
Orthogonal Gradient Boosting for
Interpretable Additive Rule Ensembles

Anonymous Author(s)
Affiliation
Address
email

Abstract

Gradient boosting of decision rules is an efficient approach to find interpretable yet1

accurate machine learning models. However, in practice, interpretability requires2

to limit the number and size of the generated rules, and existing boosting variants3

are not designed for this purpose. Through their strict greedy approach, they can4

increase accuracy only by adding further rules, even when the same gains can5

be achieved, in a more interpretable form, by altering already discovered rules.6

Here we address this shortcoming by adopting a weight correction step in each7

boosting round to maximise the predictive gain per added rule. This leads to a8

new objective function for rule selection that, based on orthogonal projections,9

anticipates the subsequent weight correction. This approach does not only correctly10

approximate the ideal update of adding the risk gradient itself to the model, it11

also favours the inclusion of more general and thus shorter rules. Additionally,12

we derive a fast incremental algorithm for rule evaluation, as necessary to enable13

efficient single-rule optimisation through either the greedy or the branch-and-14

bound approach. As we demonstrate on a range of classification, regression,15

and Poisson regression tasks, the resulting rule learner significantly improves the16

comprehensibility/accuracy trade-off of the fitted ensemble. At the same time, it17

has comparable computational cost to previous branch-and-bound rule learners.18

1 Introduction19

Algorithms for learning additive rule ensembles (or rule sets) are an active area of research, because20

they are intrinsically interpretable yet relatively accurate due to their modularity and ability to21

represent interaction effects. While there is an emerging consensus that rule ensembles should22

optimize the trade-off between statistical risk and cognitive complexity in terms of number and lengths23

of rules (see Fig. 1), there is a multitude of diverse approaches for performing this optimization.24

This ranges from computationally inexpensive generate-and-select approaches [10; 14], over more25

expensive minimum-description length and Bayesian approaches [29], to expensive full-fledged26

discrete optimization methods [6; 30]. Within this range of options, methods based on gradient27

boosting [9] are of special interest because of their robustness against changes in the training data,28

flexibility to adapt to various response variable types and loss functions, and finally their good model29

performance relative to their computational cost.30

On the other hand, state-of-the-art rule boosting approaches are based on design choices that compro-31

mise their risk/complexity trade-off. The traditional gradient boosting adaption [8] resorts to greedy32

optimization of the individual rules, which results in additional rules and additional conditions per33

rule to reach a desired statistical risk level. The more recent optimal rule boosting approach [3]34

partially addresses this issue, but it is based on the uncorrected weight updates of the extreme gradient35

boosting framework [4]. This too results in the inclusion of unnecessary extra rules, especially for36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

0 20 40 60 80 100
Cognitive Complexity

10 2

10 1

100

Ri
sk

Gradient Boosting / XGBoost:
+18418 if PS 120 & year 2005
+13919 if count 69 & km 125000 & PS 220 & year 2011
- 8545 if 120 powerPS 160 & 2005 year 2011
+2769 if True
- 4150 if count 18 & km 50000 & PS 120 & year 2005
+2826 if count 18 & km 100000 & year 2008
+5878 if count 150 & km 125000 & PS 220 & year 2005
- 10356 if km 125000 & PS=220 & year 2011

Proposed algorithm:
+5245 if PS 120 & year 2005
+6779 if km 125000 & year 2011
+7451 if count 150 & PS 220
+3932 if year 2000
+6001 if PS 160 & year 2008
+12621 if count 150 & PS 160 & year 2015

used cars

SIRUS
GS
GB / XGB
FCOGB
train
test

0 20 40 60 80 100
Cognitive Complexity

Gradient Boosting:
- 3.03 if var 1.24
+3.47 if skew 7.62 & var -0.50
+5.65 if curt -2.18 & skew 7.62 & -0.50 var 3.38
- 4.01 if curt -2.18 & skew 3.42 & -2.26 var 1.24
- 5.38 if curt 4.57 & skew -3.38 & var 1.24
+3.41 if curt 4.57 & ent -0.19 & skew 0.76 & -0.50 var 1.24
- 3.92 if curt -2.18 & skew 7.62 & var 1.24
- 2.76 if curt -0.18 & ent -0.19 & skew 0.76 & -0.507 var 1.24
+5.05 if -2.18 curt -0.18 & ent 0.54 & skew 3.42
 & 1.24 var 3.38
- 3.47 if curt 1.40 & skew 7.62 & var -2.26

Proposed algorithm:
- 4.80 if var 1.24
+5.20 if skew 7.62 & var -0.50
+7.68 if curt -2.18 & skew 7.62 & -0.50 var 3.38
- 4.36 if skew 3.42 & -2.26 var 1.24
- 6.81 if curt 4.57 & skew -3.38 & var 1.24
+3.34 if curt 4.57 & ent -0.19 & skew 0.76 &
 -0.50 var 1.24

banknote

SIRUS
GS
GB
XGB
FCOGB
train
test

Figure 1: Risk/complexity curves for previous rule boosting variants (green) and proposed orthog-
onalization approach (red) for dataset used_cars and banknote. The two highlighted corners
correspond to rule ensembles with roughly equivalent training risk but substantially reduced cognitive
complexity for the proposed algorithm.
loss functions with unbounded second derivatives like the Poisson loss. Most importantly, both37

approaches use the strict stagewise fitting approach where rules are not revised after they are added to38

the ensemble. Thus, they can increase accuracy only by adding further rules, even when the same39

gains can be achieved, in a more interpretable form, by altering those already present in the model.40

Here we develop the first rule boosting algorithm that consistently optimizes the accuracy/complexity41

trade-off of the produced rule sets. For that, we adopt the fully corrective boosting approach [26]42

where all rule consequents are re-optimized in every boosting round, which can be done with43

only little computational extra effort given the usual convex loss functions. We then derive a new44

objective function for selecting individual rule bodies that anticipates the subsequent consequent45

re-optimization. This function is based on considering only the part of a rule body orthogonal to the46

already selected rules, which, as we show, correctly identifies the best approximation to the ideal space47

for consequent optimization defined by the risk gradient. Finally, we derive a corresponding efficient48

algorithm for cut-point search, which is crucial for, either greedy or branch-and-bound, single rule49

optimization. As we demonstrate on a wide range of datasets, the resulting rule boosting algorithm50

significantly outperforms the previous boosting variants in terms of risk/complexity trade-off, which51

can be attributed to a better risk reduction per rule as well as an affinity to select simpler rules. At the52

same time, the computational cost remains comparable to the previous branch-and-bound rule learner.53

The paper is organized as follows. After giving a brief overview of the wider literature on intepretable54

machine learning and additive rule ensembles (Sec. 2), we recall the formal basics of rule ensembles55

and gradient boosting in Sec. 3. We then present our main technical contributions in Sec. 4 and their56

empirical evaluation in Sec. 5, before concluding in Sec. 6.57

2 Related Literature58

In contrast to post-hoc explanations of blackbox models [e.g., 28; 23], which are often unfaithful to59

the original model [21; 24; 13], interpretable machine learning methods aim to produce intrinsically60

intelligible, yet accurate, models. Additive models that compose terms in a simple summation are61

particularly useful in this context, because of their modularity, i.e., the possibility to comprehend the62

terms in isolation. As long as the individual terms are not too numerous and simulatable, i.e., their63

output can be approximately computed by a human, the resulting model is highly interpretable.64

Good examples for this are (generalized) linear models [GLMs, 19], or generalized additive mod-65

els [GAMs, 12; 16]. However, they do not model variable interactions, at least not of higher order.66

Conjunctive propositional rules, on the other hand, have this ability, explaining their longstanding67

popularity in machine learning and related fields. Additive rule ensembles, which are closely related68

2

Figure 2: Illustration of output space for toy regression example with three data points with target
values y1 = −10, y2 = −6, y3 = 5 and three queries with output vectors q1 = (1, 1, 0), i.e., q1
selects the first two data points, q2 = (0, 0, 1), and q3 = (0, 1, 1). The gradient boosting objective
selects q1 with weight β1 = −8 as first rule, resulting in a negative gradient vector −g = (−2, 2, 5).
Left: Approximations (4) to target subspace (blue) spanned by q1 and −g. The subspace (green)
spanned by q3 and q1 is a better approximation than the subspace (orange) spanned by q2 and q1.
However, the latter is selected by standard gradient boosting.Right: After projection onto orthogonal
complement of already selected query, angle between q3 and −g is smaller than that between q2 and
−g and is thus successfully selected by orthogonal gradient boosting objective.

to non-modular rule lists [e.g., 31; 22], thus provide a unique combination of interpretability and69

predictive power. There is a wide range of algorithms for learning additive rule ensembles. One70

approach is to generate a candidate set and then sub-selecting a rule ensemble, e.g. via sub-modular71

optimization [14; 32], or—as in RuleFit [10] or SIRUS [2]—via a sparse linear model, which is72

especially computationally inexpensive. However, these approaches are typically highly sensitive to73

the randomness in the generation of the candidate set. Alternatively, finding an optimal rule ensemble74

can be expressed as an integer program. Its relaxation as linear problem can then be solved via the75

column generation framework [6; 30], making the problem tractable. This approach is robust and76

flexible, but the full optimization remains computationally expensive.77

Early approaches to additive rule ensemble learning that avoid initial candidate generation are based78

on the separate-and-conquer framework [11] and later on the original boosting algorithm [5; 17].79

However, the first typically leads to non-modular rule lists and the second are designed for specific80

learning tasks only, typically classification. This problem is overcome with the gradient boosting81

framework [9], which generalizes the original AdaBoost algorithm [25] and allows fitting arbitrary82

differentiable loss functions. With this framework, rules are fitted stagewise based on their effect83

on the training loss when added to the ensemble [7; 8]. Extreme gradient boosting [4] increases84

the scalability of gradient boosting by avoiding numerical weight optimization. It is applicable85

whenever the loss function is twice differentiable. Fully-corrective boosting recalculate the weight of86

all weak learners after adding one weak learner into the ensemble model [26; 27]. It overcomes the87

drawback of the original gradient boosting algorithm that the weak learners are not changed after88

being generated. However, it is a high-level framework and does not solve the problem of how to89

select individual base learners.90

3 Rule Boosting91

An additive ensemble of k rules can be represented by Boolean query functions q1, . . . , qk and a92

weight vector β = (β1, . . . , βk)
T ∈ Rk that jointly describe a function f(x) =

∑k
i=1 βiqi(x), the93

output of which can be mapped to the conditional distribution of a target variable Y |X = x. That is,94

the queries define the rule antecedents (rule bodies), and the coefficients β define the rule consequents,95

i.e., the output of rule i for input x ∈ Rd is βi if x satisfies the antecedent, i.e., qi(x) = 1 (and 096

otherwise). Moreover, each query function qi : Rd → {0, 1} is a conjunction of ci propositions, i.e.,97

qi(x) = pi,1(x)pi,2(x) . . . pi,ci(x) where the pi,j are typically a threshold function on an individual98

3

input variable, e.g., pi,j(x) = δ(xl ≥ t). We denote the set of available propositions by P and the99

query language of all conjunctions that can be formed from P as Q.100

We are concerned with two properties of an additive rule ensemble: its (empirical) prediction risk1101

R(f) = 1
n

∑n
i=1 l(f(xi), yi), measured by some positive loss function l(f(x), y) averaged over a102

dataset {(x1, y1), . . . , (xn, yn)}, and its cognitive complexity C(f) = k +
∑k

i=1 ci, measuring103

the cognitive effort required to parse all rule consequents and antecedents. Here we consider loss104

functions that can be derived as negative log likelihood (or rather deviance function) when interpreting105

the rule ensemble output as natural parameter of an exponential family model of the target variable,106

which guarantees that the loss function is strictly convex and twice differentiable. Specifically, we107

consider the cases of squared loss lsqr(f(xi), yi) = (f(xi)− yi)
2, the logistic loss llog(f(xi), yi) =108

log(1 + exp(−yif(xi))), and the Poisson loss lpoi(f(xi), yi) = log yi − f(xi)− yi + exp(f(xi)).109

Gradient boosting Gradient boosting [9] is a “stagewise” fitting scheme for additive models that,110

in our context, produces a sequence of rule ensembles f (0), f (1), . . . , f (k) such that f (0)(x) = 0 and,111

for t ∈ [1, k], f (t)(x) = f (t−1)(x) + βtqt(x). Specifically, the term βtqt(x) is chosen to perform an112

approximate gradient descent with respect to the risk function R(f) = R(f) considered as a function113

of the model output vector f = (f(x1), . . . , f(xn)). The exact gradient descent update would be114

−α∗g where g is the gradient vector with components gi = ∂l(f(xi), yi)/∂f(xi) and α∗ is the115

step length that minimizes the empicical risk R(f − αg). However, since in general there is no query116

q for which the output vector q = (q(x1), . . . , q(xn)) is equal to the gradient g, the goal is to select117

q∗ that best approximates g in the sense that it minimizes the squared projection error118

min
β∈R

∥ −α∗g − βq∥2 = α2
∗

(
∥g∥2 − (qTg)2

∥q∥2

)
. (1)

This is achieved by choosing qt to maximize the standard gradient boosting objective [8] objgb(q) =119

|qTg|/∥q∥ and to find βt = argminβ∈R R(f + βqt) via a line search. Note that this βt is not120

generally equal to the minimizing β in (1), because the optimal update in direction q can be better121

than the best geometric approximation to the gradient descent update in direction q. A derivation of122

this objective function is the gradient sum objective [8; 26] objgs(q) = |qTg|, which always selects123

more general rules than the gradient boosting objective [8, Thm. 1], however, typically at the expense124

of an increased risk per rule, because the correction of data points with large gradient elements has to125

be toned down to avoid over-correction of other selected data points with small gradient elements.126

Finally, an adaption of “extreme gradient boosting” [4] to rule ensembles yields the extreme boosting127

objective [3] objxgb(q) = (qTg)2/qTh where h = diag(∇2
f(x)R(f)) is the diagonal vector of the128

risk Hessian again with respect to the output vector f . This approach starts from the second order129

approximation of R(f + βq) for which also yields a closed form weight update βt = −qTg/qTh.130

This approach is well-defined for our loss functions derived from exponential family response models,131

which guarantee defined and positive h. For the squared loss, it is equivalent to standard gradient132

boosting, because the second order approximation is exact for lsqr and h is constant.133

Single rule optimization While the rule optimization literature can be neatly divided into heuristic134

(greedy / beam search) and exact branch-and-bound search, these approaches are actually closely135

related: they can both be described as traversing a lattice on the query language Q imposed by a136

specialization relation q ⪯ q′ that holds if the propositions in q′ are a superset of those mentioned in137

q, and q′ thus logically implies q. The difference between the approaches is under what conditions138

they discard specializations of candidate queries and how those specializations are generated.139

Here, we build on the branch-and-bound framework presented in Boley et al. [3] that allows to140

efficiently search for optimal conjunctive queries in a condensed search space, given that there is141

an admissible, effective, and efficiently computable bounding function for the employed objective.142

Specifically, let obj : Q → R denote the objective function to be maximized. Then a bounding143

function bnd : Q → R is admissible if for all q ∈ Q it holds that bnd(q) ≥ bst(q) where144

bst(q) = maxq⪯q′∈Q obj(q′) denotes the objective value of the best specialization of q. A bounding145

function is effective in allowing to prune the search space if the difference bnd(q)− bst(q) tends146

1Note that for all algorithms discussed here, the l2-regularized risk can also be considered with only light
modifications. However, for ease of exposition and since regularization typically is not crucial for the rather
small rule ensembles considered here, we focus on the unregularized case.

4

to be small, rendering bst(q) itself the theoretically most effective bounding function. However,147

computing bst(q) is as hard as the overall optimization problem.148

A frequently applied recipe for constructing an admissible bounding function that is also effective and149

efficiently computable is to relax the quantifier in the definition of bst and instead of bounding the150

value of the best specialization in the search space, bound the value of the best subset of data points151

of those selected by q [20]. This results in the tight bounding function when unaware of selectability152

bnd(q) = max{obj(q′) : q′ ≤ q,q′ ∈ {0, 1}n} ≥ bst(q) . (2)
Here, q ≤ q′ refers to the component-wise less or equals relation on the binary output vector of q153

and q′. This function can be efficiently computed for many objective functions by pre-sorting the154

data in time O(n log n) that has to be carried out only once per fitted rule [15]. For instance for the155

extreme boosting objective, the optimum q′ ∈ {0, 1}n can be found as a prefix or suffix of all data156

points after sorting them according to the ratio gi/hi of first and second order loss derivatives.157

4 Fully-corrective Orthogonal Gradient Boosting158

Having reviewed the existing rule boosting approaches, we now turn to improving them in terms of159

their risk/complexity trade-off. Our approach to this is to improve the risk reduction per rule added to160

the ensemble, which directly affects the number of rules needed to achieve a certain risk. As it turns161

out, this typically coincides with preferring the addition of more general and hence simpler rules.162

Thus, it also positively affects the cognitive complexity on the level of the lengths of individual rules.163

4.1 Weight Correction and Subspace Approximations164

A natural idea to reduce the ensemble risk per rule added is to relax the strict stagewise fitting165

approach of traditional gradient boosting and to allow the whole weight vector β to be adjusted in166

every round t, i.e., to set167

β(t) = argmin
β∈Rt

R(Qtβ) , (3)

where Qt = [q1, . . . ,qt] is the n× t query matrix with the output vectors of all selected queries as168

columns. In contrast to a full joint optimization of queries and weights, this intermediate solution169

still retains the computational benefits of gradient boosting for small rule ensembles: Given that our170

loss function l and therefore the empirical risk R are convex, optimizing the weights in round t is a171

convex optimization problem in t variables, equivalent to fitting a small generalized linear model.172

Using Newton-Raphson (“iterated least squares”) type algorithms, the computational cost of this is173

usually negligible compared to the more expensive query optimization step, especially when aiming174

for optimal individual queries for their reduced cognitive complexity.175

Re-optimizing the weights, which is sometimes referred to as fully corrective boosting [26], ef-176

fectively turns boosting into a form of forward variable selection for linear models. However, in177

contrast to conventional variable selection where all variables are given explicitly, we still have to178

identify a good query qt in each boosting iteration, and it turns out that finding the appropriate query179

is more complicated as in the case of single weight optimization characterized by (1). We still would180

like to add the direction of steepest descent, i.e., the negative gradient −g, to the subsequent risk181

optimization step and approximate as closely as possible the outcome [Qt−1;g]α
∗ where α∗ ∈ Rt182

are the risk minimizing weights for q1, . . . ,qt−1,g. Therefore, the best approximating query q is183

now given by184

argmin
q∈Q

min
β∈Rt

∥[Qt−1;g]α
∗ − [Qt−1;q]β∥2 . (4)

It is an important observation that the standard gradient boosting objective does not correctly identify185

this optimally approximating query. This is demonstrated by the example illustrated in Fig. 2. In186

the left sub-figure it can be seen that the green plane, span{q1,q3}, is a better approximation to187

span{q1,−g} (blue) than the orange plain, span{q1,q2}. However, the latter is selected by standard188

gradient boosting, because the angle between q2 and −g is smaller than that between q3 and −g.189

4.2 An Objective Function to Identify the Best Approximating Subspace190

The intuitive reason for the gradient boosting objective failing to identify the correct query in Fig. 2191

is that selecting x2 in addition to x3 is not beneficial for the overall risk reduction if we are only192

5

allowed to set the weight for the newly selected query. This is because then this weight has to be a193

compromise between the two different magnitudes of correction required for x2, which only needs a194

small positive correction, and x3, which needs a large positive correction. If we, however, are allowed195

to change the weight of the previously selected query this consideration changes, because we can196

now balance an over-correction for x2 by adjusting the weight of the first rule. While on first glance197

it seems unclear how much of such re-balancing can be applied without harming the overall risk, it198

turns out that this is captured by a simple criterion based on the norm of the part of the newly selected199

query that is orthogonal to the already selected ones.200

Lemma 4.1. For g∈Rn, Q=[q1, . . . ,qt−1] ∈ Rn×(t−1), and f ∈span{q1, . . . ,qt−1,g}, we have201

argmin
q∈Q

min
β∈Rt

∥f − [q1, . . . ,qt−1,q]β∥2 = argmax
q∈Q

|gT
⊥q|

∥q⊥∥
. (5)

where for a vector v ∈ Rn we denote by v⊥ its projection onto the orthogonal complement of202

rangeQ. (All proofs of lemmas and theorems are in SI [1])203

From this result we can directly derive |gT
⊥q|/∥q⊥∥ as suitable objective function for fully corrective204

gradient boosting. However, it is worth incorporating two further observations. Firstly, we can show205

that, after applying the weight correction step (3), the gradient vector satisfies g = g⊥, i.e., it is206

orthogonal to the subspace spanned by the selected queries, and therefore can be used in the objective207

function without projection.208

Lemma 4.2. Let g be the gradient vector after the application of the weight correction step (3) for209

selected queries q1, . . . ,qt. Then g ⊥ span{q1, . . . ,qt}.210

Moreover, the right hand side of Eq. (4) is technically undefined for redundant query vectors q that211

lie in rangeQ and therefore have ∥q⊥∥ = 0. Through Lm. 4.2 we know that for such queries we212

also have gTq = 0, which suggests to simply fix this issue by defining the objective value in this213

case to be 0. However, this solution would not fix numerical instabilities when ∥q⊥∥ is close to214

zero. A better solution is therefore to add a small positive value ϵ to the denominator, which can215

be considered a regularization parameter. With this we arrive at the final form of our objective216

function, which we state along with some of its basic properties in the following theorem.217

Theorem 4.3. Let Q = [q1, . . . ,qt−1] ∈ Rn×(t−1) be the selected query matrix and g the cor-218

responding gradient vector after full weight correction, and let us denote by q = q⊥ + q∥ the219

orthogonal decomposition of q with respect to rangeQ. Then we have for a maximizer q∗ of the220

orthogonal gradient boosting objective objogb(q) = |gTq|/(∥q⊥∥+ ϵ):221

a) For ϵ → 0, span{q1, . . . ,qt−1,q
∗} is the best approximation to span{q1, . . . ,qt−1,g}.222

b) For ϵ → ∞, q∗ maximizes objgs and any maximizer of objgs maximizes objogb.223

c) For ϵ = 0 and ∥q⊥∥ > 0, the ratio (objogb(q)/objgb(q))
2 is equal to 1 + (∥q∥∥/∥q⊥∥)2.224

d) The objective value objogb(q) is upper bounded by ∥g∥.225

Intuitively, the orthogonal gradient boosting objective function measures the cosine of the angle226

between the gradient vector and the orthogonal projection of a candidate query vector q. This is in227

contrast to the standard gradient boosting objective, which considers the angle of the unprojected228

query vector instead. In the example in Fig. 2 we can observe that this difference leads to successfully229

identifying the best approximating subspace, and Thm. 4.3a) guarantees this property.230

4.3 Efficient Implementation231

To develop an efficient optimization algorithm for the orthogonal gradient boosting objective, we232

recall that projections q⊥ on the orthogonal complement of rangeQ can be naively computed via233

q⊥ = Q((QTQ)−1(QTq)) where we placed the parentheses to emphasize that only matrix-vector234

products are involved in the computation—at least once the inverse of the Gram matrix QTQ is235

computed. This approach allows to compute projections, and thus objective values, in time O(nt+ t2)236

per candidate query after an initial preprocessing per boosting round of cost O(t2n+ t3).237

In a first step, this naive approach can be improved by maintaining an orthonormal basis of the range238

of the query matrix throughout the boosting rounds, resulting in a Gram-Schmidt-type procedure.239

6

Algorithm 1 Fully-corrective Orthogonal Gradient Boosting
Input: dataset (xi, yi)

n
i=1, desired number of rules k

Initialise f (0) = 0
for t = 1 to k do

g =
(

∂l(f(t−1)(x1),y1)
∂f(t−1)(x1)

, . . . , ∂l(f(t−1)(xn),yn)
∂f(t−1)(xn)

)
qt = argmaxq∈Q

|qT g|
∥q⊥∥ via beam(g, Ot−1) or bb(g, Ot−1)

ot = qt⊥/∥qt⊥∥ and Ot = [Ot−1;ot]
βt = argminβ∈Rt R([q1, . . . ,qt]β) via convex_opt
f (t) = [q1, . . . ,qt]βt

Output: f (k)(·) = βk,1q1(·) + · · ·+ βk,kqk(·)

Table 1: Comparison of normalised training risks and computation times for rule ensembles, averaged
over cognitive complexities between 1 and 50, using SIRUS(SRS), Gradient Sum(GS), Gradient
boosting (GB), XGBoost (XGB) and FCOGB, for benchmark datasets of classification (upper),
regression (middle) and Poisson regression problems (lower).

TRAINING RISKS TESTING RISKS COMPUTATION TIMESDATASET d n SRS GS GB XGB FCOGB SRS GS GB XGB FCOGB SRS GS GB XGB FCOGB
TITANIC 7 1043 .895 .662 .635 .637 .610 .894 .723 .712 .721 .707 7.077 2.624 9.858 10.21 25.71
TIC-TAC-TOE 27 958 .892 .741 .627 .640 .587 .885 .800 .722 .689 .669 12.59 3.971 10.34 6.09 13.99
IRIS 4 150 .685 .253 .222 .287 .218 .745 .384 .429 .408 .511 11.02 0.775 1.099 1.453 2.487
BREAST 30 569 .569 .273 .291 .314 .292 .627 .273 .370 .376 .348 11.48 6.744 74.43 74.83 239.2
WINE 13 178 .578 .162 .216 .192 .146 .621 .340 .471 .402 .242 9.456 1.530 4.432 2.154 55.18
IBM HR 32 1470 .980 .572 .560 .573 .560 .974 .607 .618 .626 .606 11.15 17.24 10.99 12.92 12.03
TELCO CHURN 18 7043 .944 .679 .683 .679 .670 .945 .663 .677 .673 .663 50.83 40.01 1883 1485 3039
GENDER 20 3168 .566 .996 .996 .996 .996 .570 1.000 1.000 1.000 1.000 22.42 22.73 25.49 24.27 32.95
BANKNOTE 4 1372 .854 .303 .264 .288 .227 .858 .310 .263 .297 .228 8.933 6.298 5.648 7.060 8.444
LIVER 6 345 .908 .809 .800 .787 .777 .917 .913 1.000 .928 1.000 9.734 1.997 99.72 124.1 193.9
MAGIC 10 19020 .906 .720 .709 .710 .707 .903 .702 .693 .693 .687 1.364 75.14 89.18 101.9 352.2
ADULT 11 30162 .804 .594 .599 .594 .582 .802 .603 .615 .607 .597 2.169 121.0 136.7 146.0 728.3
DIGITS5 64 3915 .248 .331 .312 .335 .353 .262 .329 .314 .330 .350 52.60 110.8 72.74 101.5 97.4
INSURANCE 6 1338 .169 .144 .143 .146 .126 .177 .134 .137 .140 .126 14.06 7.507 15.94 12.98 39.53
FRIEDMAN1 10 2000 .180 .069 .073 .071 .068 .165 .072 .080 .079 .074 16.79 2.514 4.302 3.171 6.915
FRIEDMAN2 4 10000 .082 .092 .119 .116 .101 .082 .094 .120 .117 .101 47.33 11.79 17.56 13.18 28.4
FRIEDMAN3 4 5000 .093 .044 .043 .043 .041 .092 .046 .046 .046 .044 29.86 6.243 10.61 8.559 17.65
WAGE 5 1379 .427 .368 .366 .355 .342 .341 .377 .397 .394 .396 14.18 5.605 12.12 13.17 25.19
DEMOGRAPHICS 13 6876 .219 .214 .213 .213 .212 .209 .217 .217 .217 .216 38.24 36.80 29.40 33.04 72.42
GDP 1 35 .063 .024 .024 .024 .024 .059 .025 .025 .025 .025 7.974 .261 .351 .282 .488
USED CARS 4 1770 .175 .266 .250 .251 .225 .172 .289 .265 .271 .241 15.00 8.371 12.10 9.484 20.27
DIABETES 10 442 .156 .137 .137 .136 .130 .188 .148 .150 .155 .158 10.50 2.204 3.574 3.920 7.591
BOSTON 13 506 .101 .089 .090 .087 .081 .105 .078 .086 .086 .081 10.96 3.055 6.731 5.285 10.44
HAPPINESS 8 315 .109 .031 .031 .032 .030 .109 .033 .038 .038 .037 6.344 1.160 11.37 11.31 26.43
LIFE EXPECT. 21 1649 .109 .026 .026 .026 .025 .110 .027 .027 .027 .026 21.44 16.16 58.43 63.82 131.2
MOBILE PRICES 20 2000 .148 .131 .137 .137 .135 .140 .136 .143 .145 .142 33.81 15.03 367.7 442.5 815.4
SUICIDE RATE 5 27820 .547 .543 .540 .541 .534 .514 .521 .521 .521 .515 52.35 109.6 117.1 139.6 644.6
VIDEOGAME 6 16327 .895 .953 .953 .953 .953 .850 .720 .720 .720 .720 1.171 41.91 34.38 45.90 119.1
RED WINE 11 1599 .072 .034 .035 .035 .034 .073 .035 .035 .036 .035 19.94 9.149 15.32 21.99 35.34
COVID VIC 4 85 NA .144 .130 .368 .125 NA .152 .127 .382 .130 NA .523 .600 .628 .854
COVID 2 225 NA .341 .374 2.893 .347 NA .447 .482 4.115 .469 NA .701 .690 .682 1.143
BICYCLE 4 122 NA .352 .317 .310 .300 NA .413 .439 .440 .467 NA .695 1.103 1.105 2.124
SHIPS 4 34 NA .155 .168 87.31 .145 NA .222 .288 109.1 .420 NA .235 .296 .311 .448
SMOKING 2 36 NA .114 .109 .165 .090 NA .130 .193 .258 .169 NA .266 .256 .208 .301

Since the projections qt⊥ of the selected queries naturally form an orthogonal basis of rangeQ240

this only requires normalization, which can be done essentially without additional cost. Formally,241

by storing ot = qt⊥/∥qt⊥∥ in all boosting rounds t, subsequent projections can be computed242

via q⊥ = q −O(OTq) where O = [o1, . . . ,ot]. This reduces the computational complexity per243

candidate query to O(tn) without requiring any additional preprocessing.244

While this looks like the optimal complexity for evaluating objogb in isolation, it leads to a prohibitive245

complexity for large n for finding the optimal query in a given round. Specifically, branch-and-bound246

with the tight bounding function (2) evaluates O(n) queries per expanded search node and beam247

search even O(d2n). In both cases, using the expression for q⊥ above repeatedly results in a quadratic248

cost in n per search node. To circumvent this, we have to exploit the structure of candidate evaluations,249

similar to other efficient implementations of rule and tree learning algorithms [18].250

7

The candidates evaluated per search node of both branch-and-bound and beam search have query251

vectors that are prefixes of an ordered sub-selection of data points, in beam search because optimum252

cut-off values are sought for each of the d input variables, in branch-and-bound because the optimum253

in Eq. (2) is attained or approximated by a prefix with respect to some presorting order. Hence, we254

need to solve the following prefix optimization problem: given an ordered sub-selection of l of the255

n data points, represented by an injective map σ : {1, . . . , l} → {1, . . . , n}, find the optimal prefix256

i∗ = argmax
i∈{1,...,l}

gTq(i)

∥q(i)
⊥ ∥+ ϵ

(6)

where q(0) = 0 and q(i) = q(i−1) + eσ(i). The following proof shows how the computational257

complexity for solving (6) can be substantially reduced compared to the direct approach above. It258

uses an incremental computation of projections that works directly on the available orthonormal basis259

vectors o instead of computing matrix-vector products or, even worse, the whole projection matrix.260

Theorem 4.4. Given a gradient vector g ∈ Rn, an orthonormal basis o1, . . . ,ot ∈ Rn of the261

subspace spanned by the queries of the first t rules, and a sub-selection of l candidate points262

σ : [l] → [n], the best prefix selection problem (6) can be solved in time O(tn).263

Proof sketch. We write the objective value of prefix i in terms of incrementally computable quantities:264

gTq(i)

∥q(i)
⊥ ∥+ ϵ

=
gTq(i)

∥q(i)∥ − ∥q(i)
∥ ∥+ ϵ

=
gTq(i)

∥q(i)∥ −
√∑t

k=1 ∥okoT
k q

(i)∥2 + ϵ
.

In particular, the t sequences of norms ∥oko
T
k q

(i)∥ can be computed in time O(n) via cumulative265

summation of the k-th basis vector elements in the order given by σ:266

∥oko
T
k q

(i)∥ = ∥ok∥
i∑

j=1

oT
k eσ(j) =

i∑
j=1

ok,σ(j)

267

We close this section with a pseudocode (Alg. 1) that summarizes the main ideas of the orthogonal268

gradient boosting and refer to the literature for details about the beam-search/branch-and-bound step.269

5 Experiments270

In this section, we present empirical results comparing the proposed fully corrective orthogonal271

gradient boosting (FCOGB) to the standard gradient boosting algorithms [8] using greedy optimization272

of objgb (GB) and objgs (GS), to extreme gradient booosting [3] using branch-and-bound optimisation273

of objxgb (XGB), and finally to SIRUS [2] as the state-of-the-art generate-and-filter approach.274

We investigate the risk/complexity trade-off, the affinity to select general rules, as well as the275

computational complexity. The datasets used are those of Boley et al. [3] augmented by three276

additional classification datasets from the UCI machine learning repository and, to introduce a novel277

modelling task to the rule learning literature, five counting regression datasets from public sources.278

This results in a total of 34 datasets (13 for classification, 16 for regression, and 5 for counting/Poisson279

regression, see Tab. 1). All algorithms were run five times on all datasets using 5 random 80/20280

train/test splits to calculate robust estimates of all considered metrics. In all cases, the number of281

gradient boosting iterations was chosen to produce ensembles with cognitive complexity of at most282

50. The experiment code and further information about the datasets are available on GitHub[1].283

Cognitive complexity versus risk Tab. 1 compares the complexity/risk trade-off of the boosting284

variants and SIRUS by the normalized risk averaged across all considered cognitive complexity levels285

(where normalization is performed by the risk of the empty rule ensemble). FCOGB has the smallest286

training risk for 26 of the 34 datasets, occasionally outperforming the second best algorithm by a287

wide margin (tic-tac-toe, wine, banknote, insurance, boston, ships, smoking). For the test risk the288

picture is more ambiguous, however, FCOGB retains a relative majority of datasets won. Performing289

one-sided paired t-tests at significance level 0.05 (with Bonferroni correction for 8 hypotheses) reveals290

that FCOGB significantly outperforms all other variants with a margin of at least 0.001 average291

normalized training risk (while there is no significant winner in terms of test risk—likely due to a292

lack of regularization for larger ensemble sizes).293

8

0.0 0.5 1.0
Coverage Rate Gradient Boosting

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 R
at

e
FC

OG
B

0.0 0.5 1.0
Coverage Rate XGBoosting

0.0 0.5 1.0
Coverage Rate Gradient Sum 0 10 20 30 40 50

cognitive complexity
0

100

200

300

400

500

600

700

800

900

tim
e

(s
ec

on
ds

)

breast
Gradient Sum
Gradient Boosting
XGBoost
Naive FCOGB
FCOGB

0 10 20 30 40 50
cognitive complexity

0

2

4

6

8

10

12
diabetes

Figure 3: First three: the comparison of the coverage rate of Gradient Boosting, XGBoost, Gradient
Sum and FCOGB. The upper (resp. lower) half of the green line means the coverage rate of FCOGB is
higher (resp. lower) than the other method. Last two: the comparison of the running time of Gradient
boosting, XGBoost and FCOGB for the benchmark datasets breast cancer and diabetes of
generating rule ensembles with cognitive complexity 50.

Coverage To compare the generality of the rules learned by the new objective function in com-294

parison to the existing ones, we performed an additional experiment where we first used one of the295

previous objective functions to generate rule ensembles with ten rules for all datasets. Then for296

each partial rule ensemble, we applied the orthogonal gradient boosting objective function to find297

an alternative rule. Importantly, we used branch-and-bound with admissible bounding functions for298

all the alternative objectives to avoid confounding through sub-optimal greedy solutions. In Fig. 3299

we compare the relative coverage, i.e., the relative number of selected data points ∥q∥2/n, of the300

rules discovered by the original algorithms to the ones discovered by FCOGB. The outcome is that301

81.1% of the FCOGB rules covers more data points than gradient boosting, and similarly 71.3% of302

its rules cover more data points than those generated by XGBoost. In contrast, only 47.2% of the303

FCOGB rules cover more datapoint than the ones discovered by gradient sum. These results are in304

alignment with the theoretical expectation in terms of the influence of the coverage on the objective305

values where gradient sum is completely unaffected, whereas orthogonal gradient boosting has a306

denominator that tends to grow with coverage albeit less than the one of gradient boosting.307

Computation time We also compare the computational cost of generating rule ensembles with308

cognitive complexity 50 by different algorithms in Tab 1. Comparing the computational cost of309

FCOGB to XGB, the other algorithm utilizing the more expensive branch-and-bound search, the310

costs are in the same order of magnitude except for one extreme case (wine) where FCOGB is a311

factor of 26 slower. Comparing to the two greedy variants, FCOGB is in the same order of magnitude312

as gradient boosting for most datasets. Unsuprisingly, there are a few examples where greedy search313

vastly outperforms branch-and-bound, in one case (telco churn) by a factor of around 76. However,314

overall, the results confirm that branch-and-bound search is a practical algorithm in absolute terms:315

For 23 benchmark dataset, FCOGB is able to finish training a model of cognitive complexity of 50316

within one minute. Most of the other experiments run within 15 minutes except one dataset (telco317

churn) which require longer running time. Finally, Fig. 3 shows the detailed computation time of318

all algorithms in terms of cognitive complexity, including the naive implementation of FCOGB for319

breast cancer and diabetes, which shows that the performance improvement through Thm. 4.4 is320

critical to bring the computational complexity on par with XGB.321

6 Conclusion322

The proposed fully corrective orthogonal boosting approach is a worthwhile alternative to previously323

published boosting variants for rule learning, especially when targeting a beneficial risk-complexity324

trade-off and an overall small number of rules. The present work provided a relatively detailed325

theoretical analysis of the newly developed rule objective function. However, some interesting326

questions were left open. While the presorting-based approach to the bounding function performs327

extremely well in synthetic experiments, a theoretical approximation guarantee for this algorithm has328

yet to be derived. Another interesting direction for future work is the extension of the introduced329

approximating subspace paradigm to the extreme gradient boosting approach, which, due to the330

utilization of higher order information, should principally be able to produce even better risk-331

complexity trade-offs.332

9

References333

[1] Anonymous. Fully-corrective orthogonal gradient boosting: Code, datasets, and supplementary334

information. https://anonymous.4open.science/r/FCOGB-BF6D, 2023.335

[2] C. Bénard, G. Biau, S. Da Veiga, and E. Scornet. Interpretable random forests via rule extraction.336

In International Conference on Artificial Intelligence and Statistics, pages 937–945. PMLR,337

2021.338

[3] M. Boley, S. Teshuva, P. L. Bodic, and G. I. Webb. Better short than greedy: Interpretable models339

through optimal rule boosting. In Proceedings of the 2021 SIAM International Conference on340

Data Mining (SDM), pages 351–359. SIAM, 2021.341

[4] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd342

acm sigkdd international conference on knowledge discovery and data mining, pages 785–794,343

2016.344

[5] W. W. Cohen and Y. Singer. A simple, fast, and effective rule learner. AAAI/IAAI, 99(335-342):345

3, 1999.346

[6] S. Dash, O. Gunluk, and D. Wei. Boolean decision rules via column generation. Advances in347

neural information processing systems, 31, 2018.348

[7] K. Dembczyński, W. Kotłowski, and R. Słowiński. Maximum likelihood rule ensembles. In349

Proceedings of the 25th international conference on Machine learning, pages 224–231, 2008.350

[8] K. Dembczyński, W. Kotłowski, and R. Słowiński. Ender: a statistical framework for boosting351

decision rules. Data Mining and Knowledge Discovery, 21(1):52–90, 2010.352

[9] J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of353

statistics, pages 1189–1232, 2001.354

[10] J. H. Friedman and B. E. Popescu. Predictive learning via rule ensembles. The annals of applied355

statistics, pages 916–954, 2008.356

[11] J. Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Review, 13(1):3–54,357

1999.358

[12] T. Hastie and R. Tibshirani. Generalized Additive Models. Routledge, 1990. ISBN359

9780203753781.360

[13] I. Kumar, C. Scheidegger, S. Venkatasubramanian, and S. Friedler. Shapley residuals: Quantify-361

ing the limits of the shapley value for explanations. Advances in Neural Information Processing362

Systems, 34:26598–26608, 2021.363

[14] H. Lakkaraju, S. H. Bach, and J. Leskovec. Interpretable decision sets: A joint framework for364

description and prediction. In Proceedings of the 22nd ACM SIGKDD international conference365

on knowledge discovery and data mining, pages 1675–1684, 2016.366

[15] F. Lemmerich, M. Atzmueller, and F. Puppe. Fast exhaustive subgroup discovery with numerical367

target concepts. Data Mining and Knowledge Discovery, 30:711–762, 2016.368

[16] Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. Accurate intelligible models with pairwise369

interactions. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge370

discovery and data mining, pages 623–631, 2013.371

[17] D. Malioutov and K. Varshney. Exact rule learning via boolean compressed sensing. In372

International conference on machine learning, pages 765–773. PMLR, 2013.373

[18] M. Mampaey, S. Nijssen, A. Feelders, R. Konijn, and A. Knobbe. Efficient algorithms for finding374

optimal binary features in numeric and nominal labeled data. Knowledge and Information375

Systems, 42:465–492, 2015.376

[19] P. McCullagh and J. A. Nelder. Generalized linear models. Routledge, 2019.377

10

https://anonymous.4open.science/r/FCOGB-BF6D

[20] S. Morishita and J. Sese. Transversing itemset lattices with statistical metric pruning. In378

Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of379

database systems, pages 226–236, 2000.380

[21] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu. Interpretable machine learning:381

definitions, methods, and applications. arXiv preprint arXiv:1901.04592, 2019.382

[22] H. M. Proença and M. van Leeuwen. Interpretable multiclass classification by mdl-based rule383

lists. Information Sciences, 512:1372–1393, 2020.384

[23] M. T. Ribeiro, S. Singh, and C. Guestrin. " why should i trust you?" explaining the predictions of385

any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge386

discovery and data mining, pages 1135–1144, 2016.387

[24] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use388

interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.389

[25] R. E. Schapire and Y. Freund. Boosting: Foundations and algorithms. Kybernetes, 42(1):390

164–166, 2013.391

[26] S. Shalev-Shwartz, N. Srebro, and T. Zhang. Trading accuracy for sparsity in optimization392

problems with sparsity constraints. SIAM Journal on Optimization, 20(6):2807–2832, 2010.393

[27] C. Shen and H. Li. On the dual formulation of boosting algorithms. IEEE Transactions on394

Pattern Analysis and Machine Intelligence, 32(12):2216–2231, 2010.395

[28] E. Strumbelj and I. Kononenko. An efficient explanation of individual classifications using396

game theory. The Journal of Machine Learning Research, 11:1–18, 2010.397

[29] T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl, and P. MacNeille. A bayesian framework398

for learning rule sets for interpretable classification. The Journal of Machine Learning Research,399

18(1):2357–2393, 2017.400

[30] D. Wei, S. Dash, T. Gao, and O. Gunluk. Generalized linear rule models. In International401

Conference on Machine Learning, pages 6687–6696. PMLR, 2019.402

[31] H. Yang, C. Rudin, and M. Seltzer. Scalable bayesian rule lists. In International conference on403

machine learning, pages 3921–3930. PMLR, 2017.404

[32] G. Zhang and A. Gionis. Diverse rule sets. In Proceedings of the 26th ACM SIGKDD405

International Conference on Knowledge Discovery & Data Mining, pages 1532–1541, 2020.406

11

	Introduction
	Related Literature
	Rule Boosting
	Fully-corrective Orthogonal Gradient Boosting
	Weight Correction and Subspace Approximations
	An Objective Function to Identify the Best Approximating Subspace
	Efficient Implementation

	Experiments
	Conclusion

