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Abstract
The proliferation of large language models has
revolutionized natural language processing tasks,
yet it raises profound concerns regarding data pri-
vacy and security. Language models are trained
on extensive corpora including potentially sensi-
tive or proprietary information, and the risk of
data leakage — where the model response re-
veals pieces of such information — remains in-
adequately understood. This study examines sus-
ceptibility to data leakage by quantifying the phe-
nomenon of memorization in machine learning
models, focusing on the evolution of memoriza-
tion patterns over training. We reproduce findings
that the probability of memorizing a sequence
scales logarithmically with the number of times
it is present in the data. Furthermore, we find
that sequences which are not apparently memo-
rized after the first encounter can be “uncovered”
throughout the course of training even without
subsequent encounters. The presence of these “la-
tent” memorized sequences presents a challenge
for data privacy since they may be hidden at the
final checkpoint of the model. To this end, we de-
velop a diagnostic test for uncovering these latent
memorized sequences by considering their cross
entropy loss.

1. Introduction
Large language models (LLMs) are trained on vast data-sets
(Touvron et al., 2023; Gemini Team et al., 2023; OpenAI
et al., 2023; Brown et al., 2020). The size of the training
datasets enables high competency in the trained models
in the sense of fluency, knowledge about various domains
(AlKhamissi et al., 2022; Guu et al., 2020), and the ability
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to perform in-context reasoning. The training datasets of-
ten include proprietary, copyrighted, or otherwise private
information. In human memory, repeated encounters with
information and data are gradually transformed from an
“episodic” or contextually detailed verbatim-like stores into
“semantic” stores in which the gist and general nature of the
content is retained but the specifics are discarded. (Tulving,
1972)

In contrast, LLMs are capable of not only using training
data for general knowledge and performance, but have been
shown to possess a vast capacity for detailed memorization.
Specifically, with appropriate cue-ing, LLMs can reproduce
verbatim text from their training corpii. This phenomenon
is the opposite of “catastrophic forgetting”, in which shifts
in the training data cause models to forget previous learn-
ing, which has led to a vigorous subfield of research on
mitigating this interference-driven forgetting (Kirkpatrick
et al., 2017; Zenke et al., 2017; De Lange et al., 2019; Serrà
et al., 2018; Wang et al., 2023; Schwarz et al., 2018; Ritter
et al., 2018). In part, the ability of LLMs to exhibit detailed
memory of training data may be due to their large size. Yet
LLMs are often trained on a single pass through the data
corpus, meaning that the model encounters distributional
shifts throughout training. Surprisingly, the verbatim re-
call of LLMs extends to sequences seen early in training
(Biderman et al., 2023b).

1.1. Related Work

Extracting memorized sequences from language models is
an area of high interest. Early work established that it was
possible to extract sensitive data including phone numbers,
URLs and personal information from trained language mod-
els (Zanella-Béguelin et al., 2019). Other studies injected
canaries to determine which aspects of the training process
contributed to whether a sequence can be extracted (Hen-
derson et al., 2017; Thakkar et al., 2020). More recent work
has extended this to investigate how these properties scale
with model size and data statistics (Carlini et al., 2022a;
Karamolegkou et al., 2023; Ozdayi et al., 2023; Carlini
et al., 2022b).

The definition of memorization is also still debated and
various approaches to quantifying memorization have been
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made (Zhang et al., 2021; Feldman & Zhang, 2020). A
variety of attacks have been designed to extract memorized
sequences using designed prompts (Thakkar et al., 2020)
and model activation perturbations (Kassem et al., 2024).

Finally, there has also been work studying how the training
process affects the status of memorization (Tirumala et al.,
2022). This work focuses on how parameters of training and
size of the model affect the dynamics of training. They find
that scaling the model generally leads to less forgetting. In
our work, we focus on sequences which counter-intuitively
do not obey the forgetting laws presented in this work and
expanding on the implications of these persistent ”episodic”
memories.

1.2. Contribution

This work provides insights into the dynamics and mechan-
ics of memorization in large language models, contributing
to the broader understanding of data privacy and security
within machine learning. Our primary contributions are as
follows:

Quantification of Memorization Susceptibility: We sys-
tematically evaluate how the statistical characteristics of
training data, specifically sequence complexity and repeti-
tion, influence the likelihood of memorization in language
models.

Stationarity of Memorized Sequences: We discover
that the memorization status of sequences remains largely
stationary after initial exposure, despite not being re-
encountered.

Latent Memorization and Recovery: We identify the pres-
ence of ”latent” memorized sequences, which are not ev-
ident at certain checkpoints but can be uncovered later in
training or through controlled perturbations.

Development of a Diagnostic Test: We propose a novel
diagnostic test for uncovering latent memorized sequences
by analyzing their cross-entropy loss. This test provides
a practical tool for detecting and mitigating potential data
leakage in deployed language models.

2. Methodology
2.1. Sequence Complexity

As in previous studies (Carlini et al., 2020), we find that
one class of data which is highly represented in memorized
data are ”simple” sequences such as repeated subsequences,
sequences of numbers or highly structured sequences.

This notion of complexity can be formalized using Kologo-
morov complexity. Kologomorov complexity is defined as
the minimum description needed to reproduce a sequence.
While this formalism is helpful, it is a theoretical measure

which cannot be computed readily. As a proxy, we use mod-
ern compression algorithms to determine the extent to which
sequences can be reproduced from a smaller description. In
order to calculate the complexity of a sequence we define a
metric z-compressibility which is the ratio between the com-
pressed length of the sequence and the length of the original
sequence. This metric is an upper bound on the Kologo-
morov complexity of the sequence since the Kologomorov
complexity is defined as the smallest of such descriptions.

2.2. Quantifying memorization

One popular definition of memorization is kl-memorization
(Carlini et al., 2022a). kl-memorization is evaluated by con-
sidering a sequence of length k + l. The first k tokens are
presented to the model as context. The model is used to gen-
erate a continuation of length l. The model’s continuation is
compared to the ”true” continuation, and a sequence is said
to be kl memorized if the model’s output exactly matches
the true continuation.

We find that kl-memorization may be overly strict. In many
cases, the model may make small errors such as inserting
or modifying a single token which results in a ”forgotten”
sequence 1. In order to mitigate this, we propose a modi-
fication of kl-memorization by introducing k-Levenshtein
distance (k-LD) in which k context tokens are provided to
the model and the measure of memorization is given by the
Levenshtein distance (edit distance) between the true con-
tinuation and the model continuation. We find that this is a
more natural measure of memorization which also provides
a range of values which produces more granular insight into
the strength of the model’s memory. Throughout this study,
we set k = 32 and compare the continuation of the model
with the original sequence by computing the levenshtein
distance between the next 64 tokens.

2.3. Analyzing repeated Samples

We analyze where training sequences were repeated through-
out the course of training. In our study, we focus on the
l portion of the sequence. For this study, we fixed l to be
64 tokens. Given this target sequence, we compare the
target sequence with all of the training sequences which
were presented to the model during the period of training
under consideration. We compute the largest subsequence
match between 512,000 target sequences and every individ-
ual training example and call a training example a ”repeat”
if there was a sub-sequence match of length 30 or longer.

2.4. Models

In this study, we used the model, Pythia-1b (Biderman et al.,
2023a), which was trained on the Pile dataset(Gao et al.,
2020). For selected experiments, we reproduced the re-

2



Uncovering Latent Memories

sults using a larger and better performing model, Amber-7B
(Liu et al., 2023), in order to ensure that our results were
consistent with other large language models. We selected
these two models as they were large high performing models
which had fully reproducible data sequences and frequent
checkpoints. As in previous works (Biderman et al., 2023a),
all experiments were run with the models run with half
precision and no temperature.

3. Experimental results
3.1. Statistics of memorization

We analyze two primary drivers of memorization during
training: sequence complexity, and the number of repeti-
tions. Previous studies have shown that the probability of
extraction is correlated with number of repetitions (Carlini
et al., 2020). We are able to reproduce this result in our
data as well (Figure 1a). In addition, we found that the
z-complexity of the string itself was a strong predictor of
whether a sequence was memorized (Figure 1b). We found
that for strings of different complexity exhibited different
memorization curves (Figure 1c). Both of these factors
influenced the memorization probability with a log-linear
relationship.

a b c

Figure 1. Data statistics and the probability of memorization
a. Plot of average k-LD as a function of the number of times the
sequence is repeated in the dataset for Pythia-1b and Amber-7b b.
Average k-LD as a function of the Z-complexity of the sequence.
c. Relationship between k-LD and repeats for different complexity
levels. d. Comparison of the predictions of the best linear model
predicting the k-LD from the logarithm of the sequence complexity
and number of repetitions.

3.2. Dynamics of memorization

We analyze how the k-LD changes throughout the course of
training for individual sequences. In order to eliminate the
effects of repeated exposure, we filter out sequences which
are repeated according to our heuristic outlined above. For
these target sequences, we track the k-LD for the sequence
and measure how it changes as training proceeds. Surpris-
ingly, we find that the memorization status of a sequence
is largely stationary throughout training. After the initial
checkpoint, the k-LD of the sequences fluctuate but do so
in a way which is stable across training (Figure 2d). This
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Figure 2. Memorization status is stationary a. Histograms of
changes of edit distance between consecutive checkpoints for se-
quences which were encountered once during training. b. Dis-
tribution of k-LD during checkpoint 10k and 11k. Color is the
log of the number of sequences in each bin. The vast majority of
sequences are not memorized in either checkpoint. c. Visualiza-
tion of individual samples and the change in the memorized length
during training. d. Grey lines are sub-sampled single sequence
trajectories throughout training. Each trajectory of k-LD measure-
ments was normalized such that the distribution of k-LD was mean
0 and variance 1 over the period of interest. The red line denotes
the mean of all sequences under consideration and shaded area
denotes region of two standard deviations of k-LD at a given poitn
in time..

is consistent in both Pythia-1b and Amber-7b models. The
memorization status for individual sequences as well as the
population mean show no clear trend as training progresses.
Furthermore, unlike a random walk, we see that the variance
of the does not grow over time, but remains fixed. This is
indicative of a mean reversion tendency of the dynamics
and demonstrate the stability of the memories within the
model weights. Additionally, we observe that the changes in
the k-LD between consecutive checkpoints (Figure 2ab) are
symmetric and roughly follow a laplace distribution. This
again confirms the counter-intuitive property of sequences to
become memorized as often as they are forgotten. Notably,
the model is able to recall memories which, at one point in
time, appeared to be forgotten, despite never encountering
that sequence again.

The stationarity of the memorization status of these se-
quences indicates that the memorized sequence is fixed
throughout time, but this is in conflict with the fact that the
model weights are constantly evolving. This stability in the
presence of noise is indicative of a stabilizing mechanism
by which the encoding of the sequence memory is preserved
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by a restorative process illustrated where the memorized
sequence becomes a fixed point in the weight space of the
model under training dynamics. Subsequent training may
alter the readout of the sequence, but the memory of the
sequence is fixed throughout time. Since this is not true of
all sequences, it may point to a phase transition that occurs
when the sequence is first encountered.

3.3. Latent memorization and recovery
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Figure 3. a. Comparison of the distribution of best achievable
k-LD by perturbing the model weights. Top panel is the histogram
of the perturbations of the model at checkpoint 19k and bottom is
the model at checkpoint 10k. b. Comparison of using perturbations
to evoke a target sequence for three different classes of sequences.
In the top panel, we examine the sequences which are ”latent”
memorized. In the middle panel, we find sequences which weren’t
memorized during training and in the bottom panel, we analyze
sequences which were encountered later in training but were not
encountered by the model. We not that perturbing the weights is
only able to evoke sequences which are ”latent” memorized. c.
Comparison of the cross entropy losses of sequences separated into
the three different classes of sequences analyzed in b. The cross
entropy losses of ”latent” memorized sequences are much lower.
d. Drawing of a mechanistic proposal for how memorization is
stabilized during training. e. Visualization of the Levenshtein
distances from the target for various perturbations. Each row is
a single sequence, and the heights of the bars correspond to the
number of perturbations which resulted in a Levenshtein distance
of the corresponding bin.

We analyzed how the memorization status of sequences
which were encountered between checkpoint 9k and 10k,

changed later on in training. We found many sequences
which were not memorized at 10k (k-LD > 50) but subse-
quently became memorized later on in training and exhibited
memorization by checkpoint 19k Table 1 despite never be-
ing encountered again. For these sequences, the nature of
the random changes shown in figure 2 indicate the form of a
random walk. We hypothesize that the process of training in
large language models acts as random noise on the weights
with respect to the memory of the sequence. Thus, simply
perturbing the weights with random noise should produce
similar effects as training does.

We test this by randomly perturb the model weights by
adding a small amount of random isotropic gaussian noise
with σ = 10−3 to each of the weight parameters. This noise
was roughly an order smaller than the weights themselves.
We repeat this process 200 times and select perturbation
which yields the lowest k-LD.

We find that sequences which were not memorized at check-
point 10k but were memorized later in training were able
to be recovered by random perturbation (Figure 3a). As
a control, we also considered sequences which were not
presented to the model by checkpoint 20k, and observed
that the distribution of k-LD closely matched those which
were encountered by not memorized by the model (Figure
3b). Furthermore, the distribution of minimum k-LD for
the perturbations of the model at 10k closely resembled the
distribution of the k-LD for the model at checkpoint 19k.
These observations indicate subsequent training acts similar
to random noise perturbations to the model weights.

These sequences which are not memorized at one point in
training but appear later seem to be ”remembered” by the
model in spite of their incorrect continuation. They can
be considered to be ”latent” memorized as they may not
be visible at the current point in training, but they can be
uncovered by small perturbations of the weights. These
sequences pose a significant risk for leakage since they
are not easily detectable from evaluating kl-memorization.
To this end, we discovered that these ”latent” memorized
sequences had significantly lower cross entropy loss when
evaluated by the model (Figure 3c), thus simply evaluating
the likelihood of those sequences using the trained model is
a natural diagnostic for detecting these ”latent” memorized
sequences.

4. Conclusion and limitations
We study how memorization changes throughout train-
ing and focused on sequences which occurred only once
throughout training. Under these conditions, we find that
rather than forgetting these sequences, the model retains
them for the duration of training. We characterized the
nature of memorization changes throughout training using

4



Uncovering Latent Memories

random weight perturbations. These perturbations confirm
that sequences which appeared to be forgotten at one point
during training, may still be memorized by the model and
are able to be uncovered with a small amount of random
noise. We concluded by demonstrating a simple diagnostic
to distinguish between ”latent” memorized sequences and
un-memorized sequences.

This study highlights one surprising behavior of large lan-
guage models and begins to elucidate what mechanisms
are present in the memorization behavior of these models.
Our work suggest a possible mechanism of how memorized
strings are sustained throughout training and further exper-
iments are needed to confirm the underlying mechanism.
Notably, further testing is required across other large lan-
guage models which were not considered here. We also
propose a mechanistic explanation for this phenomenon
which requires additional experiments to explain the cause
of these persistent memories.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Dynamics of memorized sequences

Table 1. Model continuations at various stages in training for a few selected sequences which were complex and encountered only once
during training. Minimum edits are highlighted such that character edits are highlighted in orange, deletions are highlighted in red and
new characters are highlighted in green.

Context True Continuation Checkpoint 10000 Checkpoint 15000 Checkpoint 19000

.r001 Decision Letter 0 Silva
Daniel de Paiva Academic Edi-
tor © 2020 Daniel de Paiva

2020 Daniel de Paiva This is an open
access article distributed under the
terms of the Creative Commons At-
tribution License , which permits un-
restricted use, distribution, and repro-
duction in any medium, provided the
original author and source are cred-
ited. 20 Apr 2020 P

Silva 2020 Daniel de

Paiva Silva This is an open
access article distributed under the
terms of the Creative Commons
Attribution License , which permits
unrestricted use, distribution, and re-
production in any medium, provided
the original author and source are

credited. 20 Apr 2020 P

Silva 2020 Daniel de Paiva Silva This
is an open access article distributed
under the terms of the Creative Com-
mons Attribution License , which
permits unrestricted use, distribution,
and reproduction in any medium, pro-
vided the original author and source

are credited. 26 Feb 2020

Silva 2020 Daniel de Paiva Silva This
is an open access article distributed
under the terms of the Creative Com-
mons Attribution License , which
permits unrestricted use, distribution,
and reproduction in any medium, pro-
vided the original author and source

are credited. 10 May 2020

992¿ por favor ayudenme para
instalar DBDesigner ¡him¿ hay
¡BluesKaj¿!es — Guest17992

¡ubottu¿ Guest17992: En la
mayorÃxada de canales Ubuntu se
comunica en inglÃ©s. Para ayuda
en EspaÃ±ol, por favor entre en los
canales #ubuntu-es o #kubuntu-es.
¡BluesKaj¿!es —

¡ubottu¿ Guest17992: En la

mayorÃ a de canales de

Ubuntu se comunica sÃ³lo

en inglÃ©s. Para busca

ayuda en Espa Ã±ol , por

favor entre ra en

los can ales #ubuntu -es o

#kubuntu -es. ¡BluesKaj¿ ! es

—

¡ubottu¿ Guest17992: En la mayorÃ
a de canales de Ubuntu se habla
sÃ³lo en inglÃ©s. Si busca ayuda en
espaÃ±ol o charlar entra en el canal
#ubuntu-es. Escribe ”/join #ubuntu-
es”

¡ubottu¿ Guest17992: En la mayorÃ

a de los canales de Ubuntu ,

se habla sÃ³lo en inglÃ©s. Si

busca ayuda en espaÃ±ol entre al

lar entra en el canal #ubuntu-

es ; escriba ” / join #ubuntu-

es ” (

, findings, beliefs, or expe-
riences on those topics or
products. The views and
opinions expressed on CateTh-
eOkay.com are purely my own.
Any product

claim, statistic, quote or other rep-
resentation about a product or ser-
vice should be verified with the man-
ufacturer, provider or party in ques-
tion. CateTheOkay.com doesn’t con-
tain any content which might present
a conflict of interest.

claim, statistic, quote or other repre-
sentation about a product or service
should be verified with the manufac-
turer or provider . Comments .

I have a question .

I have a friend who is a

teacher and she is a

teacher. She is a teacher

and she is a student.

She is a student and she is a

claim, statistic, quote or other repre-
sentation about a product or service
should be verified with the manu-
facturer or provider or party in

question . CateTheOkay.com

is not affiliated with,

endorsed by, or sponsored

by the Coca -Cola Company .

CateTheOkay.com is not

affiliated with, endorsed by,

claim, statistic, quote or other repre-
sentation about a product or service
should be verified with the manu-
facturer or provider or party in

question . I am not a doctor,

pharmacist, or registered

dietitian. I am not

a registered dietitian .

I am not a registered dietitian.

I am not a registered dietitian.

I am

A.1. Compute details

All experiments were run on a cluster with access to 16 concurrent a100 GPUs. All of the language models were run using a
single GPU and multiple GPUs were used to parallelize the experiments in order to speed up progress. Searching for repeats
within the dataset was performed using the library dask, using 64 CPUs distributed in a cluster, each with 32Gb of RAM.

A.2. Licenses

This project used code from the Pythia project (Biderman et al., 2023a) released by EleutherAI under the Apache license
version 2.0. We also used the Pile dataset (Gao et al., 2020) which is released under the MIT license. The Amber model was
produced by LLM360, and the code and dataset are both released under apache 2.0.

A.3. Additional figures

We include figures which were ommitted from the main paper. These provide additional details that were not central to the
claims made in the paper.

A.4. Models

In this study, we largely focused on the large language model, Pythia-1b (Biderman et al., 2023a) which was trained on the
Pile dataset(Gao et al., 2020). For selected experiments, we reproduced the results using a larger and better performing
model, Amber-7B (?), in order to ensure that our results were consistent in other large language models. We selected
these two models as they were large high performing models which had fully reproducible data sequences and frequent
checkpoints. As in previous works (Biderman et al., 2023a), all experiments were run with the models run with half precision
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Figure 6. Average of the k-LD metric k-LD values are binned by number of repeats and complexity and the mean and variance of the
samples in those bins are computed and colored.
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Figure 7. Average of the k-LD metric k-LD values are binned by number of repeats and complexity and the mean and variance of the
samples in those bins are computed and colored.
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Figure 8. Examples of strings which were seen once during training. Top left plot shows the k-LD over for different trajectories and
bottom left plot is a histogram of when the examples were repeated and at what length with the time on the x axis and the length of the
repeat on the y axis. The text of the context, true continuation and model continuation are shown as well.
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