

Augmenting Large Language Models with Knowledge Graphs for Domain-Specific Applications

Sushanta Mohapatra¹ and Tosin Adewumi¹

¹Luleå University of Technology

{sushanta.mohapatra@student.ltu.se, tosin.adewumi@ltu.se}

001 Abstract

002 Large language models (LLMs) models demonstrate
003 impressive capabilities in generating human-like text
004 and handling general-purpose queries. However,
005 their application in specialized domains, such as sup-
006 ply chain management (SCM), remains challenging
007 due to limitations in understanding domain-specific
008 terminology and concepts. This research explores
009 the integration of Knowledge Graphs (KGs) into
010 Retrieval Augmented Generation (RAG) pipelines
011 to enhance the performance of LLMs in domain-
012 specific tasks. **We introduce a novel bench-**
013 **mark dataset for SCM**, covering eight supply
014 chain functions and thirteen distinct categories of
015 questions. The results of this study demonstrated
016 that the KG integration improved performance com-
017 pared to traditional RAG approaches, with smaller
018 models achieving notable gains that reduced the
019 performance gap with larger models.

020 1 Introduction

021 Large Language Models (LLMs) can answer ques-
022 tions and generate human-like text. However, they
023 face significant challenges in specialized domains
024 such as supply chain management (SCM), which
025 involves specific terminology and complex processes
026 unique to various organizations. Modern SCM op-
027 erates within a dynamic global environment that
028 requires effective coordination among multiple stake-
029 holders. While LLMs have the potential for rea-
030 soning and problem-solving, their static general
031 knowledge limits their effectiveness in addressing
032 the intricacies of SCM. [1–4] To enhance LLMs,
033 retrieval-augmented generation (RAG) frameworks
034 have been proposed that integrate external knowl-
035 edge to improve response accuracy. However, tradi-
036 tional RAG approaches often rely on basic vector
037 similarity, which can result in incomplete or incon-
038 sistent information retrieval. By grounding LLMs in
039 factual knowledge, KGs can improve the accuracy
040 and relevance of generated content. [5–7]

041 This research work investigates knowledge aug-
042 mentation of LLMs with KGs for domain-specific
043 applications. It attempts to address limitations
044 related to complex reasoning and domain-specific

concepts in order to improve real world applications 045
of LLMs. The **research question** of this study 046
is 'How can the accuracy and context-awareness 047
of LLMs be improved with the integration of KGs 048
for decision-making processes and real-world appli- 049
cations in SCM? Hence, the goals of this project 050
are: 051

- Investigate various strategies for integrating 052
KGs into the RAG pipeline to enhance its func- 053
tionality and effectiveness. 054
- Develop a framework to enrich LLMs with KGs, 055
enabling them to better manage and understand 056
the specific contexts and terminologies relevant 057
to SCM. 058

059 2 Methods

060 The methodology used in this research work includes 061
data acquisition and preparation, KG construction, 062
solution development, evaluation, and critical analy- 063
sis of results.

064 2.1 Data Acquisition and Prepara- 065 tion

066 This study utilizes two primary datasets: a novel 067
supply chain benchmark dataset and the open LTU 068
Chatbot QA dataset [8]. A novel supply chain 069
benchmark dataset was developed to capture real- 070
world SCM challenges. The questions in the dataset 071
were divided into two parts: generic questions and 072
organization-specific questions. Each part was fur- 073
ther organized by eight SCM functions and 13 ques- 074
tion categories. In total, 208 questions were curated 075
for this dataset [2 (groups) x 8 (departments) x 076
13 (question categories)]. The LTU Chatbot QA 077
dataset, originally by Werkman [8], was utilized after 078
minor modifications. To better evaluate the retrieval 079
capabilities of RAG systems, changes were done to 080
decouple the direct association between questions 081
and their corresponding knowledge source texts.

082 2.2 Knowledge Graph Construction

083 Three KGs were created based on distinct knowl- 083
edge sources: 1) facts from the LTU website, 2) 084

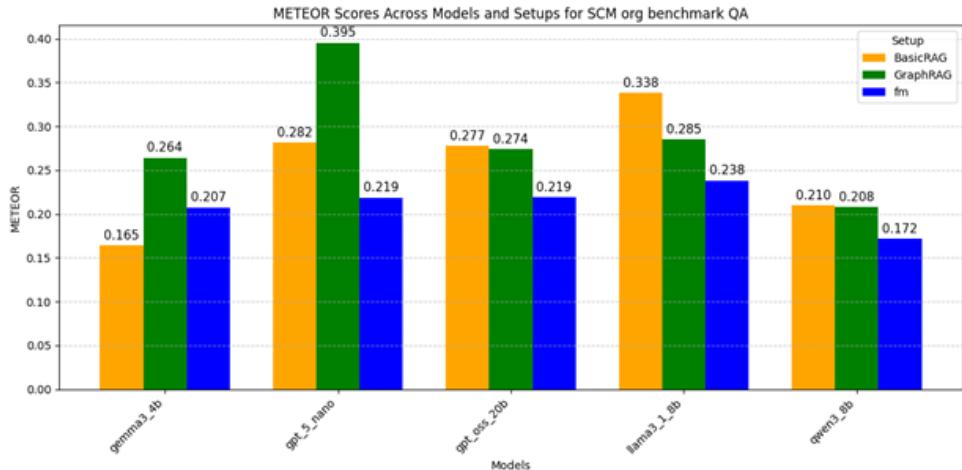


Figure 1. Performance across models for SCM Organization specific QA dataset (METEOR score)

generic SCM knowledge from publicly available literature, and 3) synthetically created internal process documentation for the fictional organization FoSCwAI AB. The KGs were constructed using GPT-4o-mini and involved several steps, including retrieving triplets from source texts, mapping these extracted triplets into a base ontology in JSON format, and iteratively refining the structure.

2.3 Solution Development and Evaluation

Five state-of-the-art LLMs were selected for experimentation: gemma3 (4b), qwen3 (8b), llama3.1 (8b), gpt-oss (20b), and GPT-5 (nano). Three solution pipelines were developed: a foundation model pipeline for direct question answering, a standard RAG pipeline utilizing vector similarity, and a KG-integrated RAG pipeline that enhances retrieval by incorporating KG entities. The Supply Chain Knowledge Augmentation and Enrichment (SC-KAE framework) was developed to improve knowledge retrieval and reasoning for complex SCM related queries. Evaluation was done using metrics such as ROUGE and METEOR, as well as truthfulness scores assessed by LLM-based evaluation.

3 Results and Discussion

The KG-integrated RAG approach outperformed other approaches in organization-specific contexts, improving both answer quality and alignment with knowledge bases. Figure 1 is a bar chart of performance on the SCM dataset. Similar observations were made with the LTU Chatbot QA dataset. This indicates that KGs can improve a model's ability to ground its outputs in structured, domain-relevant knowledge. While VectorRAG relies on unstructured text, KG-integrated RAG provides richer context,

resulting in better performance.

However, in broader open world contexts like the generic SCM QA benchmark, its advantages are less consistent, often trailing behind foundation models. Smaller, lightweight models benefited more from KG integration, showing marked improvements in truthfulness and performance. This suggests that with a robust KG, lightweight models can compete with larger ones, making deployments more cost-effective. Limitations include dependency on KG completeness and increased latency.

4 Conclusion

The study investigated the integration of KGs within RAG pipelines for domain-specific QA. The proposed KG integrated RAG framework, combining semantic entity linking, subgraph extraction, and LLM-based reasoning, demonstrably improves answer relevance, lexical overlap, and truthfulness compared to standard vector-based retrieval approaches. Our findings affirm the significant potential of KG integration to enhance grounding and factuality. This work lays a good foundation for future research in ontology-driven, retrieval-augmented AI systems in domain specific context, with promising applications in SCM, academic and other domains. Although the results of the study are promising, challenges remain, as the accuracy of the system strongly depends on the completeness and quality of the KG, prompting future efforts to optimize KG construction and improve semantic entity linking.

References

- [1] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttrler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel,

154 and D. Kiela. "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks".
155 In: *Advances in Neural Information Processing Systems*. Vol. 33. Curran Associates,
156 Inc., 2020, pp. 9459–9474. URL: <https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html> (visited on 07/31/2025).

161 [2] Y. Li, H. Zhao, H. Jiang, Y. Pan, Z. Liu, Z.
162 Wu, P. Shu, J. Tian, T. Yang, S. Xu, Y. Lyu, P.
163 Blenk, J. Pence, J. Rupram, E. Banu, N. Liu, L.
164 Wang, W. Song, X. Zhai, K. Song, D. Zhu, B. Li,
165 X. Wang, and T. Liu. *Large Language Models
166 for Manufacturing*. arXiv:2410.21418 [cs]. Oct.
167 2024. DOI: [10.48550/arXiv.2410.21418](https://doi.org/10.48550/arXiv.2410.21418). URL:
168 [http://arxiv.org/abs/2410.21418](https://arxiv.org/abs/2410.21418) (visited
169 on 07/31/2025).

170 [3] R. Aghaei, A. A. Kiaei, M. Boush, J. Vahidi,
171 Z. Barzegar, and M. Rofoosheh. *The Potential
172 of Large Language Models in Supply Chain
173 Management: Advancing Decision-Making, Ef-
174 ficiency, and Innovation*. arXiv:2501.15411 [cs].
175 Jan. 2025. DOI: [10.48550/arXiv.2501.15411](https://doi.org/10.48550/arXiv.2501.15411).
176 URL: [http://arxiv.org/abs/2501.15411](https://arxiv.org/abs/2501.15411)
177 (visited on 07/31/2025).

178 [4] H. Wang, J. Jiang, L. J. Hong, and G.
179 Jiang. *LLMs for Supply Chain Management*.
180 arXiv:2505.18597 [cs]. May 2025. DOI: [10.48550/arXiv.2505.18597](https://doi.org/10.48550/arXiv.2505.18597). URL: [http://arxiv.org/abs/2505.18597](https://arxiv.org/abs/2505.18597) (visited on
181 07/30/2025).

182 [5] J. Baek, A. F. Aji, and A. Saffari. *Knowledge-
183 Augmented Language Model Prompting for
184 Zero-Shot Knowledge Graph Question Answer-
185 ing*. arXiv:2306.04136 [cs]. June 2023. DOI: [10.48550/arXiv.2306.04136](https://doi.org/10.48550/arXiv.2306.04136). URL: [http://arxiv.org/abs/2306.04136](https://arxiv.org/abs/2306.04136) (visited on
186 02/27/2025).

187 [6] T. Bruckhaus. *RAG Does Not Work for Enter-
188 prises*. arXiv:2406.04369 [cs]. May 2024. DOI:
189 [10.48550/arXiv.2406.04369](https://doi.org/10.48550/arXiv.2406.04369). URL: [http://arxiv.org/abs/2406.04369](https://arxiv.org/abs/2406.04369) (visited on
190 02/15/2025).

191 [7] D. Edge, H. Trinh, N. Cheng, J. Bradley, A.
192 Chao, A. Mody, S. Truitt, D. Metropolitan-
193 sky, R. O. Ness, and J. Larson. *From Local
194 to Global: A Graph RAG Approach to Query-
195 Focused Summarization*. arXiv:2404.16130 [cs].
196 Feb. 2025. DOI: [10.48550/arXiv.2404.16130](https://doi.org/10.48550/arXiv.2404.16130).
197 URL: [http://arxiv.org/abs/2404.16130](https://arxiv.org/abs/2404.16130)
198 (visited on 02/24/2025).

199 [8] L. Werkman. *Assessing the potential of lever-
200 aging LLaMA-2 to create an institute-specific
201 online chatbot assistant*. eng. 2024. URL: [https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:
203 diva-108423](https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:
202 diva-108423) (visited on 09/09/2025).