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Dual Advancement of Representation Learning and Clustering
for Sparse and Noisy Images

Anonymous Authors

ABSTRACT
Sparse and noisy images (SNIs), like those in spatial gene expres-
sion data, pose significant challenges for effective representation
learning and clustering, which are essential for thorough data anal-
ysis and interpretation. In response to these challenges, we propose
Dual Advancement of Representation Learning and Clustering
(DARLC), an innovative framework that leverages contrastive
learning to enhance the representations derived frommasked image
modeling. Simultaneously,DARLC integrates cluster assignments in
a cohesive, end-to-end approach. This integrated clustering strategy
addresses the “class collision problem” inherent in contrastive learn-
ing, thus improving the quality of the resulting representations. To
generate more plausible positive views for contrastive learning, we
employ a graph attention network-based technique that produces
denoised images as augmented data. As such, our framework offers
a comprehensive approach that improves the learning of represen-
tations by enhancing their local perceptibility, distinctiveness, and
the understanding of relational semantics. Furthermore, we utilize
a Student’s t mixture model to achieve more robust and adaptable
clustering of SNIs. Extensive evaluation on 12 real-world datasets of
SNIs, representing spatial gene expressions, demonstrat DARLC’s
superiority over current state-of-the-art methods in both image
clustering and generating representations that accurately reflect
biosemantics content and gene interactions.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Representation Learning, Clustering

1 INTRODUCTION
Sparse and noisy images (SNIs), commonly encountered in special-
ized fields like biomedical sciences, astronomy, and microscopy [33,
39, 48], are characterized by extensive uninformative regions (e.g.,
voids or background areas), considerable image noise, and severely
fragmented visual patterns. These characteristics significantly in-
crease the complexity in analysis and interpretation. A prime ex-
ample is spatial gene expression Pattern (SGEP) images generated
through spatial transcriptomics (ST) technology [35]. As illustrated
in Figure 1, the high levels of sparsity and noise of an SGEP image
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Figure 1: An example of sparse and noisy SGEP image is dis-
played in the second panel to the left. The gene expression
levels across space are represented by pixel brightness, while
void expression areas are displayed in purple. The first panel
showcases the regions (cortical layer V) where the gene is
significantly expressed, namely the major gene expression
pattern. The right two panels illustrate the tasks and appli-
cations that utilize SGEP images.

complicate the discerning of its underlying major gene expression
pattern.

Image clustering can group unlabelled images into distinct clus-
ters, facilitating the exploration of image-implied semantics or func-
tions. For example, clustering SGEP images offers a cost-effective
means to identify groups of cofunctional genes and infer gene func-
tions [34]. To obtain informative clustering results, it is essential to
learn meaningful image representations, for which self-supervised
learning (SSL) is the predominant approach in general scenarios.
These include contrastive learning (CL) methods, exemplified by
MoCo [20], and masked image modeling (MIM) such as MAE [19].
These methods offer distinct learning perspectives: MIM methods
tend to learn local context-aware, holistic features for reconstruc-
tion tasks [19], while CL methods focus on learning instance-wise
discriminative features [21]. Acknowledging the synergistic ad-
vantages of these methodologies, some researchers are endeavor-
ing to utilize CL to refine the representations acquired through
MIM [21, 47]. Moreover, many efforts [25, 32, 41] are directed to-
wards guiding the process of learning representations through clus-
tering tasks. This is achieved by jointly learning representations
and executing clustering in an integrated and end-to-end manner,
yielding image representations that are well-suited for clustering
tasks.

However, for SNIs, both representation learning and clustering
present significant challenges. Firstly, the widespread presence of
uninformative voids or background areas, along with elevated noise
levels and extremely fragmented visual patterns, substantially im-
pedes the extraction of semantically meaningful visual features.
This challenge has been highlighted in prior studies [30] and is
further corroborated by our experiments (see Supplementary Ta-
ble 1). Secondly, the inherent random noise across pixels induces
considerable variability in visual patterns, even among images of

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the same category [34], exposing clustering algorithms to a high
overfitting risk [1].

Inspired by the aforementioned works, in order to better ana-
lyze SNIs, we propose a novel and unified framework, named Joint
Learning of Representations and Cluster Assignments (DARLC).
This framework not only leverages CL to boost the representation
learned by MIM but also jointly learns cluster assignments in a
self-paced and end-to-end manner, further refining the represen-
tation. Nonetheless, our experiments (see Supplementary Table 2)
showcase that conventional data augmentation techniques (e.g.,
cropping and rotating) are ineffective for SNIs, as the augmented
images often contain substantial void regions and noise, hampering
the extraction of informative visual features. To overcome this limi-
tation, we introduce a data augmentation method based on a graph
attention network (GAT) [13, 37] that aggregates information from
neighboring pixels to enhance visual patterns, generating smoothed
images that act as more plausible positive views so as to improve
the effectiveness of contrastive learning.

Additionally, we observed that the clustering algorithms used in
many deep clustering methods are either sensitive to outliers, as
demonstrated by theGaussianmixturemodel (GMM) inDAGMM[49]
and manifold clustering in EDESC [3], or lack the flexibility to dif-
ferent data distributions, such as the inflexible Cauchy kernel-based
method in DEC [41]. In response, DARLC employs a specialized
nonlinear projection head to normalize image embeddings, align-
ing them more closely with a t-distribution. This is followed by
modeling with a Student’s t mixture model (SMM) for soft clus-
tering. SMM provides a more robust solution by down-weighing
extreme values and is more adaptable by altering the degrees of
freedom, making it particularly suitable for clustering in the context
of SNIs. Furthermore, the clustering loss in DARLC also serves to
regularize CL, alleviating the “class collision problem" that stems
from false negative pairs in CL [4]. Unlike existing regularized CL
methods [12, 24, 45], which directly integrate clustering into the
CL throughout training, this clustering follows the “warm-up" rep-
resentation learning, significantly expediting training convergence
and enhancing clustering accuracy, as demonstrated in our abla-
tion study. All these features collectively contribute to the finding
that DARLC-generated image representations not only enhance
clustering performance but also exhibit improvements in other se-
mantic distance-based tasks, such as the discovery of functionally
interactive genes. In summary, our main contributions are:

• We propose DARLC, a novel unified framework for joint rep-
resentation learning and clustering of SNIs. DARLC marks the
first endeavor in integrating contrastive learning, MIM and deep
clustering into a cohesive process for representation learning.
The resultant representations not only enhance image cluster-
ing performance but also benefit other semantic distance-based
tasks.

• DARLC has developed a data augmentation method more suitable
for SNIs, using a GAT to generate smoothed images as plausible
positive views for CL.

• An SMM-based method is designed to cluster SNIs in a more
robust and adaptable manner. Additional features of this cluster-
ing method include a novel Laplacian loss for guiding the initial
phase of clustering, and a differentiable cross-entropy hinge loss

for controlling cluster sizes. This clustering also addresses the
class collision problem by pulling close related instances.

• Extensive experiments have been conducted across 12 real SGEP
datasets [28]. Our results show thatDARLC surpasses the state-of-
the-art (SOTA) methods in both image clustering and generating
image representations that accurately capture gene interactions.

2 RELATEDWORKS
2.1 Self-supervised Representation Learning for

Images
Most related SSL studies include CL and MIM methods. In CL, an
input instance forms positive pairs with its augmented views, while
forms negative pairs with other instances. Paradigmatic CLmethods
aim to learn instance discriminative representations by maximizing
the similarity between positive pairs while minimizing it between
negative pairs in a latent space [8, 20]. To address the class collision
problem due to false negative samples, several studies [12, 24, 45]
regularize CL with clustering, while others [5, 6, 9, 17] bypass the
using of negative samples altogether. In contrast, MIM methods
focus on learning local context-aware features by restoring raw
pixel values from masked image patches [2, 16, 19, 42]. Several re-
searchers are realizing the advantages of integrating these method-
ologies and endeavoring to utilize CL to refine MIM-generated
representations [21, 42]. For instance, iBOT [47] contrasts between
the reconstructed tokens of masked and unmasked image patches.
Yet, to the best of our knowledge, DARLC is the first method that
learns image representations from all aspects of discriminability,
local perceptability, and relational semantic structures.

2.2 Deep Image Clustering.
Related deep image clustering studies include deep autoencoder-
based methods [32], which couple representation learning with
deep embedded clustering in an end-to-end manner, as exemplified
by methods like DEC [18, 23, 41]. Subsequent improvements to
DEC focus on strategies like overweighing reliable samples (e.g.,
IDCEC [29] ), and replacing Euclidean distance-based clustering
with deep subspace clustering (e.g., EDESC [3]) or GMM-based clus-
tering [38, 49]. Recent studies, including CC [25], DCP [27], CVCL
[7], and CCES [43], directly integrate CL into the clustering pro-
cess by contrasting at both instance and cluster levels across views,
generating a soft cluster assignment matrix as deep embeddings for
iterative refinement. Compared to these methods, DARLC offers a
more comprehensive and potent mechanism for learning deep em-
beddings, a more robust and adaptable clustering algorithm, and a
warm-up representation learning phase for accelerating clustering
convergence.

3 METHODOLOGY
3.1 Overview
The framework of DARLC, as illustrated in Figure 2 and Algorithm
1, comprises two modules: a self-supervised representation learning
and a deep clustering. The self-supervised representation learning
module unifies CL and MIM, encompassing three encoders: an on-
line encoder and a target momentum encoder for the contrastive
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Figure 2: The framework of DARLC consists of two components: the representation learning and the deep clustering. The
representation learning component integrates MIM and CL to generate image embeddings, which are then normalized through
a non-linear projection head. Normalized representations are modeled by an SMM to derive their soft cluster assignments,
which are used to construct various loss functions. With these loss functions, the two components are jointly optimized in a
self-paced and end-to-end manner.

branch, and a masked encoder for the MIM branch. All three en-
coders adopt the identical vision transformer (ViT) [14] architecture,
with shared parameters between the online encoder and masked
encoder. The parameters of the target momentum encoder are up-
dated using exponential moving average (EMA), as suggested by
BYOL [17]. The initial phase of the unified representation learning
involves a warm-up pretraining to generate preliminary embed-
dings, which are then normalized by a nonlinear projection head.
This normalization aligns the embeddings more closely with t-
distributions, setting the stage for subsequent t-distribution-based
clustering. The deep clustering module utilizes a SMM to cluster
the normalized embeddings, generating soft cluster assignment
scores involved in the calculation of various loss functions. There
are two types of loss functions: L1, an epoch-level loss function for
maximizing the empirical likelihood of observed instances, and L2,
a batch-level loss function for discriminatively boosted clustering
optimization [41]. The two loss functions work in tandem, enabling
the joint refinement of image embeddings and cluster assignments
in a self-paced and end-to-end manner.

3.2 Unified Self-supervised Representation
Learning (Module I)

3.2.1 Denoising-based Data Augmentation. We train a graph at-
tention autoencoder G to generate smoothed images, serving as
augmented positive instances [13, 37]. Initially, for each image, we
construct an undirected and unweighted graph by treating pixels
as nodes connected to their k-nearest neighbors. Specifically, for
a given image X ∈ R𝐶×𝐻×𝑊 , where 𝐶 is the number of channels,
𝐻 and𝑊 are the height and width of the image, respectively. Let
𝑁𝑝𝑖𝑥 = 𝐻 ×𝑊 denote the number of pixels, v𝜄 ∈ R𝐶 denote the
pixel vector at location 𝜄, ∀𝜄 ∈ {1, 2, ..., 𝑁𝑝𝑖𝑥 }. The encoder in G
comprises 𝐿 layers. For each layer 𝑡 ∈ {1, 2, ...𝐿− 1}, with the initial

value h(0)𝜄 = v𝜄 , the output h
(𝑡 )
𝜄 ∈ R𝑑𝑝 is calculated as follows:

h(𝑡 )𝜄 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (
∑︁
𝜈∈𝑆𝜄

att𝜄𝜈 (W(𝑡 )h(𝑡−1)
𝜈 )), (1)

whereW(𝑡 ) represents the trainable weights of the 𝑡-th autoencoder
layer, 𝑆𝜄 the set of node 𝜄’s neighbors within a pre-specified radius
𝑟 . The attention score, att𝜄𝜈 , between nodes 𝜄 and 𝜈 are computed
as follows:

𝛼
(𝑡 )
𝜄𝜈 = w(𝑡 )

𝑎𝑡𝑡𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W(𝑡 ) [h(𝑡−1)
𝜄 ) | |h(𝑡−1)

𝜈 ]), (2)

att(𝑡 )𝜄𝜈 =
exp(𝛼 (𝑡 )

𝜄𝜈 )∑
𝜄∈𝑆𝜄 exp(𝛼 (𝑡 )

𝜄𝜈 )
, (3)

wherew(𝑡 )
𝑎𝑡𝑡 represents the trainable attention weights. The decoder

of G mirrors the encoder with tied weights. The total loss function
is defined as:

𝐿𝑑𝑒𝑛𝑜𝑖𝑠𝑒 =

𝑁𝑝𝑖𝑥∑︁
𝜄=1

∥v𝜄 − h̃(0)𝜄 ∥2, (4)

where h̃(0)𝜄 denotes the reconstructed v𝜄 output by the decoder.
Once trained, G is applied to any given image X𝑖 , to generate a
smoothed image X𝑖 for a given image X𝑖 as:

X𝑖 = G(X𝑖 ,W,𝑤𝑎𝑡𝑡 ) (5)

3.2.2 Unified Self-supervised Image Representation Learning. This
SSL model encompasses two branches: a MIM branch M and a
contrastive branch C.M is an adapted version of MAE, specifically
designed for generating image patch embeddings in the context
of SNIs. In this adaption, the standard MAE encoder is replaced
with a lightweight ViT encoder, denoted as M𝐸 , with four trans-
former blocks, four attention heads, and a higher masking ratio
(80%). Meanwhile, the original transformer-based MAE decoder,
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Algorithm 1 Algorithm for Dual Advancement of Representations
Learning and Clustering (DARLC).

Input: Images X ∈ R𝑁×𝐶×𝐻×𝑊 ; Seeding similarity matrix S ∈
R𝑁×𝑁 ; Denoise GAT G; Maximum epochs 𝐸𝑚𝑎𝑥 ; Number of
images N ; Number of clusters K.

Definition: Parametes of · are denoted as Π(·); MIM branchM;
CL branch C; Projection headH ;UWL (UncertainWeight Loss
function); EMA (Exponential Moving Average function).

Output: Representations 𝑍 ∈ R𝑁×𝐷 ; Soft clustering 𝑄 ∈ R𝑁×𝐾 .
1: Compute smoothed image X̄ by Eq. (5).
2: while 𝑒𝑝𝑜𝑐ℎ < 𝐸𝑚𝑎𝑥 do
3: for X𝑏 ,X𝑏 in X, X̂ do
4: Compute X̂𝑏 by Eq. (6) → L𝑟𝑒𝑐 (X𝑏 , X̂𝑏 ) by Eq. (7).
5: Compute e𝑏 , e𝑏 by Eq. (9)→ L𝑐𝑙𝑟 (e𝑏 , e𝑏 ) by Eq. (10).
6: L𝑠𝑠𝑙 = UWL(L𝑟𝑒𝑐 ,L𝑐𝑙𝑟 ).
7: Update Π(M) using L𝑠𝑠𝑙 .
8: Update Π(C) with EMA(Π(M)).
9: end for
10: end while
11: while (not converged) & (𝑒𝑝𝑜𝑐ℎ < 𝐸𝑚𝑎𝑥 ) do
12: Compute X̂ by Eq. (6)→ L𝑟𝑒𝑐 (X, X̂) by Eq. (7).
13: Compute Z by Eqs. (9), (12)→ Lℓ𝑎𝑝 (Z,S) by Eq. (19).
14: SMM parameters inference using MAP-EM→ Θ.
15: 𝑄 = SMM(Z|Θ) → L𝑠𝑖𝑧𝑒 (𝑄),Lℓℓ (𝑄) by Eqs. (22), (20).
16: L1 = 𝜂Lℓ𝑎𝑝 + (1 − 𝜂)UWL(−Lℓℓ ,−L𝑠𝑖𝑧𝑒 ,L𝑟𝑒𝑐 ).
17: Update Π(M),Π(C),Π(H) using L1.
18: for X𝑏 ,X𝑏 in X,X do
19: Compute 𝑃 by Eq. (24) → L𝑘𝑙 (𝑃,𝑄) by Eq. (23).
20: Compute X̂𝑏 by Eq. (6) → L𝑟𝑒𝑐 (X𝑏 , X̂𝑏 ) by Eq. (7).
21: Compute e𝑏 , e𝑏 by Eq. (9)→ L𝑐𝑙𝑟 (e𝑏 , e𝑏 ) by Eq. (10).
22: L2 = UWL(L𝑘𝑙 ,L𝑟𝑒𝑐 ,L𝑐𝑙𝑟 ).
23: Update Θ and Π(M),Π(C),Π(H) using L2.
24: end for
25: end while
26: return Z, 𝑄

is substituted with a fully-connected linear decoderM𝐷 . For any
given image X𝑖 , the regenrated image X̂𝑖 is as follows:

X̂𝑖 = M𝐷 (M𝐸 (X𝑖 , W𝐸 ),W𝐷 ) (6)

The MIM branch loss for the current batch are:

L𝑟𝑒𝑐 =
1
𝑁𝑏

𝑁𝑏∑︁
𝑖=1

1
𝑁𝑚𝑎𝑠𝑘𝑒𝑑

∑︁
𝑗∈𝑆𝑚𝑎𝑠𝑘𝑒𝑑

(p𝑖, 𝑗 − p̂𝑖, 𝑗 )𝑇 (p𝑖, 𝑗 − p̂𝑖, 𝑗 ), (7)

where 𝑁𝑏 is the batch size,W𝐸 andW𝐷 represent the parameters of
the encoder and decoder, respectively. 𝑁𝑚𝑎𝑠𝑘𝑒𝑑 denotes the number
of masked patches, 𝑆𝑚𝑎𝑠𝑘𝑒𝑑 the set of masked patches. p𝑖, 𝑗 and
p̂𝑖, 𝑗 represent the original and regenerated 𝑗-th image patch of X𝑖 ,
respectively.

For the contrastive branch C, the 𝑁𝑏 raw images form positive
pairs with their respective smoothed images, and negative pairs
with the other 2𝑁𝑏 − 2 images in the same batch. C is structured
around a pseudo-siamese network with two encoders: an online
encoder C𝑂 and a target momentum encoder C𝑇 . Both encoders

share the identical network architecture as P𝐸 , with C𝑂 and P𝐸
having tied parameters. The parameters of C𝑇 are updated using
EMA. Concretely, let W̃𝐸 andW𝐸 denote the parameters of the C𝑂
and C𝑇 , respectively. Then we have:

W̃𝐸 = W𝐸 , W𝐸 =𝑚W𝐸 + (1 −𝑚)W̃𝐸 (8)

Here,𝑚 represents the momentum, fixed at 0.999. For each image
X𝑖 and its augmented counterpart X𝑖 , their respective embedding
vectors, e𝑖 and e𝑖 ∈ R𝐷 , are obtained as: e𝑖 = 𝑔(C𝑂 (X𝑖 , W̃𝐸 )),
e𝑖 = 𝑔(C𝑇 (X𝑖 ,W𝐸 )),

e𝑖 = 𝑔(C𝑂 (X𝑖 , W̃𝐸 )), e𝑖 = 𝑔(C𝑇 (X𝑖 ,W𝐸 )), (9)

where 𝑔 and 𝑔 are linear mapping functions with trainable weights,
and the weights of𝑔 are updated using EMA as well. The contrastive
loss L𝑐𝑙𝑟,𝑖 is computed as :

L𝑐𝑙𝑟,𝑖 = − log
s(e𝑖 , e𝑖 )∑𝑁𝑏

𝑘=1,𝑘≠𝑖 s(e𝑖 , e𝑘 ) +
∑𝑁𝑏

𝑘=1 s(e𝑖 , e𝑘 )

− log
s(e𝑖 , e𝑖 )∑𝑁𝑏

𝑘=1 s(e𝑖 , e𝑘 ) +
∑𝑁𝑏

𝑘=1,𝑘≠𝑖 s(e𝑖 , e𝑘 )
, (10)

where s(·, ·) = exp(cos(·, ·)/𝜏), and 𝜏 is a temperature coefficient,
defaulting to 0.5. Consequently, the loss function L𝑐𝑙𝑟 is defined
as L𝑐𝑙𝑟 = 1

𝑁𝑏

∑𝑁𝑏

𝑖=1 L𝑐𝑙𝑟,𝑖 . Finally, L𝑟𝑒𝑐 and L𝑐𝑙𝑟 are dynamically
integrated into the total SSL loss function L𝑠𝑠𝑙 using the uncertain
weights loss (UWL) function [26]:

L𝑠𝑠𝑙 = UWL(L𝑟𝑒𝑐 ,L𝑐𝑙𝑟 )

=
1

2𝜎2
1
L𝑟𝑒𝑐 +

1
2𝜎2

2
L𝑐𝑙𝑟 + log(1 + 𝜎2

1 ) + log(1 + 𝜎2
2 ), (11)

where 𝜎1and 𝜎2 are trainable noise parameters.

3.3 Self-paced Deep Image Clustering (Module
II)

3.3.1 Student’s t mixturemodel. Let e𝑖 denote theModule I -generated
embedding vector for the 𝑖-th original image. We first map e𝑖 to
z𝑖 ∈ R𝐷 in a latent space wherein it is more conformed to a t-
distribution. This mapping is achieved through a nonlinear projec-
tion head with batch normalization and scaled exponential linear
unit (SELU) activation function:

z𝑖 = 𝑆𝐸𝐿𝑈 (𝐵𝑁 (W𝑝 , e𝑖 )), (12)

The set of these vectors, Z = {z𝑖 }𝑁𝑖=1 ∈ R𝑁×𝐷 , is modeled using
an SMM, whose components correspond to image clusters. Since
extreme values are downweighed by SMM during parameter in-
ference, this clustering is more robust to outliers and variances.
The SMM is parameterized by Θ = {𝜃𝑘 :𝜋𝑘 , 𝜇𝑘 , Σ𝑘 , 𝑣𝑘 , ∀𝑘 ∈ 𝐾},
where 𝐾 represents the number of components and is assumed to
be known or can be automatically inferred (see Section 4.1). Here,
𝜋𝑘 , 𝜇𝑘 , Σ𝑘 , 𝑣𝑘 denote the weight, mean, covariance matrix, and
degree of freedom of the 𝑘-th component, respectively. The density
function of z𝑖 is expressed as:

𝑝 (z𝑖 |Θ) =
𝐾∑︁
𝑘=1

𝜋𝑘 𝜙 (z𝑖 |𝜇𝑘 , Σ𝑘 , 𝑣𝑘 ) (13)
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For robust model inference, we use the maximum a posterior-
expectation maximization (MAP-EM) algorithm by applying a con-
jugate Dirichlet prior on Π = {𝜋𝑘 ,∀𝑘 ∈ [1, 𝐾]} and a normal
inverse Wishart (NIW) prior on 𝜇𝑘 , Σ𝑘 :

Π ∼ 𝐷𝑖𝑟 (Π |𝛼0), (14)

𝜇𝑘 , Σ𝑘 ∼ 𝑁𝐼𝑊 (𝜇𝑘 , Σ𝑘 |m0, 𝜅0, 𝑆0, 𝜌0),∀𝑘 ∈ [1, 𝐾] (15)

To simplify the inference, we rewrite the Student’s t density func-
tion 𝜙 as a Gaussian scale mixture by introducing an “artificial”
hidden variable 𝜁𝑖,𝑘 , ∀𝑖 ∈ [1, 𝑁 ] , ∀𝑘 ∈ [1, 𝐾] that follows a Gamma
distribution parameterized by 𝑣𝑘 :

𝜙 (z𝑖 |𝜇𝑘 ,Σ𝑘 , 𝑣𝑘 ) =∫
N

(
z𝑖

����𝜇𝑘 , Σ𝑘𝜁𝑖,𝑘
)
Γ

(
𝜁𝑖,𝑘

����𝑣𝑘2 , 𝑣𝑘2 )
𝑑𝜁𝑖,𝑘 (16)

We further introduce a missing variable 𝜉𝑖 to represent the compo-
nent membership of z𝑖 . The posterior complete data log likelihood
is then expressed as:

ℓ𝑐 (Θ) = log 𝑃 (Z, 𝜁 , 𝜉 |Θ)
= logDir(Π |𝛼0)+∑︁
𝑘

𝑙𝑜𝑔𝑁 𝐼𝑊 (𝜇𝑘 , Σ𝑘 |𝑚0, 𝜅0, 𝑆0, 𝜌0)+∑︁
𝑖

∑︁
𝑘

[𝐼 𝐼 (𝜉𝑖 = 𝑘) (log𝜋𝑘 + logΦ(z𝑖 , 𝜁𝑖,𝑘 |𝜇𝑘 , Σ𝑘 , 𝑣𝑘 ))] (17)

In the 𝑡-th iteration of the E-step, the expected sufficient statistics
𝜉𝑖,𝑘

(𝑡 )
and 𝜁𝑖,𝑘

(𝑡 )
are derived based on Θ(𝑡−1) . In the subsequent

M-step, Θ(𝑡−1) is updated to Θ(𝑡 ) by maximizing the auxiliary
function 𝑄 (Θ, Θ(𝑡−1) ) = 𝐸 (ℓ𝑐 (Θ) |Θ(𝑡−1) ). These two steps are
alternated until either convergence is reached or a predefined max-
imum number of iterations is attained. Refer to Supplementary 1.1
for details of the model inference.

3.3.2 Self-paced Joint Optimization of Image Embeddings and Clus-
ter Assignments. Two loss functions, L1 and L2, are calculated
based on clustering results for updating parameters of both Module
I and the SMM through loss gradient backpropagation. This itera-
tive process progressively improves the clustering-oriented image
embeddings and clustering results. Upon completing the inference
of SMM parameters Θ̃ in each epoch, an epoch-level loss L1 is
calculated for updating parameters of Module I :

L1 = 𝜂Lℓ𝑎𝑝 + (1 − 𝜂)UWL(−Lℓℓ ,−L𝑠𝑖𝑧𝑒 ,L𝑟𝑒𝑐 ) . (18)

Here, Lℓ𝑎𝑝 is a Laplacian regularization term that promotes the
similarities among image embeddings Z to be consistent with a
seeding image-image similarity matrix S, informing the initial
training phase. The derivation of S is detailed in Supplementary
1.2. Lℓ𝑎𝑝 is defined as follows:

Lℓ𝑎𝑝 = 𝑇𝑟

(
𝑍𝑇

(
𝐼 − D− 1

2 SD− 1
2
)
𝑍

)
, (19)

where D is the degree matrix of S, and 𝜂, initially set at 0.5, decays
over the training course so that the influence of S is gradually
reduced. Lℓℓ represents the log likelihood of the embeddings given

the estimated SMM parameters Θ̃:

Lℓℓ =
N∑︁

i=1
log

[∑︁
𝑘

𝑞𝑖,𝑘

]
, (20)

𝑞𝑖,𝑘 = 𝜋𝑘𝜙 (z𝑖 |𝜇𝑘 , Σ𝑘 , 𝑣𝑘 ),∀𝑖 ∈ [1, 𝑁 ], ∀𝑘 ∈ [1, 𝐾] . (21)

L𝑠𝑖𝑧𝑒 penalizes empty and tiny clusters, while exempting those
whose size exceeds a predefined threshold 𝜐 so that image assign-
ments is not overly uniform:

L𝑠𝑖𝑧𝑒 =
𝐾∑︁
𝑘=1

−𝐽𝑘 log𝐽𝑘 , 𝐽𝑘 =

{
Σ𝑁
𝑖
𝑞𝑖,𝑘
𝑁

, 𝑖 𝑓 𝐽𝑘 ≤ 𝜐
1 .𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(22)

L𝑟𝑒𝑐 , defined in Equation 7, aims to enhance the local-context
awareness of embeddings. Subsequently, within the same epoch, a
batch-level loss L2 = UWL(L𝑘𝑙 ,L𝑟𝑒𝑐 ,L𝑐𝑙𝑟 ) is utilized to update
Module I and SMM parameters across successive batches. Here,
L𝑟𝑒𝑐 and L𝑐𝑙𝑟 remains same as in Equations 7 and ?? except being
calculated on the batch-level. L𝑘𝑙 boosts high-confidence images,
incrementally grouping similar instances while separating dissimi-
lar ones:

L𝑘𝑙 = 𝐾𝐿(P|𝑄) =
𝑁∑︁
𝑖

𝐾∑︁
𝑗

p𝑖, 𝑗 log
p𝑖, 𝑗

q𝑖, 𝑗
, (23)

where q𝑖,𝑘 =
𝑞𝑖,𝑘∑
𝑐 𝑞𝑖,𝑐

,p𝑖,𝑘 =
q

2
𝑖,𝑘
/∑𝑖 q𝑖,𝑐∑

𝑐

(
q

2
𝑖,𝑐
/∑𝑖 q𝑖,𝑐 ) (24)

Here, 𝑞𝑖,𝑘 is same as in Equation 21, q𝑖,𝑘 represents the probability
of assigning 𝑖-th image to the 𝑘-th SMM component, and p𝑖,𝑘 an
auxiliary target distribution that boosts up high-confidence images.
After this joint optimization, the training progresses to the next
epoch, iterating until the end of the training process. The mathe-
matical derivations of gradients of L1 and L2 with respect to W𝐸 ,
W𝐷 and Θ are detailed in Supplementary 1.3.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. To comprehensively evaluate DARLC, we utilize
12 real ST datasets derived from different tissue slices of the human
dorsolateral prefrontal cortex (hDLPFC). These datasets display
spatial expression levels of the whole genome across the hDLPFC
tissue (approximately 18700 75x75 SGEP images per dataset). These
datasets are named by tissue slice numbers (151507-151510, 151669-
151676), and accessible through the spatialLIBD package [31] at
http://spatial.libd.org/spatialLIBD.

4.1.2 Data quality control and preprocessing. We conform to the
conventional procedure for preprocessing ST data, as implemented
in the SCANPY package [40]. Specifically, we first remove mito-
chondrial and External RNA Controls Consortium spike-in genes.
Then, genes detected in fewer than 10 spots are excluded. To pre-
serve the spatial data integrity, we do not perform quality control
on spatial spots. Finally, the gene expression counts are normalized
by library size, followed by log-transformation.

http://spatial.libd.org/spatialLIBD
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Table 1: Clustering performance of DARLC and the benchmark methods across 12 datasets of spatial gene expression images
are quantified using DBIE and DBIP scores. Lower scores indicate better performance ,the best score for each dataset is bolded,
and the second-best score is underlined. The score standard deviation is subscripted.

Method DBIE↓
151507 151508 151509 151510 151669 151670 151671 151672 151673 151674 151675 151676

DEC 10.880.11 10.590.31 11.540.14 10.880.55 13.231.87 11.150.55 12.320.97 11.050.59 11.581.20 11.221.08 11.440.70 11.420.65

DAGMM 46.1827.97 47.4228.27 30.7018.39 19.028.21 30.6021.35 24.817.74 46.7142.62 54.8042.75 26.075.72 39.4712.57 20.6417.48 42.8319.63

EDESC 12.550.95 14.241.39 11.810.97 10.790.88 12.480.50 10.711.22 11.941.08 13.531.53 11.180.99 10.171.70 9.941.44 10.041.12
IDCEC 15.651.73 14.090.88 13.550.90 14.351.31 11.180.13 11.850.14 10.510.34 10.830.49 11.230.50 10.600.34 12.300.94 12.951.10

CC 16.660.02 18.660.01 20.030.04 16.380.02 18.310.04 18.740.04 17.050.03 19.050.05 18.770.04 19.530.05 20.260.02 17.410.03

DCP 12.480.47 12.070.27 11.070.32 11.650.24 11.450.32 11.730.10 11.610.11 12.280.39 11.920.27 11.330.86 12.090.66 11.270.03

CVCL 18.047.64 33.143.16 20.244.30 28.771.70 33.384.85 55.0211.21 39.5211.33 31.000.51 30.771.70 31.153.20 39.857.30 30.962.35

iBOT-C 10.750.01 10.880.02 11.870.01 10.230.03 13.150.03 13.210.02 12.690.04 10.760.05 12.810.02 10.110.01 10.710.03 11.310.01

DARLC 8.090.33 8.160.13 8.310.28 7.980.74 7.690.16 8.220.31 7.650.40 8.060.37 7.900.37 7.780.33 7.410.36 8.090.55

Method DBIP↓
151507 151508 151509 151510 151669 151670 151671 151672 151673 151674 151675 151676

DEC 2.380.06 2.180.02 2.680.21 2.440.11 2.550.10 2.490.09 3.040.24 2.520.08 3.710.53 3.320.19 3.520.59 2.420.08
DAGMM 16.195.26 14.014.23 12.350.98 12.112.09 15.651.38 13.513.34 31.0318.08 22.7512.10 27.1713.81 20.062.27 16.1413.59 20.149.84

EDESC 2.490.17 2.660.28 2.680.32 2.570.20 2.680.36 2.810.41 2.700.36 2.660.38 2.850.40 3.110.14 2.750.30 2.770.30

IDCEC 2.700.05 2.520.11 2.750.07 2.660.06 2.600.28 2.650.28 2.760.26 2.690.32 3.130.23 2.990.20 2.980.26 3.070.19

CC 3.180.01 3.120.01 4.280.01 4.070.03 3.130.04 3.140.01 4.120.02 4.350.01 3.180.00 3.580.00 2.930.01 3.960.04

DCP 2.460.11 2.290.03 2.540.12 2.460.16 2.550.06 2.540.10 2.590.06 2.550.06 3.370.03 2.960.16 3.000.13 2.870.16

CVCL 5.281.35 5.680.65 5.280.70 5.720.76 7.002.07 8.262.00 8.922.02 6.690.81 7.130.84 5.450.63 6.321.07 4.970.81

iBOT-C 3.390.02 3.620.04 4.770.01 3.270.03 4.900.04 3.450.02 3.480.03 2.960.02 4.870.01 3.380.01 3.570.03 3.470.02

DARLC 2.080.02 2.040.01 2.110.03 2.100.01 2.220.05 2.240.04 2.240.06 2.190.03 2.230.00 2.140.08 2.450.11 2.110.20

Figure 3: SGEPs from clusters generated by DARLC in dataset (151675, 151676) with high and medium intra-cluster similarity.

4.1.3 Cluster Number Inference. Given the number of image clus-
ters is not known a priori, DARLC can estimate this number using a
seeding similarity matrix S ∈ R𝑁×𝑁 , where 𝑁 represents the num-
ber of images [44]. S is transformed to a graph Laplacian matrix
(refer to Supplementary 1.2), L ∈ R𝑁×𝑁 as follows:

S′ = S + S2, (25)

L = D−
1
2 S′D−

1
2 . (26)

Here, D ∈ R𝑁×𝑁 represents the degree matrix of S, and S′ aims
to enhance the similarity structure. The eigenvalues of L are then
ranked as 𝜆(1) ≤ 𝜆(2) ≤ · · · ≤ 𝜆(𝑁 ) . The number of clusters,
denoted as 𝐾 , is inferred as:

𝐾 = argmax𝑖
{
𝜆(𝑖 ) − 𝜆(𝑖−1)

}
, 𝑖 = 2, 3, · · · , 𝑁 . (27)
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Table 2: Gene-gene interaction prediction results based on the
three types of gene image embeddings. The superior method
is bolded.

Case ACC (%)
151671 151672 151673 151674 151675 151676

iBOT 66.58 68.73 68.53 65.88 68.03 67.48
DARLC-C1 76.18 77.20 74.71 73.64 77.85 71.50
DARLC-full 78.11 78.97 77.66 78.74 78.65 73.59

4.1.4 Baselines. The image clustering benchmark methods include
two classic deep clustering method, DEC [41] and DAGMM [49], as
well as five SOTA methods that either improve DEC (e.g.,EDESC
[3] and IDCEC [29]) or incorporate CL (e.g., CC [25], DCP [27], and
CVCL [7]). In addition, we include a benchmark method consisting
of iBOT [47], which integrates CL and MIM for representation
learning, and a boosted GMM for clustering, denoted as iBOT-C.

4.1.5 Implementation Details. The GAT for data augmentation
adopts an encoder including a single attention head with C-512-30
network structure, and a symmetric decoder. InModule I, the shared
encoder structure is a ViT comprising four transformer blocks, each
having four attention heads, for processing 75 × 75 input images
segmented into 4× 4 patches in our case. The MIM decoder follows
a D-128-256-512-1024-75*75 residual network. The Module I is pre-
trained for 50 epochs with a learning rate of 0.001. The nonlinear
projection head that bridges Module I and II is a two-layer MLP for
normalizing image representations to a dimension size of 32. The it-
erative joint optimization of representation learning and clustering
continues for 50 epochs using Adam optimizer. Given the absence
of ground truth in gene cluster labels, we heuristically determine
the number of gene clusters for our experiments to achieve an av-
erage cluster size of 30 genes, approximating the typical size of a
gene pathway [46].

4.1.6 Evaluation Metrics. Without ground truth cluster labels, we
evaluate the clustering results using the Davies-Bouldin index (DBI)
metric [10]:

DBI =
1
𝐾

𝐾∑︁
𝑖=1

max
𝑖≠𝑗

𝑑𝑖 + 𝑑 𝑗
𝑑 (𝑖, 𝑗 )

, 𝑑𝑖 =
1
|𝐶𝑖 |

|𝐶𝑖 |∑︁
𝑗=1

𝛿𝑐𝑖 , 𝑗 , (28)

where 𝐾 is the number of clusters, 𝐶𝑖 the samples in cluster 𝑖 , 𝛿𝑖, 𝑗
the distance between instances 𝑖 and 𝑗 , 𝑐𝑖 the centroid of cluster
𝑖 . Cluster width 𝑑𝑖 is the mean intra-cluster distance to 𝑐𝑖 , and
𝑑 (𝑖, 𝑗 ) = 𝛿𝑐𝑖 ,𝑐 𝑗 measures the distance between clusters 𝑖 and 𝑗 . DBI
quantifies the clustering efficiency by measuring the ratio of intra-
cluster compactness to inter-cluster separation, with lower scores
indicating better clustering. To evaluate clustering from different
perspectives, we use two DBI metrics, DBIP and DBIE, based on
Pearson and Euclidean distances, respectively [34].

Table 3: Spatial cofunctional gene clustering results using
three image embeddings, with the best method in bolded

.

Case NMI (%)
151671 151672 151673 151674 151675 151676

iBOT 20.56 15.98 15.41 27.05 23.17 25.62
DARLC-C1 66.81 67.81 70.91 65.13 74.62 75.85
DARLC-full 78.11 71.28 79.23 74.34 75.20 75.91

Case ARI (%)
151671 151672 151673 151674 151675 151676

iBOT -2.66 -5.06 -5.64 4.29 -0.80 2.92
DARLC-C1 53.41 51.61 55.58 45.88 48.97 59.83
DARLC-full 59.44 53.02 65.82 36.25 59.83 54.50

4.2 Clustering Sparse, Noisy Images of Spatial
Gene Expressions

Table 1 showcase the performance of DARLC, compared to eight
benchmark methods, in clustering gene spatial expression images
of 12 real ST datasets, evaluated by the DBIE and DBIP scores, re-
spectively. For each dataset, the experiment is repeated ten times
to obtain the mean and standard deviation of each method’s scores.
DARLC consistently achieves the lowest scores in both DBIE and
DBIP across all datasets, highlighting its superiority in generat-
ing clusters consisting of spatially similar and coherent images.
This superiority can be attributed to DARLC’s features in integrat-
ing MIM and CL, generating more plausible augmented data, and
the robust and adaptable clustering algorithm, as substantiated in
our ablation study. In contrast, benchmark methods adopt varied
strategies: IDCEC and EDESC leverage a convolutional autoencoder
for extracting visual features; iBOT+boosted GMM adopts conven-
tional data augmentation; CC, CVCL and DCP rely solely on CL
for representation learning; DAGMM employs an outlier-sensitive
GMM for clustering. However, these methods generally demon-
strate unstable and suboptimal performance. Overall, compared
to the best-performing benchmark method, DARLC achieves an
average reduction of approximately 24.89% in DBIE and 14.39%
in DBIP across all datasets. Finally, DARLC clusters are divided
into high and medium-quality groups using spectral angle map-
per (SAM) metric scores [22], with lower SAM indicating greater
intra-cluster similarity. To provide a visual illustration of DARLC’s
clustering performance, we randomly select one cluster from both
the high- and medium-quality groups within each of the 151675
and 151676 datasets. From each of the selected clusters, we then
randomly select five genes to be displayed in Figure 3. Figure 3
clearly demonstrates that DARLC effectively groups images with
similar expression patterns into the same cluster.

4.3 Evaluating DARLC-generated Gene Image
Representations

In this section, we present a comprehensive evaluation of gene
image representations produced by the fully implemented DARLC
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model (denoted asDARLC-full). First, we assess whether representa-
tions generated byDARLC-full capture corresponding biosemantics,
particularly through pathway enrichment analysis, compared to
original gene expressions. Furthermore, we extend our investiga-
tion to specific critical downstream tasks: predicting interactions
between genes and clustering genes based on spatial cofunction-
ality. These evaluations are conducted across six distinct datasets
(151671-151676). Additionally, gene image embeddings generated
by iBOT and a variant of DARLC (denoted as DARLC-C1), which is
deprived of Module II, serve as baselines.

4.3.1 Gene-gene Interaction Prediction. We employ an MLP-based
classifier for predicting gene pair interactions. This is achieved
by linear probing using gene image representations generated by
DARLC and baseline methods (see Supplementary 1.4). We follow
the methodology in [15], which is based on the Gene Ontology, to
acquire the gene-gene interaction ground truth. Theoretically, gene
image representations with richer semantic meanings should yield
more accurate predictions. As shown by the accuracy scores in Table
2, the classifier yields the most accurate predictions (77.62%±1.85%)
using embeddings generated by DARLC-full, and the second most
accurate predictions (75.18%±2.17%) using embeddings generated
by DARLC-C1, followed by the predictions using iBOT-generated
embeddings (67.54%±1.03%).

4.3.2 Spatially Cofunctional Gene Clustering. Spatially cofunctional
genes are those belonging to the same gene family and exhibit sim-
ilar spatial expression patterns [11]. Their family identities can
serve as labels to evaluate the quality of gene image embeddings
via clustering. Specifically, our evaluation involves five spatially
cofunctional genes from each of the HLA, GABR, RPL, and MT gene
families (see Supplementary Figure 1). The Leiden algorithm [36] is
used to cluster gene image embeddings generated by DARLC-full
and the baseline methods. The clustering results, evaluated using
the normalized mutual information (NMI) and adjusted rand index
(ARI) scores, as shown in Table 3, demonstrate that Leiden yields
the most accurate clustering with DARLC-full and the second most
accurate with DARLC-C1.

In summary, these results collectively highlight the effectiveness
of the joint clustering (i.e., DARLC-full surpasses DARLC-C1) and
GAT-based data augmentation (i.e., DARLC-C1 surpasses iBOT) in
enhancing the quality of gene image representations.

4.4 Ablation Study
Here, we conduct a series of ablation studies on six ST datasets
(151671-151676) to investigate the contributions of DARLC’s com-
ponents in image clustering. The results, detailed in DBIE and DBIP
scores, are presented in Table 4. Notably, DARLC’s performance
declines most with the CL branch removal (“w/o CLR”), followed by
the elimination ofModule II (“w/o SMM") and the substitution of the
robust SMM with an outlier-sensitive GMM (“SMM → GMM"). We
also observed that employing traditional image smoothing methods
such as Gaussian Kernel Smoothing (GKS) instead of GAT (“GAT
→ GKS”) on SNIs leads to a decline in DARLC’s performance. Addi-
tionally, removing either Lℓ𝑎𝑝 (“w/o Lℓ𝑎𝑝 ") or L𝑠𝑖𝑧𝑒 (“w/o L𝑠𝑖𝑧𝑒 ")
from the optimization decreases DARLC’s performance, indicated

Table 4: Ablation study results across six datasets for com-
ponents inModule I &II and regularization terms. The best
result is bolded.

Case DBIE↓
151671 151672 151673 151674 151675 151676

w/o CLR 14.35 16.99 8.70 9.23 10.36 15.12
GAT→ GKS 9.35 10.37 8.98 9.08 8.90 8.95
w/o SMM 11.84 12.19 11.33 11.81 11.49 12.35
SMM→ GMM 11.49 11.36 11.16 11.31 11.05 11.37
w/o Lℓ𝑎𝑝 8.32 10.76 9.02 8.10 9.22 8.12
w/o L𝑠𝑖𝑧𝑒 10.38 8.60 8.11 9.34 8.00 8.28
w/o Pretraining 8.22 8.74 8.38 8.18 7.87 9.09

DARLC-full 7.65 8.06 7.90 7.78 7.41 8.09

Case DBIP↓
151671 151672 151673 151674 151675 151676

w/o CLR 4.21 4.21 3.51 3.97 3.82 3.69
GAT→ GKS 2.35 2.29 2.62 2.61 2.63 2.37
w/o SMM 2.49 2.35 2.29 2.66 2.66 2.36
SMM→ GMM 2.53 2.26 2.31 2.51 2.84 2.26
w/o Lℓ𝑎𝑝 2.33 2.27 2.26 2.31 2.66 2.17
w/o L𝑠𝑖𝑧𝑒 2.29 2.22 2.25 2.25 2.31 2.19
w/o Pretraining 2.36 2.40 2.30 2.65 2.53 2.42

DARLC-full 2.24 2.19 2.23 2.14 2.45 2.11

by higher DBIE and DBIP scores. Lastly, “w/o Pretraining" show-
cases DARLC’s performance at the same clustering training epoch
as the complete model but without the initial “warm up" pretraining
ofModule I. The relative underperformance in the “w/o Pretraining"
scenario suggests a slower training convergence compared to the
complete model.

Overall, all key components of DARLC have proven effective,
particularly the CL module. This is due to: a) The discontinuous and
sparse nature of SNIs, which greatly benefits from the enhanced
discriminability provided by CL. b) CL’s use of smoothed images as
augmented data, which serve as effective priors for guiding DARLC
to discern the primary visual patterns of SNIs.

5 CONCLUSION
In this study, we introduce DARLC, a novel algorithm for joint learn-
ing of representations and cluster assignments for SNIs. DARLC
features in its enhanced data augmentation technique, comprehen-
sive and potent representation learning approach that integrates
MIM, CL and clustering, as well as robust and adaptable clustering
algorithm. These features collectively contribute to DARLC’s su-
periority in both image representation learning and clustering, as
evidenced by our extensive benchmarks over multiple real datasets
and comprehensive ablation studies.
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