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Abstract

With the rapid progress of Large Reasoning Models (LRMs), interest in multimodal
reasoning has grown substantially. However, multimodal reasoning often requires
processing a large number of visual tokens, leading to significant computational
overhead. To alleviate this issue, recent studies have explored visual token pruning
strategies. Most prior works primarily focus on either attention-based or diversity-
based pruning methods. However, in-depth analysis of their characteristics and
limitations remains largely unexplored. In this work, we conduct thorough empirical
analysis using effective rank (erank) as a measure of feature diversity and attention
score entropy to investigate visual token processing mechanisms and analyze the
strengths and weaknesses of each approach. Our analysis reveals two insights:
(1) Attention-based methods demonstrate superior performance on simple images
where information is easily concentrated, whereas diversity-based methods excel
in handling complex images with distributed features. (2) Analysis using the
hallucination dataset (CHAIR) shows that attention-based methods generate more
conservative answers with lower hallucination rates compared to diversity-based
methods which produce more exploratory responses with higher hallucination
tendencies. Motivated by these observations, we propose a novel token pruning
framework that adaptively combines the strengths of both methods. Extensive
experiments show that our method delivers consistent high performance with
efficient reasoning across both standard benchmarks and hallucination evaluation
datasets.

1 Introduction

Recent advances in Large Reasoning Models (LRMs) [1, 2] highlighted the potential of scaling
reasoning capabilities through long chains of thought, enabling strong performance on complex tasks
such as mathematics and scientific problem solving. As these models expand beyond purely textual
domains, there is a growing interest in multimodal reasoning, which integrate visual and linguistic
reasoning to handle richer and more realistic inputs.

Therefore, Reinforcement Learning (RL) techniques such as s Proximal Policy Optimizatio (PPO) [3,
4, 5, 6] and Group Relative Policy Optimization (GRPO) [7] have been applied to Multimodal Large
Language Models (MLLMs) to enhance their reasoning capabilities. These approaches strengthen
step-by-step reasoning beyond purely supervised training. However, in multimodal reasoning, visual
information is converted into token embeddings that can be processed by language models, producing
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hundreds of visual tokens in the process. The large number of these tokens increases the complexity
of attention-based computations quadratically, imposing a significant burden on inference speed
and efficiency. Therefore, in the context of multimodal reasoning, pruning redundant visual tokens
becomes essential for enabling efficient reasoning, as it reduces unnecessary computational overhead
while preserving the core information required for complex multimodal understanding.

To address these issues, numerous researchers have attempted to reduce computational costs by
removing unnecessary or redundant visual tokens through token pruning methods [8, 9, 10]. These
existing methods typically employ two main methods. The first is attention-based methods [11, 12,
13, 14, 15], which consider tokens with high attention scores as important information and remove the
rest. The second is diversity-based methods [16], which reduce redundancy based on feature similarity
between visual tokens. Each approach exhibits distinct tendencies. Attention-based methods prioritize
the preservation of highly weighted tokens, which can result in concentrated but sometimes repetitive
selections. In contrast, diversity-based methods encourage broader coverage, often at the cost of
overlooking important tokens.

To provide a clearer understanding, this work empirically analyzes the tendencies of token pruning
methods. We employ effective rank (erank) [17] and attention score entropy as metrics to quantify
image complexity and token concentration, and analyze the effect of these factors on different pruning
approach. Our analysis demonstrates characteristic tendencies of different methods: (i) Attention-
based pruning is more effective on simple images, where essential information is concentrated in a
few tokens, whereas diversity-based pruning performs better on complex images, where information
is more widely distributed. This is confirmed through experiments on MME [18], POPE [19], and
ScienceQA [20]. (ii) We further examine hallucination tendencies using the CHAIR dataset [21].
Attention-based methods yield more conservative answers with lower hallucination rates, while
diversity-based methods produce more exploratory responses with higher hallucination rates. We also
observe that progressively increasing the proportion of high-attention tokens reduces hallucinations.

Based on our empirical analysis, we propose a token pruning method that builds on the observed
tendencies of different approaches. To determine the adaptive setting of thresholds, we first analyze
the effect of varying similarity thresholds for redundancy pruning in relation to erank. The analysis
shows that simple images, where essential information is concentrated in high-attention tokens,
benefit from stricter thresholds. In contrast, complex images, with more distributed and redundant
information, require looser thresholds to enhance diversity. Guided by these observations, our method
explores tokens in order of attention scores while removing redundant tokens based on similarity,
with thresholds adaptively adjusted to balance information concentration and diversity. Experimental
results demonstrate that the proposed method achieves performance comparable to state-of-the-art
methods across nine standard datasets. Moreover, unlike existing approaches that exhibit dataset-
specific behavior, it effectively mitigates hallucinations as validated on the CHAIR benchmark.

In summary, our contributions are three-fold:

• We provide a systematic empirical analysis to demonstrate that image complexity, as mea-
sured by erank and attention entropy, is the key factor dictating the choice between attention-
based and diversity-based pruning strategies.

• In addition to standard benchmarks, we conduct a targeted analysis on a hallucination
benchmark to reveal the distinct trade-offs of each strategy, particularly between factual
conservatism and descriptive recall.

• Based on these insights, we propose a novel adaptive pruning framework that adjusts to
image complexity, and validate its robustness and superior performance across both general
and hallucination-specific benchmarks.

2 Related Works

Multimodal reasoning Recent studies have applied reinforcement learning (RL) not only for
aligning models with human preferences but also as a direct mechanism to strengthen their reasoning
ability. Early approaches predominantly adopted policy-gradient algorithms such as PPO [3, 4, 5, 6],
while more recent work has advanced toward GRPO [7], which provides more stable and efficient
optimization for reasoning tasks by comparing groups of reasoning trajectories and computing relative
advantages without relying on a value function. Moreover, several approaches have specifically
explored RL as a means to enhance the visual reasoning performance of MLLMs. However, a
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Table 1: Attention entropy and erank on simple and complex image datasets. Simple images
exhibit lower entropy and erank, while complex images show higher values, and the two pruning
methods show contrasting performance between simple and complex images.

Method
MME

ScienceQA
OCR

Numerical
Cal.

Text
Translation

Metric
Att. entropy 4.61 4.47 4.39 4.45
Erank 78 58 49 74

Scores after pruning 576→ 64 tokens
Att. based 140 55 100 69.51
Div. based 130 40 80 67.53

(a) Results on datasets with simple images.

Method MME POPE
Position Scene Count

Metric
Att. entropy 4.90 4.86 4.82 4.87
Erank 109 103 102 106

Scores after pruning 576→ 64 tokens
Att. based 105 157 120 77.4
Div. based 111 168 140 86.0

(b) Results on datasets with complex images.

persistent challenge in multimodal reasoning is that raw images must be transformed into high-
dimensional token embeddings, typically producing hundreds of visual tokens. While this detailed
representation improves semantic comprehension, the sheer volume of tokens significantly amplifies
the cost of attention computations, resulting in substantial computational overhead and slower
inference speeds. [9, 11]

Visual token reduction Reducing redundant and unnecessary visual tokens is an effective way to
decrease computation and memory usage, thereby improving the inference efficiency of LLMs. In
particular, many studies have adopted token pruning methods that require no additional training, and
these methods can largely be categorized as follows. (i) Attention-based method: These methods
prune visual tokens by leveraging the attention distribution of [CLS] token in the penultimate layer
of the vision encoder before the tokens are fed into the LLM [11, 12, 13, 14, 15]. Based on the
observation that image information in the vision encoder tends to concentrate on a small set of key
tokens, these methods utilize attention scores from the output layer to select a limited number of
tokens that aggregate global information. However, they tend to retain similar tokens concentrated
in specific regions, which results in insufficient diversity to fully represent the entire token set. (ii)
Diversity-based method: These methods leverage inter-token similarity to enhance the diversity of
the selected token set [16], thereby encouraging the selection of more diverse tokens. However, they
introduce additional computational overhead and risk discarding important tokens.

3 Preliminaries
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Figure 1: Overview of attention entropy and erank.

Attention concentration via attention en-
tropy. To assess the concentration of at-
tention within the vision encoder, we com-
pute the Shannon entropy of the class
token’s attention score. Given the head-
averaged attention score α ∈ RN obtained
from the penultimate layer, we exclude
the self-attention score of the class token
and renormalize the remaining score into a
valid probability distribution:

pi =
αi∑

j ̸=CLS αj
,
∑
i

pi = 1. (1)

The entropy is then computed as

H(p) = −
∑
i

pi log pi. (2)

The entropy value H(p) quantifies how attention is distributed across tokens: a lower value indicates
that the class token attends strongly to a few regions, whereas a higher value suggests a more uniform
distribution over multiple visual tokens. We refer to this measure as attention entropy in the rest of
this paper.
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Entropy: 5.03

Entropy: 4.94Entropy: 4.39
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Figure 2: Selection methods by image complexity. (a) On simple images, attention-based methods
capture concentrated information. (b) On complex images, diversity-based methods achieve broader
coverage as attention disperses.

Token embedding diversity via erank. To quantitatively assess the diversity of token embeddings,
we adopt the notion of erank [17]. Unlike the conventional matrix rank, the erank is an entropy-based
measure that evaluates the number of dimensions effectively utilized by a matrix.

Given a token embedding matrix A ∈ RN×dl , we first obtain its singular values {σi} via singular
value decomposition (SVD). Let

L = min(N, dl), qi =
σi∑L
j=1 σj

, qi ∈ RL. (3)

The erank is then defined as

erank(A) = exp
(
−

L∑
i=1

qi log qi

)
. (4)

The value of erank(A) ranges between 1 and L. A low erank indicates that the embedding representa-
tion is concentrated in a few dominant dimensions, whereas a high erank suggests that the embedding
space is more evenly distributed across multiple dimensions.

4 Emprical Studies

This section presents empirical analyses of attention-based and diversity-based token pruning methods.
We focus on two aspects: the impact of image complexity on token selection strategies (Sec. 4.1)
and the relationship between pruning strategies and hallucination (Sec. 4.2). Building on the insights
from these two analyses, we then propose an adaptive pruning framework (Sec. 4.3).

4.1 Impact of Image Complexity on Token Selection Strategies

Attention-based methods select tokens where information is concentrated, whereas diversity-based
methods aim to reduce redundancy among the selected features and secure a broader range of
representations. we set out to analyze whether image complexity causes the two methods to yield
contrasting results.

Image complexity affects attention entropy and diversity. We first analyzed how image com-
plexity affects MLLMs in their reasoning process. To this end, we measured the concentration of
attention using attention entropy and assessed the diversity of token features using erank. The analysis
was conducted on LLaVA-v1.5-7B using the MME Benchmark [18], where tasks such as OCR,
Numerical calculation, and Text translation involve images with plain backgrounds and few key
objects, whereas tasks such as Position, Scene, and Count involve images with mixed backgrounds
and multiple objects, making them relatively complex. In addition, we included ScienceQA (simple)
and POPE (complex) from external benchmarks for a more comprehensive analysis. Indeed, as
shown in Table 1, simple images exhibited lower attention entropy, as in the case of OCR (4.39),

4



Please describe this image in detail.DivPrune FasterVLM

GT: traffic light / car / person / skateboard 

The image features a person lying on the 
ground, possibly sleeping or resting, in 
front of a large building. The person is 
positioned near the center of the scene, 
with their body facing the camera.

In the background, there are multiple 
traffic lights visible, indicating that the 
scene takes place in an urban 
environment. The traffic lights are 
scattered around the area, with some 
closer to the left side of the image and 
others further to the right.

The image features a man lying on the ground in 
a city square, possibly taking a break or resting. 
He is positioned in the center of the scene, with 
a skateboard nearby, suggesting that he might 
have been skateboarding before taking a break. 
The city square is surrounded by tall buildings, 
giving the impression of an urban environment. 
There are multiple traffic lights visible in the 
scene, indicating that the area is well-regulated 
for vehicle and pedestrian traffic. A few cars 
can be seen parked or driving around the 
square, and a bicycle is also present in the 
scene. Additionally, there are two other people 
in the background, possibly observing the man 
lying on the ground or going about their own 
activities.

Figure 3: Response patterns of DivPrune (diversity-based) vs. FasterVLM (attention-based).
DivPrune’s responses are more comprehensive but risk hallucination, whereas FasterVLM produces
safer, more focused descriptions. In the annotations, GT Obj. and Hallucinated Obj. label object
words; marks DivPrune-specipic phrasing; red text indicates incorrect phrases.

where the vision encoder could readily concentrate information into a few dominant regions. In
contrast, complex images such as POPE reached higher values (4.90), indicating more dispersed
attention across multiple regions. Consistently, simple images also showed lower erank, such as OCR
(49), while complex images reached higher values, such as POPE (109), reflecting redundant versus
diverse token representations.

Performance divergence by image complexity. Our analysis reveals that the performance of
these two approaches diverges depending on dataset characteristics, as shown in Table 1. As a result,
diversity-based methods outperformed in high erank tasks, while attention-based methods were
superior in low erank tasks. This performance reversal appears to be driven by differences in image
complexity. As illustrated in Figure 2, simple images allow the vision encoder to easily concentrate
attention on specific regions, leading to concentrated information. In such cases, attention-based
methods can effectively select these concentrated tokens. In contrast, complex images contain multiple
objects and mixed backgrounds, causing information to be dispersed across the entire image. In this
scenario, diversity-based methods that capture a broader range of features become more effective.

In conclusion, our analysis shows that image complexity guides the token selection strategy. Attention-
based methods are more effective for simple images with concentrated information, while diversity-
based methods are superior for complex images with dispersed features.

4.2 The Relationship between Pruning Methods and Hallucination

Object hallucination occurs frequently in MLLMs and is a critical issue that undermines their
reliability. In this section, we compare and analyze the characteristics of attention score–based
and diversity-based methods from the perspective of hallucination, aiming to identify how the two
pruning methods differ in inducing hallucinations. To this end, we evaluate object hallucination in
the LLaVA-1.5-7B model using not only the datasets commonly employed in prior token reduction
studies but also additional datasets, and we present the corresponding results.

Object hallucination. To assess the degree of object hallucination in the image captioning task,
we employ the CHAIR dataset. CHAIR quantifies the proportion of objects mentioned in generated
captions that are absent in the ground-truth annotations, providing two sub-metrics, CI and CS , as
defined in Eq. 5.

CI =
{hallucinated objects}
{all mentioned objects}

, CS =
{captions with hallucinated objects}

{all captions}
. (5)

Each metric evaluates hallucination at the instance level and the sentence level, respectively, and
lower values indicate better performance. As auxiliary metrics, we also report recall and len, where
recall denotes the proportion of ground-truth objects mentioned in the generated captions, and len
represents the average number of words in the generated captions.

Results on the CHAIR dataset. Table 2 presents the results of the attention-based and diversity-
based methods on the CHAIR dataset. Despite small differences in Len, the diversity-based methods
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Figure 4: Effect of similarity threshold τ on token selection. A low (strict) τ prioritizes high-
attention tokens, while a high (loose) τ increases the diversity of the selected tokens.

exhibit higher values of the hallucination metrics CS and CI compared to the attention-based methods,
suggesting that selecting diverse tokens with low feature similarity may increase the likelihood of
hallucination. In contrast, the diversity-based methods achieve higher recall, indicating that they are
able to capture a larger number of objects than the attention-based ones.

Comparison of the two methods in terms of response patterns. The two methods also differ in
their response patterns. Fig. 3 illustrates this distinction, showing that the diversity-based method
DivPrune generates broader and more open-ended descriptions and often includes speculative ex-
pressions, as highlighted in yellow. In addition, the diversity-based response refers to a larger set of
ground-truth objects marked in green, but at the same time it also introduces hallucinated objects high-
lighted in red and incorrect phrases emphasized in red text. In contrast, the attention-based method
FasterVLM focuses on the main objects and provides more conservative and reliable explanations,
thereby suppressing hallucinations that frequently appear in diversity-based outputs.

Table 2: Comparison on CHAIR. Diversity-
based methods yield higher recall but also
higher hallucination (CS , CI ), whereas
attention-based methods reduce hallucination
at the cost of recall. †FPSPruner is based on
farthest point sampling (FPS), which itera-
tively selects the farthest token to guarantee
diversity.

Method Cs ↓ Ci ↓ Recall↑ Len

LLaVA-1.5-7B 51.0 13.9 78.7 101.4

Attention-based methods
FasterVLM (arXiv’24) 45.4 13.5 69.3 94.0
PruMerge+ (ICCV’25) 45.2 15.6 66.7 91.4
Vispruner (ICCV’25) 49.8 15.0 72.6 96.7

Diversity-based methods
DivPrune (CVPR’25) 57.4 18.0 76.4 101.1
FPSPruner† 58.6 18.6 76.0 100.5

Effect of attention-based selection on object hal-
lucination. Based on the observation that attention-
based token selection tends to reduce hallucination,
we conducted experiments to quantitatively assess the
effect of attention-based selection on hallucination
by varying the balance between diversity-based and
attention-based selection. As shown in Table 3a, we
fixed the token budget at 64 and gradually reduced
the number of tokens selected by the diversity-based
method, DivPrune, while replacing them with tokens
having higher attention scores. The experimental re-
sults demonstrate that increasing the proportion of
attention-based selection leads to a gradual decrease
in the hallucination metrics CS and CI . These find-
ings suggest that selecting tokens solely based on
diversity can induce relatively higher hallucination,
whereas tokens with high attention scores, which con-
centrate critical information, play a pivotal role in
generating reliable captions and mitigating halluci-
nation.

Effect of image complexity on object hallucination. To analyze object hallucination performance
with respect to image complexity, we compared FasterVLM and DivPrune on two subsets of the
CHAIR dataset, which consists of 500 samples in total. We categorized the samples according to
image complexity using erank, based on the analysis in Sec. 4.1. The Low-erank subset consists of
75 samples that fall into the bottom 15% in terms of erank , whereas the High-erank subset consists
of 75 samples that belong to the top 15%. As shown in Table 3b, DivPrune generally achieves higher
recall values; however, within the Low-erank subset, FasterVLM outperforms DivPrune. This finding
is consistent with the analysis in Sec. 4.1, which suggests that when erank is low, and information is
concentrated, FasterVLM performs relatively better than DivPrune. Meanwhile, for the hallucination
metrics CS and CI , FasterVLM also demonstrates superior performance over DivPrune in the High-
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Table 3: Side-by-side results: (a) Mixtures of DivPrune/attention-selected tokens; (b) Comparison of
FasterVLM and DivPrune on low erank vs. high erank subsets.

Method Cs ↓ Ci ↓ Recall↑ Len Mean erank Mean attn.

Retain 64 Tokens
R=0 57.4 18.0 76.4 101.1 21.14 0.0035
R=0.25 50.8 16.8 74.5 97.6 14.98 0.0065
R=0.50 46.2 14.5 73.7 95.5 14.38 0.0072
R=0.75 45.2 14.1 70.5 94.0 13.58 0.0076

(a) Hallucination performance across different attention-
based selection ratio R.

Low erank (15%) High erank (15%)

Recall↑ FasterVLM 89.1 65.3
DivPrune 88.8 73.3

CS ↓ FasterVLM 26.7 60.0
DivPrune 29.3 81.3

CI ↓
FasterVLM 7.46 15.8
DivPrune 8.54 20.6

(b) CHAIR metrics across low erank vs. high erank
(15%) subsets.

Table 4: Comparison of performance across different similarity thresholds. For each metric, the
boldface indicates the best performance.

Metric Similarity Threshold (τ )

0 0.01 0.05 0.1 0.15 0.25 0.35 0.5

Erank / Performance

MME (High) 15.1 / 1351 18.2 / 1354 22.5 / 1358 25.8 / 1384 28.1 / 1374 30.4 / 1352 32.7 / 1348 35.0 / 1333
POPE 14.9 / 83.1 17.8 / 83.4 21.9 / 84.0 24.5 / 85.2 27.8 / 85.5 30.1 / 86.1 31.9 / 85.2 34.2 / 83.9
MME (Low) 16.2 / 316 19.1 / 304 23.3 / 307 26.2 / 294 28.9 / 290 31.5 / 280 33.1 / 275 35.8 / 277
ScienceQA 15.5 / 69.5 18.8 / 68.9 22.8 / 68.5 25.9 / 68.0 28.5 / 67.9 31.0 / 67.5 32.9 / 67.2 35.2 / 66.9

erank subset. This indicates that even in complex and dispersed image settings, selecting tokens with
diverse features does not provide a clear advantage in mitigating hallucination.
4.3 Towards Adaptive Token Similarity Thresholding
In this section, we use the datasets with varying image complexities established in Section 4.1 to
analyze the relationship between erank and the similarity threshold used for pruning redundant tokens.
Our analysis method iteratively selects high-attention tokens and prunes similar neighbors, thereby
modulating the diversity of the final token set based on the chosen threshold. The process is as
follows:

1. All tokens are sorted in descending order based on their attention score.

2. Starting with the highest ranked token, we select it and then prune all other candidate tokens
whose cosine distance d to the selected token is smaller than a predefined threshold τ .

3. The process moves to the next highest-ranked token that has not been pruned and repeats
the pruning step until the desired number of tokens is selected.

In this framework, the threshold τ is the parameter that directly governs the diversity of the final
token set. As illustrated in Figure 4, applying a low (strict) threshold results in the pruning of only
a few, highly similar tokens. Conversely, a high (loose) threshold removes a wider range of similar
tokens, constructing a final token set with greater diversity.

To quantitatively measure this effect, we varied τ from 0 to 0.5 and observed its impact on token
diversity. As shown in Table 4, the results demonstrate a direct positive correlation between the
similarity threshold τ and the diversity of the selected token set. As τ increases, the erank of selected
tokens consistently rises across all datasets. This indicates that a higher threshold causes more tokens
to be treated as redundant and pruned, which in turn enhances the diversity of the final set. Notably,
token diversity was at its lowest when the threshold was close to zero, as very little similarity-based
pruning occurs under this condition.

However, the optimal level of diversity is dictated by the image’s internal characteristics, leading to
contrasting outcomes. For images with low attention entropy (i.e., concentrated information), where
critical information is focused in high-attention tokens, even highly similar tokens can contain vital
fine-grained details. Consequently, aggressive pruning with a high threshold (τ) degraded performance,
whereas a conservative low threshold proved more effective. In stark contrast, for images with high
attention entropy (i.e., dispersed information), where information is more distributed and redundant,
a higher threshold improved performance by effectively eliminating this redundancy and facilitating
the selection of a more diverse token set.
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Table 6: Results of different token pruning methods on 9 multimodal benchmarks. Average is
normalized to the full-token LLaVA-1.5-7B (set to 100%). MME is reported in its original score
units.

Method VQAv2 GQA VizWiz SQAIMG TextVQA POPE MME MMB MMBCN Average

Vanila 576 Tokens
LLaVA-1.5-7B 78.5 61.9 50.1 69.5 58.2 85.9 1862 64.7 58.1 100.00%

Retain 128 Tokens
FastV (ECCV’24) 71.0 54.0 51.9 69.2 56.4 68.2 1490 63.0 55.9 92.31%
PDrop (CVPR’25) 74.3 57.1 49.4 70.1 56.7 77.5 1696 62.3 55.3 95.17%
SparseVLM (ICML’25) 75.1 57.3 49.7 69.0 56.3 83.1 1761 62.6 56.9 96.61%
PruMerge+ (ICCV’25) 75.0 58.2 53.7 69.1 54.0 83.1 1554 61.8 55.8 95.64%
VisionZip (CVPR’25) 75.6 57.6 51.6 68.7 56.9 83.3 1763 62.1 57.0 97.19%
VisPruner (ICCV’25) 75.8 58.2 52.7 69.1 57.0 84.6 1768 62.7 57.3 98.01%
DivPrune (CVPR’25) 76.0 59.4 52.8 68.6 54.5 85.5 1707 60.1 52.3 97.25%
Ours 76.4 59.3 52.6 68.5 57.0 86.5 1755 62.3 56.6 98.29%

Retain 64 Tokens
FastV (ECCV’24) 55.9 46.0 49.1 70.1 51.6 35.5 1256 50.1 42.1 76.86%
PDrop (CVPR’25) 56.3 46.1 46.3 68.8 49.2 40.8 1505 48.0 36.6 76.41%
SparseVLM (ICML’25) 66.9 52.0 49.4 69.2 52.1 69.7 1561 58.3 49.6 88.60%
PruMerge+ (ICCV’25) 71.3 55.4 53.7 69.5 52.0 75.7 1549 59.6 52.1 92.22%
VisionZip (CVPR’25) 72.4 55.1 52.9 68.7 56.9 77.0 1690 62.1 57.0 94.46%
VisPruner (ICCV’25) 72.7 55.4 53.3 69.1 57.0 80.4 1650 62.7 57.3 95.07%
DivPrune (CVPR’25) 74.1 57.5 53.6 68.0 55.9 85.5 1615 61.5 56.6 95.02%
Ours 74.7 57.4 53.9 68.8 56.0 84.8 1715 61.4 55.8 96.93%

Retain 32 Tokens
PruMerge+ (ICCV’25) 65.6 52.9 53.5 67.9 49.2 66.7 1550 55.1 45.9 87.01%
VisionZip (CVPR’25) 67.1 51.8 52.4 69.1 53.1 69.4 1579 57.0 50.3 89.41%
Vispruner (ICCV’25) 67.7 52.2 53 69.2 53.9 72.7 1538 58.4 52.7 90.75%
DivPrune (CVPR’25) 71.2 54.9 53.3 68.6 52.9 81.5 1594 57.6 49.1 92.16%
Ours 72.1 55.2 53.5 69.8 54.3 80.9 1656 61.2 53.2 94.53%

Notably, this performance trend is consistent with our findings in Section 4.1. This observation
suggests that the effectiveness of a pruning strategy is closely linked to an image’s characteristics,
namely its feature diversity (measured by erank) and attention dispersion (measured by attention
entropy). This applies whether the choice is between different methods (attention vs. diversity) or
different thresholds (low vs. high τ ).

These contrasting outcomes reveal the limitations of a fixed-threshold approach and indicate the need
for a token pruning strategy that adaptively adjusts the threshold to the characteristics of each image.
To this end, We introduce a simple heuristic where the similarity threshold τ is adapted based on the
erank. In particular, τ is determined through a logarithmic mapping function:

τadaptive = α ln(R) + β (6)
where R is the erank, and α and β are scaling coefficients. The detailed coefficient values and
implementation specifics are provided in Appendix A. In the following section, we analyze the
performance of this adaptive thresholding strategy.

5 Experiments

Method Retain 64 Tokens Retain 128 Tokens
Cs ↓ Ci ↓ Recall↑ Len Cs ↓ Ci ↓ Recall↑ Len

LLaVA-1.5-7B 51.0 13.9 78.7 101.4 51.0 13.9 78.7 101.4

Attention-based methods
FasterVLM (arXiv’24) 45.4 13.5 69.3 94.0 45.8 13.3 75.4 97.0
PruMerge+ (ICCV’25) 45.2 15.6 66.7 91.4 46.8 14.4 71.5 95.2
Vispruner (ICCV’25) 49.8 15.0 72.6 96.7 52.8 15.4 77.1 98.7

Diversity-based methods
DivPrune (CVPR’25) 57.4 18.0 76.4 101.1 58.6 18.1 78.4 103.1
FPSPruner 58.6 18.6 76.0 100.5 59.4 18.8 81.1 104.1

Ours 52.2 15.9 75.7 99.1 54.4 16.5 78.1 101.1

Table 5: CHAIR evaluation (64 /128 tokens).

Baselines and Models In the
context of multimodal reasoning,
MLLMs are often trained or enhanced
with reinforcement learning. As a
representative base model for such
studies, we adopt LLaVA-1.5-7B,
which serves as a standard foundation
for multimodal reasoning research.
Based on this architecture, we
compare our approach with several
vision token pruning techniques. The
baselines include methods leveraging
attention scores within the LLM
(FastV [9], SparseVLM [10], Pyra-
midDrop [8]), approaches utilizing
attention scores from the vision encoder (VisionZip [13], VisPruner [14]), and Diversity-based
strategies such as DivPrune [16]. To ensure consistent, fair, and reproducible evaluation, we fixed the
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pretrained weights of LLaVA-1.5-7B and set the temperature to 0 across all experiments to produce
deterministic outputs.

Datasets We conduct evaluations on a total of nine multimodal benchmarks. VQAv2 [22] and
GQA [23] are large-scale visual question answering datasets that assess general vision-language
understanding. VizWiz [24] and TextVQA [25] introduce more challenging scenarios involving
accessibility-related queries and text recognition in images. ScienceQA [20] requires scientific
knowledge for complex reasoning tasks. MME [18] provides a comprehensive metric for fine-
grained multimodal understanding. Finally, MMBench and MMBench-CN [26] serve as multilingual
benchmarks that evaluate overall performance across diverse tasks and languages. In addition,
as introduced in Section 4.2, we further analyze the hallucination problem by using the CHAIR
dataset [21] to quantitatively evaluate the occurrence of object hallucination in the model.

Main results We evaluate our adaptive thresholding approach on LLaVA-1.5, focusing on the effect
of dynamic threshold adjustment on token diversity and downstream task performance. As shown in
Table 5, our method consistently preserves accuracy under aggressive pruning. With 128 tokens, our
method achieves competitive performance, showing modest gains of 1.6% over VisionZip and 1.3%
over DivPrune. When reduced to 64 tokens, attention-based pruning methods suffer more than 25%
degradation, whereas our method incurs only a 3.1% drop and achieves a slight performance edge over
VisionZip and DivPrune by 2.2% and 1.9%, respectively. While recent hybrids such as VisPruner [14],
are primarily attention-based approaches that modestly complement their selection with distant
tokens for diversity, they remain non-adaptive and thus lack robustness, particularly on datasets
where attention-based pruning is weak, such as POPE and MME datasets. The efficiency analysis is
provided in Appendix B, and additional results on larger models are reported in Appendix C.

In summary, our empirical analysis reveals the distinct tendencies of existing pruning approaches and
demonstrates that an adaptive approach is essential to balance information preservation and diversity.
Building on these findings, we establish that adaptive thresholding provides a principled and effective
alternative to fixed or non-adaptive methods.

Hallucination analysis. As shown in Table 5 and consistent with the observations in Section 4.2,
our empirical analysis on the CHAIR dataset reveals clear contrasts between pruning strategies.
Diversity-based methods generally achieve higher hallucination scores (CS , CI ) with higher recall,
whereas atteneion-based methods show the opposite trend. This trade-off is likely because tokens
with high attention scores tend to contain more reliable visual information, which is essential for
mitigating hallucination.

Further analysis indicates that methods primarily relying on token diversity tend to show weaker
performance on overall benchmarks, as they do not incorporate attention scores and are less effective
in capturing concentrated and reliable information. Conversely, attention-based methods preserve
such concentrated tokens but lack diversity, which restricts their ability to handle questions involving
multiple objects.

Building on these empirical findings, we propose an adaptive method that balances attention and
diversity. This approach achieves 52.2 on CS , 15.9 on CI , and a recall of 75.7, which are close to the
values obtained with the full set of visual tokens. These results emphasize findings from empirical
analysis in clarifying the tendencies of different pruning strategies and provide evidence that adaptive
approaches are needed to better align with varying image characteristics.

6 Conclusion
In this paper, we conducted an empirical study of visual token pruning in MLLMs, studying the
influence of image complexity on the effectiveness of different pruning strategies. Our analysis with
attention entropy and erank led to three main insights: (1) Attention-based pruning is more effective
on simple images with concentrated information, whereas diversity-based pruning works better on
complex images with distributed information. (2) On the CHAIR dataset, attention-based methods
reduce hallucinations with more conservative answers, while diversity-based methods increase them
with exploratory responses. We also find that increasing the proportion of high-attention tokens
further reduces hallucinations.

Based on these findings, we propose an adaptive thresholding approach that adjusts pruning according
to image complexity using erank. Experiments across nine benchmarks and CHAIR confirm that our
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method maintains accuracy under aggressive pruning, mitigates hallucination, and approaches the
performance of full-token models while cutting computational cost.

The adaptive token pruning principles explored in this work—balancing attention concentration with
diversity under varying input complexity—were validated through experiments on MLLMs. These
principles can also be extended to more advanced multimodal reasoning scenarios, including models
trained with CoT supervision, enhanced through reinforcement learning techniques such as PPO or
GRPO, or designed for complex reasoning tasks, where efficient token utilization remains essential
for scaling to increasingly challenging reasoning problems.
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Algorithm 1 Pseudo Code for Adaptive Token Prunings

1: Image features F , attention scores A, erank r, attention entropy H , maximum tokens T Selected
token set S

2: Normalize F and compute distance matrix D
3: dlen ← f(H), τ ← g(r)
4: Sort tokens by descending A→ π
5: S ← ∅, M ← all True
6: for each token i in π do
7: if |S| ≥ T then
8: break
9: end if

10: if M [i] = False then
11: continue
12: end if
13: Add i to S
14: if position(i) < dlen then
15: θ ← τ {adaptive threshold}
16: else
17: θ ← base_threshold
18: end if
19: Find neighbors C with D[i, j] ≤ θ
20: Suppress redundant tokens in C by updating M
21: end for
22: return S

A Proposed method detail

Algorithm 1 outlines the proposed adaptive token pruning strategy, which integrates attention-based
importance with diversity-aware redundancy control. Given image features F ∈ RN×D and [CLS]
token attention score α ∈ RN in the penultimate layer of the vision encoder, we first normalize
features and compute the pairwise cosine distance matrix D ∈ RN×N , defined as

Dij = 1− fi · fj
∥fi∥∥fj∥

. (7)

Our strategy is governed by two parameters that adapt to image characteristics: a threshold length
dlen derived from attention entropy H , and a similarity threshold τ derived from erank r.

First, the similarity threshold τ controls the aggressiveness of redundancy pruning. A high effective
rank (r) indicates that the token representations are already diverse. This implies we can safely
employ a looser similarity criterion (a larger τ ) to prune potential redundancies more aggressively
without risking the loss of unique information. This behavior is modeled by a monotonic increasing
function of r:

τ(r) =


τmin, r ≤ rmin,

ατ ln(r) + βτ , rmin < r < rmax,

τmax, r ≥ rmax.

(8)

Here, τmin and τmax are set to 80 and 100, respectively, while α is 0.32 and β is -1.36.

Second, dlen defines the number of top-ranked tokens to which the adaptive threshold τ is applied,
while the remaining tokens are handled by a fixed base threshold. The rationale is that for high-
attention entropy (H) images, information is broadly distributed, so the special significance of the
highest-attention tokens is diminished. We therefore apply a more consistent pruning strategy across
all tokens by reducing dlen as H increases. This is captured by a monotonic decreasing function:

dlen(H) =


dmax, H ≤ Hmin,

αd ln(C −H) + βd, Hmin < H < Hmax,

dmin, H ≥ Hmax.

(9)
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Function POPE SQA MME
Linear 84.30 68.34 1391
Exponential 84.26 68.77 1388
Logarithmic 84.76 68.80 1400

Table 7: Ablation study on the functional form of τ(R). Logarithmic mapping consistently outper-
forms linear and exponential alternatives.

Here,C Hmin and Hmax are set to 5.1, 4.5 and 5.0, respectively, while α is 0.3 and β is 3.6.

Tokens are then sorted by attention scores in descending order, yielding a permutation π ∈
{1, . . . , N}N . For each selected token, the algorithm applies either the adaptive threshold τ (for the
top dlen tokens) or a fixed base threshold to suppress neighboring tokens that are highly similar
according to D. A binary maskM∈ {0, 1}N is updated at each step to ensure redundancy removal.
The process terminates when the maximum number of tokens T ∈ Z is reached, and the algorithm
returns the final selected set S ⊆ {1, . . . , N} with |S| ≤ T .

A.1 Ablation study

In this section, we analyze the scoring function, a key component of our adaptive pruning framework,
and present the empirical basis for our choice of a logarithmic function. An appropriate scoring
function plays a crucial role in transforming the image complexity metric (erank) into a meaningful
value that the model can effectively leverage.

To identify the optimal scoring technique, we transformed the image complexity metric using three
representative functions—linear, exponential, and logarithmic—and compared their impact on model
performance. As summarized in Table 8, our experimental results indicated that the logarithmic
function achieved the best performance, followed by the linear and exponential approaches. This
performance difference appears to stem from how each function handles the full spectrum of image
complexity.

• A linear function tends to treat the difference between complexity scores of 10 and 20 the same as
the difference between 100 and 110. However, for high-complexity images, it is often more ideal
for the impact of score increases to diminish gradually. Therefore, a purely linear approach may
not be optimal.

• An exponential function, on the other hand, can potentially amplify this issue. It risks exaggerating
high complexity scores, which can generate outliers and lead to instability in the thresholding
system, where a few complex images might dominate the outcome.

• In this context, a logarithmic function appears to be a more suitable approach for modeling this
“diminishing returns” phenomenon. The logarithmic transformation tends to dampen the effect
of high values, allowing for more stable thresholding, especially among images with very high
complexity.

In summary, our experiments suggest that logarithmic scoring offers a more balanced approach. It
provides sufficient sensitivity to distinguish between less complex images while mitigating the impact
of extreme values from highly complex images, thereby ensuring greater system stability.

B Efficiency Analysis

Computation Overhead of Attention entropy and erank. The erank quantifies the representa-
tional complexity of a feature matrix X ∈ RN×D based on the distribution of its singular spectrum.
To improve computational efficiency, we compute the covariance matrix across tokens using a fast
N ×N formulation. The definition is given as follows:

C = XX⊤, S =
√
λ(C), pi =

Si∑
j Sj

, erank(X) = exp

(
−
∑
i

pi log pi

)
. (10)
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Method
Retain
Tokens

FLOPs
(T)

Latency
(ms/sample)

GPU
Memory (GB) Accuracy

Vanilla (LLaVA-1.5-7B) 576 3.14 172 13.60 58.2

PDrop (CVPR’25) 64 0.51 128 13.30 55.0
SparseVLM (ICML’25) 64 0.52 129 16.26 55.2
DivPrune (CVPR’25) 64 0.48 110 13.30 55.8
VisPruner (ICCV’25) 64 0.48 115 13.30 55.4
Ours 64 0.48 115 13.30 56.0

Table 8: Efficiency and accuracy comparison on single RTX 4090 at TextVQA dataset. All models
are evaluated under identical settings.

Here, C denotes the N×N covariance matrix, λ(C) represents its eigenvalue spectrum, S corresponds
to the square roots of eigenvalues (singular values), and pi is the normalized spectral ratio. Thus, the
effective rank approximates the intrinsic dimensionality by exponentiating the Shannon entropy of
the normalized spectrum. Eq. (10) is mathematically equivalent to the SVD-based definition of the
effective rank (Eq. 4), since the singular values of X correspond to the square roots of the eigenvalues
of XX⊤.

To quantify the computational cost of adaptive pruning metrics, we estimate the FLOPs required to
compute attention entropy and erank under the LLaVA-1.5-7B configuration with 576 visual tokens
and a 4096-dimensional embedding. Following the fast formulation in Eq. (10), constructing the
covariance matrix C = XX⊤ ∈ RN×N requires approximately 1.36 GFLOPs, and the subsequent
eigenvalue decomposition adds 0.19 GFLOPs, yielding a total of about 1.5 GFLOPs. This corresponds
to roughly 0.05% of the full 3.14 TFLOPs inference cost of LLaVA-1.5-7B. In comparison, attention-
entropy computation involves only simple logarithmic and summation operations, requiring about
0.02 GFLOPs, which accounts for approximately 0.0007% of the total inference cost.

Efficiency Comparison. As shown in Table 8, the proposed method reduces FLOPs by 89% under
the 64-token setting, while still preserving 96.2% of the original performance compared to the
vanilla LLaVA-1.5-7B model. Notably, our method outperforms in-LLM pruning approaches such as
SparseVLM [10]and PyramodDrop [8]n terms of accuracy, achieving a better efficiency–performance
trade-off. Meanwhile, when compared with recent pre-pruning approaches such as VisPruner [14] and
DivPrune [16], the computational indicators (FLOPs, latency, GPU memory) remain nearly identical,
while our method still attains the highest accuracy among them.

These three methods—VisPruner, DivPrune, and ours— share the property of performing pre-pruning
before the LLM input, which substantially reduces the internal computation of the LLM. Compared
to pruning inside intermediate layers of the LLM, pre-pruning provides a much stronger efficiency
gain since the token reduction applies to all subsequent layers, yielding significant savings in
FLOPs, memory, and latency with minimal overhead. In contrast, pruning at intermediate layers
inside the LLM, as exemplified by methods such as SparseVLM and PyramodDROP, allows richer
contextualization before tokens are removed and thus carries a lower risk of discarding important
information, but its efficiency benefit is limited because the early layers still process the full set of
tokens. Therefore, pre-pruning is preferable in terms of efficiency.

In addition, our method is fully compatible with FlashAttention [27], enabling further efficiency gains
when combined with state-of-the-art acceleration techniques. Overall, these results demonstrate that
our method strikes an effective balance between computational efficiency and accuracy.

C Additional Results

C.1 Evaluation on others model

In addition to LLaVA-1.5-7B, we also conducted experiments on larger models, namely LLaVA-1.5-
13B (576 tokens) and LLaVA-NeXT-7B (2880 tokens). Across these settings, our method consistently
demonstrated stable and strong performance, further validating the effectiveness of our approach (see
Table 9 and Table 10).

14



Method VQAv2 GQA VizWiz SQAIMG TextVQA POPE MME MMB MMBCN Average

Vanilla 576 Tokens
LLaVA-1.5-13B 80.0 63.3 53.6 72.8 61.2 86.0 1531 68.5 63.5 100%

Retain 128 Tokens
FastV (ECCV’24) 75.3 58.3 54.6 74.2 58.6 75.5 1460 66.1 62.3 96.0%
PDrop (CVPR’25) 78.2 61.0 53.8 73.3 60.2 83.6 1489 67.5 62.8 98.4%
SparseVLM (ICML’25) 77.6 59.6 51.4 74.3 59.3 85.0 1488 68.4 62.6 97.8%
PruMerge+ (ICCV’25) 76.2 58.3 52.8 73.3 56.1 82.7 1446 66.3 61.2 95.8%
VisionZip (CVPR’25) 76.8 57.9 52.3 73.8 58.9 82.7 1450 67.4 62.5 96.7%
DivPrune (CVPR’25) 77.1 59.2 53.5 72.8 58.0 86.8 1458 66.3 60.7 97.0%
Ours 77.5 58.7 53.0 73.9 58.9 86.3 1480 67.6 62.1 97.8%

Retain 64 Tokens
FastV (ECCV’24) 65.3 51.9 53.8 73.1 53.4 56.9 1246 59.2 55.1 85.8%
PDrop (CVPR’25) 70.8 54.1 50.5 73.1 55.3 66.1 1247 63.1 56.6 88.7%
SparseVLM (ICML’25) 73.2 55.9 52.1 73.0 57.1 77.9 1374 65.2 60.3 93.5%
PruMerge+ (ICCV’25) 72.6 56.3 52.4 73.5 54.4 75.7 1338 65.0 59.3 92.3%
VisionZip (CVPR’25) 73.7 56.2 53.2 74.2 57.4 75.7 1380 64.9 61.3 93.9%
DivPrune (CVPR’25) 75.2 57.9 54.4 71.7 57.4 84.5 1454 64.1 59.8 95.6%
Ours 75.9 57.8 54.4 72.2 58.5 81.8 1433 65.7 61.7 96.0%

Table 9: Results of different token pruning methods on 9 multimodal benchmarks. Average is
normalized to the full-token LLaVA-1.5-13B (set to 100%). MME is reported in its original score
units, and it is included only in the Perception section to enable broader comparison with existing
methods.

C.2 Supplementary Examples of Image Complexity–Dependent Pruning Differences

As shown in Fig. 5, the qualitative patterns observed consistently reproduced across additional
samples. For simple images (with low entropy and erank), attention-based pruning effectively cap-
tures the concentrated regions, while the additional benefits of diversity-based pruning are limited.
Conversely, for complex images (with higher entropy and erank), diversity-based pruning ensures
broader coverage, highlighting its strength in dispersed scenarios. These supplementary examples
reinforce that image complexity is a key determinant of pruning effectiveness and motivate the need
for an adaptive strategy that integrates both approaches.

C.3 More Examples on CHAIR

To further illustrate the differences between attention-based and diversity-based pruning in the image
captioning task, we provide additional qualitative samples from the CHAIR dataset comparing
FasterVLM as an attention-based method and DivPrune as a diversity-based method(Fig. 6 and
Fig. 7). These cases illustrate how the two approaches differ in response style and hallucination
tendency: DivPrune often yields broader and more descriptive captions but introduces hallucinated
objects, whereas FasterVLM produces more conservative and focused descriptions.

Moreover, Fig.8 presents a controlled experiment where the token budget is fixed at 64 and the ratio
between DivPrune- and attention-selected tokens (DivPrune-to-Attention ratio, R) is varied in steps
of 25%. We observe that the hallucinated objects frequently generated under pure DivPrune (R = 0)
gradually diminish as the share of attention-selected tokens increases, disappearing entirely when
R ≥ 50%. In parallel, the response style evolves from speculative and exploratory to more factual
and reliable as R increases, showing the stabilizing effect of attention-based token selection.

D Farthest Point Sampling

Farthest Point Sampling (FPS) is one of the simplest methods that guarantees diversity. Starting from
an initial point, it iteratively selects the point that is farthest from the already chosen set by measuring
the distance to the nearest selected point. For each point pj , the minimum distance to the selected set
S is defined as

d(pj) = min
s∈S
∥pj − s∥2,
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Method VQAv2 GQA VizWiz SQAIMG TextVQA POPE MME MMB MMBCN Average

Vanilla 2880 Tokens (Upper Bound)
LLaVA-NeXT-7B 81.3 62.5 55.2 67.5 60.3 86.8 1512 65.8 57.3 100%

Retain 640 Tokens
FastV (ECCV’24) 77.0 58.9 53.9 67.4 58.1 79.5 1412 63.1 53.5 95.2%
PDrop (CVPR’25) 79.1 60.0 53.8 66.7 57.8 83.8 1475 64.1 55.2 97.0%
SparseVLM (ICML’25) 79.2 61.2 53.6 67.6 59.7 85.3 1456 65.9 58.6 98.8%
PruMerge+ (ICCV’25) 78.2 60.8 57.9 67.8 54.9 85.3 1480 64.6 57.3 98.3%
VisionZip (CVPR’25) 79.1 61.2 57.1 68.1 59.9 86.0 1493 65.8 58.1 99.8%
DivPrune (CVPR’25) 79.3 61.9 55.7 67.8 57.0 86.9 1469 65.8 57.3 98.9%
Ours 79.3 61.9 56.3 69.0 59.7 86.3 1489 66.6 58.0 100.0%

Retain 320 Tokens
FastV (ECCV’24) 61.5 49.8 51.3 66.6 52.2 49.5 1099 53.4 42.5 79.9%
PDrop (CVPR’25) 66.8 50.4 49.7 66.7 49.0 60.8 1171 55.5 44.7 82.5%
SparseVLM (ICML’25) 74.6 57.9 54.2 67.2 56.5 76.9 1386 63.1 56.7 94.6%
PruMerge+ (ICCV’25) 75.3 58.8 57.7 68.1 54.0 79.5 1444 63.0 55.6 95.7%
VisionZip (CVPR’25) 76.2 58.9 56.2 67.5 58.8 82.3 1397 63.3 55.6 96.4%
DivPrune (CVPR’25) 77.2 61.1 55.6 67.7 56.2 84.7 1423 63.9 55.7 97.0%
Ours 77.8 60.3 55.9 67.8 59.1 84.2 1453 65.5 57.5 98.3%

Table 10: Results of different token pruning methods on 9 multimodal benchmarks. Average is
normalized to the full-token LLaVA-Next-7B (set to 100%). MME is reported in its original score
units, and it is included only in the Perception section to enable broader comparison with existing
methods.

and the next point is chosen as
pit = arg max

pj∈P\S
d(pj).

Repeating this process until the desired number k is reached ensures that the selected points are evenly
distributed across the data space, providing a more balanced representation than simple random
sampling.
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Figure 5: Extended examples for simple vs. complex images. The same trend as in Fig. 2 is
observed: attention-based methods work well on simple images, while diversity-based methods cover
complex images more broadly.
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Please describe this image in detail.
DivPrune FasterVLM

GT: dog / teddy bear / dining table / person

/ cell phone / couch 

The image features a large brown dog lying on a 
couch, comfortably resting on a pillow. The dog 
appears to be relaxed and enjoying its time on 
the couch. 

In the room, there is a chair positioned near the 
couch, and a dining table can be seen in the 
background. A person 

near the couch and the table. 
Additionally, there are two cups placed on the 
table, one closer to the person and the other 
further away.

is also present in the 
scene, standing 

The image features a large brown dog 
lying on a couch, appearing to be relaxed 
and comfortable. The dog is positioned in 
the middle of the couch, occupying a 
significant portion of the space. The 
couch itself is located in a living room, 
providing a cozy environment for the dog 
to rest.

Please describe this image in detail.DivPrune FasterVLM

GT: potted plant / umbrella 

The image features a beautiful garden with a 
red umbrella placed on top of a stone structure. 
The umbrella is open, providing shade and 
adding a touch of color to the scene. In the 
garden, there are several potted plants, with 
one large plant located near the center of the 
scene and two smaller plants on the left side. 
Additionally, there are two vases placed in the 
garden, one near the center and the other 
towards the right side. A person 

 The combination of 
the red umbrella, potted plants, and vases 
creates a serene and inviting environment.

can be seen in 
the background, possibly enjoying the peaceful 
atmosphere of the garden.

The image features a beautifully 
decorated gravesite with a red umbrella, 
likely a traditional Japanese umbrella, 
placed on top of it. The umbrella is open 
and covers the entire gravesite, creating a 
unique and visually striking scene. 

In addition to the umbrella, there are 
several pink flowers scattered around the 
gravesite, adding a touch of color and 
elegance to the overall presentation. The 
combination of the red umbrella and pink 
flowers creates a serene and peaceful 
atmosphere, reflecting the beauty and 
care put into the memorial.

Please describe this image in detail.DivPrune FasterVLM

GT: oven / bottle / microwave / pizza / 
spoon 

The image features a delicious pizza with a 
variety of toppings, including olives, sitting on a 
cutting board on a kitchen counter. The pizza is 
placed on a pan, and it appears to be freshly 
baked. In the background, there is a microwave 
and an oven, which are likely used for cooking 
and heating food in the kitchen. Additionally, 
there are two bottles, one located on the left 
side of the counter and the other on the right 
side. A knife can also be seen on the counter, 
likely used for cutting the pizza.

The image features a large, uncooked 
pizza sitting on a metal tray. The pizza is 
topped with a variety of toppings, 
including olives and herbs. There are 
several olives scattered across the pizza, 
with some placed closer to the center 
and others towards the edges. The herbs 
are also distributed evenly across the 
pizza, adding a burst of flavor to the dish. 
The pizza appears to be ready to be 
baked, and it looks delicious and 
appetizing.

Figure 6: CHAIR qualitative comparisons: FasterVLM vs. DivPrune (Set 1). In the annotations,
GT Obj. and Hallucinated Obj. label object words; red text indicates incorrect phrases.
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Please describe this image in detail.
DivPrune FasterVLM

The image features a traffic light with two 
red lights illuminated, surrounded by a 
beautiful display of cherry blossoms. The 
traffic light is located in the middle of the 
scene, with the blossoms surrounding it 
on all sides. The blossoms are scattered 
throughout the image, with some closer to 
the traffic light and others further away, 
creating a picturesque and serene 
atmosphere.

GT: traffic light  

The image features a street scene with a traffic 
light hanging above the road. The traffic light is 
currently displaying a red light, signaling 
vehicles to stop. The traffic light is positioned 
near the top left corner of the image.

There are several cars on the street, with one 
car located near the center of the image, 
another car further to the right, and a third car 
closer to the bottom left corner. The cars are 
waiting for the traffic light to change to green 
before they can proceed.

Please describe this image in detail.DivPrune FasterVLM

GT: traffic light / hot dog / person / car 

The image depicts a lively night scene at a 
hot dog stand, likely named "Essie's Hot 
Dogs." The stand is illuminated by neon 
lights, creating a vibrant atmosphere. 
There are several people in the scene, with 
one person standing close to the left side 
of the image, another person in the middle, 
and a third person on the right side.

A few hot dogs can be seen on the stand, 
with one located near the center and 
another towards the right side. A person is 
also holding a handbag, which is placed 
near the center of the image. The overall 
scene captures the essence of a bustling 
night at a popular hot dog stand.

The image depicts a lively city street at night, 
with a neon sign illuminating the name "Hot 
Dogs" above a restaurant. The restaurant is 
located on the corner of the street, and the 
neon sign is visible from a distance.

There are several people walking along the 
street, 

. A car is parked on the 
side of the street, and a traffic light can be 
seen in the background. The scene captures 
the bustling atmosphere of a city street at 
night.

with some closer to the camera and 
others further away

Please describe this image in detail.
DivPrune FasterVLM

GT: tennis racket / person / sports ball 

The image features a young girl standing on a 
tennis court, holding a tennis racket in her hand. 
She appears to be focused and ready to play. 
There are several sports balls scattered around 
the court, indicating that she has been 
practicing her tennis skills.

In addition to the main girl,

. The 
scene captures the excitement and energy of a 
tennis match or practice session.

there are a few other 
people in the background, possibly watching 
her play or waiting for their turn to play

The image features a young girl standing 
on a tennis court, holding a tennis racket 
in her hand. She appears to be focused 
and ready to play. There are several 
sports balls scattered around the court, 
indicating that she has been practicing 
her tennis skills.

In addition to the main girl, 

A chair is also 
visible in the background, likely for 
players to rest between games.

there are two 
other people in the scene, one standing 
near the left side of the court and the 
other on the right side. 

Figure 7: CHAIR qualitative comparisons: FasterVLM vs. DivPrune (Set 2). In the annotations,
GT Obj. and Hallucinated Obj. label object words; marks DivPrune’s phrasing; marks

FasterVLM’s phrasing; red text indicates incorrect phrases.
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The image features a white toilet sitting in the middle of a room, surrounded by white 
tiles. The toilet is positioned on a raised platform, giving it a unique appearance. The 
room appears to be under construction, as evidenced by the unfinished walls and the 
overall unfinished look of the space.

The image features a small, white toilet situated in a room with a tiled floor. The toilet 
is positioned in the corner of the room, and it appears to be a part of a bathroom. The 
floor is covered with white tiles, which gives the room a clean and modern look.

Attention-based selection ratio:R 

FasterVLM

DivPrune

R=100%

R=0%

R=25%

R=50%

R=75%

GT: toilet  

Please describe this image 

in detail.

The image depicts a bathroom with a white toilet and sink. The toilet is positioned on the 
left side of the bathroom, while the sink is located on the right side. The sink appears to 
be a small, white pedestal sink. The bathroom is in the process of being remodeled, as 
evidenced by the exposed beams and the overall unfinished appearance. The room is 
also quite spacious, with a large open area that extends from the left side of the toilet to 
the right side of the sink.

The image features a bathroom with a toilet situated in the corner of the room. The toilet is 
positioned next to a wall, and it appears to be a small, compact space. The bathroom also 
has a sink, which is located near the toilet.

In addition to the toilet and sink, there is a toilet paper roll placed on the wall, providing 
convenience for users. The overall appearance of the bathroom suggests that it is a 
compact and functional space.

The image features a white toilet sitting in the middle of a room, surrounded by white 
tiles. The toilet is positioned on a raised platform, giving it a unique appearance. The 
room appears to be under construction, as evidenced by the unfinished walls and the 
absence of other fixtures.

Figure 8: Effect of varying the Attention-based selection ratio R under a 64-token budget. As R
increases, hallucinated objects produced by DivPrune are progressively suppressed, and the responses
shift from exploratory to fact-oriented descriptions. In the annotations, GT obj. and Hallucinated
obj. label object words; denotes DivPrune-specific phrasing.
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