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ABSTRACT

The inherent characteristics of the Transformer enable us to train on shorter
datasets and extrapolate to testing on longer ones directly. Numerous researchers
in the realm of natural language processing have proposed a variety of meth-
ods for length extrapolation, the majority of which involve position embeddings.
Nonetheless, in combinatorial optimization problems, Transformers are devoid
of position embeddings. We aspire to achieve successful length extrapolation in
combinatorial optimization problems as well. As such, we propose an entropy
invariant extrapolation method (EIE), which obviates the need for positional em-
beddings and employs varying scale factors according to different lengths. Our
approach eliminates the need for retraining, setting it apart from prior work. Re-
sults on multiple combinatorial optimization datasets demonstrate that our method
surpasses existing ones.

1 INTRODUCTION

The intersection of machine learning and combinatorial optimization has been established since
early times, with numerous combinatorial problems involving sequential decision-making. For in-
stance, the Traveling Salesman Problem (TSP) pertains to the sequence of site visits, while the of-
fline bin packing problem concerns the order of selecting boxes. These sequential decision-making
scenarios can be approximated as Markov Decision Processes within the realm of Reinforcement
Learning. As early as the 1980s, Hopfield & Tank (1985) deployed neural networks to solve small-
scale TSP instances. Recently, with the advent of computational advancements, there has been a
resurgence in employing machine learning for combinatorial optimization. Vinyals et al. (2015)
utilized the Pointer Network for solving the TSP. However, the Pointer Network is not permutation
equivariant , meaning that shuffling the input sequence of sites alters the output sequence, casting
doubt on the credibility of the results. A key module within Transformers (Vaswani et al., 2017),
known as self-attention, is permutation equivariant when devoid of positional embeddings (Lee et al.,
2019). Consequently, this led to the introduction of self-attention for tackling combinatorial opti-
mization problems (Kool et al., 2019; Zhang et al., 2021; Jiang et al., 2021). Simultaneously, another
advantage of self-attention is that once a Transformer is trained on a shorter dataset, it can be directly
deployed for inference on longer datasets without necessitating changes to the network architecture.
This characteristic has spurred research endeavors to augment the length extrapolation competen-
cies of Transformers. Achieving satisfactory extrapolation properties could considerably curtail the
training duration.

The attention matrix of a Transformer represents the correlation between different tokens. Since each
row of the matrix sums to 1, and each element is non-negative, we can interpret each element as a
probability and analyze it using entropy. Our experimental results indicate that under certain condi-
tions, the smaller the relative rate of entropy change, the better the extrapolation performance of the
Transformer. Therefore, we introduce a method, dubbed entropy invariant extrapolation (EIE), that
assigns distinct scale factors to different sequence lengths, aiming to equalize their expected entropy
as closely as possible.
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2 RELATED WORK

Research on Transformer-based length extrapolation can be bifurcated into two categories: those
that involve position embeddings(IPO) and those that do not involve position embeddings(NPO) .

IPO A substantial proportion of research has capitalized on the prior linguistic knowledge that closer
tokens are more closely related, leading to the design of various position embeddings (Vaswani et al.,
2017; Press et al., 2021; Chi et al., 2022; 2023; Sun et al., 2022; Su, 2023b;d;e;f; Su et al., 2021).
(Ruoss et al., 2023) put forth randomized position embeddings that simulate positions for elon-
gated sequences and randomly select an ordered subset to accommodate the sequence length. The
conventional Transformer does not incorporate a bias term in the computation of Query and Key
in multi-head attention (Vaswani et al., 2017). Nevertheless, Su (2023a) found that incorporating a
bias term when computing Query and Key with rotary position encoding(RoPE) (Su et al., 2021) can
significantly improve extrapolation performance. Chen et al. (2023) introduced position interpola-
tion, which proportionately compresses the length in position embeddings, extrapolates the length
to 32,768, and fine-tunes the model for 1000 steps. bloc97 (2023) demonstrated the NTK-aware
Scaled RoPE, which leverages interpolation for low frequencies and direct extrapolation for high
frequencies in Sinusoidal position embeddings, yielding satisfactory results without the necessity
for fine-tuning. Su (2023c) provided an understanding of NTK-aware Scaled RoPE from the radix
system perspective and generalized NTK-aware Scaled RoPE. Dubois et al. (2020); Ray Chowdhury
& Caragea (2023) incorporated location attention. Bueno et al. (2022) discovered that generating
step-by-step rationales and introducing marker tokens can enhance the model’s extrapolation ca-
pability without altering the structure of the large language model. Chu et al. (2023) proposed
a learnable position embedding designed specifically for visual Transformers (Dosovitskiy et al.,
2021; Touvron et al., 2021). Kazemnejad et al. (2023) asserted that explicit position encodings are
not a prerequisite for decoder-only Transformers to effectively generalize to longer sequences.

NPO In the context of standard multi-head attention, the scaling factor is recognized as 1√
d

, where

d represents the head size. Chiang & Cholak (2022) introduced a scaling factor of lnn√
d

, with n being

the sequence length. Conversely, Su (2021) employed a scaling factor of lnn
d .

3 BACKGROUND

3.1 PERMUTATION EQUIVARIANT

Let’s denote Sn as the symmetric group on n letters. For σ ∈ Sn, we define σ(X) =
(XT

σ(1),:,X
T
σ(2),:, ...,X

T
σ(n),:), where X ∈ Rn×d1 , d1 can be any positive integer, and Xi,: ∈ Rd1

indicates the i-th row vector of X . We now give the definition of permutation equivariant .
Definition 1 (permutation equivariant ) f : Rn×d1 → Rn×d2 is a mapping. If ∀X ∈ Rn×d1 and
∀σ ∈ Sn, it holds that f(σ(X)) = σ(f(X)), then f is permutation equivariant .

To distinguish from the standard Transformer (Vaswani et al., 2017), we denote the Transformer
utilized in combinatorial optimization as the CO-Transformer. We represent the CO-Transformer
as fco = fco,1 ◦ fco,2 ◦ ... ◦ fco,m, where each fco,i : Rn×di → Rn×di+1 signifies the ith layer of the
CO-Transformer. Typically, this would be one of the following: multi-head self-attention without
position embeddings (Vaswani et al., 2017), fully connected layers, LayerNorm (Ba et al., 2016), or
Softmax. Furthermore, we have dm+1 = 1.
Theorem 1 CO-Transformer is permutation equivariant .

Why can’t CO-Transformers add positional embeddings in combinatorial optimization problems?
Intuitively, the inputs to the CO-Transformer in combinatorial optimization problems do not have
a temporal order like time series and language. Mathematically, a CO-Transformer with positional
embeddings will not be permutation equivariant . In combinatorial optimization problems, if the
network is not permutation equivariant , some illogical situations will arise. For instance, in the
TSP, the input to the neural network is the coordinates of the locations, and each component of
the network’s output represents the probability of going to that location next. If the network is not
permutation equivariant , when we shuffle the order of the locations in the input, the probabilities of
going to each location in the output will change, which is illogical.
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3.2 BASIS FOR EXTRAPOLATING LENGTH

CO-Transformer is composed of self-attention without position embeddings , fully connected lay-
ers, Softmax and LayerNorm (Ba et al., 2016). In solving combinatorial optimization problems
with deep reinforcement learning, the attention layer is typically a multi-head self-attention(Vaswani
et al., 2017). We denote the input to the multi-head self-attention as X ∈ Rn×(h×d), where n is
the sequence length, h indicates the number of heads, and d represents the size of each head. The
computational process of multi-head self-attention is as follows:

Qi = XW i
Q,Ki = XW i

K ,Vi = XW i
V , i = 1, 2, ..., h (1)

where W i
Q,W

i
K ,W i

V ∈ R(h×d)×d.

Ai = Softmax(λQiK
T
i ) ∈ Rn×n, i = 1, 2, ..., h (2)

where λ is scaling factor, λ = 1√
d

and KT
i is the transpose of Ki.

Oi = AiVi ∈ Rn×d, i = 1, 2, ..., h (3)

O = concat(O1,O2, ...,Oh)WO ∈ Rn×(h×d) (4)

where WO ∈ R(h×d)×(h×d).

It is easy to note that WO,W
i
Q,W

i
K ,W i

V , i = 1, 2, ..., h are independent of n. Thus, by using
inputs X of varying lengths n, we can still obtain outputs when passing them through the same
multi-head self-attention layer. The same conclusion holds for fully connected layers, residual con-
nections, and LayerNorm. This is the basis for the Transformer’s ability to extrapolate length.

4 METHOD

Our method, EIE, consists of two stages. In the first stage, we utilize a neural network to compute
distinct scaling factors for different sequence lengths. In the second stage, we substitute the original
scaling factor in the Transformer with the newly computed scaling factor from the first stage. We
will now delve into the motivation behind our method, followed by a detailed exposition of our
procedure and neural network architecture.

4.1 ANALYSIS OF ENTROPY

Entropy is a measure of uncertainty, which can also be perceived as the degree of focus in attention:
Taking the bin packing problem as an example, it can be envisioned as placing several boxes into a
bin. In this scenario, the input to the neural network consists of the features of all the boxes. When
entropy is zero, attention is concentrated on a single box. If the entropy is lnn, then the attention
is evenly distributed across all boxes. The introduction of new boxes increases entropy, and a well-
trained Transformer is accustomed to a certain range of entropy. Therefore, we strive to maintain
a consistent level of entropy during extrapolation. Specifically, our goal is to sustain attention on
an equivalent number of boxes, preventing attention from becoming overly diluted even when new
boxes are introduced, thereby significantly altering the overall sum. We use Q,K,A to replace
Qi,Ki,Ai in Equations 1 and 2. Qi,:,Ki,: represent the i-th row vector of Q,K. As every row
sum of A is 1 and each element is non-negative, we can analyze it using entropy, Hi represents the
entropy of the i-th row in A.
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Hi = −
n∑

j=1

eλQi,:K
T
j,:∑n

j=1 e
λQi,:KT

j,:

ln
eλQi,:K

T
j,:∑n

j=1 e
λQi,:KT

j,:

=

n∑
j=1

eλQi,:K
T
j,:∑n

j=1 e
λQi,:KT

j,:

(ln

n∑
j=1

eλQi,:K
T
j,: − ln eλQi,:K

T
j,:)

= ln

n∑
j=1

eλQi,:K
T
j,: −

∑n
j=1 λQi,:K

T
j,:e

λQi,:K
T
j,:∑n

j=1 e
λQi,:KT

j,:

(5)

Next, we analyze the distribution of Qi,:,Kj,: in Equation 5. In Equation 1, every element of X can
be seen as adhering to a distribution with a mean of 0 and a standard deviation of 1, primarily because
the layer above multi-head attention is typically LayerNorm. We hypothesize that each element of
X follows a normal distribution. If we employ Xavier initialization (Glorot & Bengio, 2010) for
W i

Q,W
i
K in Equation 1, then according to the principles of Xavier initialization, the means and

variances of the input and output are preserved. Consequently, each element in Qi,:,Kj,: also
adheres to a standard normal distribution. Simultaneously, presuming Qi,:,Kj,: to be independent,
we will discuss the rationale behind these assumptions in the appendix. Based on the above analysis,
expected value of every row of A obeys the same distribution in terms of entropy. We denote
the expected entropy of each row of A as H(n, λ(n)). The reason λ(n) appears is that when we
extrapolate, d is fixed as we do not change the network structure, and so can be considered as a
constant. Therefore, we have:

H(n, λ(n)) = EQi,:,Kj,:∼N (0,Id)[ln

n∑
j=1

eλQi,:K
T
j,: −

∑n
j=1 λQi,:K

T
j,:e

λQi,:K
T
j,:∑n

j=1 e
λQi,:KT

j,:

] (6)

With Equation 6, we can compute the expected entropy using the Monte Carlo method. We use N
to denote the sequence length during training and Nmax to denote the maximum sequence length
during extrapolation. We hope that

∀n ∈ {N + 1, N + 2, ..., Nmax}, H(n, λ(n)) ≈ H(N,λ(N)) (7)

First, we analyze what properties λ needs to satisfy to better meet Equation 7.As n increases, the in-
troduction of new boxes causes attention to scatter, leading to an increase in uncertainty. Only when
λ increases, the gap between λQi,:K

T
j,: will expand, which reduces uncertainty after the Softmax

operation. Only by offsetting the two can entropy remain unchanged. This indicates that:

dλ

dn
> 0 (8)

Although n is a positive integer, in Equation 8, we can extend n to the real number field R. We
use the neural network f(n;θ) to approximate dλ

dn . The reason we do not use a neural network
to approximate λ is that if we use a neural network to approximate λ, it is difficult to ensure that
Equation 8 strictly holds. However, if we use a neural network to approximate dλ

dn , we only need to
apply a non-negative function to the output of the last fully connected layer of the neural network,
and then add a tiny positive number to strictly satisfy Equation 8.

4.2 NETWORK ARCHITECTURE

Since the input and output of the neural network are both one-dimensional, we do not need to use a
very complex network structure to achieve a good approximation. The neural network only contains
fully connected layers and residual connections. We use d′ to denote the hidden size of the network.
The network architecture is illustrated in Figure 1. The first layer is a fully connected layer with an
activation function.

Y (1) = ReQUr(nW (1) + b(1)) (9)
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Figure 1: Network Architecture. In this figure, FC(d′) represents the fully connected layer with an
output dimension of d′.

where W (1) ∈ R1×d′
, b(1) ∈ Rd′

. The function ReQUr(x) = ReLU2(x) − ReLU2(x − 0.5) is
applied. Compared with ReLU , ReQUr (Yu et al., 2021) performs better in approximating smooth
functions. Next are Nr residual blocks:

Y (j) = ReQUr
(
ReQUr

(
Y (j−1)W (j,1) + b(j,1)

)
W (j,2) + b(j,2)

)
+ Y (j−1) (10)

where j = 2, 3, ..., Nr + 1, W (j,1),W (j,2) ∈ Rd′×d′
, b(j,1), b(j,2) ∈ Rd′

. The last layer is:

f(n;θ) = ReQU(Y (Nr+1)W (Nr+2) + b(Nr+2)) + ϵ (11)

where W (Nr+2) ∈ Rd′×1 ,b(Nr+2) ∈ R1, ReQU(x) = ReLU2(x), and ϵ = 10−4. Compared with
ReLU , ReQU (Li et al., 2019) performs better in approximating smooth functions, but replacing
the previous ReQUr with ReQU would increase the training difficulty.

λ(n) ≈ λ(N) +

∫ n

N

f(x;θ)dx (12)

For the integral present in Equation 12, we employ a five-point Gaussian quadrature for its approx-
imation, as demonstrated in Algorithm 1. The study by Su (2021) necessitates the Transformer
model to be retrained, which can be time-consuming. We aim to circumvent the need to retrain
the Transformer. Given that λ = 1√

d
is utilized in many existing well-trained models, we establish

λ(N) = 1√
d

in Equation 12. Next, we provide the formulation of the loss function.

L =
1

B

B∑
i=1

(
H(ni, λi)−H(N,

1√
d
)

)2

(13)

Where B represents the batch size, ni signifies the integer sampled that is greater than N but less
than or equal to Nmax, and λi = λ(ni). The training procedure can be seen in Algorithm 2.

Algorithm 1 Five-Point Gaussian Quadrature(a, b, f)

Input: Integration start point a, end point b, integrand f(x).

1: x1 = 0, x2 = 1
3

√
5− 2

√
10
7 , x3 = − 1

3

√
5− 2

√
10
7 , x4 = 1

3

√
5 + 2

√
10
7 , x5 =

− 1
3

√
5 + 2

√
10
7 , w1 = 128

225 , w2 = w3 = 322+13
√
70

900 , w4 = w5 = 322−13
√
70

900 .

Output: b−a
2

∑5
i=1 wif(

b−a
2 xi +

a+b
2 )
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Algorithm 2 Training Process

Input: Batch size B, number of epochs E, neural network f(n;θ), training length N , maximum
extrapolation length Nmax, size of the head d.

1: Initialize θ
2: for epoch = 1, 2, ..., E do
3: Randomly generate n1, n2, ..., nB , where ni is an integer greater than N and less than or

equal to Nmax, i = 1, 2, ..., B
4: λi ← 1√

d
+ Five-Point Gaussian Quadrature(N,ni, f(n;θ)), i = 1, 2, ..., B

5: ∇θL← ∇θ
1
B

∑B
i=1

(
H(ni, λi)−H(N, 1√

d
)
)2

6: θ ← Adam(θ,∇θL)
7: end for

5 EXPERIMENT

We are primarily concerned with two types of problems: Offline 3D Bin Packing Problem(O3BPP)
and routing problems. The latter includes the TSP and the Capacitated Vehicle Routing Prob-
lem(CVRP).

We present a uniform hyperparameter configuration for three combinatorial optimization problems.
The optimization algorithm employed is Adam (Kingma & Ba, 2014), and the Rollout algorithm
(Kool et al., 2019) is used for training. When the p value in the Rollout algorithm exceeds 0.95,
the learning rate is scaled down by a factor of 0.95. The Rollout algorithm is run for 500 epochs,
with 10 steps per epoch, and a significance level of 0.05. The models for all three combinatorial
optimization problems consist of multi-head self-attention and feedforward layers. The number of
heads h is 8, and the dimension of the head d is 16. There are 3 multi-head attention layers, and
the output dimensions of the feedforward layers are 512 and 128, respectively. The temperature
coefficient C is assigned a value of 10. LayerNorm (Ba et al., 2016) is used for normalization.
N = 100, Nmax = 1600, and the test dataset size is 16384.

5.1 OFFLINE 3D BIN PACKING PROBLEM

The O3BPP under investigation is defined as follows: given the length, width, and height of n cuboid
boxes and a cuboid bin of length L and width W , the goal is to pack all n cuboid boxes into the bin
such that the bin’s height is minimized and the boxes cannot be placed obliquely.

For the O3BPP, we use the attend2pack model (Zhang et al., 2021). In terms of network architecture,
we basically follow the original paper (Zhang et al., 2021). The number of convolutional layers is
3, the input channel number of the first convolutional layer is 2, the input channel numbers of the
last two convolutional layers are 4, and the output channel numbers of the three convolutional layers
are all 4. Their kernel size, stride, and padding are 3, 2, and 1, respectively. All boxes have lengths,
widths, and heights that are randomly and equally likely to be integers from 10 to 50. Batch size is
64.

As can be observed from Table 1, our approach outperforms existing methods during extrapolation,
especially when n is relatively large, showcasing a significant improvement over the current tech-
niques. Simultaneously, we observe that the performance is quite poor when λ = lnn√

d
. This can be

attributed to an excessively large scale factor during this computation. In the attention calculation
process, each box is only able to focus on a small number of other boxes. The study by Chiang &
Cholak (2022) also only considers cases where n is relatively small, such as n = 20. Henceforth,
we will avoid conducting experiments with λ = lnn√

d
.

5.2 TRAVELING SALESMAN PROBLEM

The TSP involves finding the shortest route to visit each of n given cities once and return to the
starting city.
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Table 1: Experimental results for the O3BPP. The data inside the parentheses in the table represents
the standard deviation from five repetitions, while the data preceding the parentheses indicates the
average load rate from five repetitions. The larger the load rate, the better. The % symbol has been
omitted after the standard deviation and load rate for brevity.

Test Box Number n 100 200 400 800 1600

L = 120, W = 100

λ = 1√
d

78.3(1.3) 76.5(0.8) 75.2(1.9) 71.8(2.9) 62.6(1.7)
λ = lnn√

d
53.6(1.6) 54.2(1.5) 52.0(1.6) 55.6(2.4) 50.9(2.2)

λ = lnn
d 78.6(0.1) 77.3(1.4) 76.3(0.3) 72.9(1.4) 66.9(0.4)

EIE(Ours) 78.3(1.3) 78.8(1.0) 77.7(0.7) 75.0(1.3) 72.6(1.2)

L = 140, W = 110

λ = 1√
d

77.6(1.2) 75.6(0.4) 74.0(1.0) 69.9(2.0) 62.3(1.1)
λ = lnn√

d
52.3(1.5) 52.5(1.6) 52.1(2.7) 55.8(2.4) 55.0(2.1)

λ = lnn
d 77.4(1.5) 76.0(1.2) 74.4(0.9) 71.9(0.4) 66.1(0.6)

EIE(Ours) 77.6(1.2) 76.6(0.6) 75.9(0.8) 73.3(0.4) 69.0(1.7)

L = 160, W = 120

λ = 1√
d

76.1(0.3) 74.1(1.8) 70.1(1.2) 69.9(1.7) 61.2(1.1)
λ = lnn√

d
51.4(2.6) 55.8(2.5) 52.4(2.9) 52.6(2.8) 55.4(2.9)

λ = lnn
d 76.2(1.8) 74.8(0.9) 72.8(0.2) 71.0(1.8) 64.7(1.7)

EIE(Ours) 76.1(0.3) 75.5(0.3) 74.8(1.1) 72.6(0.3) 70.0(1.3)

For the TSP, we utilize the Attention Model1 (Kool et al., 2019) with an initial learning rate of 10−4.
Batch size is 256.The coordinates of the cities in the training and testing data are randomly generated
from a uniform distribution between -1 and 1.

Table 2: The experimental results for the TSP. The number preceding the parenthesis in the table
represents the average route length from five repetitions, with lower values being better. The number
within the parentheses denotes the standard deviation after five repetitions.

Test City Number n 100 200 400 800 1600

λ = 1√
d

18.5(0.7) 27.5(2.0) 40.8(2.9) 61.9(2.2) 96.6(1.9)
λ = lnn

d 18.4(0.1) 27.3(0.8) 40.5(2.9) 60.3(1.3) 96.5(0.4)
EIE(Ours) 18.5(0.7) 26.0(1.1) 39.0(0.9) 59.2(1.6) 91.2(4.8)

Table 2 presents the experimental results of various extrapolation methods for the TSP. Similar to the
offline bin packing problem, our method surpasses existing methods, showing a notable improve-
ment over previous methods as the number of cities increases. Additionally, we observe that during
extrapolation, λ = lnn

d outperforms λ = 1√
d

. This suggests that reducing the relative rate of entropy
change indeed enhances the model’s extrapolation capability.

1https://github.com/wouterkool/attention-learn-to-route
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5.3 CAPACITATED VEHICLE ROUTING PROBLEM

The CVRP examined in this study refers to a scenario with a given set of coordinates for n+1 cities,
one of which serves as the origin, and the remaining n cities are destinations. Each destination city
has a specific demand for goods, and the origin is equipped with an ample supply of goods and an
infinite number of vehicles, each with a capacity of Cv . The aim is to utilize these vehicles to cater
to the demands of all destination cities, with the smallest total distance covered by all the vehicles
being the ultimate goal. The total distance also includes the distance for the vehicles to return to the
origin.

For the CVRP, our model and parameters largely align with those used for the TSP. Here, we only
present the differences: When Cv = 15, 20, training becomes considerably unstable, hence we
adjust the initial learning rate to 5 × 10−5. The input dimension of the first fully connected layer
changes from two to three dimensions. This is because the input for the TSP is two-dimensional,
containing only city coordinates, while the input for the CVRP is three-dimensional, encompassing
city coordinates and the quantity of goods required by each city. In the training and testing datasets,
the quantity of goods needed follows a uniform distribution between 0 and 1.

Table 3: The results of the CVRP experiment. The numbers preceding the parentheses represent
the average distance after repeating the experiment five times, with a smaller number being better.
The numbers inside the parentheses denote the standard deviation of the distance after repeating the
experiment five times.

Test Destination Number n 100 200 400 800 1600

Cv = 10

λ = 1√
d

25.3(0.2) 42.7(1.2) 73.3(0.2) 126.9(0.5) 231.7(0.9)
λ = lnn

d 25.3(0.6) 42.2(1.1) 71.8(0.8) 123.8(1.0) 229.5(0.4)
EIE(Ours) 25.3(0.2) 41.2(0.6) 69.3(1.2) 120.5(1.3) 215.0(1.0)

Cv = 15

λ = 1√
d

23.2(1.2) 38.6(0.2) 63.5(0.8) 106.7(3.2) 186.3(3.3)
λ = lnn

d 23.9(1.4) 38.2(1.2) 62.5(1.3) 104.9(0.4) 185.3(1.3)
EIE(Ours) 23.2(1.2) 36.7(0.7) 60.3(2.9) 102.2(3.9) 177.9(2.5)

Cv = 20

λ = 1√
d

21.9(0.6) 38.4(0.4) 60.6(0.5) 101.1(1.0) 169.3(3.4)
λ = lnn

d 21.6(0.1) 37.6(0.7) 58.8(1.3) 96.3(3.8) 162.7(0.1)
EIE(Ours) 21.9(0.6) 34.4(1.1) 55.8(2.6) 93.0(1.2) 159.4(3.3)

Table 3 presents the experimental results for the CVRP. The findings further corroborate the superi-
ority of our method over existing methods.

5.4 OUR MODEL

Given that in the O3BPP, TSP and CVRP, the training lengths N are all set to 100, and the maximum
extrapolated lengths Nmax are all set to 1600, with a head size d of 16, we only need to train our
model once. The number of residual blocks in our model Nr is set to 3, d′ = 10, with Adam being
the optimizer and an initial learning rate of 10−3. The number of epochs is specified as 500, and
after each epoch, the learning rate is multiplied by 0.99. The batch size is set at 256.

Figure 2 illustrates the graph of the learned entropy expectation H against n. The graph shows
that compared to λ = 1√

d
and λ = lnn

d , the relative rate of change in the entropy expectation
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Figure 2: Graph of entropy expectation H against n.

for our method is relatively smaller. Concurrently, we observe that when λ = lnn
d , the entropy is

exceedingly small, which aligns with our prior explanation. From our previous experimental results,
λ = lnn

d indeed outperforms λ = 1√
d

. The relative rate of change in entropy for λ = lnn
d is indeed

less than that for λ = 1√
d

. This observation corroborates the validity of our hypothesis.

Table 4 presents the inference times corresponding to different n values. Even though our approach
introduces an additional neural network, it only increases the time by 0.02 seconds. This increment
is negligible when compared to the original inference time.

Table 4: The inference times of CVRP corresponding to different n values. Our approach increases
the time by 0.02 seconds. Please note that the units in the table are in hours.

n 200 400 800 1600

time(h) 0.17 0.54 2.18 8.18

6 CONCLUSION

In this paper, we have introduced a length extrapolation method for Transformers that does not
require position embeddings. This approach is based on the principle of entropy invariance and
designs different scaling factors for various extrapolation lengths. Compared to previous works, our
method does not necessitate the retraining of the Transformer model, thereby saving a significant
amount of time. Our model is also remarkably simple, consisting of just a few hundred parameters.
Even with CPU training, the training time is acceptable. Furthermore, extensive experimental results
demonstrate that our approach outperforms existing methods.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv:1607.06450,
2016.

bloc97. Ntk-aware scaled rope allows llama models to have extended (8k+) context
size without any fine-tuning and minimal perplexity degradation, Jun 2023. URL

9



Under review as a conference paper at ICLR 2024

https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_
scaled_rope_allows_llama_models_to_have/.

Mirelle Candida Bueno, Carlos Gemmell, Jeff Dalton, Roberto Lotufo, and Rodrigo Nogueira. In-
duced natural language rationales and interleaved markup tokens enable extrapolation in large
language models. In Deborah Ferreira, Marco Valentino, Andre Freitas, Sean Welleck, and Moritz
Schubotz (eds.), Proceedings of the 1st Workshop on Mathematical Natural Language Processing
(MathNLP), pp. 17–24, December 2022.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv:2306.15595, 2023.

Ta-Chung Chi, Ting-Han Fan, Peter J Ramadge, and Alexander Rudnicky. Kerple: Kernelized rel-
ative positional embedding for length extrapolation. Advances in Neural Information Processing
Systems, 35:8386–8399, 2022.

Ta-Chung Chi, Ting-Han Fan, Alexander Rudnicky, and Peter Ramadge. Dissecting transformer
length extrapolation via the lens of receptive field analysis. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13522–
13537, 2023.

David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention. In Proceed-
ings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 7654–7664, 2022.

Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, and Chunhua Shen. Conditional positional
encodings for vision transformers. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

Yann Dubois, Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. Location Attention for Extrapo-
lation to Longer Sequences. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault
(eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp. 403–413, July 2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

John J Hopfield and David W Tank. “neural” computation of decisions in optimization problems.
Biological cybernetics, 52(3):141–152, 1985.

Yuan Jiang, Zhiguang Cao, and Jie Zhang. Learning to solve 3-d bin packing problem via deep
reinforcement learning and constraint programming. IEEE transactions on cybernetics, 2021.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan, Payel Das, and Siva Reddy. The im-
pact of positional encoding on length generalization in transformers. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
ICLR, 2019.

10

https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/


Under review as a conference paper at ICLR 2024

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional conference on machine learning, pp. 3744–3753, 2019.

Bo Li, Shanshan Tang, and Haijun Yu. Better approximations of high dimensional smooth functions
by deep neural networks with rectified power units. Communications in Computational Physics,
27(2):379–411, 2019.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2021.

Jishnu Ray Chowdhury and Cornelia Caragea. Monotonic location attention for length generaliza-
tion. In Proceedings of the 40th International Conference on Machine Learning, volume 202, pp.
28792–28808, 23–29 Jul 2023.
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A APPENDIX

A.1 PROOF OF THEOREM 1

First, let’s establish the following lemma:
Lemma 1 If f : Rn×d2 → Rn×d3 and g : Rn×d1 → Rn×d2 are permutation equivariant , then the
composition f ◦ g also is permutation equivariant .

Proof Let X ∈ Rn×d1 and σ ∈ Sn.

f(g(σ(X))) = f(σ(g(X))) = σ(f(g(X))) (14)

Thus, f ◦ g is permutation equivariant . □

Given that the CO-Transformer is composed of multi-head attention layers without positional em-
beddings, fully connected layers, Softmax, and LayerNorm, if we prove that each individual function
is permutation equivariant , then according to Lemma 1, CO-Transformer would also be permutation
equivariant. Lee et al. (2019) has already proved that multi-head attention layers without positional
embeddings, fully connected layers, and LayerNorm are permutation equivariant. The proof for
Theorem 1 is as follows:
Proof We start by proving that the multi-head attention layer is permutation equivariant. We
breakdown the computation of the multi-head attention into three types of mappings: fi : X →
(Qi,Ki,Vi), gi : (Qi,Ki,Vi) → Oi, and h : (O1,O2, ...,Oh) → O, where (Qi,Ki,Vi) ∈
Rn×3d. The meaning of the symbols appearing in the above three types of mappings is the same as
that in Equations 1, 2, 3 and 4. If we prove that each type of mapping is permutation equivariant
, then according to Lemma 1, the multi-head attention layer can be permutation equivariant. We
denote the input to the multi-head attention layer as X and any permutation as σ. Let X ′ = σ(X).
If the element in the j-th row and k-th column of X is represented as X[j, k], then the element in
the j-th row and k-th column of X ′ is represented as X[σ(j), k]. Mimicking Equation 1 and taking
X ′ as input (any variable with a prime in the superscript indicates the result obtained with X as
input), we can get:

Q′
i[j, :] = X[σ(j), :]W i

Q,K
′
i[j, :] = X[σ(j), :]W i

K ,V ′
i [j, :] = X[σ(j), :]W i

V (15)

Here, i = 1, 2, ..., h, and X[σ(j), :] represents the σ(j)-th row vector of X . Clearly, we have
fi(σ(X)) = σ(fi(X)), so that fi : X → (Qi,Ki,Vi) is permutation equivariant is proven.
According to Equation 2, we can get:

A′
i[j, k] =

exp(Qi[σ(j), :]K
T
i [σ(k), :]/

√
d)∑n

k=1 exp(Qi[σ(j), :]KT
i [σ(k), :]/

√
d)

(16)

According to Equation 3:

O′
i[j, k] =

∑n
l=1 exp(Qi[σ(j), :]K

T
i [σ(l), :]/

√
d)Vi[σ(l), k]∑n

l=1 exp(Qi[σ(j), :]KT
i [σ(l), :]/

√
d)

(17)

With X as the input, Oi is defined as:

Oi[j, k] =

∑n
l=1 exp(Qi[j, :]K

T
i [l, :]/

√
d)Vi[l, k]∑n

l=1 exp(Qi[j, :]KT
i [l, :]/

√
d)

(18)

It’s clear that O′
i[j, k] = Oi[σ(j), k], therefore proving that gi : (Qi,Ki,Vi)→ Oi is permutation

equivariant. The third type of mapping is similar to the first type, involving only matrix concatena-
tion and multiplication. Similar to the first type, it’s straightforward to prove that the third type of
mapping h : (O1,O2, ...,Oh) → O also is permutation equivariant . Thus, that multi-head atten-
tion is permutation equivariant has been demonstrated. For the fully connected layer, it has been
shown that a fully connected layer without Bias and activation function is permutation equivariant ,
and it’s relatively easy to prove that a fully connected layer with Bias and activation function is also
permutation equivariant.

Next, we proceed to establish that LayerNorm is permutation equivariant.

12
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As before, we posit that X ∈ Rn×(h×d) is the input to LayerNorm, and Y ∈ Rn×(h×d) is the output
of LayerNorm. We define X ′ = σ(X), and Y ′ is the output of LayerNorm when X ′ is the input.

Y ′[i, j] =
X ′[i, j]− Ej(X

′[i, j])

stdj(X ′[i, j]) + ϵ′
=

X[σ(i), j]− Ej(X[σ(i), j])

stdj(X[σ(i), j]) + ϵ′
= Y [σ(i), j] (19)

where Ej(X[i, j]) = 1
hd (

∑hd
j=1 X[i, j]), stdj(X[i, j]) =

√
1
hd (X[i, j]− Ej(X[i, j]))

2, ϵ′ is a
very small positive number.

Lastly, we proceed to demonstrate that Softmax is permutation equivariant. Typically, standalone
Softmax is only present in the final layer. Therefore, the input to Softmax can be considered as a
vector. We posit that x ∈ Rn is the input to Softmax, and y ∈ Rn is the output of softmax. We define
x′ = σ(x), and y′ is the output of Softmax when x′ serves as the input.

y′[i] =
ex

′[i]∑n
i=1 e

x′[i]
=

ex[σ(i)]∑n
i=1 e

x[σ(i)]
= y[σ(i)] (20)

□

A.2 ADDITIONAL EXPERIMENTAL RESULTS
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Figure 3: d = 16. The function graph of λ and n learned from the training.

Table 5: d = 16. The values of λ corresponding to some particular n.

n 100 200 400 800 1600

λ 0.250 0.374 0.512 0.618 0.702

Figure 3 presents the function graph of the learned λ and n. Upon examination, the learned function
shares some similarities with the logarithmic function, as both exhibit properties of being monoton-
ically increasing functions with monotonically decreasing derivatives. In previous work, the scaling
factors all incorporate logarithmic functions.Compared to the standard multi-head attention scaling
factor 1√

d
, the function lnn

d bears more resemblance to the function we learned. This resemblance

may explain why lnn
d tends to perform better than 1√

d
during extrapolation. Table 5 provides the

varying values of λ corresponding to different n during our extrapolation process.

For the O3BPP, TSP, and CVRP, we increased the number of multi-head attention layers in the model
from 3 to 4, increased the head size d from 16 to 32, increased the sequence length during training
N from 100 to 120, and increased the maximum length for extrapolation Nmax from 1600 to 1920.
Table 6 displays the experimental results for d = 32, N = 120, and Nmax = 1920. Figure 4 shows
the graph of λ against n for d = 32, while Table 7 provides the λ values for some specific n values.
Figure 5 presents the graph of H against n for d = 32.
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Table 6: Experimental results for d = 32, N = 120, and Nmax = 1920

n 120 240 480 960 1920

O3BPP

L = 120, W = 100

λ = 1√
d

77.9(0.9) 76.0(0.6) 75.2(1.0) 71.8(1.4) 62.7(1.7)
λ = lnn

d 78.3(0.4) 76.8(1.2) 76.0(0.2) 73.3(1.5) 66.7(0.3)
EIE(Ours) 77.9(0.9) 79.1(1.2) 77.6(0.6) 74.7(1.2) 72.4(1.1)

L = 140, W = 110

λ = 1√
d

77.9(1.3) 75.4(0.2) 73.8(0.8) 69.9(2.1) 62.3(1.1)
λ = lnn

d 77.2(1.4) 75.6(1.0) 74.7(1.1) 72.0(0.4) 66.1(0.6)
EIE(Ours) 77.9(1.3) 76.7(0.8) 75.7(0.7) 73.7(0.6) 69.4(2.1)

L = 160, W = 120

λ = 1√
d

76.1(0.3) 74.1(1.8) 70.1(1.2) 69.9(1.7) 61.2(1.0)
λ = lnn

d 76.2(1.8) 74.8(0.9) 72.8(0.2) 71.0(1.8) 64.7(1.8)
EIE(Ours) 76.1(0.3) 75.5(0.3) 74.8(1.1) 72.6(0.3) 70.0(1.3)

TSP

λ = 1√
d

20.4(0.9) 31.8(0.4) 47.3(0.6) 69.6(2.5) 106.6(2.4)
λ = lnn

d 20.3(0.7) 30.3(0.6) 45.6(2.0) 68.6(0.9) 104.9(0.8)
EIE(Ours) 20.4(0.9) 29.9(0.2) 44.7(1.2) 66.7(2.1) 102.9(1.7)

CVRP

Cv = 10

λ = 1√
d

29.2(0.5) 50.2(1.9) 85.9(2.9) 126.9(0.5) 254.1(3.9)
λ = lnn

d 30.0(0.0) 49.8(1.0) 83.8(0.3) 147.2(0.3) 252.8(1.9)
EIE(Ours) 29.2(0.5) 48.7(0.3) 82.6(2.2) 144.7(1.6) 247.4(3.7)

Cv = 15

λ = 1√
d

26.5(0.4) 44.9(1.3) 73.8(1.8) 127.9(1.6) 210.6(1.7)
λ = lnn

d 26.6(0.3) 43.1(1.9) 72.9(1.6) 125.4(3.5) 209.9(0.1)
EIE(Ours) 26.5(0.4) 42.8(0.9) 70.5(2.1) 121.5(3.2) 204.7(2.8)

Cv = 20

λ = 1√
d

25.1(0.7) 41.0(0.5) 67.8(0.6) 113.0(2.3) 186.1(4.5)
λ = lnn

d 25.2(0.2) 40.1(1.1) 67.0(1.3) 111.7(0.5) 185.1(2.6)
EIE(Ours) 25.1(0.7) 39.1(1.9) 65.5(1.8) 109.0(2.1) 182.7(3.8)
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Figure 4: d = 32. The function graph of λ and n learned from the training.
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Figure 5: d = 32. Graph of entropy expectation H against n.

Table 7: d = 32. The values of λ corresponding to some particular n.

n 120 240 480 960 1920

λ 0.177 0.227 0.306 0.422 0.504
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A.3 RATIONALITY OF ASSUMPTIONS

Figure 6 presents the Jensen–Shannon divergence between each element in X and the standard
normal distribution. As can be observed, the Jensen–Shannon divergence for most elements and the
standard normal distribution ranges from 8e-3 to 9e-3. This validates our rationale for viewing X
as following a standard normal distribution.
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Figure 6: The Jensen–Shannon divergence between each element in X and the standard normal
distribution.

Regarding the independence of Qi,: and Kj,:, if they are not independent, we calculate the entropy
using the following formula:

H(de)(n, λ(n)) = EX∼N (0,In×hd),WQ[:,i],WK [:,j]∼N (0, 1
hd Ihd)

[ln

n∑
j=1

eλXWQ[:,i]WK [:,j]TXT

−
∑n

j=1 λXWQ[:, i]WK [:, j]TXT eλXWQ[:,i]WK [:,j]TXT∑n
j=1 e

λXWQ[:,i]WK [:,j]TXT ]
(21)

Figure 7 illustrates the entropy calculated using Equations 6 and 21. From the figure, we can discern
that the independence (or lack thereof) between Qi,: and Kj,: has a negligible impact on the entropy
calculation.
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Figure 7: The entropy calculated using Equations 6 and 21.
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