Hallucination Detection on a Budget: Efficient Bayesian Estimation of Semantic Entropy

Kamil Ciosek kamilc@spotify.com

Spotify

Nicolò Felicioni nicolof@spotify.com

Spotify

Sina Ghiassian sinag@spotify.com

Spotify

Reviewed on OpenReview: https://openreview.net/forum?id=j2N2RuNdbC

Abstract

Detecting whether an LLM hallucinates is an important research challenge. One promising way of doing so is to estimate the semantic entropy (Farquhar et al., 2024) of the distribution of generated sequences. We propose a new algorithm for doing that, with two main advantages. First, due to us taking the Bayesian approach, we achieve a much better quality of semantic entropy estimates for a given budget of samples from the LLM. Second, we are able to tune the number of samples adaptively so that 'harder' contexts receive more samples. We demonstrate empirically that our approach systematically beats the baselines, requiring only 53% of samples used by Farquhar et al. (2024) to achieve the same quality of hallucination detection as measured by AUROC. Moreover, quite counterintuitively, our estimator is useful even with just one sample from the LLM.

1 Introduction

Detecting hallucinations in LLMs is a task of huge practical significance (Ji et al., 2023). An important subset of hallucinations, called 'confabulatory', amounts to the model making up confabulations or statements with made-up meanings (Filippova, 2020; Maynez et al., 2020). Recently, semantic entropy (Farquhar et al., 2024) has been introduced as an important indicator for detecting if a model exhibits this type of hallucination. Semantic Entropy is based on two principles. The first one is to measure a type of *Shannon entropy* of the sequences generated by a model, reflecting the idea that large entropy indicates confounding or a lack of knowledge. The second principle is to do the measurement in the space of *meanings* rather than directly operating on raw token sequences. By doing so, one can leverage the insight that in many cases, distinct token sequences can have the same meaning. It turns out that combining these insights to estimate semantic entropy and then thresholding on it value amounts to a highly competitive hallucination detection method (Farquhar et al., 2024).

While semantic entropy is a state-of-the art method of hallucination detection, computing it has a high cost. It first requires the generation of several independent answers to the same question and then a quadratic number of calls to the function determining if two meanings are the same. In fact, the work of Farquhar et al. (2024) used ten generations per prompt, which is prohibitively expensive in many practical cases. We address this bottleneck by making semantic entropy estimation much cheaper. We achieve this by leveraging insights from Bayesian literature about entropy estimation (Wolpert & Wolf, 1994; Hausser & Strimmer, 2009; Archer et al., 2014), building up a probabilistic belief about the underlying distribution over meanings and reasoning about how the belief in the space of meaning distributions affects the belief in the space of possible values of the entropy. We further study a novel, adaptive, setting, where 'harder' prompts are

afforded a larger budget of samples. In this setting, the efficiency of our estimator can be increased even further.

Contributions We develop a new system for measuring semantic entropy, based on Bayesian principles. Compared to the work of Farquhar et al. (2024), we outperform all other ways of measuring semantic entropy, reducing the sample complexity measured as the number of LLM generations needed to achieve the same performance by 47% on average across datasets. We also release several datasets for semantic entropy estimation, enabling researchers without access to GPU resources to work on even better estimators.

2 Preliminaries

Language Generation Denote with X the set of prompts¹ the LLM can be asked to respond to. One instance² of a prompt $\mathbf{x} \in X$ would be

$$\mathbf{x} = \text{`Where is the Eiffel Tower?'}$$

Denote with $S_{\mathbf{x}}$ the set of all reply sequences given a prompt \mathbf{x} .³ Denote the probability of the LLM generating a sequence $s \in S_{\mathbf{x}}$ in response to the prompt $\mathbf{x} \in X$ with $p(\mathbf{s}|\mathbf{x})$. One possible continuation is

$$\mathbf{s} =$$
 'It's Paris.'

We model both \mathbf{s} and \mathbf{x} as random variables, denoting them in bold.

Meanings Semantic entropy is always conditioned on a prompt. We are going to consider a given generic context \mathbf{x} . Denote the set of meanings (also known as meaning classes or semantic classes) with $M_{\mathbf{x}}$. The set $M_{\mathbf{x}}$ is a partition of the set of $S_{\mathbf{x}}$. We assume that the set of meanings is finite (although we do not necessarily know its cardinality). Denote with

$$f^{\mathbf{x}}(\mathbf{s}): S_{\mathbf{x}} \to M_{\mathbf{x}}$$

the function that determines the meaning of the sequence \mathbf{s} in context \mathbf{x} . While $f^{\mathbf{x}}$ is typically implemented using calls to an entailment oracle,⁵ we abstract away this implementation detail in this paper. For a random sequence $\mathbf{s} \sim p(\cdot|\mathbf{x})$, we consider the random variable

$$\mathbf{m} = f^{\mathbf{x}}(\mathbf{s}).$$

Semantic Entropy The semantic entropy corresponding to the context \mathbf{x} is defined as the Shannon entropy of the random variable \mathbf{m} :

$$SE_{\mathbf{x}} = \mathbb{H}[\mathbf{m}].$$

In the remainder of the paper, we will occasionally drop the subscript \mathbf{x} where the dependence on the context \mathbf{x} is obvious. Semantic entropy is useful for detecting hallucinations because of the following crucial observation (Farquhar et al., 2024).

Higher values of $SE_{\mathbf{x}}$ imply the model's response to prompt \mathbf{x} is more likely to be a hallucination.

 $^{^{1}}$ Occasionally, the notion of a 'context' is used in addition to the prompt, to model the phenomenon that the same prompt can have different meanings in different contexts. To keep our notation simple, we don't explicitly model contexts. However, if one wants to generalize our results to contexts, it can be done by considering \mathbf{x} to be a context-prompt tuple.

²We use examples borrowed from Farquhar et al. (2024).

³Typically, both X and $S_{\mathbf{x}}$ are the set of natural language sequences. However, whether $X = S_{\mathbf{x}}$ is immaterial for this paper.

⁴The term 'partition' is used in the mathematical way so that a sequence $s \in S_x$ always has exactly one meaning.

 $^{^{5}}$ The entailment oracle is a function that can tell if two meanings are distinct.

The Estimation Problem The aim of this paper is to estimate semantic entropy from a finite dataset, based on N calls to the target LLM. For a given context \mathbf{x} , our samples are represented as a list of independently generated sequences

$$\mathbf{s}_1, \dots, \mathbf{s}_N \sim p(\cdot | \mathbf{x}).$$

For each sequence, we can determine its meaning, obtaining the corresponding list of meanings

$$\mathbf{m}_1, \dots, \mathbf{m}_N$$
, where $\mathbf{m}_i = f^{\mathbf{x}}(\mathbf{s}_i)$.

We are also given the probabilities of generating $\mathbf{s}_1, \dots, \mathbf{s}_N$, which we denote with $p(\mathbf{s}_i|\mathbf{x})$. Note that these probabilities can be obtained at no extra cost when generating sequences from the LLM. Our overall dataset is defined as

$$\mathcal{D} = (\mathbf{s}_1, \mathbf{m}_1, p(\mathbf{s}_1 | \mathbf{x})), \dots, (\mathbf{s}_N, \mathbf{m}_N, p(\mathbf{s}_N | \mathbf{x})).$$

The dataset can in general have repeated elements. It is important to note that we only have the probabilities for the sequences that were actually generated, which might represent a very small fraction of all possible sequences. Moreover, an important feature of our problem is that we want to achieve reasonable estimates using as few samples as possible. When generating the dataset, we do have the ability to ask for more data, i.e. increase N until we are satisfied that our estimate of semantic entropy is good enough. We will make this precise in Section 3.

3 A Bayesian Estimator for Semantic Entropy

We now give a sketch of our estimation process. Since we have finite data, our estimate of semantic entropy will be noisy. Adopting the Bayesian philosophy, we construct a random variable \mathbf{h} that represents our belief about the value of the semantic entropy $SE_{\mathbf{x}}$, based on limited available data contained in a dataset \mathcal{D} (we define \mathbf{h} formally later on in the Section). Since we are motivated by detecting hallucinations, our focus is on measuring the quantities

$$\mathbb{E}[\mathbf{h}] \text{ and } \operatorname{Var}[\mathbf{h}],$$
 (1)

i.e. the mean and variance of our Bayesian belief about what the value of the semantic entropy is.

In this Section, we describe a Bayesian process for forming a probabilistic belief over \mathbf{h} . For presentation purposes, we first derive our estimator under the assumption that that the number of meaning classes is known, i.e. $|M_{\mathbf{x}}| = K$. Under this assumption, in Section 3.1, we describe the basic variant of the estimator, which only uses the list of meanings $\mathbf{m}_1, \ldots, \mathbf{m}_N$. In Section 3.2, we then extend the estimator to also make use of the probabilities of the generated sequences $p(\mathbf{s}_1|\mathbf{x}), \ldots, p(\mathbf{s}_N|\mathbf{x})$. In Section 3.3, we remove the assumption that K is known, defining a hierarchical Bayesian system that maintains a belief about K. In Section 3.4, we summarize our methodology in the form of pseudo-code.

3.1 Basic Variant of the Estimator

We first summarize the dataset, counting how many times we sampled each meaning. The counter for meaning $j \in M$ is defined as

$$\mathbf{c}_j = |\{i : \mathbf{m}_i = j\}|. \tag{2}$$

We have $\sum_j \mathbf{c}_j = N$. We seek to use the information from the counters to get an idea about how the true distribution over meanings looks like. We adopt the Bayesian modeling philosophy, using a belief distribution. Specifically, our Bayesian belief about the probability distribution over meanings is modeled as

$$B_p = \text{Dirichlet}(\alpha + \mathbf{c}_1, \dots, \alpha + \mathbf{c}_K),$$
 (3)

where we used the letter B_p to indicate that the probability distribution is used as a belief and K is the number of meanings. The value α represents a prior of the Dirichlet distribution and is a hyper-parameter

of our method⁶. Equation 3 has a Bayesian interpretation as the posterior distribution, when the prior is chosen to be Dirichlet(α, \ldots, α), and the likelihood is categorical. Consider a random variable distributed according to B_n :

$$\mathbf{b} \sim B_n$$
.

Here $\mathbf{b} \in \Delta^K$ is itself a probability distribution, representing the fraction of the total probability mass assigned to each meaning. A belief about \mathbf{b} induces a belief about its entropy, represented with the random variable

$$\mathbf{h} \triangleq \mathbb{H}[\mathbf{b}].$$

The expectation as per equation 1 can be computed analytically as

$$\mathbb{E}\left[\mathbf{h}\right] = \int_{\mathbf{b}} \mathbb{H}[\mathbf{b}] p_{B_p}(\mathbf{b}) d\mathbf{b} = \psi \left(1 + K\alpha + \sum_j \mathbf{c}_j\right) - \sum_j \frac{\alpha + \mathbf{c}_j}{K\alpha + \sum_j' \mathbf{c}_j'} \psi \left(\alpha + \mathbf{c}_j + 1\right),$$

where ψ is the digamma function (see Appendix A.1 for proof and a derivation of a similar expression for the variance integral).

3.2 An Estimator that Also Uses Sequence Probabilities

An LLM doesn't just give us meaning-classes but also probabilities of the generated continuations. Conditioning on this additional information can make our estimates of semantic entropy much better. Recall that the probability of generating \mathbf{s} is denoted with $p(\mathbf{s}_i|\mathbf{x})$. We can define a constraint bounding the probability of each meaning, writing

$$\operatorname{constr}(\mathbf{b}, \mathcal{D}) := \left\{ \mathbf{b}_{j} \ge \sum_{\mathbf{s} \in \{\mathbf{s} : \mathbf{s} \in \mathcal{D}, f^{\mathbf{x}}(\mathbf{s}) = j\}} p(\mathbf{s} | \mathbf{x}) \right\}_{j=1,\dots,K}$$
(4)

Intuitively, equation 4 holds because the probability of a meaning j is at least equal to the sum of probabilities of distinct sequences with that meaning. The bound is not an equality because it is possible (and typically the case) that we didn't generate all sequences that correspond to this meaning. Probabilistically, the constraint can be interpreted as an event, i.e. something we can condition on. We in fact do that, modifying the estimator to sample from belief conditional on the constraint:

$$\mathbf{b} \sim B_p \mid \text{constr.}$$

This conditioning is in fact key to obtaining good empirical results and is, as far as we can tell, novel to our approach. While the conditioning operation allows us to leverage all information at our disposal, it also makes the process of computing the expectation in equation 1 more complicated. In practice, the integrals for $\mathbb{E}[\mathbf{h}]$ and $\mathrm{Var}[\mathbf{h}]$, which are defined as:

$$\mathbb{E}\left[\mathbf{h}\right] = \int_{\mathbf{b}} \mathbb{H}[\mathbf{b}] p_B^{\text{trunc}}(\mathbf{b}; \mathcal{D}) d\mathbf{b},$$

$$\text{Var}\left[\mathbf{h}\right] = \left(\int_{\mathbf{b}} \mathbb{H}[\mathbf{b}]^2 p_B^{\text{trunc}}(\mathbf{b}; \mathcal{D}) d\mathbf{b}\right) - (\mathbb{E}\left[\mathbf{h}\right])^2,$$

will have to be computed approximately using a Monte Carlo method. Here, the density of a truncated Dirichlet random variable is defined as

$$p_B^{\text{trunc}}(\mathbf{b}; \mathcal{D}) = \begin{cases} \frac{p_B(\mathbf{b})}{\int_{\mathbf{b} \in \text{constr}(\mathbf{b}, \mathcal{D})} p_B(\mathbf{b}) d\mathbf{b}}, & \text{if } \mathbf{b} \in \text{constr}(\mathbf{b}, \mathcal{D}), \\ 0 & \text{if } \mathbf{b} \notin \text{constr}(\mathbf{b}, \mathcal{D}), \end{cases}$$
(5)

⁶We study the sensitivity of our method to the choice of α in Appendix D.

where we used the notation $p_B(\mathbf{b})$ to denote the Dirichlet PDF. We treat a particular choice of the integration algorithm as an implementation detail and defer its discussion to Appendix A.2. Note that, even though we are using a Monte Carlo method, obtaining estimates of semantic entropy is is still relatively cheap. This is because the integration routine is orders of magnitude cheaper than increasing N. In other words, sampling meanings from an LLM is expensive while MC integration has negligible cost.

3.3 Unknown Number of Meanings

Previously, we assumed that we know the number of meanings possible for a given context x, i.e. $|M_x| = K$ for a known value of K that can be used to design the estimator. This is not a realistic assumption since the number of possible meanings can be vastly different for each context and is not typically known a priori. We resolve this dilemma in a Bayesian way, representing our Bayesian belief about the number of meanings using a probability distribution.

$$B_K = \text{Discrete}((K_1, \lambda_1), \dots, (K_M, \lambda_M)). \tag{6}$$

Here, the parameters $\lambda_1, \ldots, \lambda_M$ are relative frequencies of each support size K_i . The parameters can be computed using a small (separate) training dataset and M is the maximum observed support size.

Our belief about the number of meanings can be used to estimate the entropy in a hierarchical way. Specifically, given we have observed that there are at least K_{\min} different meanings, we obtain the probability distribution

$$\mathbf{K} \sim B_K \mid (\mathbf{K} > K_{\min}).$$

Here, we used bold font for K to denote it is a random variable. We can use probabilities of this discrete distribution to take an expectation of entropy estimates conditioned on particular values of K:

$$\mathbb{E}[\mathbf{h}] = \mathbb{E}_{\mathbf{K}} \left[\mathbb{E} \left[\mathbf{h} | \mathbf{K} \right] \right], \quad \text{Var}[\mathbf{h}] = \mathbb{E}_{\mathbf{K}} \left[\text{Var} \left[\mathbf{h} | \mathbf{K} \right] \right] + \text{Var}_{\mathbf{K}} \left[\mathbb{E} \left[\mathbf{h} | \mathbf{K} \right] \right], \tag{7}$$

where the quantities $\mathbb{E}[\mathbf{h}|\mathbf{K}]$ and $\text{Var}[\mathbf{h}|\mathbf{K}]$ can be obtained as described in Section 3.2. In our pseudo-code (see the next Section), equation 7 is assumed to be implemented using a procedure AGGREGATESUPPORT.

3.4 Algorithm

Stopping Rule Having specified the estimator for the quantities $\mathbb{E}[\mathbf{h}]$ and $\text{Var}[\mathbf{h}]$, we still need to specify the stopping rule for determining the right number of samples N. It is natural to keep drawing more samples until

$$Var[\mathbf{h}] \ge \gamma, \tag{8}$$

where γ is a desired level of precision. Increasing γ indicates we are satisfied with lower-quality semantic entropy estimates, which allows us to use smaller N. Intuitively, this stopping rule reflects the fact that we only want to know the semantic entropy to a certain level of precision. We summarize the ideas introduced in Sections 3.1, 3.2 and 3.3 in Algorithm 1.

Benefits of the Bayesian Approach We will see in Section 6 that our Bayesian estimator works better than other semantic entropy estimators in practice. We now discuss the three theoretical reasons why this is the case. First, our estimator leverages a small training set to learn the prior, as in equation 6. Other estimators don't do this because, as they are not Bayesian, they do not have the concept of the prior. Second, the Bayesian estimator combines all evidence (the probabilities of generated sequences and the meanings) in an optimal way, based on the Bayes rule. Other estimators don't do this. Third, our methodology gives us a handle on Var[h] (the variance in the belief about what the true semantic entropy is) allowing us to further improve sample efficiency by using stopping rule in equation 8.

⁷Note that the size of the training set does not scale with the number of queries to the estimator at inference time, hence the cost becomes entirely amortized.

Algorithm 1 Estimate of Semantic Entropy for a prompt x.

```
1: \mathcal{D} \leftarrow [
 2: repeat
 3:
             \mathbf{s}, p(\mathbf{s}|\mathbf{x}) \leftarrow \text{LLMSAMPLE}()
                                                                                                           ▶ Sample s and store the corresponding probability.
             \mathbf{m} \leftarrow f^{\mathbf{x}}(\mathbf{s})
                                                                                                                                                              ▷ Determine the meaning.
 4:
             \mathcal{D}.append(\mathbf{s}, \mathbf{m}, p(\mathbf{s}|\mathbf{x}))
 5:
             K_{\min} \leftarrow |\{\mathbf{m} \in \mathcal{D}\}|
 6:
             for j \in \{1, \dots, K_{\min}\} do
 7:
                   \mathbf{c}_j \leftarrow |\{i : \mathbf{m}_i = j, \mathbf{m}_i \in \mathcal{D}\}|
                                                                                                                                                                               \triangleright Use equation 2.
 8:
 9:
             end for
             for K \in \text{Support}(B_K \mid (\mathbf{K} > K_{\min})) do
10:
                   p_B^{\text{trunc}}(\mathbf{b}; \mathcal{D}, K) is defined as per equation 5.
                                                                                                                                                     ▶ A truncated Dirichlet PDF.
11:
                   \widehat{e_K} \leftarrow \text{NUMERICALLYINTEGRATE}(\int_{\mathbf{b}} \mathbb{H}[\mathbf{b}] p_B^{\text{trunc}}(\mathbf{b}; \mathcal{D}; K) d\mathbf{b})
12:
                   \widehat{e^2}_K \leftarrow \text{NUMERICALLYINTEGRATE}(\int_{\mathbf{b}} \mathbb{H}[\mathbf{b}]^2 p_B^{\text{trunc}}(\mathbf{b}; \mathcal{D}; K) d\mathbf{b})
13:
                    \widehat{var}_K = \widehat{e^2} - (\widehat{e})^2
14:
15:
                                                                                                                      \triangleright Apply equation 7 for k \in \{K_{\min}, \dots, K_{\max}\}.
             \widehat{e}, \widehat{var} \leftarrow \text{AGGREGATESUPPORT}(\widehat{e}_k, \widehat{var}_k)
16:
17: until \widehat{var} \geq \gamma
18: return \hat{e}
```

4 Baselines

4.1 Other Estimators For Semantic Entropy

There are two existing baselines for measuring semantic entropy, both of which coming from the paper by Farquhar et al. (2024). They are called *discrete semantic entropy* and *semantic entropy* in that paper, although we use the term *histogram semantic entropy* for the former and *rescaled semantic entropy* for the latter to avoid confusion with the concept of semantic entropy itself, which is independent of the estimator used.

Histogram Semantic Entropy This estimator samples a fixed number of sequences, computes the meaning of each sequence and then computes the entropy of the empirical histogram of the meaning distribution. It is computed from the meaning counts \mathbf{c}_j as $-\sum_j (\frac{\mathbf{c}_j}{N}) \log \frac{\mathbf{c}_j}{N}$.

Rescaled Semantic Entropy This estimator also samples a fixed number of sequences and then computes the meaning of each. However, it assigns probabilities to each meaning in a different way. First, one defines the un-normalized probability distribution

$$q(\mathbf{m}|\mathbf{x}) = \sum_{\mathbf{s} \in \{\mathbf{s} : \mathbf{s} \in \mathcal{D} \ , \ f^{\mathbf{x}}(\mathbf{s}) = \mathbf{m}\}} p(\mathbf{s}|\mathbf{x}).$$

This is then normalized as

$$p(\mathbf{m}|\mathbf{x}) = \frac{q(\mathbf{m}|\mathbf{x})}{\sum_{\mathbf{m}} q(\mathbf{m}|\mathbf{x})},$$

and the semantic entropy is computed as the Shannon entropy of this distribution. In addition, the probabilities $p(\mathbf{s}|\mathbf{x})$, which normally correspond to the multiplication of the probabilities of each token conditioned on past tokens, are heuristically replaced by the exponent of the mean log probability of each token, a process known as length normalization. We report results for the rescaled estimator both with and without the (heuristic) length normalization.

4.2 Other Baselines for Hallucination Detection

Semantic Entropy is not the only way of detecting hallucinations. We consider two non-entropy baselines.

P(True) It has been shown that LLMs have surprising introspective abilities, i.e. one can often see if the LLM is hallucinating simply by simply asking it (Kadavath et al., 2022). We use the same procedure for measuring P(True) as was employed by Farquhar et al. (2024).

Sequence Log Likelihood Recently, Aichberger et al. (2024) suggested using the log probability of the sequence generated greedily as a predictor of hallucinations, justifying it using the notion of zero-one scoring rule (Hofman et al., 2024). Unfortunately, this method is not directly compatible with the evaluation protocol of Farquhar et al. (2024), which does not perform greedy generation. In order to stay within the boundaries of that protocol, we instead used the log likelihood of a sequence generated with a low temperature.⁸

5 Prior Work

Hallucination Detection We do not provide a complete survey of hallucinations in Large Language Models, instead referring the reader to the work of Ji et al. (2023). We focus our work on combating 'confabulatory' hallucinations also addressed by Farquhar et al. (2024), i.e. situations where the LLM is randomly adding spurious facts to its replies. This is the same kind of hallucinations that was considered by Filippova (2020) and Maynez et al. (2020).

Semantic Entropy We build on the works that pioneered semantic entropy (Kuhn et al., 2023; Farquhar et al., 2024) by providing a more statistically efficient estimator. Our work is different from entropy probes (Kossen et al., 2024), which attempt to distill a thresholded version of semantic entropy into a classifier, although the ideas can certainly be used in conjunction with each other (similar ideas were also explored by Chen et al. (2024)). Our estimators do not attempt to leverage similarity in the meaning clusters (Nikitin et al., 2024; Qiu & Miikkulainen, 2024), instead focusing on obtaining as accurate estimates of vanilla semantic entropy for a given sample budget as possible.

Bayesian Entropy Estimation Wolpert & Wolf (1994) have provided the foundations for Bayesian estimators of entropy for arbitrary priors, and also pioneered the specialization to the case of the Dirichlet prior. Hausser & Strimmer (2009) have provided an explicit summary of the equivalences between the Dirichlet-Bayesian estimator and various pre-existing entropy estimators, for different values of the Dirichlet prior parameter. Archer et al. (2014) have provided an overview of past work on Bayesian entropy estimation, in addition to extending the framework to distributions with countably infinite support.⁹

Epistemic Uncertainty in LLMs The distinction between epistemic and aleatoric uncertainty (Gal et al., 2016; 2017; Kendall & Gal, 2017) has been proposed as a useful idea in modeling the behavior of LLMs (Abbasi Yadkori et al., 2024). In this paper, we do not distinguish between aleatoric and epistemic uncertainty, instead staying in the framework of Farquhar et al. (2024) and modeling the combined predictive uncertainty. While an accurate model of epistemic uncertainty would almost certainly lead to improved hallucination detection, we leave such extensions to further work.

Human Perception of Hallucinations Hallucinations are related to how confident LLMs are about their outputs. Recent research (Steyvers et al., 2025) studies how such self-confidence intrinsic in LLMs relates to how humans perceive it. Our work is largely orthogonal to this effort. Indeed, we treat the definition of semantic entropy as a given and focus on finding the statistically most efficient way to estimate it.

6 Experiments

6.1 Experimental Setup

Evaluation Methodology Our goal is to measure the quality of semantic entropy estimates as quantified with AUROC on hallucination detection tasks. To do so, we follow the methodology from the paper by

⁸The temperature was set to 0.1.

⁹We do not use their infinite support framework, instead modeling unknown support using techniques described in Section 3.3.

N = 2

LLM	Dataset	LL	P(true)	SE-Bayes	SE-Histogram	SE-Rescaled	SE-Rescaled (h)
Llama-2	NQ	0.583 ± 0.000	0.461 ± 0.000	$\boldsymbol{0.723 \pm 0.007}$	0.652 ± 0.010	0.654 ± 0.013	0.644 ± 0.014
	SVAMP	0.631 ± 0.000	0.469 ± 0.000	0.855 ± 0.022	0.748 ± 0.024	0.749 ± 0.027	0.759 ± 0.025
	Squad	0.624 ± 0.000	0.441 ± 0.000	$\boldsymbol{0.735 \pm 0.007}$	0.654 ± 0.012	0.659 ± 0.017	0.649 ± 0.010
	Trivia QA	0.594 ± 0.000	0.436 ± 0.000	$\boldsymbol{0.737 \pm 0.006}$	0.670 ± 0.012	0.675 ± 0.012	0.673 ± 0.010
	NQ	0.627 ± 0.000	0.615 ± 0.000	$\boldsymbol{0.728 \pm 0.008}$	0.640 ± 0.013	0.663 ± 0.017	0.649 ± 0.020
Llama-3.2	SVAMP	0.647 ± 0.000	0.414 ± 0.000	$\boldsymbol{0.845 \pm 0.022}$	0.761 ± 0.032	0.774 ± 0.030	0.771 ± 0.028
Liama-5.2	Squad	0.610 ± 0.000	0.555 ± 0.000	$\boldsymbol{0.664 \pm 0.019}$	0.608 ± 0.024	$\boldsymbol{0.642 \pm 0.029}$	$\boldsymbol{0.621 \pm 0.027}$
	Trivia QA	0.614 ± 0.000	0.710 ± 0.000	$\boldsymbol{0.768 \pm 0.004}$	0.699 ± 0.005	0.706 ± 0.007	0.708 ± 0.008
Llama-3.3-70B	Trivia QA	0.556 ± 0.000	0.686 ± 0.000	$\boldsymbol{0.775 \pm 0.003}$	0.653 ± 0.006	0.650 ± 0.006	0.651 ± 0.006
	NQ	0.695 ± 0.000	$\textbf{0.731} \pm \textbf{0.000}$	0.705 ± 0.013	0.647 ± 0.007	0.700 ± 0.007	0.654 ± 0.009
Mistral	SVAMP	0.645 ± 0.000	0.843 ± 0.000	$\boldsymbol{0.876 \pm 0.011}$	0.793 ± 0.023	0.815 ± 0.028	0.812 ± 0.024
	Squad	$\boldsymbol{0.698 \pm 0.000}$	0.687 ± 0.000	0.667 ± 0.010	0.618 ± 0.005	0.671 ± 0.017	0.631 ± 0.010
	Trivia QA	0.672 ± 0.000	0.647 ± 0.000	$\boldsymbol{0.682 \pm 0.008}$	0.638 ± 0.011	0.645 ± 0.013	0.643 ± 0.012

N = 5

LLM	Dataset	LL	P(true)	SE-Bayes	SE-Histogram	SE-Rescaled	SE-Rescaled (h)
	NQ	0.583 ± 0.000	0.461 ± 0.000	$\boldsymbol{0.752 \pm 0.006}$	0.730 ± 0.009	0.701 ± 0.012	0.725 ± 0.010
Llama-2	SVAMP	0.631 ± 0.000	0.469 ± 0.000	$\boldsymbol{0.871 \pm 0.011}$	$\boldsymbol{0.849 \pm 0.012}$	$\boldsymbol{0.853 \pm 0.013}$	$\boldsymbol{0.858 \pm 0.013}$
Liailia-2	Squad	0.624 ± 0.000	0.441 ± 0.000	$\boldsymbol{0.774 \pm 0.008}$	0.756 ± 0.004	0.711 ± 0.012	0.752 ± 0.005
	Trivia QA	0.594 ± 0.000	0.436 ± 0.000	$\boldsymbol{0.763 \pm 0.009}$	0.734 ± 0.007	0.737 ± 0.006	0.735 ± 0.006
	NQ	0.627 ± 0.000	0.615 ± 0.000	$\boldsymbol{0.760 \pm 0.008}$	0.732 ± 0.012	0.691 ± 0.005	0.733 ± 0.012
Llama-3.2	SVAMP	0.647 ± 0.000	0.414 ± 0.000	$\boldsymbol{0.870 \pm 0.009}$	$\boldsymbol{0.860 \pm 0.010}$	0.850 ± 0.004	$\boldsymbol{0.864 \pm 0.009}$
Liailla-3.2	Squad	0.610 ± 0.000	0.555 ± 0.000	$\boldsymbol{0.710 \pm 0.017}$	$\boldsymbol{0.707 \pm 0.012}$	0.667 ± 0.021	$\boldsymbol{0.705 \pm 0.013}$
	Trivia QA	0.614 ± 0.000	0.710 ± 0.000	$\boldsymbol{0.792 \pm 0.004}$	0.775 ± 0.002	0.763 ± 0.005	0.777 ± 0.004
Llama-3.3-70B	Trivia QA	0.556 ± 0.000	0.686 ± 0.000	$\boldsymbol{0.793 \pm 0.005}$	0.750 ± 0.005	0.740 ± 0.004	0.747 ± 0.006
	NQ	0.695 ± 0.000	0.731 ± 0.000	$\boldsymbol{0.780 \pm 0.006}$	0.762 ± 0.007	0.728 ± 0.008	0.756 ± 0.007
Mistral	SVAMP	0.645 ± 0.000	0.843 ± 0.000	$\boldsymbol{0.880 \pm 0.019}$	$\boldsymbol{0.866 \pm 0.021}$	$\boldsymbol{0.855 \pm 0.027}$	$\boldsymbol{0.878 \pm 0.022}$
	Squad	0.698 ± 0.000	0.687 ± 0.000	$\boldsymbol{0.731 \pm 0.008}$	$\boldsymbol{0.719 \pm 0.010}$	0.699 ± 0.008	0.712 ± 0.008
	Trivia QA	0.672 ± 0.000	0.647 ± 0.000	$\boldsymbol{0.691 \pm 0.005}$	$\boldsymbol{0.688 \pm 0.005}$	$\boldsymbol{0.684 \pm 0.004}$	$\boldsymbol{0.690 \pm 0.005}$

Table 1: Measured AUROC for a fixed budget of N=2 and N=5 samples per prompt.

Farquhar et al. (2024) as much as possible, deviating from it only by (1) separating out the dataset generation phase and the entropy estimation phase, (2) varying the sample budget N and (3) removing bugs from the dataset generation code. We defer the detailed discussion of the methodology to Appendix B.

LLMs and Source Datasets We investigate the behavior of four LLMs. We use Llama-2-7b-chat for comparability with Farquhar et al. (2024). We also evaluate on the much more modern Llama-3.2-3B-Instruct, the large Llama-3.3-70B-Instruct and on Mistral-Small-24B-Instruct-2501. These LLMs are referred to as Llama 2, Llama 3, Llama-3.3-70 and Mistral in our figures. We used the TriviaQA (Joshi et al., 2017), SQUAD (Rajpurkar et al., 2016), SVAMP (Patel et al., 2021) and NQ (Lee et al., 2019) datasets. Due to computational constraints, we only ran the largest LLM on one dataset (TriviaQA).

Derivative Entropy Estimation Datasets For each combination of LLM and dataset, we generated a derivative dataset of 100 LLM generations per prompt for 1000 prompts, which we then used to estimate semantic entropy. We will release these derivative datasets upon acceptance allowing researches without GPU access to work on even better estimators for semantic entropy.

Train and Test Our Bayesian Semantic Entropy estimator requires a training set to estimate the prior on the size of the support of the meaning distribution as in equation 6. We use the first 200 prompts from each derivative dataset as the training set and the remaining 800 as the test set.

Temperature Following the methodology of Farquhar et al. (2024), the N LLM responses are generated with temperature 1.0. On the other hand, the LLM response about which we seek to determine if it is a hallucination is generated with temperature 0.1. Because GPU response generation is expensive, we did not tune those temperatures.

6.2 Results

We performed two types of experiment. First, we studied the setting of a fixed budget of samples per prompt. Second, we varied the number of samples per prompt, giving harder prompts more data. In both cases, we note that we can support N=1 because we have access to the probability of the generated sequence, which already gives us an imperfect but still useful handle on the entropy (for example, if the probability is close to one, we know that the entropy is almost zero).

Fixed Budget Per Prompt Results for N=2 and N=5 samples per prompt¹⁰ are shown in Table 1. Bold font is applied as follows: the estimator with the best mean performance is put in bold, together with all the others with overlapping confidence bars. It can be seen that the Bayesian estimator mostly outperformed or tied with other approaches to measuring semantic entropy, with the difference being greater for small N. We can also see that it is difficult to conclude which version of the rescaled estimator is better.

Main Experiment: Adaptive Budget Per Prompt As described in Section 3.4, the Bayesian framework gives us an additional handle on sample complexity in that we can use the variance of the belief about the semantic entropy as a proxy for confidence. Results are shown in Figures 1, 2, 3 and 4. All confidence bars for the AUROC estimates in our paper represent 1.96 times the standard error. It can be seen that our Bayesian estimator is nearly Pareto-optimal in the sense that we achieve better AUROC than other approaches to semantic entropy, regardless of the value of N. Note that performance of the adaptive Bayesian estimator for a given N will in general be better than performance for the same fixed value of N. This is because, while the number of prompts is still N on average, harder prompts will get more samples (and easier prompts will get fewer). Concerning the non-semantic-entropy baselines, we outperform them for all N for Llama 2 and 3, while needing $N \geq 3$ for Mistral. We stress one additional take-away from the experiment: our Bayesian estimator is often competitive even for N = 1. This is completely counterintuitive since the entailment oracle (a crucial component of semantic entropy) is not needed in that case.

Note on Consistency By definition, for a large enough sample budget, any consistent estimator will produce the same correct value of semantic entropy, which will give rise to the same value of AUROC. There are two reasons why such convergence does not happen in practice in our experiments. First, not all compared estimators are consistent (for example the rescaled estimator with heuristic sequence probabilities is not). Second, convergence to the exact same value might require a sample budged far in excess of 10.

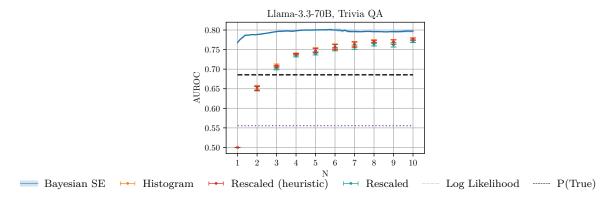


Figure 1: Results in the adaptive budget setting (Llama 3.3, 70 billion parameters).

 $^{^{10}}$ See Appendix C for results for other values of N.

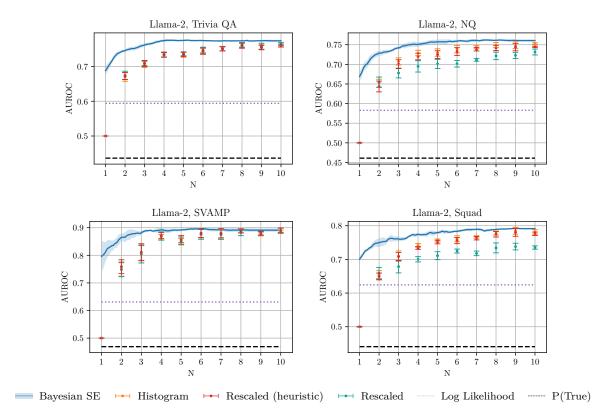


Figure 2: Results in the adaptive budget setting (Llama 2).

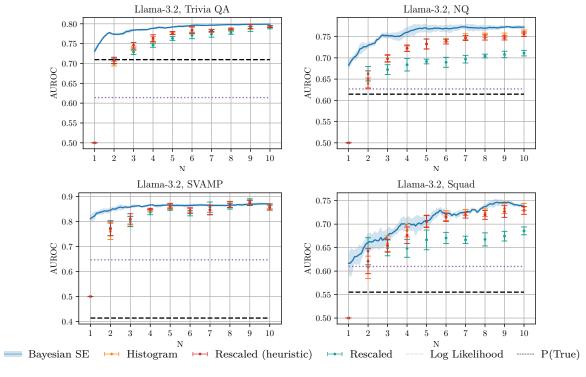


Figure 3: Results in the adaptive budget setting (Llama 3).

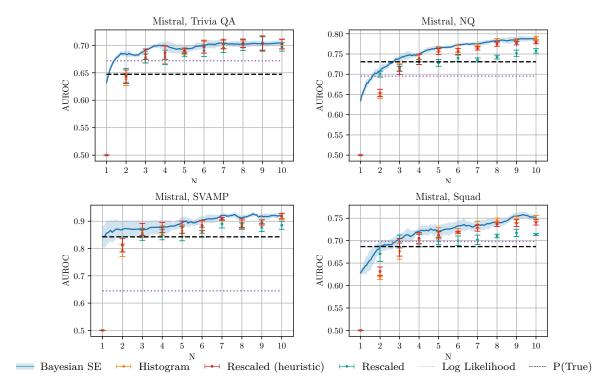


Figure 4: Results in the adaptive budget setting (Mistral).

7 Conclusions, Limitations and Perspectives

We have described a new Bayesian estimator for measuring semantic entropy. The proposed estimator has systematically outperformed other semantic entropy baselines in several practical settings. Like any Bayesian method, our approach is constrained by the choice of the prior, where our choice can be viewed as limited in expressivity. This can be mitigated by using more complex hierarchical priors, for example along the lines proposed by Nemenman et al. (2001). We leave this to further work.

References

Yasin Abbasi Yadkori, Ilja Kuzborskij, András György, and Csaba Szepesvari. To believe or not to believe your llm: Iterative prompting for estimating epistemic uncertainty. *Advances in Neural Information Processing Systems*, 37:58077–58117, 2024.

Lukas Aichberger, Kajetan Schweighofer, and Sepp Hochreiter. Rethinking uncertainty estimation in natural language generation. arXiv preprint arXiv:2412.15176, 2024.

Evan Archer, Il Memming Park, and Jonathan W Pillow. Bayesian entropy estimation for countable discrete distributions. *The Journal of Machine Learning Research*, 15(1):2833–2868, 2014.

Narayanaswamy Balakrishnan and Valery B Nevzorov. A primer on statistical distributions. John Wiley & Sons, 2004.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. INSIDE: LLMs' internal states retain the power of hallucination detection. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=Zj12nzlQbz.

William G. Cochran. Sampling techniques. *Proceedings of the Edinburgh Mathematical Society*, 13(4):342–343, 1963.

- Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large language models using semantic entropy. *Nature*, 630(8017):625–630, 2024.
- Katja Filippova. Controlled hallucinations: Learning to generate faithfully from noisy data. arXiv preprint arXiv:2010.05873, 2020.
- Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data. In *International conference on machine learning*, pp. 1183–1192. PMLR, 2017.
- Yarin Gal et al. Uncertainty in deep learning. PhD thesis, University of Cambridge, 2016.
- Jean Hausser and Korbinian Strimmer. Entropy inference and the james-stein estimator, with application to nonlinear gene association networks. *Journal of Machine Learning Research*, 10(7), 2009.
- Till Hoffmann. Moments of the dirichlet distribution. https://web.archive.org/web/20160214015422/https://tillahoffmann.github.io/Moments-of-the-Dirichlet-distribution/, 2015. Accessed: 2025-04-28.
- Paul Hofman, Yusuf Sale, and Eyke Hüllermeier. Quantifying aleatoric and epistemic uncertainty with proper scoring rules. arXiv preprint arXiv:2404.12215, 2024.
- Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM Comput. Surv.*, 55(12), March 2023. ISSN 0360-0300. doi: 10.1145/3571730. URL https://doi.org/10.1145/3571730.
- Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. triviaqa: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension. arXiv e-prints, art. arXiv:1705.03551, 2017.
- Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly) know what they know. arXiv preprint arXiv:2207.05221, 2022.
- Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision? Advances in neural information processing systems, 30, 2017.
- Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth Malik, and Yarin Gal. Semantic entropy probes: Robust and cheap hallucination detection in llms. arXiv preprint arXiv:2406.15927, 2024.
- Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664, 2023.
- Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open domain question answering. arXiv preprint arXiv:1906.00300, 2019.
- Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality in abstractive summarization. arXiv preprint arXiv:2005.00661, 2020.
- Ilya Nemenman, Fariel Shafee, and William Bialek. Entropy and inference, revisited. Advances in neural information processing systems, 14, 2001.
- Alexander Nikitin, Jannik Kossen, Yarin Gal, and Pekka Marttinen. Kernel language entropy: Fine-grained uncertainty quantification for llms from semantic similarities. arXiv preprint arXiv:2405.20003, 2024.
- Art B Owen. Monte carlo theory, methods and examples, 2013.
- Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math word problems? arXiv preprint arXiv:2103.07191, 2021.
- Xin Qiu and Risto Miikkulainen. Semantic density: Uncertainty quantification for large language models through confidence measurement in semantic space. arXiv preprint arXiv:2405.13845, 2024.

- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pp. 2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.
- Mark Steyvers, Heliodoro Tejeda, Aakriti Kumar, Catarina Belem, Sheer Karny, Xinyue Hu, Lukas W Mayer, and Padhraic Smyth. What large language models know and what people think they know. *Nature Machine Intelligence*, pp. 1–11, 2025.
- Adith Swaminathan and Thorsten Joachims. The self-normalized estimator for counterfactual learning. advances in neural information processing systems, 28, 2015.
- David H Wolpert and David R Wolf. Estimating functions of probability distributions from a finite set of samples, part 1: Bayes estimators and the shannon entropy. arXiv preprint comp-gas/9403001, 1994.

A Integral Computation

A.1 Mean and Variance of Expected Entropy under the Dirichlet Distribution

Here, we derive the analytical expressions for the mean $\mathbb{E}[\mathbf{h}]$ and the second moment $\mathbb{E}[\mathbf{h}^2]$ of the entropy

$$\mathbf{h} \triangleq \mathbb{H}[\mathbf{b}] = -\sum_{i=1}^{K} b_i \log b_i,$$

where the probability vector $\mathbf{b} = (b_1, \dots, b_K)$ follows a Dirichlet distribution $\mathbf{b} \sim \text{Dir}(\boldsymbol{\alpha})$ with parameters $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_K)$. Let $\alpha_0 = \sum_{i=1}^K \alpha_i$. The results involving digamma (ψ) and trigamma (ψ_1) functions are based on standard properties of the Dirichlet distribution (Wolpert & Wolf, 1994; Hausser & Strimmer, 2009).

Mean Entropy $\mathbb{E}[\mathbf{h}]$ Using the linearity of expectation and the known expectation $\mathbb{E}[b_i \log b_i]$ for a Dirichlet distribution:

$$\mathbb{E}[\mathbf{h}] = \mathbb{E}\left[-\sum_{i=1}^{K} b_i \log b_i\right] = -\sum_{i=1}^{K} \mathbb{E}[b_i \log b_i]$$

$$= -\sum_{i=1}^{K} \frac{\alpha_i}{\alpha_0} \left(\psi(\alpha_i + 1) - \psi(\alpha_0 + 1)\right)$$

$$= \psi(\alpha_0 + 1) \sum_{i=1}^{K} \frac{\alpha_i}{\alpha_0} - \sum_{i=1}^{K} \frac{\alpha_i}{\alpha_0} \psi(\alpha_i + 1)$$

$$= \psi(\alpha_0 + 1) - \sum_{i=1}^{K} \frac{\alpha_i}{\alpha_0} \psi(\alpha_i + 1)$$

This formula corresponds to the one used to compute $\mathbb{E}[\mathbf{h}]$ in Section 3.1 (after substituting the appropriate parameters $\alpha + \mathbf{c}_i$).

Second Moment $\mathbb{E}[\mathbf{h}^2]$ We start by expanding the square of the entropy:

$$\mathbf{h}^{2} = \left(-\sum_{i=1}^{K} b_{i} \log b_{i}\right)^{2} = \sum_{i=1}^{K} \sum_{j=1}^{K} (b_{i} b_{j} \log b_{i} \log b_{j})$$

Applying the expectation:

$$\mathbb{E}[\mathbf{h}^2] = \mathbb{E}\left[\sum_{i=1}^K \sum_{j=1}^K (b_i b_j \log b_i \log b_j)\right]$$

$$= \sum_{i=1}^K \sum_{j=1}^K \mathbb{E}[b_i b_j \log b_i \log b_j]$$

$$= \sum_{i=1}^K \mathbb{E}[b_i^2 (\log b_i)^2] + \sum_{i \neq j} \mathbb{E}[b_i b_j \log b_i \log b_j]$$

The calculation requires the expectations $\mathbb{E}[b_i^2(\log b_i)^2]$ and $\mathbb{E}[b_ib_j\log b_i\log b_j]$ for $i\neq j$. Before the derivation of these quantities, let us derive some useful lemmas.

Lemma A.1. Let $\mathbf{b} \sim Dir(\boldsymbol{\alpha})$, where $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_K)$. Let $i \in \{1, \dots, K\}$. Then:

$$\frac{\partial}{\partial \alpha_i} \log p(\mathbf{b}|\boldsymbol{\alpha}) = \psi(\alpha_0) - \psi(\alpha_i) + \log b_i,$$

where $\psi(x)$ is the digamma function.

Proof. First, let us re-write this quantity:

$$\frac{\partial}{\partial \alpha_i} \log p(\mathbf{b}|\boldsymbol{\alpha}) = \frac{\partial}{\partial \alpha_i} \left(\log \Gamma(\alpha_0) - \sum_{k=1}^K \log \Gamma(\alpha_k) + \sum_{k=1}^K (\alpha_k - 1) \log b_k \right)$$

Using the chain rule:

$$\frac{\partial}{\partial \alpha_i} \log \Gamma(\alpha_0) = \frac{d \log \Gamma(\alpha_0)}{d \alpha_0} \frac{\partial \alpha_0}{\partial \alpha_i} = \psi(\alpha_0) \cdot 1 = \psi(\alpha_0).$$

Therefore:

$$\frac{\partial}{\partial \alpha_i} \log p(\mathbf{b}|\boldsymbol{\alpha}) = \psi(\alpha_0) - \frac{d \log \Gamma(\alpha_i)}{d\alpha_i} + \log b_i$$
$$= \psi(\alpha_0) - \psi(\alpha_i) + \log b_i.$$

Lemma A.2. Let $\mathbf{b} \sim Dir(\boldsymbol{\alpha})$, where $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_K)$. Let $i \in \{1, \dots, K\}$. Then:

$$\mathbb{E}[(\log b_i)^2] = (\psi_1(\alpha_i) - \psi_1(\alpha_0)) + (\psi(\alpha_i) - \psi(\alpha_0))^2,$$

where $\psi(x)$ is the digamma function.

Proof. It is known that:

$$\mathbb{E}[\log b_i] = \psi(\alpha_i) - \psi(\alpha_0).$$

It follows that:

$$\int p(\mathbf{b}|\boldsymbol{\alpha}) \left[\psi(\alpha_0) - \psi(\alpha_i) + \log b_i \right] d\mathbf{b} = \psi(\alpha_0) - \psi(\alpha_i) + \mathbb{E}[\log b_i] = 0.$$

If we apply a derivative to this quantity, it must be 0, since it is a constant:

$$\frac{\partial}{\partial \alpha_i} \int p(\mathbf{b}|\boldsymbol{\alpha}) \left[\psi(\alpha_0) - \psi(\alpha_i) + \log b_i \right] d\mathbf{b} = 0$$

For this integral, we can apply the Leibniz integral rule for differentiation under the integral sign. Applying the product rule for differentiation under the integral sign we get:

$$\int \left(\frac{\partial p(\mathbf{b}|\boldsymbol{\alpha})}{\partial \alpha_i}\right) \left[\psi(\alpha_0) - \psi(\alpha_i) + \log b_i\right] d\mathbf{b} + \int p(\mathbf{b}|\boldsymbol{\alpha}) \frac{\partial}{\partial \alpha_i} \left[\psi(\alpha_0) - \psi(\alpha_i) + \log b_i\right] d\mathbf{b} = 0$$

By using Lemma A.1 and the log-derivative trick, we can substitute $\frac{\partial p}{\partial \alpha_i} = p \frac{\partial \log p}{\partial \alpha_i} = p \cdot (\psi(\alpha_0) - \psi(\alpha_i) + \log b_i)$:

$$\int p(\mathbf{b}|\boldsymbol{\alpha}) (\psi(\alpha_0) - \psi(\alpha_i) + \log b_i)^2 d\mathbf{b} + \int p(\mathbf{b}|\boldsymbol{\alpha}) [\psi_1(\alpha_0) - \psi_1(\alpha_i)] d\mathbf{b} = 0,$$

where $\frac{\partial}{\partial \alpha_i} \psi(\alpha_0) = \psi_1(\alpha_0) \frac{\partial \alpha_0}{\partial \alpha_i} = \psi_1(\alpha_0), \ \frac{\partial}{\partial \alpha_i} \psi(\alpha_i) = \psi_1(\alpha_i), \ \text{and} \ \frac{\partial}{\partial \alpha_i} \log b_i = 0.$

We can further simplify this expression by using the expected value definition:

$$\underbrace{\mathbb{E}[(\psi(\alpha_0) - \psi(\alpha_i) + \log b_i)^2]}_{(1)} + \underbrace{\psi_1(\alpha_0) - \psi_1(\alpha_i)}_{(2)} = 0.$$

Let $C_i = \psi(\alpha_0) - \psi(\alpha_i) = -\mathbb{E}[\log b_i]$. Term (1) becomes:

$$\mathbb{E}[(C_i + \log b_i)^2] = \mathbb{E}[C_i^2 + 2C_i \log b_i + (\log b_i)^2]$$

$$= C_i^2 + 2C_i \mathbb{E}[\log b_i] + \mathbb{E}[(\log b_i)^2]$$

Substitute $\mathbb{E}[\log b_i] = -C_i$:

$$= C_i^2 + 2C_i(-C_i) + \mathbb{E}[(\log b_i)^2] = -C_i^2 + \mathbb{E}[(\log b_i)^2]$$

Substituting this back into the equation derived from differentiation:

$$(-C_i^2 + \mathbb{E}[(\log b_i)^2]) + \psi_1(\alpha_0) - \psi_1(\alpha_i) = 0$$

$$\mathbb{E}[(\log b_i)^2] = C_i^2 - \psi_1(\alpha_0) + \psi_1(\alpha_i).$$

Substitute $C_i = \psi(\alpha_0) - \psi(\alpha_i)$:

$$\mathbb{E}[(\log b_i)^2] = (\psi(\alpha_0) - \psi(\alpha_i))^2 + \psi_1(\alpha_i) - \psi_1(\alpha_0).$$

Rearranging gives the desired result:

$$\mathbb{E}[(\log b_i)^2] = (\psi_1(\alpha_i) - \psi_1(\alpha_0)) + (\psi(\alpha_i) - \psi(\alpha_0))^2.$$

Lemma A.3. Let $\mathbf{b} \sim Dir(\boldsymbol{\alpha})$, where $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_K)$. Let $i, j \in \{1, \dots, K\}$ and $i \neq j$. Then:

$$\mathbb{E}[\log b_i \log b_j] = -\psi_1(\alpha_0) + (\psi(\alpha_i) - \psi(\alpha_0))(\psi(\alpha_j) - \psi(\alpha_0)),$$

where $\psi(x)$ is the digamma function and $\psi_1(x) = \frac{d}{dx}\psi(x)$ is the trigamma function.

Proof. From Lemma A.1, we know that, for a given $i \in \{1, ..., K\}$, the following quantity is 0:

$$\int p(\mathbf{b}|\boldsymbol{\alpha}) \left[\psi(\alpha_0) - \psi(\alpha_i) + \log b_i \right] d\mathbf{b} = 0.$$

Now, we differentiate this quantity with respect to α_j , where $j \neq i$:

$$\frac{\partial}{\partial \alpha_i} \int p(\mathbf{b}|\boldsymbol{\alpha}) \left[\psi(\alpha_0) - \psi(\alpha_i) + \log b_i \right] d\mathbf{b} = 0.$$

For this integral, we can apply the Leibniz integral rule for differentiation under the integral sign. Applying the product rule for differentiation under the integral sign we get:

$$\int \left(\frac{\partial p(\mathbf{b}|\boldsymbol{\alpha})}{\partial \alpha_j}\right) \left[\psi(\alpha_0) - \psi(\alpha_i) + \log b_i\right] d\mathbf{b} + \int p(\mathbf{b}|\boldsymbol{\alpha}) \frac{\partial}{\partial \alpha_j} \left[\psi(\alpha_0) - \psi(\alpha_i) + \log b_i\right] d\mathbf{b} = 0$$

Due to Lemma A.1 and the log-derivative trick, we can substitute $\frac{\partial p}{\partial \alpha_j} = p \frac{\partial \log p}{\partial \alpha_j} = p \cdot (\psi(\alpha_0) - \psi(\alpha_j) + \log b_j)$:

$$\int p(\mathbf{b}|\boldsymbol{\alpha}) \left(\psi(\alpha_0) - \psi(\alpha_j) + \log b_j\right) \left(\psi(\alpha_0) - \psi(\alpha_i) + \log b_i\right) d\mathbf{b} + \int p(\mathbf{b}|\boldsymbol{\alpha}) \left[\psi_1(\alpha_0)\right] d\mathbf{b} = 0,$$

where $\frac{\partial}{\partial \alpha_i} \psi(\alpha_0) = \psi_1(\alpha_0)$, $\frac{\partial}{\partial \alpha_i} \psi(\alpha_i) = 0$ since $j \neq i$, and $\frac{\partial}{\partial \alpha_i} \log b_i = 0$.

We can re-write the previous quantity by using the expected value definition:

$$\underbrace{\mathbb{E}[(\psi(\alpha_0) - \psi(\alpha_j) + \log b_j)(\psi(\alpha_0) - \psi(\alpha_i) + \log b_i)]}_{(1)} + \underbrace{\psi_1(\alpha_0)}_{(2)} = 0$$

Let $C_i = \psi(\alpha_0) - \psi(\alpha_i) = -\mathbb{E}[\log b_i]$ and $C_j = \psi(\alpha_0) - \psi(\alpha_j) = -\mathbb{E}[\log b_j]$. Term (1) becomes:

$$\begin{split} \mathbb{E}[(C_j + \log b_j)(C_i + \log b_i)] &= \mathbb{E}[C_i C_j + C_i \log b_j + C_j \log b_i + \log b_i \log b_j] \\ &= C_i C_j + C_i \mathbb{E}[\log b_j] + C_j \mathbb{E}[\log b_i] + \mathbb{E}[\log b_i \log b_j] \\ &= C_i C_j + C_i (-C_j) + C_j (-C_i) + \mathbb{E}[\log b_i \log b_j] \\ &= C_i C_j - C_i C_j - C_j C_i + \mathbb{E}[\log b_i \log b_j] = -C_i C_j + \mathbb{E}[\log b_i \log b_j]. \end{split}$$

Substituting this back into the equation derived from differentiation:

$$(-C_iC_j + \mathbb{E}[\log b_i \log b_j]) + \psi_1(\alpha_0) = 0$$

$$\mathbb{E}[\log b_i \log b_j] = C_i C_j - \psi_1(\alpha_0)$$

Substitute $C_i = \psi(\alpha_0) - \psi(\alpha_i)$ and $C_j = \psi(\alpha_0) - \psi(\alpha_j)$:

$$\mathbb{E}[\log b_i \log b_j] = (\psi(\alpha_0) - \psi(\alpha_i))(\psi(\alpha_0) - \psi(\alpha_j)) - \psi_1(\alpha_0).$$

Rearranging gives the desired result:

$$\mathbb{E}[\log b_i \log b_j] = -\psi_1(\alpha_0) + (\psi(\alpha_i) - \psi(\alpha_0))(\psi(\alpha_j) - \psi(\alpha_0)) \quad \text{for } i \neq j.$$

Lemma A.4. For $\mathbf{b} \sim Dir(\boldsymbol{\alpha})$,

$$\mathbb{E}[b_{i_1} \dots b_{i_n} f(\mathbf{b})] = \mathbb{E}[b_{i_1} \dots b_{i_n}] \cdot \mathbb{E}'[f(\mathbf{b}')]$$

where $i_1, \ldots, i_n \in \{1, \ldots, K\}$ are n indices, $\mathbf{b}' \sim Dir(\boldsymbol{\alpha} + \sum_{k=1}^n \mathbf{e}_{i_k})$, and \mathbf{e}_k is the k-th standard basis vector.

Proof. First, let us re-write the term $b_{i_1} \dots b_{i_n}$ on the counts c_k :

$$b_{i_1} \dots b_{i_n} = \prod_{j=1}^n b_{i_j} = \prod_{k=1}^K b_k^{c_k},$$

where c_k is the count of the indices equals to k: $c_k = \sum_{j=1}^n \mathbf{1}(i_j = k)$. Now, we can substitute this into the expected value:

$$\mathbb{E}[b_{i_1} \dots b_{i_n} f(\mathbf{b})] = \frac{1}{B(\boldsymbol{\alpha})} \int_{\mathcal{S}^K} f(\mathbf{b}) \left(\prod_{k=1}^K b_k^{c_k} \right) \left(\prod_{k=1}^K b_k^{\alpha_k - 1} \right) d\mathbf{b}$$
$$= \frac{1}{B(\boldsymbol{\alpha})} \int_{\mathcal{S}^K} f(\mathbf{b}) \prod_{k=1}^K b_k^{\alpha_k + c_k - 1} d\mathbf{b}$$

Define $\alpha'_k = \alpha_k + c_k$ and $\alpha' = (\alpha'_1, \dots, \alpha'_K)$. Let us rewrite the expression by multiplying and dividing by the normalization constant $B(\alpha')$ for the $Dir(\alpha')$ distribution:

$$\mathbb{E}[b_{i_1} \dots b_{i_n} f(\mathbf{b})] = \frac{B(\boldsymbol{\alpha}')}{B(\boldsymbol{\alpha})} \int_{\mathcal{S}^K} f(\mathbf{b}) \frac{1}{B(\boldsymbol{\alpha}')} \prod_{k=1}^K b_k^{\alpha_k' - 1} d\mathbf{b}$$
$$= \frac{B(\boldsymbol{\alpha}')}{B(\boldsymbol{\alpha})} \int_{\mathcal{S}^K} f(\mathbf{b}) p(\mathbf{b}|\boldsymbol{\alpha}') d\mathbf{b},$$

where $p(\mathbf{b}|\boldsymbol{\alpha}')$ is the PDF of the $\mathrm{Dir}(\boldsymbol{\alpha}')$ distribution. By substituting the known fact that $\frac{B(\boldsymbol{\alpha}')}{B(\boldsymbol{\alpha})} = \mathbb{E}[b_{i_1} \dots b_{i_n}]$ (Balakrishnan & Nevzorov, 2004; Hoffmann, 2015), we get the desired result.

Now, let us apply Lemma A.4 for the i = j term:

$$\mathbb{E}[b_i^2(\log b_i)^2] = \mathbb{E}[b_i^2] \cdot \mathbb{E}''[(\log b_i'')^2]$$

where $\mathbf{b''} \sim \text{Dir}(\boldsymbol{\alpha} + 2\mathbf{e}_i)$. Now we apply Lemma A.2:

$$\mathbb{E}''[(\log b_i'')^2] = (\psi_1(\alpha_i + 2) - \psi_1(\alpha_0 + 2)) + (\psi(\alpha_i + 2) - \psi(\alpha_0 + 2))^2$$

Since $\mathbb{E}[b_i^2] = \frac{\alpha_i(\alpha_i+1)}{\alpha_0(\alpha_0+1)}$, we get:

$$\mathbb{E}[b_i^2(\log b_i)^2] = \frac{\alpha_i(\alpha_i + 1)}{\alpha_0(\alpha_0 + 1)} \left\{ \left(\psi_1(\alpha_i + 2) - \psi_1(\alpha_0 + 2) \right) + \left(\psi(\alpha_i + 2) - \psi(\alpha_0 + 2) \right)^2 \right\}$$

Applying Lemma A.4 for the $i \neq j$ term:

$$\mathbb{E}[b_i b_j \log b_i \log b_j] = \mathbb{E}[b_i b_j] \cdot \mathbb{E}''[\log b_i'' \log b_j'']$$

where $\mathbf{b}'' \sim \text{Dir}(\boldsymbol{\alpha} + \mathbf{e}_i + \mathbf{e}_j)$. Now, we apply Lemma A.3:

$$\mathbb{E}''[\log b_i'' \log b_i''] = -\psi_1(\alpha_0 + 2) + (\psi(\alpha_i + 1) - \psi(\alpha_0 + 2))(\psi(\alpha_j + 1) - \psi(\alpha_0 + 2))$$

Since $\mathbb{E}[b_i b_j] = \frac{\alpha_i \alpha_j}{\alpha_0(\alpha_0 + 1)}$ for $i \neq j$, we get:

$$\mathbb{E}[b_i b_j \log b_i \log b_j] = \frac{\alpha_i \alpha_j}{\alpha_0 (\alpha_0 + 1)} \left\{ -\psi_1 (\alpha_0 + 2) + \left(\psi(\alpha_i + 1) - \psi(\alpha_0 + 2) \right) \left(\psi(\alpha_j + 1) - \psi(\alpha_0 + 2) \right) \right\}$$

Combining these terms yields the final expression for $\mathbb{E}[\mathbf{h}^2]$:

$$\mathbb{E}[\mathbf{h}^{2}] = \frac{1}{\alpha_{0}(\alpha_{0}+1)} \left[\sum_{i=1}^{K} \alpha_{i}(\alpha_{i}+1) \left\{ \psi_{1}(\alpha_{i}+2) - \psi_{1}(\alpha_{0}+2) + (\psi(\alpha_{i}+2) - \psi(\alpha_{0}+2))^{2} \right\} + \sum_{i \neq j} \alpha_{i}\alpha_{j} \left\{ -\psi_{1}(\alpha_{0}+2) + (\psi(\alpha_{i}+1) - \psi(\alpha_{0}+2))(\psi(\alpha_{j}+1) - \psi(\alpha_{0}+2)) \right\} \right]$$

Variance Var[h] The variance of the entropy under the Dirichlet distribution can then be computed using the standard formula:

$$Var[\mathbf{h}] = \mathbb{E}[\mathbf{h}^2] - \mathbb{E}[\mathbf{h}]^2$$

using the analytical expressions for the first and second moments derived above.

A.2 Mean and Variance of Expected Entropy under the Truncated Dirichlet Distribution

Recall from Section 3.2 that we define the truncated Dirichlet distribution

$$p_B^{\text{trunc}}(\mathbf{b}; \mathcal{D}) = \begin{cases} \frac{p_B(\mathbf{b})}{Z(\mathcal{D})} & \text{if } \mathbf{b} \in \text{constr}(\mathbf{b}, \mathcal{D}), \\ 0 & \text{otherwise,} \end{cases}$$
(9)

where $p_B(\mathbf{b})$ is the (untruncated) Dirichlet density with parameters $\alpha + \mathbf{c}$, and

$$Z(\mathcal{D}) = \int_{\mathbf{b} \in \text{constr}(\mathbf{b}, \mathcal{D})} p_B(\mathbf{b}) d\mathbf{b}$$

is the (unknown) normalizing constant. Our goal is to compute the expected value and the variance of the entropy. To this end, we want to compute expectations of the form

$$\mathbb{E}\big[\mathbb{H}[\mathbf{b}]\big] \ = \ \int \mathbb{H}[\mathbf{b}] \ p_B^{\mathrm{trunc}}(\mathbf{b}; \mathcal{D}) \, \mathrm{d}\mathbf{b}, \qquad \mathbb{E}\big[\mathbb{H}[\mathbf{b}]^2\big] \ = \ \int \mathbb{H}[\mathbf{b}]^2 \ p_B^{\mathrm{trunc}}(\mathbf{b}; \mathcal{D}) \, \mathrm{d}\mathbf{b}.$$

In the following, we focus only on the expected value of the entropy (the integral on the left), since the other integral will follow an analogous reasoning.

The first problem we face is that we cannot directly sample from $p_B^{\text{trunc}}(\mathbf{b}; \mathcal{D})$. Therefore, we cannot approximate the integral via a simple Monte-Carlo approach. A naive solution would be standard *importance* sampling (IS) (Cochran, 1963; Owen, 2013). This approach consists of selecting a proposal distribution $q(\mathbf{b})$ with full support over the sample space, from which we know how to sample. Then, we apply some algebra to the original integral as follows:

$$\mathbb{E}[\mathbb{H}[\mathbf{b}]] \ = \ \int \mathbb{H}[\mathbf{b}] \, p_B^{\mathrm{trunc}}(\mathbf{b}; \mathcal{D}) \, \mathrm{d}\mathbf{b} \ = \ \int \mathbb{H}[\mathbf{b}] \, \frac{p_B^{\mathrm{trunc}}(\mathbf{b}; \mathcal{D})}{q(\mathbf{b})} q(\mathbf{b}) \, \mathrm{d}\mathbf{b} \ = \ \mathbb{E}_{\mathbf{b} \sim q} \left[\frac{p_B^{\mathrm{trunc}}(\mathbf{b}; \mathcal{D})}{q(\mathbf{b})} \mathbb{H}[\mathbf{b}] \right].$$

As a proposal distribution, we could simply pick the uniform distribution over the truncated simplex, truncated according to $constr(\mathbf{b}, \mathcal{D})$.

Now, we transformed the original expectation into an expectation with respect to a distribution from which we know how to sample. Therefore, we can apply Monte-Carlo to get an unbiased estimator. First, we sample m samples from q. Then, we approximate the integral as follows:

$$\widehat{\mathbf{H}}_{\mathrm{IS}} = \frac{1}{m} \sum_{i=1}^{m} \frac{p_B^{\mathrm{trunc}}(\mathbf{b}_i; \mathcal{D})}{q(\mathbf{b}_i)} \mathbb{H}[\mathbf{b}_i]. \tag{10}$$

However, this estimator still requires knowledge of $Z(\mathcal{D})$ to compute $p_B^{\text{trunc}}(\mathbf{b}_i; \mathcal{D})$ for the importance weights, which we do not know in general. For this reason, in this paper we will use the *self-normalization* technique.

Self-normalized importance sampling. We can circumvent the explicit computation of $Z(\mathcal{D})$ by using self-normalized importance sampling (Owen, 2013; Swaminathan & Joachims, 2015). Self-normalized IS is similar to standard IS, but instead of dividing the sum by m, we use the sum of the importance weights:

$$\sum_{i=1}^{m} \frac{p_B^{\text{trunc}}(\mathbf{b}_i; \mathcal{D})}{q(\mathbf{b}_i)} .$$

Since the expected value of this quantity is m, this results in a biased-but-consistent estimator of the integral at hand (Swaminathan & Joachims, 2015), and in practice it has been found out to often provide a better estimation than simple IS.

After some algebraic simplifications, the integral approximation is computed as follows:

$$\widehat{H}_{SN} = \frac{1}{\sum_{j=1}^{m} p_B(\mathbf{b}_j)} \sum_{i=1}^{m} p_B(\mathbf{b}_i) \mathbb{H}[\mathbf{b}_i].$$
(11)

This simplified version follows from the following facts:

- we always sample from the truncated simplex, hence $p_B^{\text{trunc}}(\mathbf{b}; \mathcal{D}) = \frac{p_B(\mathbf{b})}{Z(\mathcal{D})};$
- the normalizing constant cancels out;
- the proposal distribution is constant and cancels out.

Now, this can be computed because we can sample from the truncated simplex and evaluate Dirichlet PDFs.

B Detailed Description of the Evaluation Methodology

We took the evaluation methodology of Farquhar et al. (2024) as a starting point and only modified it in ways which were necessary to adapt to our-use case. We describe the evaluation methodology in full in this section.

Two-Stage Architecture The computation stage that does inference in the LLM (which takes over a week on a single A100 80GB) is separated from the stage that estimates semantic entropy (which only uses the CPU, taking on the order of 12 minutes). This is important so we don't have to repeat expensive GPU inference many times when changing details of the entropy estimation. Our code for the LLM inference stage is based on the code by Farquhar et al. (2024), while the code for the second stage is new. ¹¹ We used the following quantization settings: 8 bit for Llama-3.3-70B, 16 bit for Mistral, 32 bit for Llama-3.2 and Llama-2.

LLM Inference Stage Conservatively, we performed LLM inference for N=100 times for each prompt. We use the temperature 1 for all generations. We also generate one extra answer with temperature 0.1, about which we aim to decide whether or not it is a hallucination. The source code for the LLM inference stage is based on the code by Farquhar et al. (2024). We found two bugs in the code, which we fixed. The first bug meant that the exact same LLM response (identical string) could be (rarely) assigned to different meaning classes, due to the imperfections of the DeBERTa entailment oracle. The second bug caused sum of probabilities of generated sequences to occasionally exceed one (it was caused by not storing the probabilities of special tokens ending the LLM response).

Entropy Estimation Stage We implemented the entropy estimation stage as a single Jupyter notebook. In the second stage, when we require a dataset for a smaller value of N, we subsample (with replacement). The notebook can be used to regenerate all the tables and figures in the paper.

Variable Budget Our biggest deviation from the methodology of Farquhar et al. (2024) is that we consider different choices of N (the number of samples emitted by the LLM), where Farquhar et al. (2024) only considered the case of N = 10.

Label Computation Even with supervised dataset, determining if a model hallucinates is not trivial because the LLM can phase the response in an arbitrary way. Following the work of Farquhar et al. (2024), the label determining if a model hallucinates, used for AUROC computation, was obtained by computing the F1 metric and thresholding it at 0.5.

Confidence Bars All confidence bars for the AUROC estimates in our paper represent 1.96 times the standard error. Confidence bars are generated by resampling (with replacement) the dataset for a given value of N. In our tables, the bold font is applied as follows: the estimator with the best mean performance is put in bold, together with all the others with overlapping confidence bars.

C Additional Experimental Results

Below, we provide full experimental results (measured AUROC values) for a fixed budget choice (the number of samples from the LLM) of $N \in \{1, ..., 10\}$.

¹¹We will release the source code for both stages upon acceptance.

			N	= 1			
LLM	Dataset	$_{ m LL}$	P(true)	SE-Bayes	SE-Histogram	SE-Rescaled	SE-Rescaled (h)
Llama-2	NQ	0.583 ± 0.000	0.461 ± 0.000	$\boldsymbol{0.669 \pm 0.013}$	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
	SVAMP	0.631 ± 0.000	0.469 ± 0.000	$\boldsymbol{0.796 \pm 0.057}$	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
	Squad	0.624 ± 0.000	0.441 ± 0.000	$\boldsymbol{0.701 \pm 0.009}$	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
	Trivia QA	0.594 ± 0.000	0.436 ± 0.000	$\boldsymbol{0.688 \pm 0.012}$	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
	NQ	0.627 ± 0.000	0.615 ± 0.000	$\boldsymbol{0.683 \pm 0.012}$	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
Llama-3.2	SVAMP	0.647 ± 0.000	0.414 ± 0.000	$\boldsymbol{0.812 \pm 0.012}$	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
Liaina-5.2	Squad	$\boldsymbol{0.610 \pm 0.000}$	0.555 ± 0.000	$\boldsymbol{0.617 \pm 0.021}$	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
		0.614 ± 0.000	0.710 ± 0.000	$\boldsymbol{0.731 \pm 0.008}$	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
Llama-3.3-70B	Trivia QA	0.556 ± 0.000	0.686 ± 0.000	$\boldsymbol{0.768 \pm 0.003}$	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
	NQ	0.695 ± 0.000	0.731 ± 0.000	0.635 ± 0.008	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
Mistral	SVAMP	0.645 ± 0.000	0.843 ± 0.000	0.844 ± 0.038	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
Mistrai	Squad	$\boldsymbol{0.698 \pm 0.000}$	0.687 ± 0.000	0.628 ± 0.010	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
	Trivia QA	$\boldsymbol{0.672 \pm 0.000}$	0.647 ± 0.000	0.633 ± 0.003	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
TIM	D	т т	N	= 2	CD II: 4	CE D 1.1	CE D 1 1 (1)
LLM	Dataset	LL	P(true)	SE-Bayes	SE-Histogram	SE-Rescaled	SE-Rescaled (h)
	NQ	0.583 ± 0.000	0.461 ± 0.000	0.723 ± 0.007		0.654 ± 0.013	
Llama-2	SVAMP	0.631 ± 0.000	0.469 ± 0.000	0.855 ± 0.022		0.749 ± 0.027	
	Squad	0.624 ± 0.000	0.441 ± 0.000	0.735 ± 0.007		0.659 ± 0.017	
		0.594 ± 0.000	0.436 ± 0.000	0.737 ± 0.006		0.675 ± 0.012	
	NQ	0.627 ± 0.000	0.615 ± 0.000	0.728 ± 0.008		0.663 ± 0.017	
Llama-3.2	SVAMP	0.647 ± 0.000	0.414 ± 0.000	$\textbf{0.845} \pm \textbf{0.022}$		0.774 ± 0.030	
	Squad	0.610 ± 0.000	0.555 ± 0.000	0.664 ± 0.019			
T		0.614 ± 0.000	0.710 ± 0.000	0.768 ± 0.004		0.706 ± 0.007	
Llama-3.3-70B			0.686 ± 0.000	0.775 ± 0.003		0.650 ± 0.006	
	NQ	0.695 ± 0.000	$\textbf{0.731} \pm \textbf{0.000}$		0.647 ± 0.007	0.700 ± 0.007	
Mistral	SVAMP	0.645 ± 0.000	0.843 ± 0.000	0.876 ± 0.011		0.815 ± 0.028	
	Squad	0.698 ± 0.000	0.687 ± 0.000	0.667 ± 0.010	0.618 ± 0.005	0.671 ± 0.017	
	Trivia QA	0.672 ± 0.000	0.647 ± 0.000	0.682 ± 0.008	0.638 ± 0.011	0.645 ± 0.013	0.643 ± 0.012
			N T	= 3			
LLM	Dataset	LL	P(true)		SE-Histogram	SE-Rescaled	SE-Rescaled (h)
	NQ	0.583 ± 0.000	0.461 ± 0.000 (0.707 ± 0.009	0.678 ± 0.012	0.700 ± 0.011
	SVAMP	0.631 ± 0.000	0.469 ± 0.000 (0.810 ± 0.028	0.804 ± 0.031	0.811 ± 0.031
Llama-2	Squad	0.624 ± 0.000	0.441 ± 0.000 (0.710 ± 0.015	0.679 ± 0.019	0.708 ± 0.012
		0.594 ± 0.000	0.436 ± 0.000 (0.706 ± 0.009	0.710 ± 0.007	0.709 ± 0.009
	NQ	0.627 ± 0.000	0.615 ± 0.000 (0.697 ± 0.008	0.672 ± 0.012	0.699 ± 0.008
	SVAMP	0.647 ± 0.000	0.414 ± 0.000 (0.801 ± 0.019	0.800 ± 0.021	$\boldsymbol{0.811 \pm 0.021}$
Llama-3.2	Squad			0.686 ± 0.021			
	Trivia QA		0.710 ± 0.000		0.738 ± 0.006	0.729 ± 0.006	0.746 ± 0.007
Llama-3.3-70B			0.686 ± 0.000 (0.710 ± 0.003	0.702 ± 0.004	0.706 ± 0.003
	NQ	0.695 ± 0.000	0.731 ± 0.000		0.718 ± 0.010	0.716 ± 0.009	0.710 ± 0.010
	SVAMP	0.645 ± 0.000	0.843 ± 0.000 (0.858 ± 0.017	0.851 ± 0.021	0.870 ± 0.022
Mistral	Squad		0.687 ± 0.000 (0.698 ± 0.014	
		0.672 ± 0.000				0.676 ± 0.008	0.684 ± 0.010
		5.5 ,2 ± 5.566	5.51, ± 5.500 t	0.001	2.2.0 ± 0.010	2.2.0 - 2.000	2.2012 0.010

				N = 4			
LLM	Dataset	LL	P(true)	SE-Bayes	SE-Histogram	SE-Rescaled	SE-Rescaled (h)
Llama-2	NQ	0.583 ± 0.000	0.461 ± 0.000	$\boldsymbol{0.754 \pm 0.002}$	0.729 ± 0.007	0.695 ± 0.014	0.720 ± 0.008
	SVAMP	0.631 ± 0.000	0.469 ± 0.000	$\boldsymbol{0.899 \pm 0.013}$	0.866 ± 0.010	0.870 ± 0.015	0.872 ± 0.011
Liailia-2	Squad	0.624 ± 0.000	0.441 ± 0.000	$\boldsymbol{0.771 \pm 0.009}$	0.742 ± 0.006	0.700 ± 0.008	0.734 ± 0.004
	Trivia QA	0.594 ± 0.000	0.436 ± 0.000	$\boldsymbol{0.767 \pm 0.003}$	0.735 ± 0.007	0.733 ± 0.007	0.734 ± 0.007
	NQ	0.627 ± 0.000	0.615 ± 0.000	$\boldsymbol{0.759 \pm 0.007}$	0.722 ± 0.006	0.684 ± 0.015	0.723 ± 0.007
Llama-3.2	SVAMP	0.647 ± 0.000	0.414 ± 0.000	$\boldsymbol{0.868 \pm 0.005}$	0.843 ± 0.005	0.837 ± 0.010	0.850 ± 0.003
Liailia-5.2	Squad	0.610 ± 0.000	0.555 ± 0.000	$\boldsymbol{0.686 \pm 0.015}$	$\boldsymbol{0.686 \pm 0.014}$	0.649 ± 0.019	$\boldsymbol{0.676 \pm 0.018}$
	Trivia QA	0.614 ± 0.000	0.710 ± 0.000	$\boldsymbol{0.786 \pm 0.007}$	0.759 ± 0.009	0.746 ± 0.005	0.764 ± 0.009
Llama-3.3-70B	Trivia QA	0.556 ± 0.000	0.686 ± 0.000	$\boldsymbol{0.793 \pm 0.002}$	0.739 ± 0.002	0.734 ± 0.003	0.738 ± 0.002
	NQ	0.695 ± 0.000	0.731 ± 0.000	$\boldsymbol{0.762 \pm 0.012}$	0.740 ± 0.008	0.730 ± 0.006	0.737 ± 0.013
M:-41	SVAMP	0.645 ± 0.000	0.843 ± 0.000	$\boldsymbol{0.880 \pm 0.015}$	$\boldsymbol{0.865 \pm 0.017}$	$\boldsymbol{0.851 \pm 0.019}$	$\boldsymbol{0.877 \pm 0.019}$
Mistral	Squad	0.698 ± 0.000	0.687 ± 0.000	$\boldsymbol{0.720 \pm 0.007}$	$\boldsymbol{0.705 \pm 0.011}$	$\boldsymbol{0.700 \pm 0.014}$	$\boldsymbol{0.705 \pm 0.013}$
	Trivia QA	0.672 ± 0.000	0.647 ± 0.000	$\boldsymbol{0.692 \pm 0.009}$	0.682 ± 0.016	$\boldsymbol{0.678 \pm 0.013}$	$\boldsymbol{0.687 \pm 0.012}$
TTM	D + +	T.T.		N=5	CD III	CE D 1 1	GD D 1 1 (1)
LLM	Dataset	LL	P(true)	SE-Bayes	SE-Histogram	SE-Rescaled	SE-Rescaled (h)
	NQ			0.752 ± 0.006		0.701 ± 0.012	0.725 ± 0.010
Llama-2	SVAMP					$\textbf{0.853} \pm \textbf{0.013}$	
	Squad			0.774 ± 0.008		0.711 ± 0.012	0.752 ± 0.005
				0.763 ± 0.009		0.737 ± 0.006	0.735 ± 0.006
	NQ			$\boldsymbol{0.760 \pm 0.008}$		0.691 ± 0.005	0.733 ± 0.012
Llama-3.2	SVAMP			$\boldsymbol{0.870 \pm 0.009}$		0.850 ± 0.004	0.864 ± 0.009
Elalia 6.2	Squad			$\boldsymbol{0.710 \pm 0.017}$		0.667 ± 0.021	0.705 ± 0.013
				0.792 ± 0.004		0.763 ± 0.005	0.777 ± 0.004
Llama-3.3-70B	•			$\boldsymbol{0.793 \pm 0.005}$		0.740 ± 0.004	0.747 ± 0.006
	NQ	0.695 ± 0.000	0.731 ± 0.000	$\boldsymbol{0.780 \pm 0.006}$	0.762 ± 0.007	0.728 ± 0.008	0.756 ± 0.007
Mistral	SVAMP			$\boldsymbol{0.880 \pm 0.019}$			$\boldsymbol{0.878 \pm 0.022}$
Wiistiai	Squad			$\boldsymbol{0.731 \pm 0.008}$			0.712 ± 0.008
	Trivia QA	0.672 ± 0.000	0.647 ± 0.000	0.691 ± 0.005	0.688 ± 0.005	$\boldsymbol{0.684 \pm 0.004}$	0.690 ± 0.005
				N. 0			
$\overline{ ext{LLM}}$	Dataset	LL	P(true)	$\frac{N = 6}{\text{SE-Bayes}}$	SE-Histogram	SE-Rescaled	SE-Rescaled (h)
LLIVI	NQ			0.755 ± 0.005		0.702 ± 0.008	0.733 ± 0.010
	SVAMP			0.793 ± 0.003 0.892 ± 0.013			0.733 ± 0.010 0.880 ± 0.016
Llama-2	Squad			0.892 ± 0.013 0.776 ± 0.005		0.725 ± 0.006	0.756 ± 0.009
	_			0.771 ± 0.006		0.723 ± 0.000 0.747 ± 0.008	0.745 ± 0.009
	NQ			0.765 ± 0.005		0.690 ± 0.012	$\frac{0.743 \pm 0.009}{0.738 \pm 0.006}$
	SVAMP			0.763 ± 0.003 0.862 ± 0.007		0.090 ± 0.012 0.833 ± 0.010	0.738 ± 0.000 0.844 ± 0.011
Llama-3.2	Squad			0.802 ± 0.007 0.716 ± 0.006		0.633 ± 0.010 0.671 ± 0.012	0.844 ± 0.011 0.715 ± 0.009
I.I 2.2.70D				$\frac{0.795 \pm 0.005}{0.798 \pm 0.003}$		0.771 ± 0.008	0.784 ± 0.008
<u>ыаша-з.з-тов</u>	•			$0.798 \pm 0.003 \\ 0.774 \pm 0.010$		0.751 ± 0.004	0.756 ± 0.007
	NQ SVAMP					0.740 ± 0.008	0.756 ± 0.008
Mistral				0.888 ± 0.020			0.885 ± 0.018
	Squad			0.726 ± 0.004			0.719 ± 0.002
	irivia QA	0.072 ± 0.000	0.047 ± 0.000	0.691 ± 0.010	0.098 ± 0.012	0.090 ± 0.011	0.697 ± 0.011

				N = 7			
LLM	Dataset	$_{ m LL}$	P(true)	SE-Bayes	SE-Histogram	SE-Rescaled	SE-Rescaled (h)
Llama-2	NQ	0.583 ± 0.000	0.461 ± 0.000	$\boldsymbol{0.760 \pm 0.002}$	0.744 ± 0.004	0.712 ± 0.004	0.738 ± 0.004
	SVAMP	0.631 ± 0.000	0.469 ± 0.000	$\boldsymbol{0.895 \pm 0.016}$	0.875 ± 0.018	$\boldsymbol{0.875 \pm 0.017}$	$\boldsymbol{0.880 \pm 0.017}$
Liailia-2	Squad	0.624 ± 0.000	0.441 ± 0.000	$\boldsymbol{0.778 \pm 0.004}$	0.767 ± 0.004	0.718 ± 0.007	0.763 ± 0.005
	Trivia QA	0.594 ± 0.000	0.436 ± 0.000	$\boldsymbol{0.767 \pm 0.003}$	0.750 ± 0.006	0.752 ± 0.006	0.751 ± 0.006
	NQ	0.627 ± 0.000	0.615 ± 0.000	$\boldsymbol{0.770 \pm 0.006}$	0.750 ± 0.007	0.697 ± 0.009	0.747 ± 0.006
Ilama 20	SVAMP	0.647 ± 0.000	0.414 ± 0.000	$\boldsymbol{0.862 \pm 0.011}$	$\boldsymbol{0.847 \pm 0.019}$	0.858 ± 0.020	$\boldsymbol{0.847 \pm 0.020}$
Llama-3.2	Squad	0.610 ± 0.000	0.555 ± 0.000	$\boldsymbol{0.723 \pm 0.006}$	0.725 ± 0.006	0.667 ± 0.008	$\boldsymbol{0.719 \pm 0.006}$
	Trivia QA	0.614 ± 0.000	0.710 ± 0.000	$\boldsymbol{0.795 \pm 0.001}$	0.782 ± 0.004	0.774 ± 0.008	0.783 ± 0.003
Llama-3.3-70B	Trivia QA	0.556 ± 0.000	0.686 ± 0.000	$\boldsymbol{0.796 \pm 0.004}$	0.765 ± 0.006	0.756 ± 0.005	0.763 ± 0.007
	NQ	0.695 ± 0.000	0.731 ± 0.000	$\boldsymbol{0.782 \pm 0.003}$	0.770 ± 0.005	0.736 ± 0.005	0.764 ± 0.005
M:-+1	SVAMP	0.645 ± 0.000	0.843 ± 0.000	$\boldsymbol{0.907 \pm 0.005}$	0.903 ± 0.001	0.890 ± 0.015	$\boldsymbol{0.910 \pm 0.004}$
Mistral	Squad	0.698 ± 0.000	0.687 ± 0.000	$\boldsymbol{0.739 \pm 0.008}$	0.735 ± 0.008	0.702 ± 0.010	$\boldsymbol{0.728 \pm 0.007}$
	Trivia QA	0.672 ± 0.000	0.647 ± 0.000	$\boldsymbol{0.697 \pm 0.011}$	0.702 ± 0.007	$\boldsymbol{0.696 \pm 0.009}$	$\boldsymbol{0.702 \pm 0.009}$
TTM	D			N=8	CD III	CD D 1 1	GD D 1 1 (1)
LLM	Dataset	LL	P(true)	SE-Bayes	SE-Histogram	SE-Rescaled	SE-Rescaled (h)
	NQ			0.761 ± 0.005		0.722 ± 0.010	0.742 ± 0.007
Llama-2	SVAMP			0.900 ± 0.002		0.882 ± 0.010	0.889 ± 0.007
	Squad			0.784 ± 0.007		0.734 ± 0.015	0.775 ± 0.008
				0.778 ± 0.002		0.762 ± 0.007	0.760 ± 0.007
	NQ			$\boldsymbol{0.773 \pm 0.005}$		0.704 ± 0.004	0.748 ± 0.006
Llama-3.2	SVAMP			$\boldsymbol{0.871 \pm 0.014}$			
	Squad			$\boldsymbol{0.724 \pm 0.009}$		0.668 ± 0.014	$\boldsymbol{0.720 \pm 0.009}$
				$\boldsymbol{0.797 \pm 0.001}$		0.778 ± 0.004	0.787 ± 0.002
Llama-3.3-70B				$\boldsymbol{0.798 \pm 0.005}$		0.764 ± 0.005	0.770 ± 0.003
	NQ			$\boldsymbol{0.791 \pm 0.004}$		0.742 ± 0.005	0.775 ± 0.005
Mistral	SVAMP			$\boldsymbol{0.892 \pm 0.014}$			
Mistrai	Squad			$\boldsymbol{0.744 \pm 0.005}$			0.737 ± 0.005
	Trivia QA	0.672 ± 0.000	0.647 ± 0.000	$\boldsymbol{0.699 \pm 0.003}$	0.702 ± 0.006	0.701 ± 0.010	0.704 ± 0.008
				M O			
LLM	Dataset	LL	P(true)	$\frac{N=9}{\text{SE-Bayes}}$	SE-Histogram	SE-Rescaled	SE-Rescaled (h)
DEWI	NQ		()	0.759 ± 0.005	0	0.723 ± 0.008	$\frac{52-166564164}{0.744\pm0.009}$
	SVAMP			0.894 ± 0.005		0.879 ± 0.006	0.880 ± 0.007
Llama-2	Squad			0.790 ± 0.008		0.579 ± 0.000 0.738 ± 0.010	0.780 ± 0.007
	-			0.780 ± 0.003 0.780 ± 0.004		0.758 ± 0.009	0.755 ± 0.006
	NQ			0.770 ± 0.004		0.708 ± 0.003 0.708 ± 0.007	$\frac{0.793 \pm 0.000}{0.747 \pm 0.005}$
	SVAMP			0.776 ± 0.004 0.875 ± 0.006			0.747 ± 0.003 0.875 ± 0.010
Llama-3.2	Squad			0.732 ± 0.000		0.674 ± 0.012	0.727 ± 0.012
	_			0.732 ± 0.010 0.800 ± 0.004		0.74 ± 0.010 0.788 ± 0.007	0.727 ± 0.012 0.794 ± 0.005
I lama 2 2 70B				0.794 ± 0.002		0.762 ± 0.007	$\frac{0.769 \pm 0.005}{0.769 \pm 0.005}$
	NQ			0.794 ± 0.002 0.795 ± 0.005		0.762 ± 0.008 0.752 ± 0.008	$\frac{0.769 \pm 0.003}{0.777 \pm 0.004}$
	NQ SVAMP			0.795 ± 0.005 0.903 ± 0.007		0.752 ± 0.008 0.877 ± 0.015	0.777 ± 0.004 0.896 ± 0.009
Mistral				0.903 ± 0.007 0.749 ± 0.006		0.877 ± 0.013 0.717 ± 0.008	0.890 ± 0.009 0.739 ± 0.008
	Squad Trivia OA			0.749 ± 0.006 0.698 ± 0.009			
	IIIvia WA	0.012 ± 0.000	0.041 ± 0.000	0.000 ± 0.009	0.104 ± 0.012	0.102 ± 0.013	0.104 + 0.019

N = 10								
LLM	Dataset	${ m LL}$	P(true)	SE-Bayes	SE-Histogram	SE-Rescaled	SE-Rescaled (h)	
	NQ	0.583 ± 0.000	0.461 ± 0.000	$\boldsymbol{0.763 \pm 0.003}$	0.753 ± 0.002	0.731 ± 0.007	0.745 ± 0.002	
Llama-2	SVAMP	0.631 ± 0.000	0.469 ± 0.000	$\boldsymbol{0.896 \pm 0.007}$	$\boldsymbol{0.886 \pm 0.006}$	$\boldsymbol{0.891 \pm 0.007}$	$\boldsymbol{0.890 \pm 0.010}$	
Liaina-2	Squad	0.624 ± 0.000	0.441 ± 0.000	0.785 ± 0.003	0.782 ± 0.006	0.735 ± 0.005	0.776 ± 0.005	
	Trivia QA	0.594 ± 0.000	0.436 ± 0.000	$\boldsymbol{0.776 \pm 0.003}$	0.761 ± 0.004	0.765 ± 0.004	0.760 ± 0.004	
	NQ	0.627 ± 0.000	0.615 ± 0.000	$\boldsymbol{0.777 \pm 0.004}$	0.761 ± 0.004	0.711 ± 0.007	0.756 ± 0.005	
Llama-3.2	SVAMP	0.647 ± 0.000	0.414 ± 0.000	$\boldsymbol{0.863 \pm 0.011}$	0.861 ± 0.010	$\boldsymbol{0.856 \pm 0.010}$	$\boldsymbol{0.859 \pm 0.012}$	
Liailia-5.2	Squad	0.610 ± 0.000	0.555 ± 0.000	$\boldsymbol{0.737 \pm 0.007}$	0.736 ± 0.008	0.686 ± 0.008	$\boldsymbol{0.729 \pm 0.008}$	
	Trivia QA	0.614 ± 0.000	0.710 ± 0.000	$\boldsymbol{0.801 \pm 0.001}$	0.793 ± 0.002	0.791 ± 0.004	0.793 ± 0.002	
Llama-3.3-70B	Trivia QA	0.556 ± 0.000	0.686 ± 0.000	$\boldsymbol{0.798 \pm 0.004}$	0.777 ± 0.002	0.771 ± 0.003	0.777 ± 0.003	
	NQ	0.695 ± 0.000	0.731 ± 0.000	$\boldsymbol{0.796 \pm 0.004}$	$\boldsymbol{0.790 \pm 0.004}$	0.758 ± 0.006	0.779 ± 0.004	
Mistral	SVAMP	0.645 ± 0.000	0.843 ± 0.000	$\boldsymbol{0.915 \pm 0.012}$	$\boldsymbol{0.916 \pm 0.011}$	0.885 ± 0.015	$\boldsymbol{0.919 \pm 0.010}$	
	Squad	0.698 ± 0.000	0.687 ± 0.000	$\boldsymbol{0.752 \pm 0.006}$	0.749 ± 0.007	0.714 ± 0.002	$\boldsymbol{0.741 \pm 0.006}$	
	Trivia QA	0.672 ± 0.000	0.647 ± 0.000	$\boldsymbol{0.697 \pm 0.002}$	$\boldsymbol{0.702 \pm 0.009}$	$\boldsymbol{0.697 \pm 0.008}$	$\boldsymbol{0.702 \pm 0.009}$	

D Hyperparameter Sensitivity

We examined the sensitivity of our method to the hyperparameter α , finding it to be insensitive. The plots below show performance for Llama 2 on the Trivia QA dataset for $\alpha \in \{0.1, 0.5, 1.0\}$. A value of 0.5 was used for all other experiments.

