN FUCNTIONS

1235 Here, we cite a classical result stating that multilayer perceptrons (MLPs) are universal approximators
 1236 of functions over compact sets in Euclidean spaces.

1237 **Theorem 14** (Universal Approximation Theorem (Leshno et al., 1993)). *Let $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ be a
 1238 continuous, non-polynomial function. Then, for every $M, L \in \mathbb{N}$, compact $\mathcal{K} \subseteq \mathbb{R}^M$, continuous
 1239 function $f : \mathcal{K} \rightarrow \mathbb{R}^L$, and $\varepsilon > 0$, there exist $D \in \mathbb{N}$, $\mathbf{W}_1 \in \mathbb{R}^{D \times M}$, $\mathbf{b}_1 \in \mathbb{R}^D$ and $\mathbf{W}_2 \in \mathbb{R}^{L \times D}$ s.t.*

$$1240 \sup_{\mathbf{x} \in \mathcal{K}} |f(\mathbf{x}) - \mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)| \leq \varepsilon. \quad (4)$$

1242 B.2 UNIVERSAL APPROXIMATION OF MULTI-SETS FUNCTIONS
12431244 Multisets are sets where repetitions of elements are allowed. Formally, a multiset of N elements in
1245 \mathbb{R}^J can be defined as a set of pairs (x, i) where x denotes a point and i the number of times the point
1246 x appears in the multiset.1247 Standard universal approximation analysis of multi-set functions goes along the following lines. First,
1248 we represent multisets as 2D arrays $\mathbf{X} \in \mathbb{R}^{N \times J}$, where each row $\mathbf{X}_{n,:} \in \mathbb{R}^J$ represents one point in
1249 the multiset. Note that the same multi-set can be represented by many arrays. In fact, two arrays \mathbf{X}
1250 and \mathbf{X}' represent the same multi-set if and only if one is a permutation of the other.1251 To formulate this property, let \mathcal{S}_N be the symmetric group of N elements, i.e., the group of permuta-
1252 tions of N elements. Given $s \in \mathcal{S}_N$ and $\mathbf{X} \in \mathbb{R}^{N \times J}$, let $\rho(s)\mathbf{X}$ denote the permutation of \mathbf{X} via
1253 s . By convention, permutations change the order of the N rows of \mathbf{X} , and keeps each row intact.
1254 Now, \mathbf{X} and \mathbf{X}' represent the same multi-set if and only if there is a permutation $s \in \mathcal{S}_N$ such that
1255 $\mathbf{X} = \rho(s)\mathbf{X}'$.1256 Now, for a function $y : \mathbb{R}^{N \times J} \rightarrow \mathbb{R}^D$ to represent a multi-set function, it should be invariant to
1257 permutations, i.e., for every $s \in \mathcal{S}_N$ we have $y(\rho(s)\mathbf{X}) = y(\mathbf{X})$. Hence, standard UATs of multi-set
1258 functions are formulated based on the following notion of universal approximation.1259 **Definition 15.** Let $\mathcal{K} \subset \mathbb{R}^{N \times J}$ be an invariant compact domain, i.e., $\rho(s)\mathbf{X} \in \mathcal{K}$ for every $\mathbf{X} \in \mathcal{K}$
1260 and $s \in \mathcal{S}_N$. A set of invariant functions $\mathcal{N}(\mathcal{K}, \mathbb{R}^D) \subset C_0(\mathcal{K}, \mathbb{R}^D)$ is called an invariant universal
1261 approximator of $C_0(\mathcal{K}, \mathbb{R}^D)$ equivariant functions if for every invariant function $y \in C_0(\mathcal{K}, \mathbb{R}^D)$ and
1262 $\epsilon > 0$ where is $\theta \in \mathcal{N}(\mathcal{K}, \mathbb{R}^D)$ such that for every $\mathbf{X} \in \mathcal{K}$
1263

1264
$$|\theta(\mathbf{X}) - y(\mathbf{X})| < \epsilon.$$

1265 For example, DeeptSets are universal approximators of invariant $C_0(\mathcal{K}, \mathbb{R}^D)$ functions (Wagstaff
1266 et al., 2022).1267 In this section, we describe an alternative, but equivalent, approach to model multisets of size N
1268 and their universal approximation theorems using the notion of quotient. The motivation is that our
1269 main UAT, Theorem 13, is based on the standard symmetryless notion of universal approximation,
1270 Definition 3. While it is possible to develop our adaptive canonicalization theory for functions that
1271 preserve symmetries, and obtain an analogous theorem to Theorem 13 based on invariant universal
1272 approximators, there is no need for such complications. Instead, we can use the standard definition
1273 of universal approximation (Definition 3), and directly encode the symmetries in the domain using
1274 quotient spaces, as we develop next.1275
1276 **Quotient Spaces.** Let \mathcal{X} be a topological space, and $x \sim y$ an equivalence relation between pairs
1277 of points. The equivalence class $[x]$ of $x \in \mathcal{X}$ is defined to be the set
1278

1279
$$[x] := \{y \in \mathcal{X} \mid x \sim y\}.$$

1280 **Definition 16** (Quotient topology). Let \mathcal{X} be a topological space, and \sim an equivalence relation on
1281 \mathcal{X} . The quotient set is defined to be

1282
$$\mathcal{X}/\sim := \{[x] \mid x \in \mathcal{X}\}.$$

1283 The quotient set is endowed with the quotient topology. The quotient topology is the finest (largest)
1284 topology making the mapping $\nu : x \mapsto [x]$ continuous. In other words, the open sets $B \subset (\mathcal{X}/\sim)$
1285 are those sets such that $\cup_{[x] \in B} [x]$ is open in \mathcal{X} .1286
1287 The mapping $\nu : \mathcal{X} \rightarrow (\mathcal{X}/\sim)$, defined by $\nu(x) = [x]$, is called the canonical projection.1288
1289 **Multi-Sets as Equivalence Classes and UATs.** Define the equivalence relation: $\mathbf{X} \sim \mathbf{Y}$ if there
1290 exists $s \in \mathcal{S}_N$ such that $\mathbf{X} = \rho(s)\mathbf{Y}$. Now, a multi-set of N elements can be defined as $\mathbb{R}^{N \times J}/\sim$.
1291 As opposed to the definition of multisets as sets of pairs (x, i) , the quotient definition automatically
1292 gives a topology to the sets of multisets, namely, the quotient topology. In fact, it can be shown that
1293 the quotient topology is induced by the following metric.1294 **Definition 17** (Multi-Set Metric). Given $[\mathbf{X}], [\mathbf{Y}] \in (\mathbb{R}^{N \times J}/\sim)$, their distance is defined to be
1295

1296
$$d([\mathbf{X}], [\mathbf{Y}]) := \min_{\mathbf{X}' \in [\mathbf{X}], \mathbf{Y}' \in [\mathbf{Y}]} \|\mathbf{X}' - \mathbf{Y}'\|.$$

1296 It is easy to see that

$$1297 d([\mathbf{X}], [\mathbf{Y}]) := \min_{s \in \mathcal{S}_N} \|\mathbf{X} - \rho(s)\mathbf{Y}\|.$$

1299 One can show that the above distance is indeed a metric, and that the topology induced by this metric
1300 is exactly the quotient topology, i.e., d metrizes $(\mathbb{R}^{N \times J} / \sim)$.

1301 **Theorem 18.** *The metric $d([\mathbf{X}], [\mathbf{Y}])$ metrizes the quotient topology $\mathbb{R}^{N \times J} / \sim$.*

1302 A set $\mathcal{K} \subset \mathbb{R}^{N \times J}$ is called invariant if for every $\mathbf{X} \in \mathcal{K}$ and $s \in \mathcal{S}_N$ we have $\rho(s)\mathbf{X} \in \mathcal{K}$. Consider
1303 the quotient space

$$1304 \mathcal{K} / \sim = \{[\mathbf{X}] \mid \mathbf{X} \in \mathcal{K}\} \subset \mathbb{R}^{N \times J} / \sim.$$

1306 We now have the following proposition about continuity of symmetric functions.

1307 **Proposition 19.** *Let $\mathcal{K} \subset \mathbb{R}^{N \times J}$ be an invariant compact domain. For every continuous invariant
1308 mapping $y : \mathcal{K} \rightarrow \mathbb{R}^D$ there exists a unique continuous mapping $\bar{y} : (\mathcal{K} / \sim) \rightarrow \mathbb{R}^D$ such that*

$$1309 y = \bar{y} \circ \nu,$$

1310 where ν is the canonical projection. On the other hand, for every function $z \in C_0(\mathcal{K} / \sim, \mathbb{R}^D)$, we
1311 have that $z \circ \nu$ is a continuous invariant function in $C_0(\mathcal{K}, \mathbb{R}^D)$.

1313 Let $\mathcal{K} \subset \mathbb{R}^{N \times J}$ be an invariant domain. For a set of continuous invariant functions $\mathcal{N} \subset C_0(\mathcal{K}, \mathbb{R}^D)$,
1314 we denote

$$1315 (\mathcal{N} / \sim) := \{\bar{y} \mid y \in \mathcal{N}\} \subset C_0(\mathcal{K} / \sim, \mathbb{R}^D).$$

1316 Note that by Proposition 19

$$1317 (C_0(\mathcal{K}, \mathbb{R}^D) / \sim) = C_0(\mathcal{K} / \sim, \mathbb{R}^D).$$

1319 This immediately leads to a UAT theorem for multi-set continuous functions in which every continuous
1320 multi-set function can be approximated by a neural network.

1321 **Theorem 20.** *Let $\mathcal{K} \subset \mathbb{R}^N$ be an invariant compact domain, and let $\mathcal{N}(\mathcal{K}, \mathbb{R}^D) \subset C_0(\mathcal{K}, \mathbb{R}^D)$ be
1322 an invariant universal approximator of $C_0(\mathcal{K}, \mathbb{R}^D)$ equivariant functions. Then $\mathcal{N}(\mathcal{K}, \mathbb{R}^D) / \sim$ is a
1323 universal approximator $C_0(\mathcal{K} / \sim, \mathbb{R}^D)$.*

1324 Note that in the above UAT the symmetries are directly encoded in the quotient spaces, and, hence,
1325 there is no need to encode any symmetry in the spaces of functions. Hence, Theorem 20 is based
1326 on the standard symmetryless definition of universal approximation – Definition 3 – rather than the
1327 symmetry driven construction of Definition 15. As a result, we can directly use our theory of adaptive
1328 canonicalization on multi-set functions. Specifically, we can use Theorem 13, where the space \mathcal{K} in
1329 the theorem is taken as \mathcal{K} / \sim in our above analysis.

1330 Now, we immediately obtain that the set of neural networks $\bar{\theta}$ where θ is a DeepSet is a universal
1331 approximator of the space of continuous multi-set functions.

1333 C ADDITIONAL EXAMPLES OF CONTINUOUS PRIOR MAXIMIZATION

1335 We first note that when \mathcal{K} is a locally compact metric space, functions in $C_0(\mathcal{K}, \mathbb{R}^D)$ must be
1336 uniformly continuous.

1338 **Unbounded Point Clouds and Rotations.** Let $\mathcal{U} = \mathcal{SO}(3)$ be the space of 3D rotations, and
1339 $\mathcal{G} = \mathcal{K} = \mathbb{R}^{N \times 3}$ the set of sequences of N points in \mathbb{R}^3 , i.e. the space of point clouds. Consider the
1340 \mathcal{L}_2 metric in \mathcal{G} . Consider the rotation $g \mapsto \kappa_u(g)$ of the point cloud g by $u \in \mathcal{U}$.

1342 Let $f \in C_0(\mathcal{G}, \mathbb{R}^D)$. Next we show that f must be uniformly continuous. Let $\epsilon > 0$. By the fact that
1343 f vanishes at infinity, there exists a compact domain $\mathcal{K} \subset \mathbb{R}^{N \times 3}$ such that for every $x \notin \mathcal{K}$ we have
1344 $|f(x)| < \epsilon/2$. By the fact that $\mathcal{U} \times \mathcal{K}$ is compact and κ continuous, κ is uniformly continuous on $\mathcal{U} \times \mathcal{K}$.
1345 Hence, there exists $\delta_\epsilon > 0$ such that every $g, g' \in \mathcal{K}$ with $d(g, g') < \delta_\epsilon$ satisfy $d(f(g), f(g')) < \epsilon$.
1346 Let \mathcal{K}' be the compact space consisting of all point of distance less or equal to δ_ϵ from \mathcal{K} . There exists
1347 $0 < \delta'_\epsilon < \delta_\epsilon$ such that every $g, g' \in \mathcal{K}'$ with $d(g, g') < \delta'_\epsilon$ satisfy $d(f(g), f(g')) < \epsilon$.

1348 Now, let $g, g' \in \mathcal{G}$ satisfy $d(g, g') < \delta'_\epsilon$. If one of the point g or g' lies outside \mathcal{K}' , then both of them
1349 lie outside \mathcal{K} , so

$$d(f(g), f(g')) \leq \|f(g)\| + \|f(g')\| < \epsilon.$$

Otherwise, both lie in \mathcal{K}' , so $d(f(g), f(g')) < \epsilon$. Both cases together mean that f is uniformly continuous.

As a result of uniform continuity, $\{g \mapsto f(\kappa_u(g))\}_{u \in \mathcal{U}}$ is equicontinuous, and this is a setting of continuous prior maximization.

In fact, this analysis shows that whenever $\mathcal{G} = \mathcal{K}$ and κ is continuous in (u, g) , then it's corresponding ρ is continuous prior maximization.

Continuous to Discrete Images with Rotations and Other Image Transformations. Consider the “continuous” space of images $\mathcal{G} = \mathcal{L}_2(\mathbb{R}^2)$ and the discrete space $\mathcal{K} = \mathbb{R}^{N \times N}$ of images of $N \times N$ pixels.

Let \mathcal{U} be the unit circle. For $g \in \mathcal{G}$ and $u \in \mathcal{U}$ let $\pi(u)g$ be the rotation of the image g by angle u . To define the discretizing mapping $P : \mathcal{L}_2(\mathbb{R}^2) \rightarrow \mathbb{R}^{N \times N}$, consider the partition of $[-1, 1]$ into the N intervals

$$I_n = [-1 + 2n/N, -1 + 2(n+1)/N], \quad n = 0, \dots, N-1.$$

Consider the closed linear subspace $\mathcal{D}(\mathbb{R}^2) \subset \mathcal{L}_2(\mathbb{R}^2)$ consisting of images that are zero outside $[-1, 1]^2$ and piecewise constant on the squares $\{I_n \times I_m\}_{n,m=0}^{N-1}$. Now, P is the operator that takes $g \in \mathcal{L}_2(\mathbb{R}^2)$ first orthogonally projects it upon $\mathcal{D}(\mathbb{R}^2)$ to get g' , and then returns

$$P(g) = \{g'(-1 + 2n/N, -1 + 2m/N)\}_{n,m=0}^{N-1} \in \mathbb{R}^{N \times N}.$$

Define the mapping κ_u as follows: $\kappa_u(g) = P(\pi(u)g)$. By the fact that π_u is an isometry for every $u \in \mathcal{U}$ and P is non-expansive (as an orthogonal projection), $\kappa_u : \mathcal{G} \rightarrow \mathbb{R}^{N \times N}$ is Lipschitz 1 for every u . Hence, $\{g \mapsto f(\kappa_u(g))\}_{u \in \mathcal{U}}$ is equicontinuous.

As a result, the corresponding prior minimization is a continuous prior minimization.

This setting can be extended to other image deformation based on diffeomorphisms of the domain \mathbb{R}^2 , parameterized by compact spaces \mathcal{U} . For example, one can take dilations up to some uniformly bounded scale. More generally, one can consider a compact set \mathcal{U} of matrices in $\mathbb{R}^{2 \times 2}$, and define $\pi(u)g(\mathbf{x}) = g(\mathbf{x} \mathbf{U})$ for $\mathbf{U} \in \mathcal{U}$, $g \in \mathcal{L}_2(\mathbb{R}^2)$ and $\mathbf{x} \in \mathbb{R}^2$.

Discrete to Discrete Images with Rotations and Other Image Transformations. One can replace \mathcal{G} by $\mathcal{D}(\mathbb{R}^2)$ in the above analysis. Since now $\mathcal{D}(\mathbb{R}^2)$ is compact, ρ must be a continuous prior maximization.

The above examples can be naturally extended to additional image transformation, like translations and dilations. Notably, translations and dilations do not form a compact group, but still they satisfy the conditions of our theory, which requires no compactness assumptions.

D FUNCTIONAL CALCULUS AND SPECTRAL FILTERS

In this section, we recall the theory of plugging self-adjoint operators inside functions.

Spectral Theorem. Let \mathcal{L} be a self-adjoint operator on a finite-dimensional Hilbert space (e.g., $\mathcal{L} \in \mathbb{C}^{N \times N}$ with $\mathcal{L} = \mathcal{L}^*$). There exists a unitary matrix V and a real diagonal matrix $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_N)$ such that $\mathcal{L} = V\Lambda V^*$. The columns v_i of V form an orthonormal eigenbasis with $\mathcal{L}v_i = \lambda_i v_i$.

Functional Calculus. For any function $f : \mathbb{R} \rightarrow \mathbb{C}$ defined on the spectrum $\sigma(\mathcal{L}) = \{\lambda_1, \dots, \lambda_N\}$:

$$f(\mathcal{L}) := Vf(\Lambda)V^*, \quad f(\Lambda) = \text{diag}(f(\lambda_1), \dots, f(\lambda_N)).$$

Equivalently, we can write the spectral projections $P_i := v_i v_i^*$,

$$f(\mathcal{L}) = \sum_{i=1}^N f(\lambda_i) P_i.$$

We can plug a self-adjoint matrix into a function by: 1) diagonalize \mathcal{L} , 2) apply f to the eigenvalues, and 3) conjugate back.

1404 **Algorithm 1** Random maximization
1405 **Input:** Input g , backbone network f , scalar prior $h(x)$, sampler $\text{Sample_U}()$ for $u \sim P$ sampled
1406 from a probability measure over \mathcal{U} , number of random samples K , gradient descent step GD_Step
1407
1408 **function** $\text{Random_Maximization}(g, f, h, \text{Sample_U}, K, \text{use_GD}, T, \eta, \text{project_to_U})$
1409 $\{u^1, \dots, u^K\} \leftarrow \text{Sample_U}(K)$
1410 $u^* \leftarrow \arg \max_{\{u_1, \dots, u_K\}} h \circ f(\kappa_{u^i}(g))$
1411 $u^* \leftarrow \text{GD_Step}(u^*)$
1412 **return** u^*
1413
1414
1415

1416 Take $f = \mathbb{1}_I$ for a Borel set $I \subset \mathbb{R}$. The indicator function $\mathbb{1}_I(\mathcal{L})$ is an orthogonal projection, since
1417 $\mathbb{1}_I(\mathcal{L})^2 = \mathbb{1}_I(\mathcal{L})$ and $\mathbb{1}_I(\mathcal{L})^* = \mathbb{1}_I(\mathcal{L})$.
1418

1419 **Spectral Graph Filters.** A *graph shift operator* (GSO) is a self-adjoint matrix that reflects the
1420 graph's connectivity, such as a (normalized) graph Laplacian or a symmetrized adjacency. Let \mathcal{L}
1421 be such a GSO with eigenpairs $\{(\lambda_i, v_i)\}_{i=1}^N$ and $V = [v_1, \dots, v_N]$. For a T -channel node signal
1422 $\mathbf{X} \in \mathbb{R}^{N \times T}$ and a matrix-valued frequency response $g : \mathbb{R} \rightarrow \mathbb{R}^{d' \times T}$, the spectral filter
1423

$$g(\mathcal{L})\mathbf{X} := \sum_{i=1}^N v_i v_i^\top \mathbf{X} g(\lambda_i)^\top$$

1424 applies the graph convolution theorem (Bracewell & Kahn, 1966) with d' output channel: each Fourier
1425 mode v_i is preserved in space, while channels are mixed by $g(\lambda_i)$ in the spectral domain. In the scalar
1426 case ($T = d' = 1$) with $f : \mathbb{R} \rightarrow \mathbb{R}$, the spectral filter simply reduces to the functional-calculus
1427 operator acting on \mathbf{X} :
1428

$$f(\mathcal{L})\mathbf{X} = \sum_{i=1}^N f(\lambda_i) v_i v_i^\top \mathbf{X} = V f(\Lambda) V^\top \mathbf{X}.$$

1429 Spectral graph neural networks (Defferrard et al., 2016b; Kipf, 2016; Levie et al., 2018) compose
1430 such filters with pointwise nonlinearities, using trainable g at each layer.
1431

1432 E APPLICATION OF ADAPTIVE CANONICALIZATION: TUTORIAL FOR 1433 PRACTITIONERS

1434 In this section, we present the construction details of the application of adaptive canonicalization to
1435 anisotropic geometric networks. We start by describing the one vs. rest classifier and our maximization
1436 method.
1437

1438 E.1 ONE VS. REST CLASSIFIERS

1439 In our setting, each output channel $f_d \circ \rho_{f_d}^d(g) \in [0, 1]$ is a binary classifier, i.e., representing the
1440 probability of g being in class d vs. not being in class d (Rifkin & Klautau, 2004; Galar et al., 2011;
1441 Allwein et al., 2000). The per-class score is obtained by $\hat{y}_d = \sigma(f_d \circ \rho_{f_d}^d(g))$, where σ is a sigmoid
1442 function. Note that the vector $(\hat{y}_1, \dots, \hat{y}_D)$ is not a probability measure, since each entry represents
1443 the independent probability of class c being present. We use binary cross-entropy per class and sum
1444 over classes $\sum_{d=1}^D (-y_d \log \hat{y}_d - (1 - y_d) \log(1 - \hat{y}_d))$, where y_d denotes the true class.
1445

1446 E.2 RANDOM MAXIMIZATION

1447 We estimate the prior maximization by searching over a transformation space (e.g., unitary orientations
1448 per spectral band or rotation for point clouds) and selecting the orientation that maximizes the chosen
1449 prior with the classification objective (i.e., one vs. rest). Specifically, we consider a probability measure
1450 on the space \mathcal{U}_j and draw i.i.d samples $\{u_j^i\}_{i=1}^K$ from it. The argmax of $\{h_d \circ f_d(\kappa_{u_j}(g))\}_{u_j \in \mathcal{U}_j}$ of

1458 Eq. (2) is estimated as the argmax of
 1459
 1460 $\{h_d \circ f_d(\kappa_{u_j^i}(g))\}_{i=1}^K$.
 1461

1462 For example, in anisotropic nonlinear spectral filters, we draw a finite pool of candidate transfor-
 1463 mations from the Haar measure on \mathcal{U}_j (Mezzadri, 2006). For anisotropic point cloud networks, the
 1464 search over rotations can be implemented with quaternion (Shoemake, 1992) or Rodrigues' formula
 1465 (Rodrigues, 1840). For each input, we evaluate the prior objective for all candidates in the pool and
 1466 keep only the maximizing orientation when computing the forward pass and gradients. In this way,
 1467 the prior maximization is implemented as a randomized search: we sample a set of transformations,
 1468 apply them in parallel, and pick the one giving the best prior value. Note that this sampling-based
 1469 maximization is best thought of as one convenient implementation of our framework rather than a
 1470 requirement, as other optimization strategies over \mathcal{U}_j could be implemented and plugged as long as
 1471 they approximately solve the same maximization problem.

1472 To understand how well this random maximization approximates the ideal maximization over the full
 1473 transformation space, we can adapt the analysis from Cordonnier et al. (2024). Their results provide
 1474 a tail bound for approximating a maximum over a probability space by the maximum over random
 1475 i.i.d. samples.

1476 We first recall the notion of the volume retaining probability space introduced by Cordonnier et al.
 1477 (2024).

1478 **Definition 21** (Volume retaining property (Cordonnier et al., 2024)). *Let $X \subset \mathbb{R}^d$ and let P be a
 1479 probability measure on X . We say that the probability space (X, P) has the (r_0, κ) -volume retaining
 1480 Lebesgue measure if there exist constants $r_0 > 0$ and $\kappa > 0$ such that for any $r \leq r_0$ and any $x \in X$*

$$1482 \quad P(B(x, r) \cap X) \geq \kappa \lambda_d(B(x, r)),$$

1483 where λ_d is the d -dimensional Lebesgue measure and $B(x, r)$ is the ball center at x with radius r .
 1484

1485 In our case, points are randomly sampled from some canonical measure over \mathcal{U}_j (i.e., the Haar
 1486 measure), and in all of our example applications \mathcal{U}_j has the volume retaining property.

1487 On a volume retaining space, Cordonnier et al. (2024) prove the following concentration inequality
 1488 for maxima.

1489 **Lemma 22** (Concentration inequality for volume retaining space (Cordonnier et al., 2024)). *Let
 1490 (X, P) be a probability space with the (r_0, κ) -volume retaining property and let $g : X^2 \rightarrow \mathbb{R}^q$
 1491 be K_g -Lipschitz. For any $\rho \geq \exp(-n\kappa r_0^d 2^d)$, for any random variables $X_1, \dots, X_n \stackrel{i.i.d.}{\sim} P$, with
 1492 probability at least $1 - \rho$, it holds*

$$1494 \quad \left\| \max_{1 \leq i \leq n} g(x, X_i) - \sup g(x, \cdot) \right\|_\infty \leq \frac{K_g}{2} \left(\frac{\ln(q/\rho)}{n\kappa} \right)^{1/d}.$$

1497 Applying this lemma to our setting, g is the output of the task neural network on some class. Since
 1498 typical neural networks are Lipschitz continuous (e.g., any multilayer perceptron based on a Lipschitz
 1499 activation function), this immediately gives a guarantee that our random maximization method
 1500 approximates the true maximum. We plan to extend this analysis for future work.

1502 We note that prior maximization can be strengthened by locally refining the sample points u_j^i .
 1503 Specifically, we initialize with random transformations drawn from the probability measure, perform
 1504 the sampling-based prior maximization to select a candidate, and then run a few steps of gradient
 1505 descent to further decrease the objective locally. If \mathcal{U} is a manifold embedded in Euclidean space,
 1506 one can apply the vanilla Euclidean gradient descent and then project the obtained transformation
 1507 back to \mathcal{U} , or apply Riemannian gradient descent (Absil et al., 2008) to stay on \mathcal{U} . We summarize
 1508 the random maximization in Alg. 1. In our experiments, we use 32 sampled transformations for
 1509 anisotropic nonlinear spectral filters and use 50 sampled transformations for point clouds.

1510 Finally, we note that when the prior maximization has error e (which is a random variable), this leads
 1511 to an additive term e in universal approximation. Namely, for any $\epsilon > 0$, any continuous function can
 be approximated by $\theta \circ \rho_\theta$ up to error $\epsilon + e$ instead of ϵ in Theorem 6.

1512 E.3 CONSTRUCTION DETAILS FOR ANISOTROPIC NONLINEAR SPECTRAL FILTERS
1513

1514 In spectral methods for graphs, we often use eigenvectors as a core component for graph representation
1515 learning. However, these eigenvectors are not uniquely defined. For each eigenvector we can flip its
1516 sign, and when an eigenvalue has multiplicity larger than one, any orthogonal basis of its eigenspace
1517 is valid. In practice, this means that the same graph can produce different eigenvectors depending on
1518 the eigensolver or numerical details, and a spectral graph neural network that takes these eigenvectors
1519 as input may give different outputs for the same graph, which affects stability and can reduce
1520 performance. Since the model should depend only on the graph structure and not on arbitrary choices
1521 of eigenvector bases, i.e., it should be invariant to the choice of the eigenbasis, it is important to
1522 remove such ambiguities. In this work, we focus on graph classification tasks with D classes and
1523 study how to resolve eigenbasis ambiguities in this setting.

1524 To study this, we work in the following setup. Consider a graph $G = ([N], \mathbf{A}, \mathbf{S})$, where $[N]$
1525 is the set of N vertices, $\mathbf{A} \in \mathbb{R}^{N \times N}$ is the adjacency matrix, and $\mathbf{S} \in \mathbb{R}^{N \times T}$ is an array of
1526 node features (row n is the T -dimensional feature at node n). We consider the normalized graph
1527 Laplacian $\mathcal{L} = \mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$ as the graph shift operator (GSO)² in our experiments, where \mathbf{D}
1528 is a diagonal degree matrix with diagonal entries $(d_i)_i \in \mathbb{R}^N$, where d_i is the degree of node i .
1529 The eigendecomposition of \mathcal{L} is given by $\mathcal{L} = \mathbf{V}^{(G)} \mathbf{\Lambda} \mathbf{V}^{(G)\top}$, where $\mathbf{V}^{(G)} = (\mathbf{v}_i)_i \in \mathbb{R}^{N \times N}$ is an
1530 orthogonal matrix of eigenvectors as the columns (i.e., an eigenbasis) and $\mathbf{\Lambda} = \text{diag}(\lambda_1, \dots, \lambda_N)$ is
1531 the diagonal matrix of eigenvalues, where $0 \leq \lambda_1 \leq \dots \leq \lambda_N \leq 2$. We then group the spectrum into
1532 predefined bands with boundaries $b_0 < b_1 < \dots < b_B$ contained in $[0, 2]$, where $B \in \mathbb{N}$ is the total
1533 number of bands. The total band $[b_0, b_B]$ is a subset of $[0, 2]$ since the spectrum of the normalized
1534 Laplacian lies in this interval³. In our implementation, we use a dyadic partitioning scheme. Given a
1535 decay rate $0 < r < 1$, we set

$$b_0 = 0, \quad b_k = 2r^{B-k} \text{ for } k = 1, \dots, B-1, \quad b_B = 2,$$

1536 and define the k -th band as $[b_{k-1}, b_k]$. A larger B yields narrower bands and hence finer spectral
1537 resolution. For example, taking $B = 5$ and $r = 0.5$ gives five bands: $[0, 0.125]$, $[0.125, 0.25]$,
1538 $[0.25, 0.5]$, $[0.5, 1]$ and $[1, 2]$.

1539 We now make explicit the symmetry we want the model to respect. Recall that the eigendecomposition
1540 of the normalized Laplacian is $\mathcal{L} = \mathbf{V}^{(G)} \mathbf{\Lambda} \mathbf{V}^{(G)\top}$, where $\mathbf{V}^{(G)} = (\mathbf{v}_i)_i \in \mathbb{R}^{N \times N}$ collects the
1541 eigenvectors and $\mathbf{\Lambda} = \text{diag}(\lambda_1, \dots, \lambda_N)$ the eigenvalues. Given the band boundaries $b_0 < \dots <$
1542 b_B , we define for each band k the index set $I_k(G) := \{i \in [N] : \lambda_i \in [b_{k-1}, b_k]\}$, and let
1543 $\mathbf{V}_k^{(G)} \in \mathbb{R}^{N \times M_k(G)}$ be the submatrix of $\mathbf{V}^{(G)}$ whose columns are the eigenvectors $(\mathbf{v}_i)_{i \in I_k(G)}$.
1544 Therefore, we can write $\mathbf{V}^{(G)} = [\mathbf{V}_1^{(G)} | \dots | \mathbf{V}_B^{(G)}]$. For each band we denote the associated
1545 Paley-Wiener space by $\mathcal{X}_k(G) := \text{span}\{\mathbf{v}_i : i \in I_k(G)\} = \text{Im}(\mathbf{V}_k^{(G)})$. The ambiguity we want
1546 to handle comes from changing the orthonormal basis inside each band. Any other basis that of
1547 the k -th band has the form $\tilde{\mathbf{V}}_k^{(G)} = \mathbf{V}_k^{(G)} \mathbf{U}_k^{(G)}$, where $\mathbf{U}_k^{(G)} \in \mathbb{R}^{M_k(G) \times M_k(G)}$ is a unitary matrix.
1548 Equivalently, we can write a full orthonormal basis of \mathbb{R}^N whose columns are partitioned into
1549 subsequences corresponding to the bands, and each subsequence spans the associated Paley-Wiener
1550 space $\mathcal{X}_k(G)$. We can write this condition in matrix form as: $\mathbb{R}^{N \times N} \ni \tilde{\mathbf{V}}^{(G)} = \mathbf{V}^{(G)} \mathbf{U}^{(G)}$, where
1551 $\mathbf{U}^{(G)} := \text{diag}(\mathbf{U}_1^{(G)}, \dots, \mathbf{U}_B^{(G)}) \in \mathbb{R}^{N \times N}$, i.e., the a block matrix with diagonal blocks $\mathbf{U}_k^{(G)}$. The
1552 set of block-diagonal unitary matrices $\mathcal{U}^{(G)} = \{\mathbf{U}^{(G)} = \text{diag}(\mathbf{U}_1^{(G)}, \dots, \mathbf{U}_B^{(G)})\}$ constitutes the
1553 band-preserving transformations, i.e., the unitary matrices that keep the Paley-Wiener spaces (or
1554 bands) invariant in the sense that $\mathbf{U}^{(G)} \mathbf{v} \in \mathcal{X}_k(G)$, $\forall k \in [B]$, $\forall \mathbf{v} \in \mathcal{X}_k(G)$. The space of these
1555 matrices constitute the symmetry space in our setting.

1556 The above construction is defined for a single graph, but in our setting we work with a collection of
1557 graphs. The spectral support of the bands, that is, the intervals $[b_{k-1}, b_k]$, is fixed across all graphs.
1558 However, for a given graph G , the k -th band, i.e., the linear span of the eigenvectors whose eigenvalues
1559 lie in $[b_{k-1}, b_k]$, and this subspace depends on G . Different graphs can have a different number of
1560 eigenvalues in the same interval, so the dimension of the k -th band is not constant across graphs. We
1561 denote by $M_k(G)$ the dimension of the k -th band for the graph G .

1562 ²Note that any other self-adjoint GSO can be chosen.
1563 ³For other GSOs, different bands can be chosen to match their spectral range, or to cover a subset of the
1564 spectrum.

In order to apply a task network given by a standard neural network architecture, such as an MLP, we require that all inputs lie in a common vector space of fixed dimension, independent of the particular graph G . The variability of the band dimensions $M_k(G)$ across graphs violates this requirement. To resolve this, we introduce a padding operator that standardizes the size of each band. Implementation-wise, for each band k we fix for each band k the size to be the largest value of $M_k(G)$ over the dataset and denote this value by J_k , and we zero-pad bands that are smaller than this size. Let J_1, \dots, J_B be these integers, and denote $J = \sum_{k=1}^B J_k$. For a graph G with signal $\mathbf{S} \in \mathbb{R}^{N \times T}$, let $C_k(G, \mathbf{S}) \in \mathbb{R}^{M_k(G) \times T}$ be the matrix of spectral coefficients in the k -th band (one row per eigenvector in the band and T channels). Since $M_k(G) \leq J_k$ by construction, we define the band-wise padding operator P_k by

$$P_k(G, \mathbf{S}) := \begin{bmatrix} C_k(G, \mathbf{S}) \\ \mathbf{0}_{(J_k - M_k(G)) \times T} \end{bmatrix} \in \mathbb{R}^{J_k \times T}.$$

Collecting all bands, we obtain the global operator $P(G, \mathbf{S}) := (P_k(G, \mathbf{S}))_{k=1}^B \in \mathbb{R}^{J \times T}$. By construction, P maps every graph–signal pair (G, \mathbf{S}) to a spectral representation in the fixed-dimensional vector space $\mathbb{R}^{J \times T}$, so that we can apply the same task network $\Psi : \mathbb{R}^{J \times T} \rightarrow \mathbb{R}^D$ (e.g., an MLP) uniformly across all graphs. After standardizing the band sizes to J_k and writing $J = \sum_{k=1}^B J_k$, we use the same parameterization with $\{\mathbf{U} = \text{diag}(\mathbf{U}_1, \dots, \mathbf{U}_B) \in \mathbb{R}^{J \times J}$, where $\mathbf{U}_k \in \mathbb{R}^{J_k \times J_k}$ is unitary}, which gives a parameterization of the space of unitary operators that keep the bands invariant.

To resolve the band-wise eigenbasis ambiguity, we introduce the anisotropic nonlinear spectral filters as follows. Consider a symmetryless neural network $\Psi : \mathbb{R}^{J \times T} \rightarrow \mathbb{R}^D$ that operates on the space of spectral coefficients of the signal. We denote $\Psi = (\Psi_d)_{d=1}^D$ where $\Psi_d : \mathbb{R}^{J \times T} \rightarrow \mathbb{R}$. The prior maximization for each class $d \in \{1, \dots, D\}$ is performed by

$$\{\mathbf{U}_1^{\square(d)}, \dots, \mathbf{U}_B^{\square(d)}\} = \arg \max_{\mathbf{U}_1^{(d)}, \dots, \mathbf{U}_B^{(d)}} h_d(\Psi_d(\mathbf{U}_1^{(d)}(G, \mathbf{S}), \dots, \mathbf{U}_B^{(d)}(P_B(G, \mathbf{S})))),$$

where $\mathbf{U}_k^{(d)} \in \mathbb{R}^{J_k \times J_k}$ is a unitary matrix and $h_d(x) = x$ is class- d prior. Once we obtain the set of the optimal unitary matrices $\{\mathbf{U}_1^{\square(d)}, \dots, \mathbf{U}_B^{\square(d)}\}$, the class d score is then computed by $\Psi_d(\mathbf{U}_1^{\square(d)}(P_1(\mathbf{V}^{(G)}, \mathbf{S})), \dots, \mathbf{U}_B^{\square(d)}(P_B(\mathbf{V}^{(G)}, \mathbf{S})))$ are then passed through a sigmoid nonlinearity to obtain class probabilities. The training loss is the sum of D binary cross-entropies.

E.4 CONSTRUCTION DETAILS FOR ANISOTROPIC POINT CLOUD NETWORKS

We next apply adaptive canonicalization in the spatial domain, where inputs are multisets of points in \mathbb{R}^3 with (x, y, z) coordinates. Specifically, we focus on multiset networks applied to classification tasks. Standard multiset networks, e.g., DeepSet (Zaheer et al., 2017) and PointNet (Qi et al., 2017a), which take the 3D coordinates of the points as their features, suffer from an inherent anisotropy problem (Wiersma et al., 2022; Qian et al., 2021): the classification outcomes for a point cloud and for a rotated version of the same point cloud do not coincide in general. To address this sensitivity to orientation in multiset networks, we introduce an adaptive canonicalization module that searches over the 3D rotation group $\mathcal{SO}(3)$.

Let $\mathbf{X} \in \mathbb{R}^{N \times 3}$ represent a point cloud of N points in \mathbb{R}^3 and let $\Psi : \mathbb{R}^{N \times 3} \rightarrow \mathbb{R}^D$ be a multiset neural network. In classification, D is the number of classes. We denote $\Psi = (\Psi_d)_{d=1}^D$ where $\Psi_d : \mathbb{R}^{N \times 3} \rightarrow \mathbb{R}$. Here, Ψ is invariant to permutations of the N points, but not invariant to 3D rotations of the point cloud. The prior maximization for each class $d \in \{1, \dots, D\}$ is performed by

$$\mathbf{R}_d^{\square} = \arg \max_{\mathbf{R} \in \mathcal{SO}(3)} h_d(\Psi_d(\mathbf{X}\mathbf{R}^{\top})),$$

where class- d prior is $h_d(x) = x$. Once we found the canonical form \mathbf{R}_d^{\square} , the class scores in our anisotropic point cloud network are computed as $s_d = \Psi_d(\mathbf{X}\mathbf{R}_d^{\square\top})$ and are then passed through a sigmoid nonlinearity to obtain class probabilities. The training loss is the sum of D binary cross-entropies.

The canonicalization setting is independent of the specific multiset neural network architecture. Below, we present three widely used multiset neural networks equipped with adaptive canonicalization.

1620 **Adaptive Canonicalization Applied to DeepSet (AC-DeepSet).** We begin by briefly recalling
 1621 DeepSet (Zaheer et al., 2017), which is a general framework for learning functions on sets and
 1622 has UAT (Wagstaff et al., 2022). Given a point cloud represented as $\{\mathbf{x}_1, \dots, \mathbf{x}_N\} \subset \mathbb{R}^3$, DeepSet
 1623 computes a permutation-invariant representation by encoding each point with an MLP ϕ , aggregating
 1624 features with summation, and applying a global function ξ :

$$1625 \quad 1626 \quad 1627 \quad \mathbf{x}' = \xi \left(\sum_{i=1}^N \phi(\mathbf{x}_i) \right).$$

1628 To apply adaptive canonicalization to DeepSet, we define, for each class $d \in \{1, \dots, D\}$, a class-
 1629 dependent canonical rotation by

$$1630 \quad 1631 \quad 1632 \quad \mathbf{R}_d^\square = \arg \max_{\mathbf{R} \in \mathcal{SO}(3)} h_d \left(\Psi_d \left(\xi \left(\sum_{i=1}^N \phi(\mathbf{x}_i \mathbf{R}^\top) \right) \right) \right),$$

1633 where Ψ_d is the one-vs-rest classifier for class d , and $h_d(x) = x$ is the prior. Once \mathbf{R}_d^\square is obtained,
 1634 the class scores are computed as $s_d = \Psi_d(\xi(\sum_{i=1}^N \phi(\mathbf{x}_i \mathbf{R}_d^{\square\top})))$ for all $d \in \{1, \dots, D\}$, and passed
 1635 through sigmoids to obtain class-wise probabilities. The network is then trained using the sum of D
 1636 binary cross-entropy losses.

1637 **Adaptive Canonicalization Applied to PointNet (AC-PointNet).** Given a point cloud
 1638 $\{\mathbf{x}_1, \dots, \mathbf{x}_N\} \in \mathbb{R}^3$, PointNet (Qi et al., 2017a) processes each point independently with a shared
 1639 MLP ϕ , and then aggregates points features using a symmetric function (e.g., max-pooling)

$$1640 \quad \mathbf{x}' = \text{Pool}(\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_N)).$$

1641 To equip PointNet with adaptive canonicalization, we define a class-specific orientation \mathbf{R}_d^\square for each
 1642 class d obtained by

$$1643 \quad 1644 \quad \mathbf{R}_d^\square = \arg \max_{\mathbf{R} \in \mathcal{SO}(3)} h_d(\Psi_d(\text{Pool}(\phi(\mathbf{x}_1 \mathbf{R}^\top), \dots, \phi(\mathbf{x}_N \mathbf{R}^\top)))),$$

1645 where $h_d(x) = x$ is the class- d prior and Ψ_d is the class-specific classifier conducting binary
 1646 classification in the one vs. rest manner. Once having \mathbf{R}_d^\square , the scoring head is denoted by $s_d =$
 1647 $\Psi_d(\text{Pool}(\phi(\mathbf{x}_1 \mathbf{R}_d^{\square\top}), \dots, \phi(\mathbf{x}_N \mathbf{R}_d^{\square\top})))$. Then we define the per-class head score by a sigmoid and
 1648 use binary cross-entropy per class and sum over classes as the training loss.

1649 **Adaptive Canonicalization Applied to DGCNN (AC-DGCNN).** Consider the input $\mathbf{X} \in \mathbb{R}^{N \times 3}$
 1650 as a point cloud with points $\{\mathbf{x}_1, \dots, \mathbf{x}_N\} \in \mathbb{R}^3$. DGCNN (Wang et al., 2019) constructs dynamic
 1651 k -nearest graphs by computing $G = (V, E)$ where $E = \{(i, j) : j \in \text{kNN}(\mathbf{x}_i, k)\}$. Then, the edge
 1652 convolution is performed by computing the edge features and applying a max pooling:

$$1653 \quad \mathbf{x}'_i = \text{Pool}_{(i,j) \in E}(\text{ReLU}(\Psi(\mathbf{x}_j - \mathbf{x}_i, \mathbf{x}_i))).$$

1654 Applying adaptive canonicalization to the DGCNN architecture, we define a class-specific orientation
 1655 \mathbf{R}_d^\square obtained by optimizing a class-dependent prior $h_d(x) = x$:

$$1656 \quad 1657 \quad \mathbf{R}_d^\square = \arg \max_{\mathbf{R} \in \mathcal{SO}(3)} h_d(\Psi_d(\text{Pool}_{(i,j) \in E}(\text{ReLU}(\Psi((\mathbf{x}_j - \mathbf{x}_i) \mathbf{R}^\top, \mathbf{x}_i \mathbf{R}^\top)))), \quad (5)$$

1658 where Ψ_d is the class- d classifier. Then, the classifier is applied to the output under \mathbf{R}_d^\square for comput-
 1659 ing $s_d = \Psi_d(\text{Pool}_{(i,j) \in E}(\text{ReLU}(\Psi((\mathbf{x}_j - \mathbf{x}_i) \mathbf{R}^{\square\top}, \mathbf{x}_i \mathbf{R}^{\square\top}))))$. The per-class head score is then
 1660 computed by a sigmoid, and the sum over D binary cross-entropies is used as the training loss.

1661 E.5 TRUNCATION CANONICALIZATION

1662 We introduce truncation-based prior maximization on images as an additional application of our
 1663 adaptive canonicalization framework. Intuitively, many image classes are invariant under removing
 1664 uninformative regions: as long as the object of interest remains in the field of view, the class label
 1665 should not change. We consider, in this case, the truncation as our ‘‘symmetry’’ and apply prior
 1666 maximization over this family of transformations to select a canonical truncation. We note that this
 1667 transformation family is not based on a group action.

We model images as elements of a set of \mathcal{G} in the following way. Given $N \in \mathbb{N}$, consider the regular grid on the unit square $[0, 1]^2$ given by the pixels $Q_{i,j} = [\frac{i}{N}, \frac{i+1}{N}] \times [\frac{j}{N}, \frac{j+1}{N}]$ for $0 \leq i, j < N$. We define \mathcal{G} to be the set of all functions $g \in L_2(\mathbb{R}^2)$ such that $\text{supp}(g) \subset [0, 1]^2$ and g is piecewise constant on the grid, i.e., there exist coefficients $v_{i,j} \in [0, 1]$ such that $g(x) = v_{i,j}$ for all $x \in \{Q_{i,j}\}$. Since each image $g \in \mathcal{G}$ is uniquely determined by its collection of pixel values $(v_{i,j})_{0 \leq i,j < N} \in [0, 1]^{N^2}$, we can identify (via an isometric isomorphism) \mathcal{G} with the box $[0, 1]^{N^2} \subset \mathbb{R}^{N^2}$. Since closed and bounded subsets of finite-dimensional Euclidean spaces are compact, the box $[0, 1]^{N^2} \subset \mathbb{R}^{N^2}$ is compact. Because \mathcal{G} is isometrically isomorphic to $[0, 1]^{N^2}$, the set \mathcal{G} is also compact (and therefore locally compact).

The truncation is parameterized by four coordinates collected in a vector $u = (x_L, y_T, x_R, y_B) \in \mathcal{U} \subset [0, 1]^4$, where we impose the constraints $0 \leq x_L \leq x_R \leq 1$ and $0 \leq y_T \leq y_B \leq 1$. We consider the standard Euclidean metric in \mathcal{U} . Since \mathcal{U} is a closed and bounded subset of $[0, 1]^4$, it is compact.

We now define the truncation transformation. For a parameter $u = (x_L, y_T, x_R, y_B) \in \mathcal{U}$, we view u as encoding the top-left and bottom-right corners of an axis-aligned rectangle: $R(u) = [x_L, x_R] \times [y_T, y_B] \subset [0, 1]^2$. As u varies in the compact box \mathcal{U} , this truncation window moves continuously inside the domain containing all images. Given an image $g \in \mathcal{G}$, we define the truncation by

$$x \mapsto \begin{cases} g(x), & x \in R(u), \\ 0, & x \notin R(u). \end{cases}$$

After truncation, the function lies in $L_2(\mathbb{R}^2)$ but not in \mathcal{G} in general. We then project it back onto the finite-dimensional subspace \mathcal{G} of piecewise constant functions by the orthogonal projection $P : L_2(\mathbb{R}^2) \rightarrow \mathcal{G}$ defined by

$$(Pg)(x) = \sum_{i,j=1}^N \bar{g}_{ij} \mathbb{1}_{Q_{ij}}(x), \quad \bar{g}_{ij} = N^2 \int_{Q_{ij}} g(y) dy.$$

We then define $\kappa_u(g) := P(g \mathbb{1}_{R(u)}) \in \mathcal{G}$.

We now verify that this truncation family satisfies our assumptions. By construction, \mathcal{U} is compact, and the image space \mathcal{G} is compact. In our setting we have $\mathcal{K} = \mathcal{G}$, so \mathcal{K} is also compact. The map

$$\kappa(\cdot) : \mathcal{U} \times \mathcal{G} \rightarrow \mathcal{K}, \quad (u, g) \mapsto \kappa_u(g) \in \mathcal{K}$$

is continuous, and hence, by compactness of the product $\mathcal{U} \times \mathcal{G}$, it is uniformly continuous. This implies that $\{g \mapsto f(\kappa_u(g))\}_{u \in \mathcal{U}}$ is equicontinuous. Thus, the truncation transformation family satisfies the conditions for continuous canonicalization.

We focus on the image classification task with D classes and take axis-aligned truncations as the transformation family. Let $\mathbf{X} \in \mathbb{R}^{N \times N}$ be an image. A truncation is specified by a side-length $s \in [s_{\min}, s_{\max}] \subset [0.5, 1.0]$ and a discrete top-left corner. For a given s , we set the truncation side length to $M(s) = \lfloor sN \rfloor$, and require the window to lie inside the image domain, i.e., $1 \leq i_0 \leq N - M(s) + 1$ and $1 \leq j_0 \leq N - M(s) + 1$. The corresponding axis-aligned window is $\{(i, j) \in \{1, \dots, N\}^2 \mid i_0 \leq i \leq i_0 + M(s) - 1, j_0 \leq j \leq j_0 + M(s) - 1\}$. The truncation then keeps only the pixels inside the window and zeros out the rest, which yields a truncated patch $C_{(i_0, j_0, s)}(\mathbf{X}) \in \mathbb{R}^{M(s) \times M(s)}$. To keep the input dimension fixed, we then rescale this cropped patch back to the original resolution $N \times N$ using a standard interpolation scheme. We denote this resizing operator by $R_s : \mathbb{R}^{M(s) \times M(s)} \rightarrow \mathbb{R}^{N \times N}$. The truncation operator is therefore defined as the composition $T_{(i_0, j_0, s)}(\mathbf{X}) = R_s(C_{(i_0, j_0, s)}(\mathbf{X})) \in \mathbb{R}^{N \times N}$. The transformation family used in our method is

$$\mathcal{T} = \{T_{(i_0, j_0, s)} \mid s \in [s_{\min}, s_{\max}], (i_0, j_0) \text{ admissible as above}\},$$

and in practice random truncations are obtained by sampling s and (i_0, j_0) from a suitable distribution under these constraints.

We introduce the truncation canonicalization as follows. Consider a symmetryless neural network $\Psi : \mathbb{R}^{N \times N} \rightarrow \mathbb{R}^D$ that operates on the images. We denote $\Psi = (\Psi_d)_{d=1}^D$ where $\Psi_d : \mathbb{R}^{N \times N} \rightarrow \mathbb{R}$. The prior maximization for each class $d \in \{1, \dots, D\}$ is performed by

$$T_{(i_0, j_0, s)}^{\square} = \arg \max_{T_{(i_0, j_0, s)} \in \mathcal{T}} h_d(\Psi_d(T_{(i_0, j_0, s)}(\mathbf{X}))),$$

1728 where $h(x) = x$. Once we obtain $T_{(i_0, j_0, s)}^{\square}$, the class d score is then computed by $\Psi_d(T_{(i_0, j_0, s)}^{\square}(\mathbf{X}))$
 1729 are then passed through a sigmoid nonlinearity to obtain class probabilities. The training loss is the
 1730 sum of D binary cross-entropies.
 1731

1732 F EXPERIMENTAL DETAILS

1733 In this section, we describe the experimental setups and implementation details used in Sec. 5.

1734 F.1 ILLUSTRATIVE TOY PROBLEMS: GRID SIGNAL ORIENTATION TASKS

1735 **Toy Problem and Experimental Setup.** We consider square grid on the torus with a 2-channel
 1736 signal. The first channel contains a sinusoidal signal aligned with the x -axis, given by $\sin(2\pi x/T)$.
 1737 The second channel depends on the class label: in Class 0 it is aligned with the x -axis, while in
 1738 Class 1 it encodes a sinusoidal signal along the y -axis, $\sin(2\pi y/T)$. Independent Gaussian noise with
 1739 variance σ^2 is added to each channel. In addition, it introduces an additional challenge by spatially
 1740 restricting the support of the channels. The grid is vertically partitioned into two disjoint halves. The
 1741 first channel is supported only on the left half. The second channel is supported only on the right half.
 1742 The task is to decide if the frequency at the two channels is in the same orientation. The grid size is
 1743 fixed at $N = 40^2$, the sinusoidal period is set to $T = 20$, and the noise level is chosen as $\sigma = 0.1$.
 1744 We generate 1000 samples. Evaluation is carried out using 10-fold cross-validation.
 1745

1746 **Competing Methods.** The competing methods include: MLP, GCN, GAT, GIN, ChebNet, NLSF,
 1747 S²GNN, FA+GIN, and OAP+GIN.
 1748

1749 **Hyperparameters.** We use a three-layer network with a hidden feature dimension chosen from
 1750 $\{32, 64, 128\}$ and ReLU activation functions. The learning rate is selected from $\{10^{-3}, 10^{-4}, 10^{-5}\}$.
 1751 Batch size 100. All models are implemented in PyTorch and optimized with the Adam optimizer
 1752 (Kingma & Ba, 2014). Experiments are conducted on an Nvidia DGX A100. The output of the GNN
 1753 is then passed to an MLP, followed by a softmax classifier.
 1754

1755 F.2 GRAPH CLASSIFICATION ON TUDATASET

1756 **Datasets and Experimental Setup.** We consider five graph classification benchmarks from TU-
 1757 Dataset (Morris et al., 2020): MUTAG, PTC, ENZYMES, PROTEINS, and NCI1. The dataset statistic
 1758 is reported in Tab. 4. Following the random split protocol (Ma et al., 2019; Ying et al., 2018; Zhang
 1759 et al., 2019b), we partition the dataset into 80% training, 10% validation, and 10% testing. Results
 1760 are averaged over 10 random splits, with mean accuracy and standard deviation reported.
 1761

1762 **Competing Baselines.** We evaluate on medium-scale graph classification benchmarks from TU-
 1763 Dataset, using the same set of competing methods as in grid signal orientation tasks. The baselines
 1764 include MLP, GCN, GAT, GIN, ChebNet, NLSF, S²GNN, FA+GIN, and OAP+GIN.
 1765

1766 **Hyperparameters.** The hidden dimension is set to be 128. The models are implemented using
 1767 PyTorch, optimized with the Adam optimizer (Kingma & Ba, 2014). An early stopping strategy is
 1768 applied, where training halts if the validation loss does not improve for 100 consecutive epochs. The
 1769 hyperparameters are selected through a grid search, conducted via Optuna (Akiba et al., 2019), with
 1770 with the learning rate and weight decay explored in the set $\{1e^{-2}, 1e^{-3}, 1e^{-4}\}$, the pooling ratio
 1771 varying within $[0.1, 0.9]$ with step 0.1, and the number of layers ranging from 2 to 9 in a step size of 1.
 1772 The output representations are then passed into an MLP followed by a softmax layer, and predictions
 1773 are obtained by optimizing a cross-entropy loss function. Experiments are conducted on an Nvidia
 1774 DGX A100.
 1775

1776 F.3 MOLECULAR CLASSIFICATION ON OGB DATASETS

1777 **Datasets and Experimental Setup.** We evaluate on larger-scale benchmarks from the Open Graph
 1778 Benchmark (OGB) dataset (Hu et al., 2020) for classification tasks, including ogbg-molhiv, ogbg-

1782
1783
1784 Table 4: Datasets statistics.
1785
1786
1787
1788
1789

Dataset	# Graphs	# Classes	Avg.# Nodes	Avg.# Edges
MUTAG	188	2	17.93	19.79
PTC	344	2	14.29	14.69
ENZYMES	600	6	32.63	64.14
PROTEINS	1113	2	39.06	72.82
NCI1	4110	2	29.87	32.30
ogbg-molhiv	41127	2	25.5	27.5
ogbg-molpcba	437929	128	26.0	28.1
ogbg-ppa	158100	37	243.4	2266.1

1790
1791
1792
1793
1794 molpcba, and ogbg-ppa. Dataset statistics are summarized in Tab. 4. The evaluation settings are
1795 followed by the OGB protocol (Hu et al., 2020).
1796

1797
1798 **Competing Baselines.** For large-scale graph classification, we include GCN, GIN, GatedGCN,
1799 PNA, GraphTrans, SAT, GPS, SAN, and the canonicalization-based variant OAP+GatedGCN as the
1800 competing methods. These approaches have previously demonstrated strong performance on OGB
1801 benchmarks, and their reported results are taken from prior work⁴.
1802

1803
1804 **Hyperparameters.** The models are implemented in PyTorch and optimized with the Adam opti-
1805 mizer, with training capped at a maximum of 1000 epochs and controlled by an early stopping criterion.
1806 The hidden dimension is selected from the set {128, 256, 512}, while the number of layers varies from
1807 2 to 10 in steps of 1. Dropout rates are explored within the range [0, 0.1, . . . , 0.5], the learning rate is
1808 tuned within the interval [0.0001, 0.001], and the warmup is set as 5 or 10. Additionally, the batch
1809 size is chosen from {32, 64, 128, 256} and the weight decay is chosen from {10⁻⁴, 10⁻⁵, 10⁻⁶}. All
1810 hyperparameters are tuned using Optuna (Akiba et al., 2019). The experiments are conducted on an
1811 NVIDIA A100 GPU.
1812

1813 F.4 MODELNET40 POINT CLOUD CLASSIFICATION

1814
1815 **Datasets and Experimental Setup.** Our evaluation for point cloud classification was carried out on
1816 the ModelNet40 dataset (Wu et al., 2015), which consists of 40 object categories and a total of 12,311
1817 3D models. Following prior studies (Wang et al., 2019; Deng et al., 2021), we allocated 9,843 models
1818 for training and 2,468 models for testing in the classification task. For each model, 1,024 points were
1819 uniformly sampled from its mesh surface, using only the *xyz* coordinates of the sampled points. We
1820 apply on-the-fly rotation augmentation during training, following Esteves et al. (2018); Deng et al.
1821 (2021), such that the dataset size remains unchanged. At test time, each example is rotated by an
1822 arbitrary rotation. Note that on-the-fly augmentation essentially changes the training data distribution
1823 during the learning process. The purpose of comparing under rotation protocols is to assess a model’s
1824 invariance to rotational changes.
1825

1826
1827 **Competing Baselines.** For point cloud classification tasks, we compare our anisotropic geometric
1828 method with point cloud approaches, including PointNet and DGCNN architectures, as well as equiv-
1829 iariant models based on the vector neuron framework, i.e., VN-PointNet and VN-DGCNN. We further
1830 include canonicalization baselines, CN-PointNet and CN-DGCNN, and traditional augmentation
1831 baselines in which the training set is expanded with pre-generated rotations (PointNet-Aug, DGCNN-
1832 Aug) with a factor of five ($\times 5$). The experimental results of PointNet, DGCNN, VN-PointNet, and
1833 VN-DGCNN are taken from Wang et al. (2019); Deng et al. (2021).
1834

1835
1836 **Hyperparameters.** We follow the published hyperparameters and training protocol of PointNet
1837 and DGCNN. For PointNet, we use identical channel widths to PointNet (64, 64, 64, 128, 1024).
1838 We use Adam optimizer with learning rate 0.001 and batch size 32 with a weight decay 1×10^{-4}
1839 and dropout 0.3. For DGCNN, each input comprises 1,024 uniformly sampled points, and the k-NN
1840 graph uses neighborhood size $k = 20$. DGCNN uses four EdgeConv layers (with per-layer MLPs of
1841

⁴https://ogb.stanford.edu/docs/leader_graphprop

1836 sizes 64, 64, 128, 256). We train with stochastic gradient descent (initial learning rate 0.1) and apply
 1837 a cosine annealing schedule of 0.001. Training runs for 250 epochs with a batch size of 32, and we
 1838 use a dropout rate of 0.5 in the fully connected layers.
 1839

1840 G ADDITIONAL RESULTS

1841 In this section, we present additional results of our adaptive canonicalization, including experimental
 1842 trade-offs of sampling-based and optimization-based construction, anisotropic nonlinear spectral
 1843 filters for node-level representation, and out-of-sample rotation generalization for point clouds.
 1844

1845 G.1 SAMPLING-BASED VS OPTIMIZATION-BASED IMPLEMENTATION

1846 To evaluate the trade-offs between sampling-based and our sample-and-refine (optimization-based)
 1847 implementation, we conduct experiments on the TUDataset graph classification benchmarks. Tab. 5
 1848 reports the classification performance of TUDataset under sampling-based and optimization-based
 1849 adaptive canonicalization. We see that the optimization-based implementation consistently performs
 1850 better than the sampling-based one. While increasing the sampling candidates (from 1× to 5×
 1851 or 10×) improves the performance, the sample-and-refine strategy is more memory-efficient than
 1852 massive sampling approaches. Rather than storing and evaluating hundreds of rotation matrices
 1853 simultaneously, it processes a smaller working set through iterative refinement, reducing memory
 1854 pressure (Li et al., 2022). In terms of computation time, the sampling-based method grows linearly
 1855 with the number of candidates, while the optimization-based method add a small overhead to the
 1856 inner steps. We see that in practice, a modest refinement (a few steps) surpasses the accuracy of large
 1857 sampling budgets at a lower time, offering a better accuracy-time trade-off.
 1858

1859
 1860 Table 5: Comparison of sampling-based vs. optimization-based adaptive canonicalization. Classifi-
 1861 cation accuracy across TUDataset. Sampling methods use different numbers of random candidates,
 1862 while the optimization approach combines sampling with local refinement via gradient descent.
 1863

	MUTAG	PTC	ENZYMEs	PROTEINS	NCI1
A-NLSF (sampling)	84.23 \pm 1.4	69.05 \pm 1.8	70.10 \pm 1.5	82.94 \pm 1.6	80.64 \pm 1.2
A-NLSF (sampling \times 5)	85.17 \pm 1.3	72.21 \pm 1.3	71.59 \pm 1.0	83.57 \pm 1.8	80.92 \pm 1.3
A-NLSF (sampling \times 10)	85.54 \pm 1.3	72.78 \pm 1.5	72.42 \pm 1.2	85.03 \pm 1.2	80.94 \pm 0.8
A-NLSF (optimization)	87.94 \pm 0.9	73.16 \pm 1.2	73.01 \pm 0.8	85.47 \pm 0.6	82.01 \pm 0.9

1870 G.2 NODE-LEVEL ANISOTROPIC NONLINEAR FILTERS

1871 We introduce the adaptive canonicalization applied to spectral graph neural networks for learning
 1872 graph-level representation in Sec. 4.1 and App. E.3. The adaptive canonicalization can also be applied
 1873 to node-level representation, where the node-level representation proceeds by mapping the input
 1874 signal to the spectral domain (Mallat, 2002) in a band-wise manner with an oriented basis within
 1875 each band’s eigenspace, and performing a synthesis step that transforms the learned coefficients back
 1876 to the node domain.
 1877

1878 On a square grid, each x Fourier mode has a corresponding y Fourier mode of the same response.
 1879 Therefore, standard spectral methods are inherently isotropic as they cannot distinguish between
 1880 horizontal and vertical directional information. On the other hand, adaptive canonicalization is
 1881 anisotropic and our method can learn distinct orientations. The resulting spatial operator can therefore
 1882 implement any directional filter that a convolutional neural network can achieve (Shannon, 2006;
 1883 LeCun & Bengio, 1998; Freeman et al., 1991; Dages et al., 2024).

1884 In graph-level tasks, the canonicalized node-level embeddings can serve as the intermediate represen-
 1885 tation from which graph-level features are derived. Specifically, the resulting node embeddings can be
 1886 aggregated through standard pooling operations to have a graph-level representation. We evaluate the
 1887 node-to-graph construction on TUDataset for graph classification tasks. The results are summarized
 1888 in Tab. 6. We see that the node-to-graph construction achieves performance closely aligned with, and
 1889 in some cases approaching, that of the direct graph-level canonicalization. We attribute the slightly
 worse performance to the potential pooling loss.

1890 Table 6: Graph classification performance on TUDataset using adaptive canonicalization. Comparison
 1891 between direct graph-level representations (Graph) and node-to-graph constructions (Node-to-graph).
 1892

	MUTAG	PTC	ENZYMES	PROTEINS	NCI1
Node-to-graph	87.02 \pm 1.1	72.14 \pm 1.5	71.26 \pm 1.2	84.87 \pm 0.8	81.64 \pm 1.2
Graph	87.94 \pm 0.9	73.16 \pm 1.2	73.01 \pm 0.8	85.47 \pm 0.6	82.01 \pm 0.9

1896 G.3 OUT-OF-SAMPLE ROTATION GENERALIZATION IN POINT CLOUDS

1897 We adopt the $z/\mathcal{SO}(3)$ protocol (Esteves et al., 2018; Deng et al., 2021): training with on-the-fly
 1898 azimuthal rotations (z -axis) augmentation, and evaluation applies under arbitrary rotations to each
 1899 test shape. In this setting, we assess out-of-sample rotation generalization by constraining training
 1900 data rotations while testing on the full rotation group. The classification performance on ModelNet40
 1901 under $z/\mathcal{SO}(3)$ protocol is reported in Tab. 7. Standard PointNet and DGCNN drop sharply under
 1902 this shift. Equivariant vector-neuron variants recover much of the loss, and canonicalization base-
 1903 lines are comparable. Our adaptive canonicalization outperforms both equivariant architecture and
 1904 canonicalization baselines in both backbones.

1905 Table 7: Classification accuracy on ModelNet40 under $z/\mathcal{SO}(3)$ protocol.

	PointNet	DGCNN	VN-PointNet	VN-DGCNN	CN-PointNet	CN-DGCNN	AC-PointNet	AC-DGCNN
Accuracy	19.6	33.8	77.5	89.5	79.6	88.8	81.4	91.8

1912 G.4 ABLATION STUDIES

1914 We conduct ablation studies on the spectral band partitioning and the choice of GSO for A-NLSF, as
 1915 well as on the impact of different point cloud backbones in our anisotropic point cloud networks.

1917 G.4.1 SPECTRAL BAND PARTITION

1919 In our experiment, we adopt a dyadic partitioning scheme (see App. E.3). In this section, we conduct
 1920 an ablation using a uniform partitioning of the eigenvalues with the same number of bands and report
 1921 the graph classification performance in Tab. 8. We see that using the dyadic partitions performs better
 1922 than using the uniform partition. tion provided by dyadic bands, which could more effectively isolate
 1923 band-wise unitary actions that commute with the chosen GSO. We also note that spectral band design
 1924 can be realized in more flexible and expressive ways, for example, through attention as in SpecFormer
 1925 (Bo et al., 2023). Investigating such learned or adaptive band-selection strategies is an important
 1926 direction for future work and may further strengthen our adaptive canonicalization framework.

1927 Table 8: Graph classification performance using uniform and dyadic spectral band partitioning.

	MUTAG	PTC	ENZYMES	PROTEINS	NCI1
Uniform	81.36 \pm 1.2	66.20 \pm 0.8	62.84 \pm 1.4	80.01 \pm 1.3	79.62 \pm 1.0
Dyadic	87.94 \pm 0.9	73.16 \pm 1.2	73.01 \pm 0.8	85.47 \pm 0.6	82.01 \pm 0.9

1933 G.4.2 GRAPH SHIFT OPERATOR

1935 We evaluate the graph Laplacian as an alternative GSO. Tab. 9 reports the graph classification
 1936 performance of A-NLSF when instantiated with the graph Laplacian versus the normalized graph
 1937 Laplacian. We observe that using the normalized graph Laplacian in our method yields better
 1938 performance than the graph Laplacian. We attribute this to the properties of the normalized Laplacian:
 1939 (i) the normalized Laplacian removes degree-related scaling effects, leading to a comparable spectral
 1940 domain across graphs with different degree distributions, and (ii) its eigenvalues lie in the fixed interval
 1941 $[0, 2]$, providing a controlled and interpretable frequency range, and making dyadic partitioning better
 1942 aligned across different graphs.

1943 G.4.3 POINT CLOUD BACKBONES

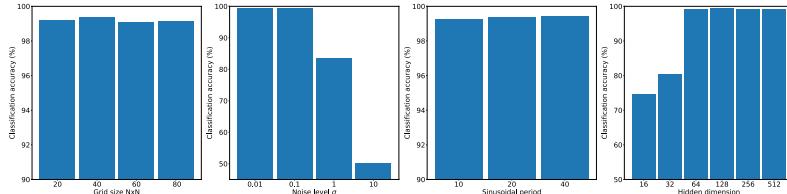
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997 Table 9: Graph classification performance of A-NLSF with different GSO.

	MUTAG	PTC	ENZYMES	PROTEINS	NCI1
Graph Laplacian	83.76 \pm 1.0	67.23 \pm 1.4	62.60 \pm 1.2	82.64 \pm 1.6	78.59 \pm 0.8
Normalized graph Laplacian	87.94 \pm 0.9	73.16 \pm 1.2	73.01 \pm 0.8	85.47 \pm 0.6	82.01 \pm 0.9

In order to assess the impact of the backbone choice on the performance of our anisotropic point cloud networks, we extended our experiments to include two additional and widely used point cloud backbones, PointNet++ (Qi et al., 2017b) and RSCNN (Liu et al., 2019), in addition to PointNet and DGCNN reported in Tab. 3. We denote the corresponding variants by AC-PointNet++ and AC-RSCNN. The ablation results are reported in Tab. 10. We see that the choice of backbone does influence the overall point cloud classification performance. However, we observe that our adaptive canonicalization framework consistently improves the classification performance across these backbones. Moreover, when comparing methods built on the same backbone (e.g., PointNet or DGCNN), our approach outperforms equivariant models, data augmentation, and standard canonicalization (see Tab. 3). This indicates that our method is robust across different point cloud backbones and can further benefit from stronger backbones when they are available.

G.5 SENSITIVITY ANALYSIS

To examine the effect of different hyperparameters, we conduct a hyperparameter sensitivity study covering grid size, sinusoidal period, noise level, and hidden dimension. For each hyperparameter, we swept over a range of values while keeping all other settings fixed. The results of the sensitivity analysis are summarized in Fig. 2. Overall, we observe that our method is reasonably robust. For grid size and sinusoidal period, performance remains stable across the tested ranges. For the noise level, small to moderate noise leads to similar performance, with a degradation only when the noise becomes large enough that it effectively corrupts the underlying structure of the data. For the hidden dimension, small dimensions impact the performance, but performance stabilizes once we enter a standard regime of model capacity.

1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997 Figure 2: Hyperparameter sensitivity with respect to grid size, noise level, and hidden dimension.

G.6 TRUNCATION CANONICALIZATION WITH A PRETRAINED CLASSIFIER

We introduce in App. E.5 an application of our adaptive canonicalization on truncation prior maximization. We now illustrate the applicability of this setup with a pretrained image classifier. Specifically, we take a ResNet-18 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009). We freeze the backbone, and train only the classifier using the CIFAR-10 or CIFAR-100 (Krizhevsky et al., 2009) training set. The experiment is conducted with ten independent runs, and the resulting image classification performance is reported in the Tab. 11. We see that truncation-based prior maximization improves classification performance over the standard vanilla baseline. This implies that our method enables the model to adaptively select a canonical truncation that enhances downstream performance. In addition, we observe that the selected canonical crops tend to tightly focus on the main object while discarding background and irrelevant context. It matches the intuition behind our prior maximization: by optimizing over the truncation family, the model chooses a representative transformed image that

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997 Table 10: Classification results on ModelNet40 for different point cloud backbones. Results of competing methods marked with * are taken from Deng et al. (2021); Luo et al. (2022).

	Accuracy
PointNet	74.7*
AC-PointNet	81.1 \pm 0.7
PointNet++	85.0*
AC-PointNet++	87.4 \pm 0.4
RSCNN	82.6*
AC-RSCNN	87.6 \pm 0.3
DGCNN	88.6*
AC-DGCNN	91.6 \pm 0.6

1998 best aligns with its prior over the class. This experiment demonstrates that our adaptive canonical-
 1999 ization framework can be instantiated with a truncation symmetry and benefit from off-the-shelf
 2000 pretrained models. It also highlights the potential of transformation families as a practical way to
 2001 improve pretrained models via adaptive canonicalization.
 2002

2003 Table 11: Image classification accuracy on CIFAR-10 and CIFAR-100 using a ResNet18 pretrained
 2004 on ImageNet, with and without truncation canonicalization.

		CIFAR-10	CIFAR-100
Vanilla		72.09 ± 1.0	56.94 ± 0.8
Truncation canonicalization		74.92 ± 0.6	60.38 ± 0.5

G.7 COMPUTATIONAL REQUIREMENT COMPARISON

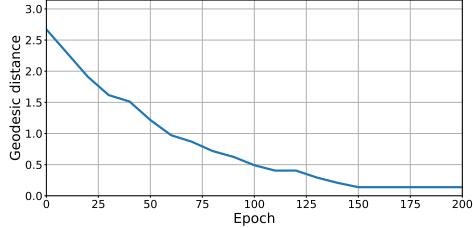
2012 Tab. 12 the training time per epoch with the number of parameters. We see that A-NLSF uses a similar
 2013 number of parameters as the other methods and fewer than the spectral method. Its computational
 2014 requirements are comparable to the other methods and does not rely on a significantly larger training
 2015 budget than the competing methods.

2016 Table 12: Running time per epoch(s)/number of parameters.
 2017

	MUTAG	PTC	ENZYMES	PROTEINS	NCI1
MLP	0.07/105K	0.10/114K	0.13/125K	0.37/129K	1.01/134K
GCN	0.40/116K	0.66/120K	0.81/137K	1.92/142K	5.84/149K
GAT	0.62/138K	0.87/149K	0.96/154K	2.34/159K	4.93/167K
GIN	0.14/105K	0.37/106K	0.52/107K	0.94/106K	1.97/121K
ChebNet	0.79/185K	1.25/189K	1.72/191K	3.64/217K	11.52/245K
FA+GIN	0.57/120K	1.04/123K	1.35/126K	2.55/130K	4.31/142K
OAP+GIN	0.22/105K	0.39/104K	0.57/109K	1.21/110K	2.36/124K
A-NLSF	0.44/132K	0.89/140K	1.29/145K	2.20/148K	4.37/151K

G.8 TRAINING STABILITY

2027 To quantify the training stability of
 2028 our method, we track the canonical
 2029 rotations of a subset of 1500 ran-
 2030 domly chosen training examples in
 2031 the point cloud classification exper-
 2032 iment. At each epoch, we measure the
 2033 mean geodesic distance on $\mathcal{SO}(3)$ be-
 2034 tween the canonicalizations between
 2035 consecutive epochs. Fig. 3 reports
 2036 the mean geodesic distance between
 2037 epochs. We observe that this distance
 2038 decreases during the training and then
 2039 remains stable, indicating that the canonical
 2040 representatives stabilize with no rapid switching.



2041 Figure 3: Mean geodesic distance on $\mathcal{SO}(3)$ between the
 2042 canonicalizations between consecutive epochs.

G.9 CANONICALIZED POINT CLOUDS

2043 Fig. 4 shows the canonicalized point clouds for the chair class in the point cloud classification
 2044 experiment. We randomly select 20 examples from this class and visualize them after applying the
 2045 optimal transformations. We observe that the examples in this class share a similar orientation after
 2046 canonicalization.

G.10 SHAPENET PART SEGMENTATION

2047 To expand our experimental study on point cloud data, we further conduct experiments on the
 2048 ShapeNet part segmentation benchmark (Yi et al., 2016). The dataset consists of 16 shape categories
 2049 annotated with a total of 50 parts, where each category is labeled with between two and six parts. Note
 2050 that our prior maximization adaptive canonicalization method was naturally suited to classification
 2051 tasks. Extending it to the segmentation task is not trivial, as the segmentation task requires predicting

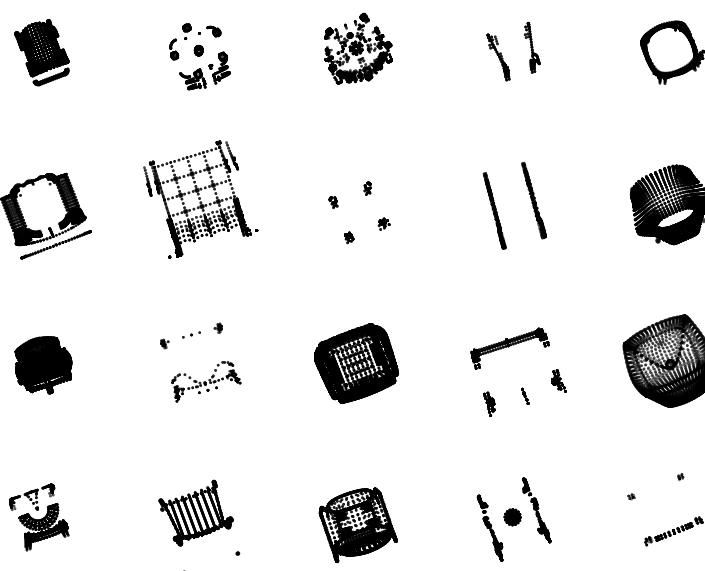


Figure 4: The canonicalized point clouds for the chair class.

a label for each point in the point cloud, and applying prior maximization to each point would be computationally inefficient. Therefore, in order to adapt our adaptive canonicalization to the segmentation task, we consider the adaptive canonicalization with the minimal entropy prior summing over nodes. This modification preserves the spirit of the adaptive canonicalization while making it compatible with per-point prediction. Tab. 13 reports the segmentation performance. For the PointNet backbone, we see that, similar to the point cloud classification task, the entropy-based adaptive canonicalization yields advantageous segmentation performance compared to equivariant architectures and standard canonicalization baselines. For the DGCNN backbone, our method attains performance comparable to equivariant architectures while outperforming existing canonicalization methods. These results demonstrate that our approach has potential beyond classification. Note that one of the main contributions of our work is to construct continuous and symmetry-respecting models. In the entropy prior adaptive canonicalization, the continuity property is not straightforward. We plan to investigate the continuity properties of this adapted approach in future work.

H USE OF LARGE LANGUAGE MODELS

Following the ICLR 2026 policy that requires disclosure of use of Large Language Models (LLMs), we state that an LLM was used for editing purposes, such as grammar, spelling, phrasing, and stylistic polish.

Table 13: Part segmentation performance on the ShapeNet part dataset. The metric is reported with the average category mean IoU. Results of competing methods marked with * are taken from Deng et al. (2021); Kaba et al. (2023).

PointNet	62.3*
DGCNN	78.6*
VN-PointNet	72.8*
VN-DGCNN	81.4*
CN-PointNet	73.6 \pm 1.1 *
CN-DGCNN	78.5 \pm 0.9 *
AC-PointNet	76.0 \pm 0.6
AC-DGCNN	80.9 \pm 0.7