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ABSTRACT

As data-driven scientific discovery increasingly demands explainable over ‘black-
box’ machine learning (ML) methods, Symbolic Regression (SR) that derives an-
alytical expressions can help identify key functional dependencies in complex
systems. However, traditional SR methods often suffer from (a) inefficient ex-
ploration due to their inability to compress the search space of equivalent expres-
sions, and (b) non-physical solutions that violate fundamental physics constraints.
We here introduce a symmetric invariant representation of candidate analytical
expressions using a Symbolic Graph (SG), on which the Symbolic Graph Neu-
ral Network (SGNN) encodes operators, symmetries, constraints and constant
fitting knowledge. We further develop reinforcement learning (RL) algorithms
with Monte-Carlo Tree Search (MCTS) on our SGNN for SR. Such a physics-
constrained graph symbolic regression (PCGSR) method effectively compresses
the search space for efficient SR. Experiments on synthetic and real-world scien-
tific datasets demonstrate the efficiency and accuracy of our PCGSR in discov-
ering underlying expressions and adhering to physical laws, yielding physically
meaningful solutions.

1 INTRODUCTION

Symbolic regression (SR) (Angelis et al., 2023; Makke & Chawla, 2024) is an approach to unveil
the inherent dependencies governing the system under study in a symbolic form. Unlike traditional
regression techniques that adhere to predefined forms (e.g., linear, polynomial, exponential), SR
operates without assuming any specific model form. Instead, SR explores the space of closed-form
mathematical expressions, using variables and operations to find the most suitable analytical expres-
sions that capture the relationships of the underlying observed data. This approach balances accuracy
and interpretability, highlighting its potential in advancing AI for scientific discovery (Wang et al.,
2019). Unlike SR, widely adopted black-box methods such as neural networks lack transparency,
making it difficult to understand the underlying mechanisms and resulting in potentially perpetuating
biases or inaccuracies in scientific research.

Symbolic regression (SR) has inspired extensive research due to its flexibility and expressive power.
Early methods focus on Genetic Programming (GP) (Koza, 1994; Schmidt & Lipson, 2009; Fortin
et al., 2012; Hernandez et al., 2019), which search the candidates by evolving expressions through
selection, mutation, and crossover, avoiding brute-force methods like SISSO (Ouyang et al., 2018)
or basis dependent methods like SINDy (Brunton et al., 2016). However, GP methods scale poorly,
often yield overly complex solutions, and are sensitive to hyperparameters (Petersen et al., 2020).
In contrast, modern SR methods leverage deep learning (DL) and reinforcement learning (RL) to
enhance heuristic search efficiency. DSR (Petersen et al., 2020) uses a recurrent neural network
(RNN) and risk-seeking policy gradients, excelling in simple tasks but struggling with complex ones
due to limited exploration. NGGP (Mundhenk et al., 2021) combines RL with genetic programming,
outperforming both GP and DSR on several benchmarks. MCTS-based methods (Świechowski
et al., 2023; Sun et al., 2022; Kamienny et al., 2023) achieve a superior exploration-exploitation
balance, delivering state-of-the-art performance. Deep generative models (Valipour et al., 2021;
Biggio et al., 2021) excel at inference but lack adaptability for out-of-distribution datasets due to
their static pretraining. This paper introduces a neural-guided MCTS framework, combining the pure
Deep-RL’s exploitation capability and pure MCTS’s exploration capabilities, and further enhances
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efficiency and applicability through state space reduction by capturing invariances and constraints,
as detailed below.

Expression Representations and Symmetries

Despite extensive research addressing the challenge of exponentially increasing search space in SR
with growing complexity (number of operators and variables involved in an expression), less focus
has been given to the representation of expressions themselves. Most works (Petersen et al., 2020;
Sun et al., 2022; Hernandez et al., 2019) use expression trees (Makke & Chawla, 2024) to convert
expressions into input features for SR methods. However, such representations fail to capture the
symmetries and invariances within expressions, leading to redundant states for equivalent expres-
sions and reduced exploration efficiency, especially for sequential encoding methods like RNNs. AI-
Feynman (Udrescu & Tegmark, 2020; Udrescu et al., 2020) attempted to address this by pre-training
neural networks to capture modularities and symmetries to simplify SR problems into smaller sub-
problems for brute-force search. However, this approach requires extra pre-training and the brute-
force search remains inefficient for complex systems. To address these limitations, we propose a
symbolic graph (SG) representation that not only inherently captures symmetries and invariances
without pre-training, but also uniquely identifies operator directions (e.g., −,÷,∧) through edge
features. This representation significantly compresses the search space, enhancing the exploration
efficiency and accelerating the convergence.

Symbolic Regression with Constraints

Constraints exist in nearly all SR problems, especially for real-world problems involving constraints
governed by the fundamental physical laws in natural science and other principles/rules in different
fields. SR methods that fail to account for these constraints can yield meaningless results. Existing
approaches (Udrescu & Tegmark, 2020; Tenachi et al., 2023; Keren et al., 2023) typically address
this by either hand-crafted priors or penalty functions to incorporate domain-specific knowledge.
Though domain-specific priors can prevent invalid expressions from generating, domain-specific
penalty functions as well as other hidden constraints can lead to sparse rewards, making it challeng-
ing for SR methods to converge. To overcome this issue, here we propose to employ a symbolic
graph neural network (SGNN) on SG, trained by MCTS to provide the encoding of prior knowledge
for domain-specific penalty functions and other hidden constraints, guiding MCTS simulations to
reduce reward sparsity. This approach ensures that the generated expressions adhere to the neces-
sary constraints while also mitigating overfitting, thereby enhancing the practical applicability and
robustness of SR in real-world scenarios.

In summary, we present Physics-Constrained Graph Symbolic Regression (PCGSR), a novel SR
methodology designed to address the challenges of inefficient exploration caused by redundant rep-
resentations of equivalent expressions and the limitations of random policy in MCTS simulation.
Our approach incorporates physics constraints directly into the search process to produce physically
meaningful results. We achieve these through 1) SG representations utilized in MCTS and SGNN
to effectively compress the search space by capturing symmetries and invariances within equivalent
expressions; 2) SGNN encoding that embeds inductive biases from MCTS and physics constraints
into the SGNN representation; 3) SGNN-guided MCTS that replaces the random policy in MCTS
simulation with an SGNN-based policy, enabling efficient exploration with encoded inductive biases
and physics constraints. We validate the effectiveness of PCGSR through benchmarking on widely
recognized synthetic datasets and a real-world application in materials science. The results highlight
the practical utility and robustness of our approach, demonstrating its capability to tackle complex
problems in real-world scientific discovery.

2 PROBLEM STATEMENT

Given a dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, SR aims to find a mathematical expression
f to map the input feature vector xi to the corresponding output value yi for each sample with the
minimum error over all data points in D:

min
f

n∑
i=1

L(f(xi), yi), (1)
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where L(·, ·) is a loss function that measures the difference between the predicted and actual output
values as the error. f belongs to a space of mathematical expressions constructed using a predefined
dictionary set Q of n mathematical operators ϕ. That is, Q = {ϕ0, ϕ1, . . . , ϕn} and f = [ϕi|ϕi ∈
Q]. In this paper, every input feature xi is regarded as an operator. We also include operator const
for inserting constants and trans for transplantation strategy by default, detailed in Appendix B.1.

3 METHODS

The main challenge of symbolic regression (SR) originates from its infinite search space for mathe-
matical expressions, as it encompasses extensive combinations of operators and features to compose
expressions. To search for such a space efficiently, we propose our Physics-constrained Graph Sym-
bolic Regression (PCGSR) methodology, which strategically leverages symmetries, invariances, and
constraints to construct a condensed search space for accurate and physically meaningful governing
expressions. It is achieved through the following three key innovations :

• SG representations for expressions to capture symmetries and invariances within them;

• SGNN that encodes physics constraints, hidden constraints, and constraints fitting knowledge;

• MCTS with SGNN-integrated simulation under constraints, that yields less sparse rewards, light
cost for constants fitting, and physically meaningful solutions to real-world problems.

3.1 SYMBOLIC GRAPH REPRESENTATION

Sampling expressions in SR can be modeled as a Markov Decision Process (MDP), where a new op-
erator or feature is iteratively sampled based on the current expression state. The common approach
for representing this state is the expression tree (ET) (Makke & Chawla, 2024), as shown in Figure
1. In this structure, operators are modeled as nodes and edges represent relationships between op-
erators and their operands, with the tree growing from outer functions to inner ones. This approach
reflects the sequential construction of expressions through iterative sampling steps.

However, the ET representation, widely used in many existing SR methods (Petersen et al., 2020;
Mundhenk et al., 2021; Sun et al., 2022; Hernandez et al., 2019), has a significant limitation—
it fails to account for invariances regarding the operator generation sequence of expressions. For
example, as shown in Figure 1, two symmetric expressions (mathematically equivalent with the same
nodes) can have different operator-generating orderings, leading to distinct sibling relationships and
different tree structures. This lack of invariance modeling results in redundant representations for
equivalent expressions (common in polynomials or products), which reduces the learning efficiency
of SR models. This issue is particularly problematic for RL approaches, which may struggle to
converge when faced with an unnecessarily large and diverse state space.

To overcome these challenges, we propose a novel expression representation called the Symbolic
Graph (SG), denoted as G, which converts the ET into an undirected graph-based representa-
tion (Figure 2). In this model, we retain the same node structure for unary operators, while binary
operators are represented through a combination of node and edge features, effectively unifying op-
erators like “+” and “−” or “×” and “÷”. Additionally, we differentiate the operands in directed
binary operations such as “−”, “÷”, and “%”. This approach inherently captures symmetries and
invariances, reducing both the search space for SR and the state space for RL. The benefits include:
1) expanding commutative invariance for polynomial and product terms, 2) preserving permuta-
tion invariance in the generation order by grouping consecutive operations at the same level, and 3)
enhancing the representation precision by uniquely distinguishing operands in directed operators.
Appendix B.2 provides a detailed description of our SG representation.

3.2 SYMBOLIC GRAPH NEURAL NETWORK

A key innovation of our PCGSR lies in the introduction of an efficient exploration strategy for
the condensed search space generated by the SG representation. To enable this, we propose the
Symbolic Graph Neural Network (SGNN), based on Graph Convolutional Networks (GCN) (Kipf
& Welling, 2016; Xie & Grossman, 2018), which enhances the search efficiency by incorporating
inductive bias to replace the random rollout of MCTS’s simulation. GCN, a prominent architecture
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Figure 1: An example of not capturing symmetries in sequential-encoding expression trees. The left
expression f1 and the right expression f2 are two symmetric expressions but generated in a different
order as in the given tables. Any sequential encoding based on the semantic text tokens or the tree
structures will yield different representations. The colored box highlights different sibling relation-
ships in the tree structure which breaks the permutation invariance in generating the expression.

Figure 2: An example of SG encoding symmetries and invariances by: (a) replacing consecutive
addition and subtraction into a ‘sum’ Σ operator, where the edge feature “1” represents an added
term and “2” represents a subtracted term; (b) replacing consecutive multiplication and division
operators into a ‘product’ Π operator, where the edge feature “1” represents a multiplied term, and
“2” represents a divided term; and (c) simplifying consecutive exponentials by combining them into
a single exponential, with the power node representing the multiplication of powers, where the edge
feature “1” represents the base and “2” represents the exponent.

for processing graph-structured data, serves as the foundation of SGNN, as detailed in Appendix
B.3. Using the SG representation G for an expression, the node set V = ϕi represents the operators,
and the edge set E = eij captures relationships between operators and operands. SGNN encoding
of G is formally expressed as:

SGNN(G{V, E}) = (πθ|P(G), πθ|r(G)) = (P, r) (2)

where the output P is a prior probability matrix, with each row representing the prior probability
distribution for each operator ϕ to be added at a given node during MCTS simulations. The output
r is the predicted reward value. πθ|P and πθ|r are models predicting P and r given G with train-
able parameters θ of SGNN. SGNN is trained by self-learning with MCTS, incorporating physics
constraints and inductive bias to guide MCTS simulations effectively. This approach significantly
reduces reward sparsity due to constraints and boosts the overall search efficiency.
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3.3 SGNN-GUIDED MONTE-CARLO TREE SEARCH

Attributed to SR’s expansive search space and MDP property, Monte-Carlo Tree Search (MCTS) has
emerged as one of the promising methods for SR (Sun et al., 2022; Kamienny et al., 2023). Offering
efficient sampling and a robust exploration-exploitation trade-off, MCTS exhibits resilience against
local optimal traps, a challenge faced by policy gradient methods. To leverage the capabilities of our
SG representation and SGNN encoding, we employ SGNN-guided MCTS methods inspired by the
approach taken in AlphaGo Zero (Silver et al., 2017; Nair, 2017).

We model the expression generation process as a finite-horizon sampling trajectory τ =
{s0, a0, s1, a1, . . . , st, at, . . . , aH−1, sH}, with a maximum complexity of H . At step t we define
the state st to be the current SG representation Gt with the sampling node. Action at is the newly
added operator or input feature ϕt. When a trajectory τ is complete (attain the maximum complexity
H or finish the expression in closed form), we obtain the finalized expression as a function fτ . Then
we can evaluate τ through the reward R(τ) = 1/(1 + NMAE), where NMAE is the normalized
mean absolute error defined as:

NMAE =
1

σy

1

n

n∑
i=1

|yi − fτ (Xi)| (3)

To sample τ , at each step t in τ , we do one batch of MCTS for each state st to update MCTS policy
πM so that we can sample at ∼ πM (st). During each batch, an MCTS will simulate a trajectory τt =

{s0t , a0t , s1t+1, a
1
t+1, . . . , s

i
t+i, a

i
t+i, . . . , a

H−t−1
H−1 , sH−t

H } from the root state st, where the superscript
denotes the step of the MCTS simulation and subscript denotes the current complexity. We will
record Q(s, a) (the expected action value for taking action a from s), N(s, a) (the number of times
taking action a from state s across simulations), P(s, ·) (prior probability distribution of taking action
from state s), and R(s) (the expected reward of state s), for (s, a) pair that MCTS has traversed
through during this simulation. Specifically, MCTS will do the following four steps to simulate τt:

Selection: During this step, MCTS will start from the root state st and select the next step itera-
tively before arriving at an expandable node or terminal node, with the maximum Upper Confidence
Bounds (UCB) policy argmaxaUCB(s, a). Define b to be the next possible action and cpuct to be a
hyperparameter controlling the exploration rate, we have UCB(s, a) as:

UCB(s, a) = Q(s, a) + cpuctP (s, a)

√∑
b N(s, b)

1 +N(s, a)
. (4)

Expansion: If MCTS traverses to a visited node with unvisited children, we call it an expandable
node. We will select unvisited children according to UCB.

Simulation: This is the part where SGNN will guide UCB. When traversing to an unvisited node,
we will use SGNN encoding with a controlling coefficient ϵ (explained in Appendix B.4). That is,
with the possibility ϵ, we will have the uniform prior and calculate R(s) through random rollout as
the naive MCTS does. Otherwise, we obtain (P(s, ·), R(s)) = (πθ|P(s), πθ|r(s)) through SGNN
encoding according to Equation 2 instead.

Backpropagation: After we obtain the R(s) of the unvisited node, we will increase N(s, a) by
one and update Q(s, a) = (1/N(s, a))

∑
s′|s,a R(s′), for those (s, a) pairs that have been traversed

through. s′ represents the next state of s by taking action a.

After we finish one batch of MCTS, we can update πM = N(st, ·)/
∑

b N(st, b) to step next in the
trajectory. Once we complete a trajectory τ , we subsequently update the parameters θ of SGNN by
minimizing the loss function:

l =
∑
t

((R(τ)− πθ|r(st))2 − πM (st) log πθ|P(st)). (5)

Appendix B.5 outlines the proposed SGNN-guided MCTS algorithm. Notably, within this frame-
work, SGNN encodes constraints and constants fitting knowledge through (P(s, ·), R(s)) =
(πθ|P(s), πθ|r(s)), guiding the MCTS simulation. The SR representation also captures invariances,
ensuring that equivalent expressions share the same state s for MCTS (e.g. Q(s, a) and N(s, a))
and SGNN (e,g. P(s, ·), R(s)). Without this mechanism, MCTS and SGNN would treat equiva-
lent expressions differently, resulting in reduced optimization efficiency due to divergent values for
equivalent states.
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3.4 CONSTRAINTS INCORPORATION

Constraints serve as crucial prior knowledge for SR. Their significance lies not only in confining
exploration to valid areas but also in guiding SR to uncover meaningful and robust solutions for
real-world applications. In our PCGSR model, we classify constraints into two categories:

• Pre-constraints: Simple constraints testable during operation sampling, such as: basic math-
ematical rules, void operations, maximum complexity (the number of nodes in SG), and hand-
crafted prior for a priori known physics constraints.

– Strategy: Pre-constraints are incorporated by zeroing out probabilities of actions violating
constraints, preventing invalid expressions during operation sampling.

• Post-constraints: Complex constraints requiring a complete expression for evaluation, such as
hidden constraints from SR problems (e.g. log(A+?) will be invalid in the real-number realm if
“?” is further sampled to be “f(B)” and A+ f(B) < 0), and hand-crafted penalty functions for
a priori known physics constraints (e.g., f(r → 0) = ∞ in Section 5.2).

– Strategy: Post-constraints are incorporated by penalizing invalid outputs with zero rewards
after generating a complete expression.

PCGSR’s flexible constraint incorporation strategies allow users to define and categorize custom
constraints for effective integration. Traditional SR methods cannot seamlessly incorporate post-
constraints as pre-constraints to prevent invalid expressions during sampling, as these require com-
plete expressions for evaluation. This limitation leads to sparse rewards in search spaces with com-
plex constraints (e.g., Section 5), posing a significant challenge for sampling-based methods like
naive Monte-Carlo Tree Search (MCTS) or Genetic Programming (GP). These methods struggle
to adapt to constraint violations during certain training phases (e.g., random simulation in MCTS
or random crossover and mutation in GP). PCGSR overcomes these challenges by enabling self-
learning within MCTS through Equation 5, allowing physics and hidden post-constraint insights
to be effectively incorporated into pre-constraint strategies during the operation sampling phase of
MCTS. By leveraging the predicted prior P from Equation 2, PCGSR mitigates reward sparsity, en-
hances search efficiency, and proves particularly effective for real-world problems involving intricate
physics constraints, significantly boosting its practical applicability.

3.5 COST EFFECTIVENESS

PCGSR excels in balancing exploration and exploitation through its neural-guided MCTS frame-
work, outperforming the pure Deep-RL-based approach DSR (Petersen et al., 2020) and the pure
sampling-based method SPL (Sun et al., 2022), as shown in Section 4. It is also significantly
more cost-effective than DSR, SPL, and the neural-guided GP method NGGP (Mundhenk et al.,
2021), primarily due to its efficient handling of the most computationally expensive aspect of
SR—constants fitting (detailed in Appendix B.1). Unlike SPL and NGGP, which rely on costly
constants fitting for reward evaluation at every step, PCGSR leverages SGNN’s lightweight forward
and backward passes to encode and predict rewards r in Equation 2. Additionally, SG represen-
tations reduce the search space by capturing symmetries and invariances, thereby minimizing the
number of constants fitting steps required. Finally, PCGSR’s computational cost is dynamically
adjustable via the controlling coefficient ϵ, as outlined in Appendix B.4, ensuring adaptability to
varying problem complexities.

4 EXPERIMENTS

4.1 SYNTHETIC DATASET BENCHMARKING

We have evaluated PCGSR on diverse benchmark datasets, including 1) the Feynman
dataset (Udrescu & Tegmark, 2020) in SRBench (La Cava et al., 2021), 2) Nguyen’s SR bench-
mark dataset Uy et al. (2011), and 3) Nguyen’s SR benchmark with constants dataset (Petersen
et al., 2020). We compare the results by PCGSR and state-of-the-art (SOTA) baselines in this sec-
tion (Feynman) and Appendix C.2 (Nguyen’s). In these benchmarks, we consider the following
baseline models: Symbolic physics Learner (SPL) (Sun et al., 2022), an SR model based on naive
MCTS method; Neural-Guided Genetic Programming (NGGP) (Mundhenk et al., 2021), an SR
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model based on RNN-based policy gradients with GP tuning; Deep symbolic regression (DSR) (Pe-
tersen et al., 2020), an SR model based on RNN-based risk-seeking policy gradients, AI Feynman
2.0 (Udrescu et al., 2020), brute-force method with a pre-trained neural network to capture symme-
tries and modularity; and the traditional GP method with gplearn (Stephens, 2016). We summa-
rize the introduction of benchmarking datasets and our experimental settings in Appendix C.1.

Model PCGSR SPL NGGP DSR AI Feynman 2.0 GP
Recovery
Rate (%) 62.18 ± 3.00 58.93± 3.73 60.22± 2.27 23.62± 2.28 51.26± 5.82 20.17± 3.21

Complexity 30.56 32.48 36.57 22.78 42.01 46.05

Table 1: Performance comparison of PCGSR with baseline methods on the Feynman dataset: We
report the average recovery rate with the 95% confidence interval as well as the average expression
complexity. The recovery rate is the ratio of ground-truth equivalent solutions in mathematics to the
total equations in the dataset.

Model PCGSR MCTS-SG MCTS-GNN MCTS
SG ✓ ✓ × ×

SGNN ✓ × ✓ ×
Number of Evaluations 96,221 121,853 237,923 285,284

Training time (s) 1847.4 2485.8 4306.4 5848.3

Table 2: The average recovery rate, the average number of evaluations, and the average training time
for the highest recovery rate for ablation studies on eight Feynman equations with two features. The
recovery rate is the ratio of ground-truth equivalent solutions in mathematics to the total of parallel
experiments for the same equation.

In Table 1 for benchmarking on the Feynman dataset, PCGSR presents the best expressive power
(average recovery rate of 62.18%, average training time of 4.3 hours) with the lowest average com-
plexity, outperforming the average recovery rate and average training time of hybrid RL with GP
method NGGP (60.22%, 5.7 hours), the naive MCTS-based SPL (58.93%, 5.2 hours), the pure
RNN-based RL method DSR (23.62%, 6.1 hours), the previous SOTA methods in SRBench, AI
Feynman 2.0 (51.26%, 7.7 hours) and the traditional GP method (20.17%, 3.8 hours). We have also
benchmarked these baselines in the Nguyen’s SR benchmark dataset and Nguyen’s SR benchmark
with constants dataset in Appendix C.2, which further verifies the SOTA performances by PCGSR.
These results demonstrate the potential of PCGSR in capturing the underlying dependency relation-
ships of complex systems with analytical solution expressions.

4.2 ABLATION STUDY

Furthermore, we perform ablation studies of PCGSR with or without SG representation and SGNN
encoding, to assess the efficacy of constituting components in PSGSR by Table 2. In this study,
we choose eight equations involving two features from the Feynman dataset according to Appendix
C.3, which are under the same experimental settings and are conducted 10 times on each equation.
Besides the proposed PCGSR, we include the following adapted methods for ablation studies: 1)
MCTS-SG, adapted from PCGSR using random policy for MCTS’s simulation rollout instead of
SGNN encoding; 2) MCTS-GNN, adapted from PCGSR using expression tree representations in-
stead of SG representations for MCTS and SGNN; 3) MCTS, adapted from PCGSR by removing
both SG representations and SGNN encoding as a naive MCTS.

Performance Analysis Results in Table 2 show significant improvement with respect to both perfor-
mance and search size (number of evaluations) when comparing SG-based PCGSR and MCTS-SG
to non-SG-based MCTS-GNN and MCTS, proving the importance of capturing symmetries and in-
variances in expression representations for SR problems. On the other hand, SGNN encoding seems
to only help reduce the search size but not obviously in performance when comparing SGNN-based
PCGSR and MCTS-GNN to non-SGNN-based MCTS-SG and MCTS. This may be explained by
not-so-sparse rewards in the explorations in this synthetic dataset. When incorporating complicated
physics constraints in real-world applications, as in Table 3, PCGSR provides a significant improve-
ment over non-SGNN-based MCTS.
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Efficiency Analysis Table 2 highlights a significant search space reduction of 66.27% with PCGSR
compared to standard MCTS, achieved through two key components. The invariance encoding in
SG reduces the search space by 59.56% (PCGSR vs. MCTS-GNN) and 57.29% (MCTS-SG vs.
MCTS), while SGNN further decreases the search size by 21.03% (PCGSR vs. MCTS-SG) and
16.60% (MCTS-GNN vs. MCTS). In terms of time efficiency (evaluations/second), the results are
as follows: PCGSR (52.08), MCTS-SG (49.02), MCTS-GNN (55.25), and MCTS (48.78). MCTS-
GNN achieves the highest efficiency due to its longer training phase and higher reliance on SGNN-
guided simulations, as detailed in Appendix B.4. These findings demonstrate that SGNN enhances
efficiency by reducing evaluation demands and avoiding costly coefficient fitting during simulations.

5 APPLICATIONS

In this section, we employ PCGSR in a real-world application for materials science, to show its
efficacy in yielding physically meaningful solutions under constraints. Specifically, we focus on in-
teratomic potential energy prediction for atomistic simulations, which is an important area for novel
materials design and discovery. Though traditional methods for this area such as density functional
theory (DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 1965), one of the first-principles methods,
represent a critical and powerful solution, their ability is limited by the substantial computational
cost and extensive memory requirements. As a consequence, surrogate ML models are under active
development to expedite these simulations, among which SR has shown great promise for achieving
both efficiency and interpretability. Appendix D.1 depicts the detailed problem backgrounds for this
application, and Appendix D.2 depicts the practical usage of our PCGSR’s solution.

5.1 PROBLEM SETTINGS

We adopt a dataset from first-principles molecular dynamics simulation of 32 copper atoms
from Hernandez et al. (2019), which is detailed described in Appendix D.3. Our objective is to
discover the interatomic potential energy function f(·) that effectively maps the atoms’ pairwise
distances r to a total formation energy E. In this study, we consider four methods to learn the
interatomic potential energy function: 1) a GNN-based black-box method CGCNN from Xie &
Grossman (2018); 2) a genetic programming-based SR method from Hernandez et al. (2019); 3) our
PCGSR in this paper; 4) and the MCTS method which is adapted from PCGSR but uses random
policy instead of SGNN to guide MCTS’s simulation, as an ablation study to assess the impact of
SGNN in encoding physics constraints. Table 3 presents our comparison results for the formation
energy prediction, showcasing the performance of our PCGSR alongside other models. Specifi-
cally, GP1 and GP2 are two fitted expressions by genetic programming reported in Hernandez et al.
(2019). We summarize our experimental settings for baseline models in Appendix D.3.

5.2 PHYSICS CONSTRAINTS

To ensure the resulting f(·) is physically meaningful, we consider the following additional physics
constraints besides the constraints mentioned in Section 3.4:

• (1) Scalar Output (pre-constraint): The output of f(r) has to be a single scalar to match E.
Because the input feature r is a vector of variable length to different samples, a

∑
operator must

be included in the expression before any r.
• (2) Unit Consistency(pre-constraint): A scalar const should be multiplied before any polyno-

mial terms and in any power number in the exponential terms. It is defined to ensure that the unit
calculation aligns with physical meaning, as const can introduce an extra unit as a coefficient.
An example is given in Appendix D.5.

• (3) Electrostatic Repulsion(post-constraint): The energy approaches to infinite at an infinitesi-
mal distance (i.e. f(r → 0) = ∞). It is due to the Coulomb’s law and a subtle consequence of
the Pauli’s exclusion principle of quantum mechanics. An explanation is given in Appendix D.5.

Note that CGCNN only satisfies the scalar output (1) constraint; GP1 and GP2 satisfy both the scalar
output (1) and unit consistency (2) constraints; and MCTS and PCGSR satisfy all the constraints.

8
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Model Comp Expression f(r) (eV/atom) Cst
MAE (meV/atom)
Train
Test Transfer

CGCNN - - (2)×
(3)×

2.08
3.09 44.89

GP1 21
∑

(r10.21−5.47r − 0.21r)s(r)
+0.97(

∑
0.33rs(r))−1

(2)✓
(3)×

3.68
3.53 43.32

GP2 28 7.33
∑

r3.98−3.94rs(r) + (27.32−
∑

(11.13 + 0.03r11.74−2.93r)s(r))(
∑

s(r))−1
(2)✓
(3)×

2.57
2.70 41.63

MCTS-SG 31
∑

(13.70r3 + 27.18r2 − 13.70rer)e−0.98r2

+
∑

2.98r−1e−12.87r
(2)✓
(3)✓

3.91
3.65 36.31

PCGSR 24
∑

6.04× 10−11(r3e3r − r12)
+
∑

121.41(r−7 + 3r−8 − r−6)
(2)✓
(3)✓

2.41
2.63 34.15

Table 3: Analytical interatomic potential energy functions f(r) fitted to DFT total energy using
GP1, GP2, MCTS-SG, and PCGSR compared with the CGCNN model. Here, f(r) is in the
unit of eV/atom, and s(r) is the smoothing function introduced in Eq (7) of Hernandez et al.
(2019). “Comp” denotes the complexity of an expression, computed by the sum of nodes in the
symbolic graph or the expression tree. “Cst” denotes the satisfied constraints defined in Section
5.2.“Train/Test” represents the training and testing MAE of the copper dataset. “Transfer” repre-
sents the transfer MAE of expressions directly tested on the newly generated dataset. Typically,
DFT achieves MAE of 10–20 meV/atom for energy predictions

(a) (b)

(c) (d)

Figure 3: Interatomic potential energy functions f(r) learned by (a) GP1, (b) GP2, (c) MCTS-SG,
and (d) PCGSR, as a function of interatomic distance r ranging between 0 to 5Å. The x-axis is
the interatomic distance r and the y-axis is the interatomic potential energy. Only MCTS-SG and
PCGSR produce physically meaningful results, adhering to Pauli’s exclusion principle, while GP1
and GP2 fail. A finite-valued model at short interatomic distances like GP1 and GP2 allows atoms
to overlap, potentially causing the simulation to crash and leading to meaningless results violating
physics laws.

9
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5.3 PERFORMANCES AND TRANSFERBILITY

In Table 3, the Mean Absolute Error (MAE) is computed based on linear regression results of the
model expressions regarding the formation energy E, divided by the number of atoms (32) in the
crystal. Figure 3 depicts the curves of the interatomic potential energy functions f(r) according to
the learned analytical expressions in Table 3 to illustrate the electrostatic repulsion that the energy
goes to infinite f(r) → ∞ at short interatomic distance (r → 0). More details are described in Ap-
pendix D.6. Comparing training and testing MAEs for the copper dataset, PCGSR achieves the best
testing MAE while preserving all physical constraints, where the 1/rm terms reflect electrostatic
repulsion at an infinitesimal distance. MCTS-SG, though satisfying all the constraints as PCGSR,
its largest MAE and highest complexity highlight the impact of sparse rewards to naive MCTS dur-
ing random rollout simulations. In contrast, PCGSR integrates SGNN which guides MCTS with
encoded physics constraints that improves the likelihood of generating valid expressions during
simulations. Although CGCNN has the lowest training MAE, its larger testing MAE indicates the
potential overfitting risk, showing less robustness than SR methods such as PCGSR and GP2 in
data-limited scenarios. GP1’s low complexity comes at the cost of significantly poor performance,
while GP2, despite the comparable predictive power to PCGSR, has higher complexity that makes
the underlying dependencies less straightforward. Besides, none of CGCNN, GP1, or GP2 adheres
to electrostatic repulsion constraint, resulting in less physically meaningful solutions at short in-
teratomic distance. Overall, PCGSR demonstrates strong expressive power with lower complexity
than GP methods and reduced overfitting compared to neural networks, while consistently yielding
physically meaningful results. Plots for Table 3 results are included in Appendix D.4.

To further assess the transferability of the interatomic potential energy model, we create a new
dataset of 100 samples by performing DFT-based molecular dynamics simulations where a volu-
metric compression of approximately 50% is applied to the unit cell of the original copper dataset.
The new dataset thus consists of samples with shorter interatomic distances (bond lengths) between
neighboring atoms, as described in Appendix D.7. This allows us to assess the transferability of
our physics-constrained analytical model compared to other conventional machine learning mod-
els. The transfer MAE in Table 3 is obtained through zero-shot learning of the solution expressions
directly tested on the newly generated dataset, where PCGSR and MCTS-SG show significantly
lower MAEs. As electrostatic repulsion has a direct impact at shorter interatomic distances, PCGSR
and MCTS-SG that integrate the physical constraints provide better generalization to shorter bond
lengths on the new dataset. These results again verify that the incorporated physics constraints can
prevent overfitting and foster the discovery of generalizable knowledge.

6 CONCLUSIONS AND FUTURE WORK

In this study, we identified two critical challenges in current Symbolic Regression (SR) models: the
redundant representations for equivalent expressions due to an inability to capture inherent invari-
ances, and the lack of a mechanism to incorporate post constraints, which increases reward sparsity
and hinders the practical applications to real-world problems. To address these issues, we introduced
the Physics-Constrained Graph Symbolic Regression (PCGSR) method, built upon the Monte-Carlo
Tree Search (MCTS) framework for its balanced exploration-exploitation trade-off, and enhanced
by the Symbolic Graph (SG) representation and Symbolic Graph Neural Network (SGNN). The SG
representation effectively captures invariances, compressing the search space for SR, while SGNN
encodes post constraints and constants fitting knowledge to guide MCTS simulations, thereby reduc-
ing reward sparsity and improving efficiency. Benchmark results on synthetic datasets and ablation
studies demonstrate that the proposed SG representation significantly improves performance with
the compressed search space. A real-world application in materials science, involving domain-
specific physics constraints, further underscores the importance of SGNN in encoding these con-
straints to prevent overfitting and produce physically meaningful solutions.

PCGSR provides a comprehensive framework that enhances model accuracy, complexity manage-
ment, robustness, and applicability in real-world problems. Looking ahead, expanding the scope
of invariances to exploit deeper similarities between expressions could further simplify problem-
solving within the current framework. Additionally, exploring the use of pre-trained SGNN models
to encode general SR constraints for transfer learning could accelerate training and improve initial-
ization, representing an intriguing avenue for future research.
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López. Semantically-based crossover in genetic programming: application to real-valued sym-
bolic regression. Genetic Programming and Evolvable Machines, 12:91–119, 2011.

12

https://link.aps.org/doi/10.1103/PhysRevB.13.5188
https://link.aps.org/doi/10.1103/PhysRevB.13.5188
https://suragnair.github.io/posts/alphazero.html
https://suragnair.github.io/posts/alphazero.html
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
https://gplearn.readthedocs.io


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative trans-
former model for symbolic regression. arXiv preprint arXiv:2106.14131, 2021.

Yiqun Wang, Nicholas Wagner, and James M Rondinelli. Symbolic regression in materials science.
MRS Communications, 9(3):793–805, 2019.

Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. Physical review letters, 120(14):145301, 2018.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A COMPUTING RESOURCES

We implement our experiments on a platform with one CPU, Intel Xeon 6248R (Cascade Lake),
3.0GHz, 24-core, and one GPU, NVIDIA A100 40GB GPU accelerator. For Synthetic Dataset
Benchmarking in Section 4, the PCGSR algorithms produce 60 sampled expressions per second on
average. For the materials science application in Section 5, PCGSR algorithms on average produce
20 sampled expressions per second.

First-principles DFT calculations of the test dataset were performed on a compute node consisting
of two Intel Xeon 6248R (Cascade Lake) CPUs with a total of 48 cores and 384GB DDR4 memory.
The initial supercell structure of 32-atom fcc copper was relaxed using VASP with conjugate gradi-
ent method in four steps within a total of 18 seconds. For each temperature, VASP-based molecular
dynamics simulations in the NVT ensemble were run for 6,000 steps for a total of 900 minutes.

B METHODOLOGICAL DETAILS

B.1 TRANSPLANTATION AND CONSTANT OPTIMIZATION

Transplantation: Inspired by the cross-over mechanism in Genetic Programming (GP), we intro-
duce the concept of function modularity to break down complex problems into smaller sub-problems
(Udrescu & Tegmark, 2020; Sun et al., 2022). Leveraging a divide-and-conquer heuristic search
strategy, we store promising expressions with lower complexity than the current sampling average
in a budget set. These stored expressions can then be directly inserted into newly generated expres-
sions as a single operator, which we refer to as the “transplantation” operator, denoted by trans. The
trans operator functions as a feature that PCGSR can choose during exploration. When selected,
PCGSR randomly picks a subset of expressions from the budget and uses them to generate new
expressions, selecting the best one to calculate the action value of the trans operator. By default,
PCGSR enables the trans operator after half of the total epochs, with the budget set to store the top
n models that have a complexity lower than half of the maximum complexity.

Constants Optimization: Constants play a crucial role in symbolic regression, not only for main-
taining unit consistency in real-world scientific problems but also for optimizing regression accuracy.
In our approach, constants are introduced into expressions via the const operator, functioning as a
feature operator. While enabling constant optimization enhances the accuracy of the regression,
it significantly increases the computational cost of evaluating an expression. To mitigate this, all
constants within an expression are optimized only once per evaluation using a non-linear regression
method, specifically the BFGS optimizer, as described in Petersen et al. (2020).

B.2 SG REPRESENTATIONS FOR SGNN AND MCTS DETAILS

To leverage the Symbolic Graph (SG) representation G as the input for SGNN encoding, we can di-
rectly feed G into SGNN due to the graph convolutional network (GCN)’s inherent aggregation and
message-passing mechanisms, which naturally preserve the symmetries encoded in SG. However, to
use SG as a state in Monte-Carlo Tree Search (MCTS), we first convert G into a canonical form by
sorting the nodes. Next, we modify the upper triangle of the sorted adjacency matrix by replacing its
elements with the corresponding edge features, where ”0” denotes a disconnected edge. The diag-
onal elements are replaced by the node features. Finally, we output this modified sorted adjacency
matrix in its Voigt form, ensuring the representation of states while preserving symmetries.

B.3 SGNN MESSAGE PASSING DETAILS

We adopt a similar graph convolutional network (GCN) structure as in Xie & Grossman (2018) for
SGNN, which adopts a node updating function in the form:

v′i = vi +
∑
j

σ(zijWf + bf )⊙ g(zijWs + bs) (6)
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where zij = vi ⊕ vj ⊕ {eij}. vi is the node messages (also the node feature embedding for the
first input layer) and v′i is the updated node messages for node i. eij represents the edge embedding
for edge features. Wf and bf are the convolution weight matrices and convolution weight bias. Ws

and bs are self-weight matrices and self-weight biases for the attention mechanism. σ and g are
soft plus activation functions and ⊙ represent the element-wise multiplication. To output the prior
distribution P, we use a multilayer perceptron (MLP) with softmax activation on the node messages,
while a separate MLP with the softplus activation is employed to produce the global readout on node
messages for predicted rewards.

B.4 SGNN ENCODING WITH COEFFICIENT CONTROL

In Section 3.3, we implement an SGNN-guided MCTS simulation policy controlled by the coef-
ficient ϵ, which governs the balance between exploration and exploitation. When ϵ = 1, PCGSR
performs random roll-outs like naive MCTS, while ϵ = 0 means PCGSR exclusively uses SGNN
for simulations. This parameter is designed to facilitate a smooth start-up in PCGSR training. Ini-
tially, SGNN lacks sufficient information about the dataset, making random roll-outs more effective.
Therefore, for the first third of the total epochs, we set ϵ = 1 to encourage exploration. As training
progresses and SGNN becomes more informed, ϵ is gradually reduced to 0.2, allowing SGNN to
guide more simulations and prioritize exploitation.

B.5 ALGORITHMS

Algorithm 1 summarizes the pseudo-code for our PCGSR. The core of the algorithm is the repeated
sampling of expression trajectories τ until either the desired solution is found or the maximum
number of iterations is reached. At each trajectory step t, a batch of MCTS with index k and a
maximum batch size B is executed, following the four steps for each MCTS iteration.

Algorithm 1 Physics-Constrained Graph Symbolic Regression
Input: operator and feature dictionary Q, Batch size B, maximum complexity H
repeat

for t = 1 to H do
for k = 1 to B do

Do one MCTS(selection, expansion, simulation, backpropagation) with πθ

end for
Collect N(s, a) from MCTS and calculate πM

Sample ϕt ∼ πM (st), ϕt ∈ Q
Expand Gt with ϕt, update V and E
if Gt is complete then

break
end if

end for
Calculate R(τ), record πθ(st) and πM (st)
Calculate the loss l
Update πθ according to l

until Optimal f is found

C FURTHER EXPERIMENTAL DETAILS

C.1 PCGSR EXPERIMENTAL SETTINGS

The Feynman dataset is a widely accepted dataset adopted by the prevailing SR benchmarking
framework, SRBench. It is a synthetic dataset consisting of 100 physics-inspired equations derived
from the Feynman Lectures on Physics and 20 more challenging tasks (Matsubara et al., 2024). For
the benchmarking with the Feynman dataset, we only consider equations involving up to 10 fea-
tures, resulting in 119 valid Feynman equations. Each of the equations is conducted three times with
different random seeds. Each of the benchmarking methods is restricted to 500,000 evaluations,
a run-time budget of 24 hours, and a maximum complexity of 50 for the expressions. We follow
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the same dictionary set (available operators and features) and other default experimental settings in
SRBench. GP and AI Feynman 2.0 utilize default hyperparameters from SRBench while SPL and
NGGP inherit default hyperparameters from their open-access code.

For the additional hyperparameters used in PCGSR, we apply consistent settings across all experi-
ments in this paper. The MCTS batch size is set to B = 1000. The SGNN controlling coefficient ϵ
starts at 1.0 for the first 33% of the total epochs and then linearly decays to 0.2 by the 66% epoch
mark. For the transplantation process, we maintain a budget size of 100 for stored expressions and
sample 10 expressions each time transplantation is employed.

C.2 NYUGEN’S BENCHMARK RESULTS

Benchmark Expression GP NGGP SPL PCGSR

Nguyen-1 x3 + x2 + x 99% 100% 100% 100%
Nguyen-2 x4 + x3 + x2 + x 90% 100% 100% 100%
Nguyen-3 x5 + x4 + x3 + x2 + x 34% 100% 100% 100%
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 54% 100% 99% 100%
Nguyen-5 sin (x2) cos (x)− 1 12% 80% 95% 100%
Nguyen-6 sin (x) + sin (x+ x2) 11% 100% 100% 100%
Nguyen-7 log (x+ 1) + log (x2 + 1) 17% 100% 100% 96%
Nguyen-8

√
x 100% 100% 100% 100%

Nguyen-9 sin (x) + sin (y2) 76% 100% 100% 100%
Nguyen-10 2 sin (x) cos (y) 86% 100% 100% 100%
Nguyen-11 xy 13% 100% 100% 100%
Nguyen-12 x4 − x3 + 1

2y
2 − y 0% 4% 28% 52%

Nguyen-1c 3.39x3 + 2.12x2 + 1.78x 0% 100% 100% 100%
Nguyen-2c 0.48x4 + 3.39x3 + 2.12x2 + 1.78x 0% 100% 94% 100%
Nguyen-5c sin (x2) cos (x)− 0.75 1% 98% 95% 100%
Nguyen-8c

√
1.23x 56% 100% 100% 100%

Nguyen-9c sin (1.5x) + sin (0.5y2) 0% 90% 96% 94%

Average Recovery Rate 38.2% 92.5% 94.5% 96.6%

Table 4: Recovery Rate of PCGSR and other baseline models benchmarked on Nguyen’s SR bench-
mark dataset and Nguyen’s SR benchmark with constants dataset (marked with upper index c). The
recovery rate is the ratio of ground-truth equivalent solutions in mathematics to the total of parallel
experiments for the same equation.

Our proposed PCGSR method is also evaluated in Nguyen’s SR benchmark dataset (Uy et al., 2011)
and Nguyen’s SR benchmark with constants dataset (Petersen et al., 2020), two widely adopted
synthetic datasets for evaluating the performance and robustness of various SR algorithms. The
results, presented in Table 4, include the same baseline models and hyperparameter settings from
Table 1.

The objective of this set of experiments is to find an expression f(·) that best fits the corresponding
input features (x, y) to the target output in these synthetic datasets. The “Expression” column in
Table 4 includes the ground-truth expressions used to generate synthetic data. In this set of experi-
ments, we adopt results of GP, NGGP and SPL from Sun et al. (2022) and follow the same settings
to implement PCGSR, which uses a dictionary set Q0 = {×,+,−,÷, sin, cos, exp, log, x} for the
benchmark Ngugen-1 to Ngugen-8, and Q1 = Q0∪{y} for the benchmark Ngugen-9 to Ngugen-12.
It is worth noticing that for the benchmark Nguyen-8,

√
x can be recovered from exp ( x

x+x log (x)).
For Nguyen-10, xy can be recovered from exp (y log (x)). For Nguyen-7 and Nguyen-10, they can
also be recovered from log (x3 + x2 + x+ 1) and sin (x+ y). The maximum complexity H for
each expression is set to 35. The batch size B is set to 1,000 for MCTS simulations, and the max-
imum number of episodes is capped at 1,000, resulting in a total search space of up to 1 million
expressions for MCTS and PCGSR. The training and testing datasets are divided equally, with 20
randomly generated data points for each.
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Table 4 shows that PCGSR outperforms competing SR approaches in most tasks, particularly in
complex tasks like Nguyen-12. This advantage is primarily due to PCGSR’s effective management
of polynomial terms, facilitated by the symmetries captured by SG, which compresses the search
space more efficiently than the expression tree or other representations utilized by alternative meth-
ods, highlighting its considerable potential in the domain of Symbolic Regression.

C.3 ABLATION STUDY SETTINGS

The benchmark problems in the Feynman dataset with features of two dimensions were chosen
across different complexities, from easy to hard, to fairly compare efficiency and accuracy in differ-
ent scenarios. This includes one expression of complexity 2, three expressions of complexity 3, one
expression of complexity 4, one expression with complexity 7, one expression with complexity 9,
and one expression with complexity 12

D MATERIALS SCIENCE APPLICATION

D.1 PROBLEM BACKGROUNDS

The physical world is composed of numerous ions and electrons, governed by quantum mechanics,
often referred to as many-body problems. While density functional theory (DFT) can simulate
simple materials with few ions and electrons, extending DFT to larger systems is challenging. One
of the goal relevant to the physical properties of materials is to find an analytical approximation
that relates DFT-calculated potential energy to the interatomic distance (i.e. pairwise distances)
between atoms, adhering to Pauli’s exclusion principle. Using copper (Cu) crystal as an example,
we aim to identify analytical relationships between interatomic distances and total potential energy.
This functional form is crucial for materials science as it enables large-scale molecular dynamics
simulations to study materials’ mechanical, thermal, and kinetic properties and explain fundamental
physical mechanisms at the atomic level.

The following provides some explanations for domain-specific terms:

• Molecular dynamics (MD) simulates the structure and properties of materials under con-
stant or varying environments (e.g. temperature or mechanical strain). In MD simulations,
the atomic forces are computed from the derivatives of interatomic potential energy func-
tions with respect to the atomic distance placement, which then moves the atoms based
on Newton’s second law. The updated atomic positions lead to new interatomic potential
energy. The calculations are performed iteratively until a desired number of time steps.
Statistics of total potential energy, kinetic energy, atomic forces, and stresses, etc. provide
a systematic understanding and quantitative estimate of the physical properties of materi-
als. MD simulations are often performed for systems with hundreds to millions of atoms,
making them computationally expensive. This necessitates machine learning algorithms
like those employed in our study. Analytical expressions with low complexity and high
accuracy are particularly valuable for large-scale MD simulations.

• In MD simulations, the system state can be specified using ensembles like NVT (constant
number of atoms, volume, and temperature), allowing other properties such as pressure and
chemical potential to vary.

• Atomistic simulations based on machine learning-derived potential energy functions use
atomic species and interatomic forces to determine material properties. This method is
efficient but requires accurate fitting from first-principles / quantum mechanics-based cal-
culations, such as density functional theory (DFT).

• Periodic boundary conditions (PBCs) enable the modeling of infinite or effectively infinite
systems by repeating a “unit cell” in all directions. This unit cell represents the smallest
section of the structure that can be repeated to create the correct crystal structure, allowing
large systems to be modeled efficiently without losing structural or symmetrical integrity.
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D.2 PRATICAL USAGE OF PCGSR’S SOLUTION

• Framework Generality: PCGSR is not limited by system size or atom types. The 32-
atom copper dataset is chosen to serve as a benchmark simply because we want to compare
PCGSR with prior work and demonstrate its advantages. The derived potential energy
function can be applied to larger systems.

• Dataset Relevance: The 32-atom copper dataset is representative of materials studies,
consistent with the average system size ( 31 atoms/structure) of the widely used MPtraj
dataset (Deng et al., 2023).

• Scalability: While DFT methods are limited to simulating small systems (1–1000 atoms)
over very short timescales (a few picoseconds), our method enables large-scale simulations
(millions of atoms) over extended timescales (microseconds)- which can then help deter-
mine many physical properties of materials that are not possible for quantum chemistry
methods such as DFT. The analytical function from PCGSR can be applied to study real
material problems with sizes far beyond 32 atoms for long-time dynamics that are com-
pletely inaccessible to DFT or other quantum chemistry methods – which is the key pur-
pose of developing force field based on accurate analytical potential energy functions from
the PCGSR method. As a result, one can simulate the mechanical deformation process of
single or polycrystalline copper consisting of millions of copper atoms using large-scale
molecular dynamics simulations with the potential energy function developed here. For
example, studying the novel stacking of copper in the incubation period of crystallization
(Liu et al., 2023) requires the simulation of millions of copper atoms.

• DFT-Level Accuracy: The dataset is derived from DFT calculations, enabling DFT-level
accuracy but without explicit electron degree of freedom - that’s the whole purpose of de-
veloping potential energy function (or, machine learning force field) from quantum chem-
istry datasets such as DFT. The high accuracy, the analytical nature, and the proper limiting
trend at short bond length make this method and the derived potential energy function par-
ticularly useful.

D.3 EXPERIMENTAL SETTINGS

Dataset Description The 32-atom copper dataset consists of 150 snapshots generated by the Vi-
enna Ab initio Simulation Package (VASP), a first-principles DFT package. Each sample includes
total formation energy E as the target and a crystal structure of copper as the feature. To map a
copper crystal structure to E, we first convert the 3D coordinates of the structure into pairwise dis-
tances r between atoms within the unit cell in the crystal under the periodic boundary condition
(PBC) (Makov & Payne, 1995), then use the surrogate model as the interatomic potential energy
function f(·) to obtain E = f(r). During the conversion, we only consider pairwise distances
within a cutoff range of r < rcutoff = 5Å.

SR Settings In the symbolic regression configurations, we utilize a dictionary set Q =
{+,−,×,÷,∧,

∑
, exp, const, r}, where “

∑
” is used for the summation-based aggregation opera-

tion, “const” denotes constants optimized through non-linear regression. The maximum complexity
H is set at 35, and the batch size B is 1,000, with 5,000 episodes allocated for both MCTS and
PCGSR methods. For the black-box CGCNN method, we adhere to the default hyperparameter set-
tings with a maximum of 5,000 epochs. For the train-test split, we follow Hernandez et al. (2019)
with 50% for training and 50% for validation.

D.4 ADDITIONAL FIGURES

Figure 4 plots the data fitting for SR solution models in Table 3.

D.5 EXTRA EXPLANATIONS FOR PHYSICS CONSTRAINTS

Here we offer detailed explanations and examples for some physics constraints defined in Section
5.2:
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(a) (b) (c) (d)

Figure 4: Training (orange dots) and Testing (blue dots) MAEs of the formation energy predictions
by CGCNN (a), GP1 (b), MCTS-SG (c) and PCGSR (d) on DFT dynamics simulations of FCC
copper. The dashed lines mark the identity mapping. The top captions of the plots also include
testing MAE (left) and training MAE (right).

• (2) Unit Consistency: For a specific example of the unit consistency constraint, the expres-
sion of (r2+r) is not physically meaningful, as r has a length unit Å. and we would have an
inconsistent unit (Å2 +Å) from the expression. But a constant c can include unit Å so that
we have a consistent calculation with r2 + c ∗ r. The introduced const can ensure that the
final output unit aligns with the target E’s unit as electron-volt (eV ; 1 eV = 1.6 × 10−19

Joule) from the input r’s unit Angstrom (Å; 1Å= 10−10m).

• (3) Electrostatic Repulsion: When the distance between two atoms approaches zero, their
electron wavefunctions start to overlap significantly which is excluded by the Pauli’s prin-
ciple. Thus, the atomic orbitals hybridize and form molecular orbitals with bonding and
antibonding characters and electron density is thus pushed away from nuclei, leaving the
repulsive nucleus-nucleus electrostatic interaction being the dominant one and approaching
infinite potential energy at very short distance.

D.6 PHYSICAL MEANING

Figure 3 presents the potential energy curves as a function of the interatomic distance (bond length)
for the expressions generated by the GP1, GP2, MCTS-SG, and PCGSR in Table 3. These curves
demonstrate whether the fitted models satisfy electrostatic repulsion at zero bond length. Figures 3a
and 3b show that GP1 and GP2 violate the constraint due to the finite value at zero bond length (r=0).
In contrast, Figures 3c and 3d show that MCTS-SG and PCGSR yield infinite potential energy at
r=0, satisfying the principle. Such a constraint is crucial not only for the underlying physics but also
for practical applications in materials system simulations. The missing divergence at r = 0 may
cause atoms to collapse to each other during molecular dynamics simulations and yield incorrect
results.

Additionally, Figures 3a and 3b reveal two critical issues with GP1 and GP2: (i) a discontinuity at
r=1Å, and (ii) an infinite value when r approaches 5Å. These issues lead to incorrect energy and
force predictions, forcing atoms to remain unrealistically close together.

D.7 GENERATION OF NEW DATASET FOR TESTING MODEL TRANSFERABILITY

To test the transferability of the models, we generated a test dataset from DFT calculations using
the VASP package (Kresse & Furthmüller, 1996) where the projector augmented wave method was
applied to treat core electrons (Blöchl, 1994). We used the Perdew-Burke-Ernzerhof (PBE) form
of exchange-correlation energy functional within the generalized gradient approximation (Perdew
et al., 1996) and a Monkhorst-Pack k-point sampling grid of 4 × 4 × 4 (Monkhorst & Pack, 1976).
A hydrostatic compression was applied to fcc copper with strain of -0.2 along all lattice vectors. We
then performed first-principles molecular dynamics simulations in the NVT ensemble for total 6,000
steps with a time step of 3 fs at two different temperatures, i.e. 300 K and 1,400 K. For the NVT
calculation at each temperature, we excluded the first 1,000 steps of the initial equilibration process,
and extracted the atomic structures for every 100 steps from the remaining equilibrated 5,000 steps,
which yields total 100 snapshots (or samples) to test model transferability.
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The compressed dataset has the following physical meaning:

• Scientific Context: Understanding matter in extreme conditions such as high pressure and
high temperature is an important and active subject of materials research. Copper is one of
the systems of particular interest. As shown in McCoy et al., 2017 [3], the density in exper-
iments reaches 18 g/cm3, double the density at the standard condition of 8.95 g/cm3, that
is, the volume contraction by 50%. Another example is done by Fratanduono et al. (2020)
at the National Ignition Facility (NIF) at the U.S. Lawrence Livermore National Labora-
tory (LLNL), in which the solid copper was even compressed to 28 g/cm3 at terapascal
conditions, corresponding to 67% volume contraction.

• Practical Necessity Beyond scientific motivation, another key motivation to apply large
compression is to provide a more accurate trend away from equilibrium towards r → 0.
This is particularly important as the machine learning interatomic potentials or machine
learning force fields very often have wrong limiting behavior. When they were applied
to simulating long-time dynamics at high temperature or high pressure, there will be an
increasing probability of “direct crossing or fusion” of atoms which are pure artifacts due
to the wrong limiting trend, consequently, the results can be completely nonphysical and
wrong.
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