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Optimization of Infectious Disease Prevention and
Control Policies Using Artificial Life

Khalil Al Handawi and Michael Kokkolaras

Abstract—The spread of an infectious disease such as COVID-
19 is governed by complex social interactions that are challenging
to model. Policy makers must take measures to control the
spread of infection despite the unknowns that accompany a novel
epidemic. The principles of artificial life govern the intricacies
of social interaction through which diseases can spread. Agent-
based models can capture these complexities for a subset of the
population by defining the behavior of individual agents. While
they can be computationally expensive for large populations,
their outcomes are stochastic. Therefore, they can be used to
test disease prevention policies, that can be difficult to simulate
using deterministic approaches. We developed an agent-based
model that is inspired by several interactive simulations on
the internet for describing the COVID-19 pandemic. We define
metrics to estimate the socio-economic cost of disease prevention
policies on the population. We present a policy-making tool based
on blackbox optimization and evolutionary computation that
provides well-rounded intervention measures in terms of socio-
economic cost and disease control. Several intervention measures
are suggested by the algorithms with varying degrees of disease
control and socio-economic cost. Policy makers can choose an
intervention measure based on their preference. This research
recommends combining computational intelligence principles and
the use of mathematical algorithms for identifying the critical
amount of intervention necessary to control infectious diseases
and formulate intervention policies that minimize socio-economic
cost.

Index Terms—Artificial life, Agent-based modeling, Epidemi-
ology, Policy-making, Optimization, Evolutionary computation,
Probabilistic methods, COVID-19.

I. INTRODUCTION

THE COVID-19 pandemic affected health, daily life, and
the economy worldwide. Health risks arise in the early

stages of a pandemic due to lack of a vaccine or an effec-
tive treatment. As a result, non-pharmaceutical interventions
(NPIs) such as social distancing, mask wearing, and closure
of schools and non-essential businesses are imperative for
controlling viral transmission by reducing contact rates [1].
This applies to all infectious diseases that can spread through
social contact.
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However, such measures put a strain on the economy if
imposed for prolonged periods of time, causing the general
well-being of the population to diminish [1]. Epidemiologists
and policy makers must evaluate their policies despite the lack
of data in the early stages of the pandemic. This is further
exacerbated by the limited understanding of disease dynamics
and the effects of various intervention measures [2].

A method to develop policies based on assessing the effect
of different NPIs on the spread of the disease and their socio-
economic cost is necessary [1]. However, the advent of a new
disease such as COVID-19 is accompanied with a fair amount
of uncertainty surrounding its transmission and impact on
society. Computational intelligence principles can offer useful
insights by aggregating partial and incomplete information to
assess emerging behavior [3].

In this paper, we present a policy-making tool for infectious
diseases based on an emerging principle of computational
intelligence known as artificial life (ALife), where the behavior
of the system as a whole is not explicitly programmed and
only simple rules that govern the behavior of individual system
entities are implemented [4], [5]. Interaction between system
entities can give rise to emergent behavior at the system level.
Combining ALife with other principles of computational intel-
ligence such as probabilistic reasoning, evolutionary computa-
tion, and optimization can provide a complete framework for
guiding the emergent behavior of an ALife model of infectious
diseases. The optimal policies from such a framework can help
inform public health policies for combating diseases such as
COVID-19.

The paper is organized as follows. The next section presents
relevant background on epidemiological models and pertinent
ALife adaptations, known as agent-based models (ABMs) [6].
Section III describes the ALife model used for estimating
the outcomes of different intervention measures. Section IV
formulates the policy-making optimization problem and sug-
gests some numerical optimization algorithms (including evo-
lutionary algorithms). Section V shows the outcomes predicted
by the ABM for different intervention measures obtained by
optimization and discusses their implications with reference
to possible real-life scenarios. Section VI summarizes the
key takeaways from this study, provides recommendations for
policy-making, and suggests some future directions.

II. THEORETICAL BACKGROUND

In epidemiology, compartmental models involve a popu-
lation that is assigned to the compartments susceptible (S),
infectious (I), or recovered (R)). The compartment R also
includes fatalities since they can no longer infect others and
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is sometimes referred to as “removed”. Population members
flow from one compartment to the other based on how an
infectious disease spreads [7]. This flow is computed using
a set of ordinary differential equations (ODEs) that assume
a homogeneously mixed population [8]–[10]. The solution
to these ODEs describes the size of each compartment with
time and is referred to as the epidemic curve [11], [12].
Network epidemic models use a network’s structure to assign
individuals’ contacts a priori. These contacts describe to whom
they can transmit infection and from whom they can contract
the infection [13]. Machine learning approaches can be used
to track epidemic trajectories when enough observational data
are available and have been used for predicting COVID-
19 incidence in different countries employing deep neural
networks [14].

Compartmental models make strong assumptions about
random mixing of individuals; each individual has an equal
chance of making contact with another individual, while
network models assume a fixed set of contacts based on a
priori knowledge. In both cases, an assumption regarding the
behavior of the population as a whole is made to calculate the
epidemic trajectory. Such assumptions do not apply during
later stages of the pandemic when infection is concentrated
around urban centers and local communities [15]. Data-driven
approaches (such as neural networks and other machine learn-
ing models) require sufficient prior knowledge about epidemic
trajectories to train the models and avoid overfitting.

An alternative approach for modeling epidemics draws
inspiration from the principle of ALife, where only knowledge
about the behavior of individuals is used to study emergent be-
havior at the population level without making any assumptions
or requiring a priori knowledge about the latter.

ABMs seek to replicate ALife and study emergent behavior
using soft computing and simulation techniques and are better
suited for modeling local communities and urban centers since
more information is available about the behavior and daily
routines of individuals as opposed to the population as a whole
[15]. ABMs require a number of prerequisites for modeling
dynamic and stochastic phenomena such as epidemics. These
prerequisites are identified in the following section based on
existing literature.

A. Agent-based Models for Simulating Epidemics
ABMs are based on modeling the behavior of individual

autonomous agents to make predictions of the outcomes at
the population level. They involve a synthetic population with
demographic characteristics (e.g., age distribution and prior
medical conditions), a social contact network, and a disease
model describing the transmission rate between population
members [1]. We review these prerequisites for different
studies in the literature and summarize them in Table I.

Agent traits describe an agent’s compartment (susceptible,
infectious, or removed), geographic location, demographics,
and behavior during social contact [22]. Table I shows that
several geographic locations can be included in a model, such
as schools, workplaces, and households to provide realistic
predictions for community outbreaks. Such locations have an
impact on the agents’ contact rate.

Most ABMs in Table I consider population heterogeneity
due to geography and demographics by assigning traits and
behavior characteristics to the agents using random-number
generators based on census data [22]. A fewer number of
studies have considered time-dependant heterogeneity which
captures seasonality effects [1], [16], [18], [21]. Several studies
show that endogenous behavioral changes in the agents can
occur due to fear of infection during an epidemic and can
be used to explain the effectiveness of policies that spread
awareness [17].

Table I distinguishes between two types of social contact:
repeat and random. Repeat contact occurs frequently due to
familial relations between agents, whereas random contact
occurs less often and with random unrelated agents. The
reviewed models consider social contact as the primary mech-
anism for infectious disease transmission.

The inherent randomness of traits and contact result in
a range of possible outcomes as opposed to a single de-
terministic outcome. This is known as stochastic variability
and resonates with the principle of ALife where several
emergent behaviors are equally likely to be observed, i.e.,
ALife studies life as it could be and not necessarily its exact
real-world counterpart [23], [24]. This behavior is useful for
accommodating the lack of information surrounding infectious
disease dynamics but makes predictions difficult to make.
Additionally, input and model uncertainty can arise due to
lack of knowledge surrounding the model’s parameters and
assumptions, respectively.

Probabilistic reasoning principles are used to address
stochastic variability of the outcome by estimating the mean
and confidence interval using the average and standard de-
viation of several realizations [1], [11], [12], [12], [19]. This
requires exhaustive sampling of the epidemiological model and
can incur significant computational costs as model complexity
and the number of agents grow. Input model uncertainty can
be reduced by sampling the range of possible values for the
model parameters which further exacerbates the computational
cost for reducing uncertainty. Optimization and evolutionary
computation can be used to efficiently explore the parameter
space without the need for exhaustive sampling [3]. Finally,
Model uncertainty can be reduced by cross-validation with
observational data and other epidemiological models using the
calibration techniques in Table I [23].

The computational cost of executing ABMs can be reduced
using multi-threaded computation and active set modeling,
where only infected agents and their contacts are actively com-
puted [17], [18]. None of the reviewed models in Table I took
advantage of graphics processing unit (GPU) parallelization
which can be used to efficiently manipulate the relatively large
tensors used to represent populations in ABMs [25], [26].

Pandemic ABMs can be used to explore the effect of differ-
ent NPI policies on the epidemic curve [23]. Such measures
include shielding at-risk people, testing and isolating infectious
individuals, mask-wearing, and social distancing [1], [27].
Only one study in Table I considered the socio-economic
impact of intervention measures by modeling their effect on
trade flows and migration [17].

ABMs vary in terms of abstractness and their reliance on
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TABLE I
SUMMARY OF SURVEY OF ABMS FOR MODELING THE SPREAD OF INFECTIOUS DISEASES

Feature [1] [16] [17] [18] [19] [15] [20] [21] described ABM
Model prerequisites

Landscape
Single environment ✓ ✓ ✓ ✓
Multiple environments ✓ ✓ ✓ ✓ ✓
Quarantine environment ✓ ✓

Social contact network
Repeat contacts ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Random contacts ✓ ✓ ✓ ✓ ✓ ✓ ✓

Population heterogeneity in behavior and traits
Demographic ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time dependant ✓ ✓ ✓ ✓ ✓
Geographic ✓ ✓ ✓ ✓ ✓ ✓ ✓
Endogenous behavioral changes ✓ ✓ ✓

Model parameters calibration
Obtained by minimizing error ✓
Estimated from historical data ✓ ✓ ✓ ✓ ✓

Computational considerations
Active set modeling ✓ ✓
CPU parallelization ✓ ✓ ✓ ✓ ✓
GPU parallelization ✓

Applications to policy-making
Intervention models

Social distancing ✓ ✓ ✓
Reduced mobility ✓ ✓ ✓
School and work closures ✓ ✓ ✓
Contact tracing ✓
Testing capacity ✓ ✓

Outcomes
Cost of interventions ✓ ✓
Socio-economic impact ✓ ✓
Number of fatalities ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Maximum number of infections ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Duration of epidemic ✓ ✓ ✓

empirical observations to tune their parameters. Detailed data-
driven ABMs are used as an artificial lab for assessing the
effectiveness of different intervention measures and policies,
while abstract ABMs are used to test and demonstrate funda-
mental concepts such as adaptive behavior of agents [23].

B. Contributions

Based on the presented background, it can be argued that
there is a need for a computationally-efficient framework for
modeling infectious diseases and the socio-economic impact
of intervention policies. Modeling the uncertainties associated
with infectious diseases is the primary challenge in this re-
search area. Empirically grounded and detailed ABMs, such as
CovidSim [27], address model uncertainty by using complex
social networks and assumptions based on data from observed
populations; they have been used partially to guide policy
making in the United Kingdom during the early stages of the
COVID-19 pandemic.

This paper addresses input uncertainties and the stochastic
variability of ABMs by combining multiple computational
intelligence concepts pertaining to probabilistic reasoning and
optimization (including evolutionary computation). This is
done by adapting several deterministic optimization algorithms
for the stochastic ABM by utilizing probabilistic estimates

of the emergent behavior that we wish to guide. The socio-
economic impact of intervention policies and the infection
trajectory are some of the emergent trends that are of interest
to policy makers and the primary focus of this paper.

The level of complexity of an ABM should be motivated
by the hypothesis it is being used to test. In our case, we
use an abstract ABM to demonstrate the ability of stochastic
optimization to minimize socio-economic cost of NPIs despite
the stochastic variability of ABMs. Our choice of using an ab-
stract ABM for solving intervention policy-making problems
is based on the paradigm reported in [20], [28], [29]. The
contributions of our work can be summarized as follows.

• We propose an ABM for simulating human systems
and social networks, to study and guide emergent ALife
behaviors related to the spread of infectious diseases and
the socio-economic impact of different disease control
and intervention measures.

• We provide an alternative implementation of ABMs based
on particle dynamics suitable for parallelization and GPU
computing.

• We formulate and solve pertinent stochastic optimization
problems to support public health policy-making.

• We present comparative studies related to using other
models (such as CovidSim) and algorithms (such as
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genetic algorithms and deterministic direct search).

III. AGENT-BASED MODEL OF INFECTIOUS DISEASES AND
INTERVENTION POLICIES

The proposed ABM is inspired by several models available
on the internet [30]–[33]. While these models are not used to
make real-life predictions on ongoing or past epidemics, they
offer an interesting social contact network in which agents
behave adaptively. We adopt their approach for modeling
social contact since this is an important aspect that needs to
be studied in more detail [23]. We were motivated by trade
flow models to develop the mobility metric for estimating
socio-economic cost [34]. We completely developed the other
prerequisites of the ABM.

The ABM is constructed using a synthetic population of
n̄ agents defined by a population matrix At at time frame
t ∈ {0, 1, · · · , T}, where T is the total number of simulation
steps. At is a n̄× m̄ matrix composed of m̄ trait vectors each
having n̄ components as follows

At =
[
at1,a

t
2, · · · ,atm̄

]T
. (1)

The components of trait vectors are given by Table II. The
table also describes how they are initialized at time frame
t = 0, i.e., provides the initial population matrix A0. Some
traits have a constant initial value, while others have their
initial values sampled from the normal distribution N , uniform
distribution U , or the binomial distribution B for discrete traits.
At time frame t = 50 the disease is seeded by choosing
agent i0 = 1 (patient zero) and setting their status as infected
a50i0,11 = I . Since agent 1’s starting position is random, the
infection center is also random. The parameters nE and vmax
are explained in detail in Sections III-A and III-B, respectively.

There are r̄ environments that describe the geographic
location and behavioral pattern of each agent within them.
A trait in the population matrix At describes the membership
of an agent to an environment. The population matrix At is
incrementally updated during each time frame t to simulate
the behavior of the agents, the evolution of the disease’s
spread over time, and its impact on the population. We will
describe components of our ABM starting with the social
contact network. We refer to the traits describing position,
velocity, and force as ztx,i = ati,1, zty,i = ati,2, vtx,i = ati,3,
vty,i = ati,4, F t

x,i = ati,5, and F t
y,i = ati,6.

A. Social Contact Network

Social interactions in the ABM are handled by means of
forces exerted on the agents that result in an alteration of
their trajectories. In our model, these interaction forces arise
due to the affinity of agents to repel each other. This is an
example of adaptive behavior, whereby agents may attempt to
distance themselves from others in a way that more closely
approximates the dynamics observed in the Spanish flu. This
adds another dimension of realism to the model [23].

These interactions are used to describe real-life social
interactions such as social distancing. They can be adjusted
according to NPIs specified by public health authorities.

We describe the repulsive force between agents using
Coulomb’s law for describing the interaction between elec-
trical charges. In our model, we assume all agents posses like
charges so they repel each other. We consider the force on
agent i due to agent j in terms of the amplitude SD and the
distance between the agents

fx,i,j =
SD

∥zi − zj∥22
· zx,i − zx,j
∥zi − zj∥2

,∀j ̸= i

fy,i,j =
SD

∥zi − zj∥22
· zy,i − zy,j
∥zi − zj∥2

,∀j ̸= i,

(2)

where fx,i,j and fy,i,j are the components of the force on
agent i due to agent j. The vectors zi = [zx,i, zy,i]

T and zj =
[zx,j , zy,j ]

T are the coordinates of agents i and j, respectively.
We obtained the net force on agent i due to n̄−1 agents using

Fx,i =

n̄∑
j=1

fx,i,j , ∀j ̸= i

Fy,i =

n̄∑
j=1

fy,i,j , ∀j ̸= i.

(3)

This is illustrated in Figure 1a. Interaction forces are computed
for agents that are not flagged as essential workers (who must
travel frequently among the population), i.e., ai,14 ̸= 1. The
number of essential workers is given by the parameter nE .

B. Dynamics

The ABM is iterated through time by advancing the time
frame t← t+1. The x and y forces are used to update the x
and y velocities of agents according to

vt+1
x,i = vtx,i + F t

x,i × dt

vt+1
y,i = vty,i + F t

y,i × dt,
(4)

where dt is a constant step size. A global speed limit vmax is
set for the agents and is chosen such that the agents do not
go out of bounds with respect to their environment.

Updated velocities are adjusted according to the following
condition to limit the agents’ maximum speed vt+1

x,i ← vt+1
x,i , vt+1

i ≤ vmax

vt+1
x,i ← vt+1

x,i ×
vmax

vt+1
i

, vt+1
i > vmax

,

where vt is the speed of the agents computed from the ℓ2-
norm of

[
vtx, v

t
y

]T
. The same applies for the y-component of

velocity vt+1
y,i . The x and y coordinates of agents are updated

by their velocity vectors according to

zt+1
x,i = ztx,i + vt+1

x,i × dt

zt+1
y,i = zty,i + vt+1

y,i × dt.

C. Environmental Interactions

The lower and upper bounds of each environment q ∈
{1, 2, · · · , r̄} are given by Lq = [Lx,q, Ly,q]

T and Uq =

[Ux,q, Uy,q]
T , respectively. Agents are not permitted to leave

the physical bounds of the current environment they are
assigned to. Our model contains two environments, the main
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TABLE II
DEFINITION AND INITIALIZATION OF POPULATION TRAITS

Trait Containing set Initial value
x-coordinate {ai,1 ∈ R : 0 ≤ ai,1 ≤ 1} a0

i,1 ∼ U(a, b), a = 0, b = 1
y-coordinate {ai,2 ∈ R : 0 ≤ ai,2 ≤ 1} a0

i,2 ∼ U(a, b), a = 0, b = 1
x-velocity R Vx ∼ U(a, b), a = −1, b = 1, a0

i,3 = Vx × vmax/a
0
i,7

y-velocity R Vy ∼ U(a, b), a = −1, b = 1, a0
i,4 = Vy × vmax/a

0
i,7

x-force R a0
i,5 = 0

y-force R a0
i,6 = 0

speed {ai,7 ∈ R : ai,7 ≥ 0} a0
i,7 =

√
V 2
x + V 2

y

infection state {S, I,R, F} a0
i,8 = S , a50

i0,8 = I , i0 = 1
infected since {ai,9 ∈ N : 0 ≤ ai,9 < T} a0

i,9 = 0
environment {ai,10 ∈ N : 1 ≤ ai,10 ≤ r̄} a0

i,10 = 1
Time-independent traits

agent index i {ai,11 ∈ N : 1 ≤ ai,11 ≤ n̄} ai,11 = i
age {ai,12 ∈ N : ai,12 ≥ 0} ai,12 ∼ B(nt, p), nt = 81, p = 0.55
recovery period {ai,13 ∈ R : 0 ≤ ai,13 ≤ 1} ai,13 ∼ N (µ, σ), µ = 0.5, σ = 0.5/3
essential worker {0, 1} ai,14 ∼ B(nt, p), nt = n̄, p = nE/n̄
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(a) Inter-agent interaction by forces
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(b) Interaction of agents with host environment
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(c) Mobility
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(d) Infection model

Fig. 1. Illustration of a) adaptive behavior of agents using repulsive forces, b) interaction of agents with the host environment, c) mobility calculation of a
single agent, and d) dynamics of disease spread from infected to susceptible agents
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world and a quarantine environment referred to as “hospital”.
Their physical dimensions are provided in the supplementary
material (Table S.II). If the position update results in the agents
being out of bounds with respect to their current environment,
then the position is not updated while the velocity vector has
its components reversed to simulate a “bounce”.

vt+1
x,i ← −vt+1

x,i , if
zt+1
x,i − Lx,q < 0

−zt+1
x,i + Ux,q < 0

vt+1
y,i ← −vt+1

y,i , if
zt+1
y,i − Ly,q < 0

−zt+1
y,i + Uy,q < 0

, (5)

This is illustrated in Figure 1b.

D. Mobility

We introduce a new epidemiological metric for estimating
the socio-economic cost of intervention measures on society
in the context of ABMs. This metric is given by a matrix that
tracks the mobility of agents within the “world” environment.
Mobility is given by the number of unique locations visited
by a particular agent. Impeding travel prohibits migration from
occurring thereby, restricting trade flow [17], [34]. This means
that agents’ mobility is a reflection of their ability to contribute
to the economy and societal relations and is inversely related to
the socio-economic cost. This aspect has been over-looked in
previous studies since the majority focus on modeling disease
dynamics rather than socio-economic cost [1], [15], [20].

We partition the world environment into ngrids = ng × ng

grids. We use the grids to compute mobility as a metric that is
impacted by the disease and intervention measures. An n̄× jg
matrix tracks the number of discrete grids visited within the
main environment by each agent up to time frame t

Gt =
[
gt
1,g

t
2, · · · ,gt

n

]T
. (6)

The components of gt
i are gti,jg , where jg ∈ {1, 2, · · · , ngrids}.

These components indicate whether agent i has visited grid
jg . The matrix Gt is initialized to 0 at t = 0.

Grids are represented using the matrix B = [lx, ly,ux,uy]
T,

where lx, ly and ux, uy denote the lower and upper bounds
of each grid jg , respectively. The components of lx, ly, ux,
and uy are calculated as

lx,jg =
jg mod ng

ng
, ly,jg =

jg/ng

ng
,

ux,jg =
jg mod ng + 1

ng
, and uy,jg =

jg/ng + 1

ng
,

respectively. The modulo operator a mod b returns the remain-
der of the quotient a/b.

Element gti,jg of Gt is calculated by comparing agent i’s
position with lx,jg , ly,jg , ux,jg , and uy,jg gt+1

i,jg
= 1, if

lx,jg < zt+1
x,i ≤ ux,jg

ly,jg < zt+1
y,i ≤ uy,jg

gt+1
i,jg

= gti,jg , otherwise
,

where zt+1
x,i and zt+1

y,i are the current x and y coordinates of
agent i. We compute the mobility of agent i as the ratio of
the number of visited grids to the total number of grids

µt
i =

1

ngrids

ngrids∑
jg=1

gti,jg .

The average mobility of all agents is calculated as

M t =
1

n̄

n̄∑
i=1

µt
i. (7)

The negative of mobility −M t is used as a metric for socio-
economic cost in this paper. We graphically demonstrate the
computation of such a metric for a single agent in Figure 1c.
The example shows that the agent has a mobility of 4/9 =
0.44 up to the current time frame. Although the agent visited
grid jg = 5 twice throughout the course of its trajectory, it
only counts once towards its mobility.

E. Disease Model

We model an infectious disease by a random event
P (I|contact) = pinfection that has a constant probability. A
draw from the random event is made for every time frame
t a susceptible agent i makes contact with an infectious agent
j. Contact occurs when the distance between the susceptible
and infectious agents is less than a certain threshold distance
dcontact. This condition is given by∥∥zti − ztj

∥∥
2
≤ dcontact,∀j ̸= i.

If agent i makes contact with several infectious agents, then
the probability of agent i getting infected at time frame t is
given by the probability of at least one draw of the random
event P (I|contact) succeeding.

P (I) = 1− (1− P (I|contact))j
t
i ,

where jti is the number of infectious contacts that agent i
has made at time frame t. This scaling of the probability of
infection is similar to the scaling used by Hoertel et al. [1] for
the duration of contact.

Once infected, mortality and recovery of agent i are also
modeled by a random event P (F |I) = pmortality,i and is
dependent on agent i’s age ai,12 and host environment ati,10.
Age-dependant mortality is given by the piecewise function

pmortality,i = pcritical

(
1− C − ai,12

C −R

)
, R ≤ ai,12 < C

pmortality,i = pcritical, ai,12 ≥ C
pmortality,i = 0, ai,12 < R

,

(8)
where pcritical is the critical mortality rate, C is the critical age,
and R is the risk age. Agents whose age lies between the risk
and critical ages are at risk of dying from the disease.

If the host environment is the “hospital”, i.e., ati,10 = 2,
then pmortality,i ← pmortality,i×ftreatment, where ftreatment ∈ (0, 1),
i.e., the mortality rate is reduced when agent i is hospitalized.

A draw from P (F |I) is made if sufficient time has passed
since the infection of agent i. This is done by comparing the
time at which agent i has been infected ai,9 with the current
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time frame to give δt = t−ai,9. The maximum and minimum
incubation periods are given by δmax and δmin, respectively. A
draw from the mortality event is made if

δt − δmin

δmax − δmin
≥ ai,13. (9)

The normal distribution of ai,13 accounts for the statistical
variance of reported incubation periods of diseases.

A subset of agents with nT members is randomly selected
for testing at every time frame t. If found infectious, and the
number of hospitalizations is less than the healthcare capacity
Hmax, then the agent is hospitalized ati,10 ← 2. This implies
that only detected infectious individuals are isolated from the
rest of the population and receive treatment. The random event
where agent i gets tested is denoted by P (T ) = nT /n̄.

At the end of time frame t, the number of infections,
fatalities, and recoveries is tallied. These outcomes are denoted
as nt

I , nt
F , and nt

R, respectively.

F. Synthesis of the Agent-based Model

At time frame t, social interaction forces are applied on the
agents, environmental interactions are used to confine agents to
their host environment, and mobility, the spread of infection,
and mortality are computed. The matrices At and Gt fully
describe the aforementioned characteristics at time frame t.

Figure 2 provides an overview of the process followed
throughout a single time step t of the agent-based simulation.
The inner-most loops in this process are parallelized using a
GPU program. A pseudo-algorithm is provided in the sup-
plementary material (Section S.I). The simulation terminates
when the frame counter reaches the specified number of frames
T . The reviewed models in this paper terminate when zero
infections remain or herd immunity is achieved. We terminate
the model at a fixed time that is sufficient for allowing the
epidemic to run its course. The reason for this is that the
socio-economic cost continues to accumulate even when no
infections are present. This makes it easy to compare the cost
of different intervention measures. In a real-world setting, the
true socio-economic cost can manifest years after a pandemic
is over. The nominal value of all the ABM parameters are
provided in the supplementary material (Table S.I).

Several emergent outcomes are of interest for policy-making
(shaded in green in Figure 2). These outcomes are the maxi-
mum number of infections nI,max, given by

nI,max = max{nt
I : 0 ≤ t ≤ T},

and the average mobility M t at frame t = T denoted as MT .
Note that mobility is the opposite of cost given by −MT .
It can be seen that the algorithm in Figure 2 results in a
stochastic process due to the random variables in Table II used
for initializing the model and the random events P (I|contact),
P (F |I), and P (T ) (shaded in red in Figure 2).

IV. NUMERICAL OPTIMIZATION FOR POLICY-MAKING
SUPPORT

Some researchers constructed empirically-grounded ABMs
and used their models to predict the trajectory of an epidemic

for a few possible combinations of intervention policies [1],
[15]–[17], [19], [27]. This approach may overlook some of the
more effective policies for controlling the pandemic.

Numerical optimization can be used to explore the policy
design space iteratively for NPIs that minimize a cost function
based on the emergent outcomes of the epidemic model.
Such outcomes include but are not limited to the number of
averted infections, health-adjusted life years (HALYs) gained,
decreased incidence rate, intensive care unit (ICU) bed occu-
pancy, mortality rate, lockdown time, or any other aggregate
measure of public health [1], [14], [20], [28], [35]. The cost
of NPIs or budget constraints can be applied as well.

A. Policy-making Problem Formulation

We identify some of the input parameters of the ABM in
Algorithm 1 as potential optimization variables for a policy-
making problem. These parameters are the number of essential
workers nE , the amplitude of the repulsive social interaction
force SD (referred to as the social distancing factor), and
the number of random tests during each time frame nT

(shaded in blue in Figure 2). Increasing the parameter SD

has been cited as an effective intervention measure since it
spaces agents apart reducing contact rates [1]. Increasing nE

results in more agents travelling freely among the population
potentially spreading the infection. These agents are referred
to as essential workers in this study. The reasoning behind this
is inspired by the outbreaks in long-term care (LTC) facilities
around the world due to asymptomatic infected staff working
in multiple facilities [36]. Finally, nT represents the number of
daily tests and is used to test the efficacy of testing campaigns
for quelling the spread of infection in its early stages. The
parameter nT is different from contact tracing since the former
is a proactive measure while the latter is a reactive measure.

The stochastic optimization problem for policy-making is
formulated as

min
x

f(x) = EΘ0

[
fΘ0

(x) = −MT
]

subject to c(x) = EΘ1 [cΘ1(x) ≡ nI,max −Hmax] ≤ 0,

where, 16 ≤ nE ≤ 101, 0 ≤ SD ≤ 0.15, 10 ≤ nT ≤ 51,

Hmax = 90,
(10)

and x = [nE , SD, nT ]
T are the decision variables and rep-

resent an intervention measure. Θ0 is a realization of the
random variables and events described in Figure 2 and EΘm

denotes the expectation with respect to the random variable
Θj for all j ∈ {0, 1, · · · ,m}, where m = 1 is the number of
constraints. The same random variables govern the objective
and constraint functions, i.e., Θ0 = Θ1 = Θ. The solution
to this problem results in a measure that maximizes mobility
while ensuring that the health system is not overwhelmed with
cases. These two emergent outcomes are of particular interest
to policy makers. The maximum number of infections was set
as a constraint to avoid healthcare worker infections that could
lead to a vicious cycle of reduced healthcare capacity [37].

The stochastic optimization problem in Equation (10) is
also solved using the CovidSim model [21], [38]. Although
CovidSim does not provide a measure for socio-economic
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Fig. 2. Flow chart of simulation process for a single time step t of the ABM.

impact, it does provide detailed information about infections,
fatalities, and critical number of cases requiring ICU care.
The objective function is provided by our ABM while the
constraint is computed using CovidSim. To make this dis-
tinction, the subscript of the random variables Θ governing
the objective and constraint functions is not dropped since
each model is governed by different random variables and
events, i.e., Θ0 ̸= Θ1 when CovidSim is used to compute the
number of infections. This problem is denoted as the unified
optimization problem.

Furthermore, the variables x = [nE , SD, nT ]
T that belong

to our ABM cannot be directly applied to CovidSim. We
provide a mapping from the variable space of our ABM to
that of CovidSim in Table III. The compliance rate, spatial
contact rate, and the percentage of infectious cases isolated,
denoted rcomp, rcontact, and cI , respectively are mapped linearly
onto the ABM variables nE , SD, and nT , respectively, such
that their lower and upper bounds coincide. The variable nE

has an upper bound equal to 10% of the ABM population and
therefore corresponds to a compliance rate of 90%. A similar
intuition was applied for mapping the other two variables. The
other parameters of CovidSim are based on the parameters and

interventions applied in Report 9 [27].

TABLE III
OPTIMIZATION PROBLEM DEFINITIONS

Parameter Notation Value
Optimization problem 1

Objective fΘ(nE , SD, nT ) −MT

Constraint cΘ(nE , SD, nT ) nI,max −Hmax
Essential workers nE 16 ≤ nE ≤ 101
Social distancing factor SD 0 ≤ SD ≤ 0.15
Tests/time step nT 10 ≤ nT ≤ 51
Healthcare capacity Hmax 90

Optimization problem 2 (unified optimization problem)
Objective fΘ0(nE , SD, nT ) −MT

Constraint cΘ1(rcomp, rcontact, cI) nI,max −Hmax
Compliance rate rcomp 1 ≥ rcomp ≥ 0.9
Contact rate rcontact 7 ≥ rcontact ≥ 1
% Cases isolated cI 0 ≤ cI ≤ 1
Healthcare capacity Hmax 9% of population size

B. Optimization of Stochastic Simulation-based Problems

Linear and integer programming has been used to optimize
NPIs by approximating the outcomes of ODE compartmental
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models using a Taylor series expansion [39]. This assumes
independence of interventions with respect to the outcome that
is being optimized which seldom holds for epidemics. Other
studies used network-based epidemic models [29] and ABMs
[20], [28] to allocate interventions for an epidemic. Several
realizations of the stochastic models are used to approximate
the objective and constraint functions. The previous studies
have relied on deterministic gradient-based methods and/or
approximations to their solutions to optimize NPIs. These
approximations and optimization algorithms use deterministic
algorithmic objects to ensure improvements. Such algorithms
do not present convergence theory when stochastic objective
and constraint functions are used resulting in suboptimal
solutions.

We use the stochastic version of a direct search algorithm
that is well-suited for blackbox optimization problems involv-
ing expensive simulation-based models [40], [41]. This method
has the advantage that no gradient information is needed to
find descent directions since gradients cannot be estimated
accurately with reasonable computational effort for stochastic
epidemiological models [20], [28], [29], [42]. The algorithm is
grounded in martingale theory and has rigorous convergence
properties [43].

The algorithm, denoted StoMADS-PB uses a progressive
barrier approach for handling constraints and can be used for
solving constrained stochastic optimization problems of the
form

minimize
x∈X

f(x) = EΘ0
[fΘ0

(x)] ,

subject to c1(x) = EΘ1
[cΘ1

(x)] ≤ 0

c2(x) = EΘ2
[cΘ2

(x)] ≤ 0

...
cm(x) = EΘm

[cΘm
(x)] ≤ 0,

(11)

The random variables Θj for all j ∈ {0, 1, · · · ,m} are
supposed to be independent with unknown possibly different
distributions. The numerically unavailable objective f(.) and
constraints cj(·), are given by their noisy computable versions
fΘ(.) and cΘj (·), respectively [41].

Feasibility of a candidate solution in the space of possible
solutions X ⊂ Rn is measured by the constraint violation
function given as

h(x) :=

m∑
j=1

max {cj(x), 0} , (12)

where x ∈ X is feasible if and only if h(x) = 0.
StoMADS-PB, involves search and poll steps. The search

step allows the user to engage any technique, algorithm, or
heuristic (including doing nothing at all) to find promising
candidates for the next iterate, while the poll step performs
a localized search around the incumbent solution xk

0 defined
at iteration k of the algorithm. During both steps, a finite
number of trial points are generated on a discretization of the
space of variables called the mesh defined for iteration k of
the algorithm.

We focus on the implementation of the poll step in this paper
since the convergence analysis of the algorithm relies on it.

The poll step generates candidate solutions xk
s ∈ Pk ⊂ X ,

where Pk is denoted as a frame with directions that form a
positive spanning set [44].

The StoMADS-PB algorithm seeks to find a trail point
whose objective function value is less than that at the current
incumbent, i.e., f(xk

s) < f(xk
0), and is feasible h(xk

s) = 0.
However, the true value of the objective and constraint vi-
olation functions is unknown and only realizations of their
values are available to the algorithm. StoMADS-PB uses
estimates of the objective and constraint violation functions
at the current incumbent solution and trail points to determine
whether a trail point can result in an improvement in the true
objective function, constraint violation function (if incumbent
is infeasible), or both. The estimates of the objective and
constraint violation functions are obtained by taking the mean
of nk realizations of the noisy computable versions and are
denoted by fk and hk, respectively. The estimate for the
objective, constraint, and constraint violation functions at a
point xk ∈ X is given by

fk =
1

nk

nk∑
i=1

fΘ0,i
(xk),

ckj =
1

nk

nk∑
i=1

cΘj,i
(xk), and

hk
j =

m∑
j=1

max{ckj , 0},

(13)

respectively. These estimates are based on the principle of
probabilistic reasoning, where the mean of several observa-
tions is used to approximate the expected outcome [3].

An improvement towards optimality is achieved if

fk
s − fk

0 ≤ −γε(δkp )2 (14)

for the objective function, while an improvement in feasibility
is defined as

hk
s − hk

0 ≤ −γmε(δkp )
2, (15)

where γ, and ε are constants. Feasibility is defined as

uk
s :=

m∑
j=1

max{ckj + ε(δkp )
2, 0} = 0. (16)

The term −γε(δkp )2 (denoted as the accuracy threshold) in
Equations (14), (15), and (16) ensures that any improvement
in feasibility or optimality of a trail point is due to an improve-
ment in the true unknown values of the objective and constraint
violation functions and not a result of the uncertainty in the
estimates fk and ckj . The algorithm dynamically reduces the
mesh and poll size δkp by proxy if no trail point satisfying these
conditions is found resulting in a smaller frame Pk centered
around the incumbent solution. This causes the algorithm
to sample more points within the vicinity of the incumbent
solution, reducing the uncertainty in its estimate.

These conditions set the StoMADS-PB algorithm apart from
other deterministic optimization algorithms when applied to
stochastic optimization problems. The algorithmic implemen-
tation of StoMADS-PB is provided in the supplementary
material (Section S.II).
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The interested reader is referred to Audet et al. [40] and
Dzahini et al. [41] for further reading on StoMADS. Details
on the progressive barrier approach, how the frame Pk is
constructed, and how the mesh and frame sizes are updated
during each iteration of the algorithm are also provided in
these references [40], [41], [44], [45].

We also compare the performance of StoMADS-PB with
its deterministic counterpart, mesh adaptive direct search
(MADS) for solving the problem in Equation (10). The NO-
MAD implementation of MADS is used for the comparative
studies in this paper [46]. Another comparison is made with
evolutionary algorithms since they are generally easy to un-
derstand, implement, and (as a result) widely used for solving
optimization problems. We use the MATLAB implementation
of a genetic algorithm (GA) with an augmented Lagrangian
method for constrained optimization [47]–[50].

We adapt MADS and GAs for solving the stochastic prob-
lem in Equation (10) by using the mean of nk realizations
of the stochastic objective and constraints as the deterministic
value of the objective fk and constraint ckj functions available
to the algorithms. We use parallel processing for computing
fk and ckj when nk > 1 to accelerate all three algorithms. The
intuition behind the modified deterministic algorithms stems
from the promise of combining multiple computational in-
telligence principles (probabilistic reasoning and evolutionary
computation) to overcome the limitations of each method [3].

We explore the effect of several important algorithmic
parameters, for each of the three optimization algorithms in
Section V. We vary εf which controls the accuracy threshold
of the estimates for StoMADS-PB. We compare two different
configurations of NOMAD denoted as NOMAD-default and
NOMAD-basic. Unlike StoMADS-PB and NOMAD-basic,
NOMAD-default uses a sophisticated search step based on
quadratic models before the poll step is invoked. This improves
the algorithm’s ability to break free of local optima [46]. In
the case of the augmented Lagrangian GA, we investigate the
effect of population size p̄ on performance of the algorithm
as it determines the ability of the algorithm to explore the
solution space and identify global optima. A popular choice
for population size is p̄ = max{50, 10n}, where n is the
dimensionality of the problem [50], [51].

The settings for the algorithmic parameters of StoMADS-
PB, NOMAD, and augmented Lagrangian GA are specified
in the supplementary material (Section S.II). We acknowledge
that the performance of an algorithm can depend on sev-
eral parameters. GAs in particular should be tuned for the
problem being solved by adjusting the selection, mutation,
and crossover methods used to create new individuals dur-
ing successive generations. Furthermore, the choice of initial
penalty and penalty factors associated with the constraints in
the Augmented Lagrangian method is important for balancing
the importance of minimizing the objective with feasibility.
However, since the emphasis of this paper is on solving
policy-making problems given limited time and resources, we
explore the performance of these algorithms with most of their
parameters set to their recommended default values as reported
in the literature.

A more accurate estimate of the objective and constraint

value is obtained by taking the average of N = 100 realiza-
tions every time a successful feasible iteration occurs in the
case of StoMADS-PB and NOMAD, or a new best feasible
individual with higher fitness is found in the case of the GA:

EΘ [fΘ(x)] ≈ f̄Θ = − 1

N

N∑
nr=1

M t
nr

and

EΘ [cΘ(x)] ≈ c̄Θ = −Hmax +
1

N

N∑
nr=1

nI,max,nr
.

The estimates f̄Θ and c̄Θ are used to compare the performance
of all three algorithms.

V. RESULTS AND DISCUSSION

The results of the policy-making optimization problem are
reported in this section for both the developed ABM and
CovidSim. Comparisons between the solutions obtained by
different optimization algorithms are also presented.

A. Stochastic Optimization Problem Results Using the Agent-
based Model

Optimization problem 1 (defined in Table III) is solved
using different optimization algorithms. Performance profiles
of several optimization runs and their algorithmic parameters
are shown in Figure 3. Each performance profile is the average
of 4 independent optimization runs using the same algorithmic
parameters. All algorithms were given a computational budget
of 6000 function evaluations. Termination occurs when the
default termination criterion is reached or the computational
budget is exceeded. A common parameter to all three algo-
rithms was the sampling rate nk used to construct the estimates
of the objective and constraint functions during optimization.
It was increased in steps of nk = 1, nk = 4, and nk = 20.
It can be observed that increasing nk improved the ability
of all three algorithms to find a feasible solution as shown
by Figures 3d, 3e, and 3f, giving merit to the approach of
using probabilistic reasoning and evolutionary computation
to overcome the stochastic variability of artificial life when
attempting to guide its expected behavior.

Several observations can be made regarding the performance
of the StoMADS-PB algorithm with respect to NOMAD and
GAs. At low sampling rates (nk = 1), StoMADS-PB provided
more feasible solutions compared to NOMAD (Figure 3d).
Furthermore, StoMADS-PB provided solutions with compa-
rable f̄Θ and c̄Θ to those of the GA with fewer function
evaluations (Figures 3a and 3d).

Higher sampling rates slowed the convergence of all three
algorithms because more function evaluations are needed to
construct the estimates of the objective and constraint func-
tions. At both nk = 4 and nk = 20, StoMADS-PB provides
more feasible solutions compared to NOMAD (Figures 3e
and 3f) and more optimal solutions compared to the GA
(Figures 3b and 3c). Although we do not fine tune any of the
three algorithms, we conclude that StoMADS-PB provides a
good balance between optimality and feasibility at reasonable
computational budget compared to the other algorithms with



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 11

StoMADS-PB, εf = 0.01

StoMADS-PB, εf = 0.10

StoMADS-PB, εf = 0.20

NOMAD-default

NOMAD-basic

GA, population size p̄ = 50

GA, population size p̄ = 100

c̄Θ = 0

0 1000 2000 3000 4000 5000 6000

number of function evaluations

−6

−5

−4

−3

−2

−1

O
b

je
ct

iv
e

fu
n

ct
io

n
es

ti
m

at
e
f̄ Θ

(a) nk = 1

0 1000 2000 3000 4000 5000 6000

number of function evaluations

−2.5

−2.0

−1.5

−1.0

O
b

je
ct

iv
e

fu
n

ct
io

n
es

ti
m

at
e
f̄ Θ

(b) nk = 4

0 1000 2000 3000 4000 5000 6000

number of function evaluations

−2.50

−2.25

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

O
b

je
ct

iv
e

fu
n

ct
io

n
es

ti
m

at
e
f̄ Θ

(c) nk = 20

0 1000 2000 3000 4000 5000 6000

number of function evaluations

0

100

200

300

400

500

600

700

C
on

st
ra

in
t

fu
n

ct
io

n
es

ti
m

at
e
c̄ Θ

(d) nk = 1

0 1000 2000 3000 4000 5000 6000

number of function evaluations

0

100

200

300

400

C
on

st
ra

in
t

fu
n

ct
io

n
es

ti
m

at
e
c̄ Θ

(e) nk = 4

0 1000 2000 3000 4000 5000 6000

number of function evaluations

0

100

200

300

400

C
on

st
ra

in
t

fu
n

ct
io

n
es

ti
m

at
e
c̄ Θ

(f) nk = 20

Fig. 3. Performance profiles showing (a),(b),(c) the estimated objective function and (d),(e),(f) the estimated constraint function for the best feasible incumbent
solution identified by StoMADS-PB, NOMAD, and augmented Lagrangian GA.

default settings. These results show that StoMADS-PB is a
good choice for stochastic problems involving complex and
expensive function evaluations such as CovidSim.

We identify the best feasible solution found by each of the
three algorithms by looking at the objective and constraint
function estimates c̄Θ and f̄Θ. Figures 4a and 4b show the
distribution of the N = 100 realizations used to compute c̄Θ
and f̄Θ, respectively. For each algorithm, the feasible solutions
(c̄Θ ≤ 0) were ranked by f̄Θ. Only StoMADS-PB and the GA
yielded feasible solutions. This is because of the relatively
small feasible space of solutions (9%) compared to the rest of
the solution space. In the case of NOMAD, the least infeasible
solution is chosen.

The trajectories of the epidemic and mobility are shown
in Figures 4c and 4d, respectively for each solution. The
StoMADS-PB solution (f̄Θ = −2.24, c̄Θ = −2.56) favored
high testing rates nT (close to the upper bound nT ≤ 51), a
large cohort of essential workers nE (close to the upper bound
nE ≤ 101), and moderate social distancing. This implies that
our model places more emphasis on large and early testing
campaigns compared to social distancing and lockdowns for
mitigating pandemics. This result agrees with several obser-
vational studies in the literature [12], [14]. The GA provided
the most conservative solution (c̄Θ = −65.72) out of all
three algorithms but was suboptimal (f̄Θ = −0.76). NOMAD
provided the least conservative solution and performed the
worst in terms of feasibility (c̄Θ = 26.69). This is because
NOMAD relied on few samples (bounded from above by the

number of poll candidates) of the objective and constraint
functions during each iteration of the algorithm. StoMADS-
PB resamples points within the vicinity of the incumbent
solution on unsuccessful and uncertain iterations, while the
GA samples a population of individuals that is gradually
narrowed down to the vicinity of the fittest feasible individual
reducing uncertainty in its estimated fitness and feasibility.
The results show that StoMADS-PB strikes a good balance
between optimality and feasibility. The numerical statistics
of each solution are provided in the supplementary material
(Section S.III).

B. Stochastic Optimization Problem Results Using Different
Epidemiological Models

The optimal interventions obtained by solving the uni-
fied optimization problem in Table III are visualized in
Figure 5. The optimal solutions have comparable values to
those obtained in Section V-A. Several optimization runs with
StoMADS-PB and CovidSim were performed. Two distinct
feasible solutions emerged. The first solution (shown in in
Figures 5a and 5b) favors more social distancing SD (given
by contact rate in CovidSim) for a large cohort of essential
workers nE (low compliance rates ≈ 90% in CovidSim). Our
ABM predicts a comparable median trajectory for infections
but there is a large variance in the realizations from our model
and as a result, this policy would not emerge as a possible
solution when considering the number of infections reported
by our model. The second solution (shown in Figures 5a and
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Fig. 4. ABM outcomes and statistics for the best solution obtained from several optimization algorithms. The distribution of N = 100 realizations for (a)
the maximum number of infections and (b) the mobility. (c),(d) The solid line represents the median of N = 100 realizations with shaded areas representing
the 10-90 percentile range.

5b) favors more testing nT for a modest cohort of essential
workers nE (compliance rate ≈ 95% in CovidSim). Our ABM
agrees with this CovidSim solution since the interquartile
range of the realizations for both models is within the health-
care capacity.

Policies suggested by using our ABM are in general more
conservative compared to those suggested by using CovidSim.
Our ABM focuses on relatively small populations and geo-
graphic areas. When compliance and testing rates are low, the
effects of disease superspreaders (i.e., the essential workers or
non-compliant individuals) are more pronounced in the small
geographic location of our model. We also assume a uniform
population density in our model (Figure 5d) which explains the
higher contact rates and superspreader effects observed in our
model. CovidSim covers a much larger geographic location
and the population is heterogeneously distributed based on
census data as shown in Figure 5c. The geographic location

studied in this paper (the Dominion of Canada) is sparsely
populated. Nonetheless, the intervention policies obtained by
using CovidSim can guide policy makers to more optimal
interventions as given by the socio-economic impact predicted
by our model (Figure 5b).

Figure 5a suggests that the results obtained using our model
have a larger variance compared to those obtained using
CovidSim. This is because the random interactions in the
larger population in CovidSim (n̄ = 36, 460, 098) average out
to more closely resemble the underlying trend. Furthermore,
the random seed associated with the setup of the social contact
network in CovidSim was fixed. The model was randomly
seeded at runtime only; this may contribute to lower variance.
This was done because the initial setup for assigning individual
geographic, demographic, and behavioral characteristics is
an expensive operation. For this reason, the developers of
CovidSim recommend fixing the social contact network’s seed
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Fig. 5. Optimal results obtained from unified CovidSim and ABM optimization problem. The median trajectory of the epidemic for N = 100 realizations
is shown in (a),(b) as predicted by either model at the optimizer with shaded areas representing the interquartile range. A snapshot of a single realization of
both models is shown during the height of the epidemic for the intervention policy nE = 62, SD = 0.06, and nT = 48 applied to (c) the CovidSim model
and (d) the developed ABM with a single agent’s mobility traced (shown by the red grids). See supplementary videos for an animation of these realizations.

during parametric studies [21].
We also assumed a linear mapping between the variables of

our ABM and the CovidSim parameters in Table III. The actual
function that maps our ABM parameters to those of CovidSim
could be identified via supervised learning approaches such
that the mean error between the predicted trajectories of both
models is minimized [52].

Our model provides a conservative bound on the critical
amount of intervention needed to control a local outbreak
while CovidSim provides interventions that are more appli-
cable at the national level. Our model is less computationally
expensive than CovidSim and yields optimal policies that are
comparable to those obtained using CovidSim.

VI. CONCLUSION

We present an abstract ABM for modeling human social
systems and infectious diseases with several elements of
novelty. They are listed as follows

• Adaptive behavior of agents modeled by the means of
repulsive forces between agents. These repulsive forces
are representative of intervention measures such as social
distancing and change in magnitude depending on the
distance between agents.

• Socio-economic cost of intervention measures on the
population is modeled by means of a mobility metric
which quantifies the relative freedom that agents posses.

• Efficient computation of social interaction among agents
is accelerated using GPU programming.

In addition to the elements of novelty of the proposed ABM,
a stochastic optimization algorithm (StoMADS-PB) with rig-
orous convergence properties based on martingale theory,
evolutionary computation, and deterministic direct search are
used to design intervention measures that maximize a mobility
metric representative of socio-economic impact subject to
several disease spread constraints such as healthcare capacity
[1].
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The obtained results in this paper provide lessons about
infectious disease control. The abstract ABM developed in
this work showed that the trajectory of a pandemic becomes
highly unpredictable when the disease spirals out of control.
The policy-making methods ensure that this does not happen
by enforcing a stochastic constraint on the maximum number
of infections. Stochastic constraint handling methods such as
the ones used in this paper are very important for generating
policies to control a novel pandemic such as COVID-19 and
keep it in check. The most effective intervention measures
provided by the optimization algorithms involve a large testing
campaign and relatively moderate social distancing given that
the compliance rate is 90% or more. This result qualitatively
agrees with several observational studies in the literature [12],
[14]. The trade-off between maximum number of infections
and socio-economic impact can be investigated using a para-
metric study of different healthcare capacities.

Comparative studies with other optimization algorithms
showed that only the StoMADS-PB and the augmented La-
grangian genetic algorithm discovered feasible solutions with
respect to the healthcare capacity constraints. Furthermore,
solutions of StoMADS-PB provided the best objective func-
tion values with fewer model evaluations when compared to
other deterministic optimization algorithms. This study com-
bined computational intelligence principles of probabilistic
reasoning and evolutionary computation to guide the emergent
behavior of an artificial life system despite its stochastic
variability. The identification of optimal public health policies
for a pandemic demonstrates the benefit of utilizing multiple
computational intelligence principles to overcome their indi-
vidual limitations (e.g., the assumption of deterministic fitness
functions when using evolutionary algorithms).

The presented stochastic optimization approach does not
require the use of our ABM. It can be coupled to any
stochastic model, epidemiological or otherwise. A plethora
of empirically grounded epidemiological models are available
publicly and can be used to formulate policies. A comparative
study with CovidSim shows that our model is complementary
and useful for estimating socio-economic impact of different
interventions. Different models can be combined in a similar
fashion to enhance problem-solving formulations or conduct
exploratory pilot studies [53].

The ABM can be extended to include more detailed so-
cial interaction networks, environments, and socio-economic
impact metrics and continued development of the ABM is
planned on a publicly available code repository (GitHub,
https://github.com/khbalhandawi/COVID SIM GPU).

Finally, this work aims at demonstrating that the use of
computational models and rigorous algorithms can contribute
to determining policies that protect public health without
suffocating socio-economic activity for ongoing and future
pandemics.
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de recherche du Québec Nature et Technologies (FRQNT) doctoral fellowship.

Michael Kokkolaras Dr. Kokkolaras is the founding
director of the Systems Optimization Laboratory
in the Department of Mechanical Engineering at
McGill University. He joined McGill in 2012 after
spending 12 years at the University of Michigan
(UM) in Ann Arbor, where he held research faculty
appointments at the Department of Mechanical En-
gineering (primary) and the UM Transportation Re-
search Institute (joint/courtesy); he was the recipient
of the 2008 UM College of Engineering Outstanding
Research Scientist Award. Dr. Kokkolaras is also

Associate Director of the McGill Institute for Aerospace Engineering (MIAE)
and a full member of the Fonds de recherche du Québec Nature et Technolo-
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