

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COSMOS: A HYBRID ADAPTIVE OPTIMIZER FOR EFFICIENT TRAINING OF LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable success across various domains, yet their optimization remains a significant challenge due to the complex and high-dimensional loss landscapes they inhabit. While adaptive optimizers such as AdamW are widely used, they suffer from critical limitations, including an inability to capture interdependencies between coordinates and high memory consumption. Subsequent research, exemplified by SOAP, attempts to better capture coordinate interdependence but incurs greater memory overhead, limiting scalability for massive LLMs. An alternative approach aims to reduce memory consumption through low-dimensional projection, but these methods lose the gradient information in the residual space, resulting in less effective optimization. In this paper, we propose COSMOS, a novel hybrid optimizer that leverages the varying importance of eigensubspaces in the gradient matrix to achieve memory efficiency without compromising optimization performance. The design of COSMOS is motivated by our empirical insights and practical considerations. Specifically, COSMOS applies SOAP to the leading eigensubspace, which captures the primary optimization dynamics, and MUON to the remaining eigensubspace, which is less critical but computationally expensive to handle with SOAP. This hybrid strategy significantly reduces memory consumption while maintaining robust optimization performance, making it particularly suitable for massive LLMs. Numerical experiments on various datasets and transformer architectures are provided to demonstrate the effectiveness of COSMOS.

1 INTRODUCTION

The optimization of Large Language Models (LLMs) is fundamental to their success, enabling these models to achieve state-of-the-art performance across diverse tasks. However, the non-convex loss landscapes inherent to LLMs, which can contain hundreds of billions or even trillions of parameters (Achiam et al., 2023), present significant optimization challenges. Adaptive optimizers, such as Adam (Kingma, 2014) and its variants AdamW (Loshchilov, 2017), have emerged as de facto standards due to their ability to dynamically adjust learning rates based on the second moment of the gradient. Despite their widespread adoption, these methods suffer from two critical limitations that impede their effectiveness and scalability in the context of increasingly large and complex LLMs:

(I) Adam and its variants have limitations in adaptive learning rates. By adjusting learning rates independently for each parameter, the method reduces computational complexity but may not fully capture parameter interdependencies. In complex architectures of LLMs, this independent approach can lead to suboptimal parameter updates (Zhang et al., 2024a).

(II) Another limitation of Adam and its variants lies in the substantial memory requirement for storing per-parameter adaptive learning rates and gradient statistics. As LLM sizes increase, memory consumption becomes prohibitively large, impeding scalability.

To address the limitations of Adam and its variants, researchers have pursued two main approaches. The first approach, exemplified by algorithms such as Shampoo (Gupta et al., 2018) and the more recent SOAP (Vyas et al., 2024), employs sophisticated techniques to capture curvature information and parameter interdependencies. These methods utilize rotational matrices, derived through (approximate) singular value decomposition (SVD) of the gradient matrix, to provide a more comprehensive representation of the loss landscape’s geometry. This approach allows for a better approx-

imation of the full preconditioning matrix, enabling the capture of inter-coordinate dependencies. However, the improved capability of representing parameter interactions comes at the cost of substantial computational and memory overhead, rendering these algorithms challenging to implement for large-scale LLMs, where memory efficiency is crucial.

The second approach focuses on reducing memory consumption through various approximation techniques. Algorithms such as AdaFactor (Shazeer and Stern, 2018) and Adam-mini (Zhang et al., 2024b) aim to decrease memory usage by approximating the second moment of the gradient matrix. Adam-mini employs a component-specific approach, averaging second moments neuron-wise for certain layers. Meanwhile, AdaFactor utilizes a rank-1 approximation of the second moments. While these methods reduce memory cost, their approximations oversimplify the structure of the gradient matrix’s second order moments, compromising optimization performance. The trade-off between memory efficiency and the preservation of gradient statistics remains a crucial challenge.

More recent approaches, such as GaLore (Zhao et al., 2024a) and MUON (Jordan et al., 2024), have attempted to strike a balance between computational complexity, memory consumption, and optimization performance in LLM training. GaLore, which can be viewed as a memory-efficient variant of SOAP, approximates the first and second moments of the gradient matrix in the leading eigensubspace. While it effectively reduces memory consumption, Liang et al. (2024) find that its effectiveness diminishes for sequence lengths exceeding 256. MUON, essentially an approximation of Shampoo based on Newton-Schulz transformation proposed in Bernstein and Newhouse (2024), aims to decrease computational complexity. However, MUON only estimates the eigensubspaces based on the gradient on one batch, rather than capturing the comprehensive distribution of gradients across the entire optimization process.

In this paper, we propose COSMOS, a novel hybrid optimizer that addresses the limitations of existing methods by exploiting the varying importance of eigensubspaces in the gradient matrix. Our approach decomposes the gradient into two parts: a projection onto the leading eigensubspace and a projection onto the remaining eigensubspace. The leading eigensubspace captures the most significant directions of change in the gradient, typically corresponding to the most important optimization dynamics. For this part, we apply a SOAP-like optimization strategy. However, by crucially restricting SOAP to the leading eigensubspace, COSMOS only needs to maintain the projection matrix and the second-order moment within this small subspace, thereby retaining SOAP’s ability to capture parameter interdependencies while substantially lowering its memory cost. The remaining eigensubspace, while less critical, still significantly influences optimization performance. To address this, we employ MUON as a more efficient alternative to SOAP for this high-dimensional space. Such a hybrid approach allows COSMOS to maintain optimization effectiveness while significantly reducing memory requirements compared to SOAP, potentially enabling the training of larger LLMs or the use of increased batch sizes.

We highlight the key contributions of this paper as follows: **(1)** We propose a novel hybrid optimization strategy. This leads us to develop the COSMOS algorithm, which synergizes the strengths of SOAP and MUON by decomposing the gradient matrix into eigensubspaces of varying importance. **(2)** COSMOS achieves significant memory consumption reduction compared to the SOAP algorithm, while achieving equally or better optimization performance.

2 RELATED WORK

The optimization of LLMs has seen significant advancements in recent years, with various approaches aimed at improving efficiency and performance. This section discusses key related works in adaptive optimization, memory-efficient techniques, and specialized algorithms for LLMs.

Coordinate-wise adaptive optimizers: Adam (Kingma, 2014) and AdamW (Loshchilov, 2017) have become standards in deep learning optimization due to their ability to dynamically adjust learning rates based on the first and second moments of the gradients. However, these methods treat parameters independently, failing to capture interdependencies between coordinates. This limitation can lead to suboptimal updates, especially in the complex architectures of LLMs. Other adaptive optimizers such as Lion (Chen et al., 2023), Sophia (Liu et al., 2023), and Adafactor (Shazeer and Stern, 2018; Zhai et al., 2022) have shown comparable performance to AdamW in LLM pretraining but have not significantly surpassed it, suggesting the need for non-diagonal preconditioners.

108 **Second-Order Optimizers:** Researchers have explored second-order optimization techniques for
 109 training large models. These methods can be broadly categorized into Hessian-free approaches and
 110 Hessian estimation methods. Hessian-free methods, such as those proposed by Martens (2010) and
 111 Martens and Grosse (2015), optimize without explicitly computing the Hessian matrix. On the other
 112 hand, Hessian estimation methods maintain an efficient approximation of the Hessian for neural
 113 networks. Notable examples include KFAC (Martens and Grosse, 2015), Shampoo (Gupta et al.,
 114 2018) and SOAP (Vyas et al., 2024).

115 ◇ *Shampoo and Its Variants:* Shampoo (Gupta et al., 2018), another second-order optimization al-
 116 gorithm, is motivated by the online learning algorithm Adagrad (Duchi et al., 2011). Shampoo also
 117 employs a layer-wise Kronecker-factored preconditioner. A recent distributed implementation of
 118 Shampoo (Shi et al., 2023) won an optimization efficiency benchmark (Dahl et al., 2023), highlight-
 119 ing the practical utility of second-order methods in deep learning. Other works (Anil et al., 2020;
 120 Peirson et al., 2022; Lin et al., 2024; Wang et al., 2024; Zhao et al., 2024b) have proposed various
 121 strategies to improve Shampoo’s scalability.

122 ◇ *SOAP:* SOAP algorithm (Vyas et al., 2024) establishes a formal connection between Shampoo and
 123 Adafactor. SOAP is equivalent to running Adafactor in the eigenbasis of Shampoo’s preconditioner,
 124 leading to a simpler and computationally efficient algorithm. By continually updating the running
 125 average of the second moment in the current (slowly changing) coordinate basis, SOAP mitigates
 126 the performance degradation associated with less frequent eigendecomposition computations. SOAP
 127 has shown significant improvements over AdamW in per-token efficiency.

128 **Memory-efficient optimizers:** As LLM sizes increase, memory efficiency becomes crucial. Several
 129 approaches have been proposed to reduce the memory footprint of optimizers:

130 ◇ *Adafactor and Adam-mini:* Shazeer and Stern (2018) use a low-rank approximation of the sec-
 131 ond moments to reduce memory consumption. It has been widely used in LLMs due to memory
 132 efficiency. Zhang et al. (2024b) achieve comparable performance than AdamW with a 50% smaller
 133 memory footprint. It reduces memory by carefully partitioning parameters into blocks and assigning
 134 a single learning rate to each block based on the Hessian structure of neural networks.

135 ◇ *GaLore:* Zhao et al. (2024a) reduce Adam’s memory footprint by maintaining momentum in a
 136 low-rank subspace derived from the singular value decomposition (SVD) of the gradients. However,
 137 its effectiveness diminishes for sequence lengths exceeding 256, as shown in Liang et al. (2024).

138 ◇ *MUON:* The MUON optimizer (Jordan et al., 2024) can be viewed as an efficient approximation of
 139 Shampoo. It employs a Newton-Schulz transformation to approximately implement the Kronecker-
 140 factored preconditioner. While computationally more complex than Adam, MUON only adds minor
 141 overhead to the overall training time due to efficient parallelization of matrix operations.

142 These advancements highlight the efforts to improve the training efficiency and performance of
 143 LLMs. However, each approach comes with its own trade-offs in terms of computational complexity,
 144 memory requirements, and performance. Our work builds upon these insights to develop a hybrid
 145 approach that aims to balance these factors effectively, combining the strengths of different methods
 146 to achieve both memory efficiency and robust optimization performance for massive LLMs.

148 3 COSMOS: A HYBRID ADAPTIVE OPTIMIZER

150 We present a novel hybrid optimizer – COSMOS in Algorithm 1, which can achieve memory effi-
 151 ciency without compromising performance for training LLMs. Without loss of generality, we use m
 152 and n to denote the numbers of rows and columns in a m by n matrix, and we assume $m > n$. For
 153 simplicity, we use the following notations:

154 • **Matrix Sign Operator:** Given a matrix $X \in \mathbb{R}^{m \times n}$ and its reduced-SVD $X = UDV^\top$, where
 155 $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix containing all singular values of X , and $U \in \mathbb{R}^{m \times n}$ and $V \in \mathbb{R}^{n \times n}$
 156 are left and right singular vector matrices, respectively. We define

$$157 \text{MatSgn}(X) = UV^\top.$$

158 • **Newton Schulz (NS) transformation:** Given a matrix $X_0 \in \mathbb{R}^{m \times n}$, where $\|X_0\|_F \leq 1$, we define

$$159 \text{NS5}(X_0) = X_5.$$

160 where X_5 is obtained by $X_{k+1} = aX_k + bX_kX_k^\top X_k + cX_kX_k^\top X_kX_k^\top X_k$ for $k = 0, 1, \dots, 4$ with
 161 $a = 3.4445$, $b = -4.7750$ and $c = 2.0315$. Bernstein and Newhouse (2024) first mentioned this

162 transformation to approximate the matrix sign operator without specifying the coefficient. Jordan
 163 et al. (2024) later used an ad-hoc gradient based approach to find the set of coefficients here.
 164

165 • Normalization operator: $\text{NORM}(X) = \sqrt{n}X/\|X\|_{\text{F}}$, where $\|\cdot\|_{\text{F}}$ denotes the Frobenius norm.
 166 The normalization operator is used to normalize the output of the NS transformation.
 167 • Gram–Schmidt procedure: $\text{QR}(X)$.
 168

169 **Algorithm 1** COSMOS for an $m \times n$ layer W . Per layer, we maintain four matrices: $U \in \mathbb{R}^{n \times r}$, $S \in$
 170 $\mathbb{R}^{r \times r}$, $V \in \mathbb{R}^{m \times r}$ and $M \in \mathbb{R}^{m \times n}$.

171 **input** Learning rate η , combination weight γ , projection rank $r \ll n$, momentum parameters
 172 (β_1, β_2) , perturbation parameter ϵ . For simplicity, we omit the initialization.

173 1: **for** $t = 0, \dots$ **do**
 174 2: Sample batch \mathcal{M}_t
 175 3: $G_t \leftarrow \nabla_W \phi_{\mathcal{M}_t}(W_t)$
 176 4: $M_t \leftarrow \beta_1 M_{t-1} + (1 - \beta_1) G_t$
 177 5: $U_t \leftarrow \text{QR}(\beta_2 U_{t-1} S_{t-1} + (1 - \beta_2) G_t^\top G_t U_{t-1})$
 178 6: $S_t \leftarrow U_t^\top (\beta_2 U_{t-1} S_{t-1} U_{t-1}^\top + (1 - \beta_2) G_t^\top G_t) U_t$
 179 7: $V_t \leftarrow \beta_2 V_{t-1} + (1 - \beta_2) (G_t U_t) \odot (G_t U_t)$
 180 8: $A_t = \left(\frac{M_t U_t / (1 - \beta_1^t)}{\sqrt{(V_t + \epsilon) / (1 - \beta_2^t)}} \right) U_t^\top$
 181 9: $B_t \leftarrow \text{NORM} \left(\text{NS5} \left(\frac{M_t - M_t U_t U_t^\top}{\|M_t - M_t U_t U_t^\top\|_{\text{F}}} \right) \right)$
 182 10: $\tilde{G}_t \leftarrow A_t + \gamma \cdot B_t \cdot \sqrt{m}$
 183 11: $W_{t+1} \leftarrow W_t - \eta \cdot \text{NORM}(\tilde{G}_t) \cdot \sqrt{m}$
 184 12: **end for**
 185

186 **Design principle** The design of COSMOS is guided by a simple principle: instead of maintaining
 187 SOAP’s full second-moment matrix—which is memory-prohibitive—we track its dominant
 188 eigenspace and operate in a low-dimensional subspace.

189 In the SOAP algorithm, the exponential moving average (EMA) of the second moment is
 190

$$H_t = \beta_2 H_{t-1} + (1 - \beta_2) G_t^\top G_t, \quad (1)$$

191 where G_t is the stochastic gradient. Because $H_t \in \mathbb{R}^{n \times n}$ is dense, storing it is infeasible for large n .
 192 COSMOS avoids this by maintaining (i) an orthonormal basis $U_t \in \mathbb{R}^{n \times r}$ for the leading eigenspace
 193 of H_t and (ii) a projected second-moment matrix $S_t \in \mathbb{R}^{r \times r}$ with

$$S_t \approx U_t^\top H_t U_t.$$

194 Assume at step $t - 1$ that U_{t-1} spans the dominant eigenspace and $S_{t-1} \approx U_{t-1}^\top H_{t-1} U_{t-1}$. Approximating
 195 H_{t-1} by its rank- r surrogate, $U_{t-1} S_{t-1} U_{t-1}^\top$, and substituting into Equation (1) yields
 196

$$\tilde{H}_t = \beta_2 U_{t-1} S_{t-1} U_{t-1}^\top + (1 - \beta_2) G_t^\top G_t.$$

197 We then update the basis via a one-step power iteration:
 198

$$U_t = \text{QR}(\tilde{H}_t U_{t-1}),$$

199 and refresh the projected second moment by
 200

$$S_t = U_t^\top \tilde{H}_t U_t.$$

201 These two steps track the dominant eigenspace and its curvature information with $O(nr)$ memory.

202 Given U_t , Line 7 of Algorithm 1 maintains the EMA of the projected gradients $V_t \in \mathbb{R}^{m \times r}$, and
 203 Line 8 performs a SOAP-like adaptive update within the subspace spanned by U_t , producing A_t
 204 after projecting back to the full parameter space. This is the SOAP component of COSMOS.

205 To complement the low-rank update, COSMOS applies a MUON-inspired preconditioner on the
 206 orthogonal complement of U_t . Writing the orthogonal projector as $P_t^\perp = I - U_t U_t^\top$, Line 9 forms
 207

$$B_t = \text{NORM} \left(\text{NS5} \left(\frac{M_t P_t^\perp}{\|M_t P_t^\perp\|_{\text{F}}} \right) \right) = \text{NORM} \left(\text{NS5} \left(\frac{M_t - M_t U_t U_t^\top}{\|M_t - M_t U_t U_t^\top\|_{\text{F}}} \right) \right), \quad (2)$$

216 where NS5 applies directly to the residual momentum; no additional matrices are stored.
 217

218 Finally, Lines 10–11 combine the two components:

$$219 \quad \tilde{G}_t = A_t + \gamma B_t \sqrt{m}, \quad W_{t+1} = W_t - \eta \text{NORM}(\tilde{G}_t) \sqrt{m}.$$

220 The normalization ensures the update has Frobenius norm $\Theta(\sqrt{mn})$, matching MUON’s scaling. In
 221 sum, COSMOS adaptively preconditions the leading eigenspace as in SOAP while using MUON on
 222 the residual, achieving robust optimization with substantially reduced memory.

223 **Algorithm 2** (One-side) SOAP

224 **input** Learning rate η , momentum parameters (β_1, β_2) ,
 225 perturbation parameter ϵ .
 226
 227 1: **for** $t = 0, \dots$ **do**
 228 2: Sample batch \mathcal{M}_t
 229 3: $G_t \leftarrow \nabla_W \phi_{\mathcal{M}_t}(W_t)$
 230 4: $M_t \leftarrow \beta_1 M_{t-1} + (1 - \beta_1) G_t$
 231 5: $L_t \leftarrow \beta_2 G_t^\top G_t U_{t-1} + (1 - \beta_2) G_t^\top G_t U_{t-1}$
 232 6: $U_t \leftarrow \text{QR}(L_t U_{t-1})$
 233 7: $G'_t \leftarrow M_t U_t$
 234 8: $V_t \leftarrow \beta_2 V_{t-1} + (1 - \beta_2)(G'_t \odot G'_t)$
 235 9: $A_t = \begin{pmatrix} G'_t / (1 - \beta_1^t) \\ \sqrt{(V_t + \epsilon) / (1 - \beta_2^t)} \end{pmatrix} U_t^\top$
 236 10: $W_{t+1} \leftarrow W_t - \eta A_t$
 237 11: **end for**
 238

239 **Algorithm 3** MUON

240 **input** Learning rate η , momentum
 241 parameters μ .
 242
 243 1: **for** $t = 0, \dots$ **do**
 244 2: Sample batch \mathcal{M}_t
 245 3: $G_t \leftarrow \nabla_W \phi_{\mathcal{M}_t}(W_t)$
 246 4: $M_t \leftarrow \mu M_{t-1} + G_t$
 247 5: $N_t \leftarrow \mu M_t + G_t$
 248 6: $B_t \leftarrow \text{NS5}(N_t / \|N_t\|_F)$
 249 7: $W_{t+1} \leftarrow W_t - \eta B_t \cdot \sqrt{m}$
 250 8: **end for**

251 **Remark 1** As can be seen, COSMOS only needs to maintain four matrices in the memory: $M_t \in \mathbb{R}^{m \times n}$, $U_t \in \mathbb{R}^{n \times r}$, $S_t \in \mathbb{R}^{r \times r}$ and $V_t \in \mathbb{R}^{m \times r}$. In sharp contrast, even one-sided SOAP (2)
 252 needs to maintain $M_t \in \mathbb{R}^{m \times n}$, $L_t \in \mathbb{R}^{n \times n}$, $U_t \in \mathbb{R}^{n \times n}$ and $V_t \in \mathbb{R}^{m \times n}$. The resulting memory
 253 overhead is which is significantly larger than that of COSMOS.

254 **Remark 2** Recall that the the computation complexity of the QR decomposition on a matrix of
 255 the shape $n \times r$ is $O(nr^2)$ when $r \ll n$, so the low rank QR decomposition of $\beta_2 U_{t-1} S_{t-1} + (1 -$
 256 $\beta_2) G_t^\top G_t U_{t-1}$ in COSMOS is actually very quick since $r \ll n$ (and much quicker than that in SOAP,
 257 which is $O(n^3)$). Therefore, unlike SOAP which needs to consider the preconditioning frequency for
 258 performing QR decomposition, we can carry out QR decomposition at every step with virtually no
 259 overhead. In addition, PyTorch provides an efficient implementation of QR method, which is also
 260 used by SOAP. In Table 5, we provide the comparison of wall-clock time per iteration to show that
 261 compared to MUON, COSMOS only incurs a very slight increase in wall-clock time.

262 3.1 MEMORY USAGE COMPARISON

263 For comparison, we list the memory usage of the optimization states in Adam, Adam-mini, SOAP,
 264 MUON and COSMOS for training transformer models in Table 1. For simplicity, we assume that the
 265 attention weight matrices $W_Q, W_K, W_V, W_O \in \mathbb{R}^{d \times d}$ and the MLP weight matrices $W_1 \in \mathbb{R}^{d \times 4d}$
 266 and $W_2 \in \mathbb{R}^{4d \times d}$. Note that in practical LLMs, the dimensionalities of W_1 and W_2 might slightly
 267 vary. Moreover, we assume that the rank of the projection is $r = 0.05d$ for COSMOS.

268 Table 1: Memory usage of the optimization states in different algorithms for training transformers.

Adam	Adam-mini	SOAP	MUON	COSMOS
$24d^2$	$12d^2$	$66d^2$	$12d^2$	$13d^2$

269 We remark that Table 1 only compares the optimization states. In practice, however, besides the
 270 optimization states, the overall memory usage also includes the model weights and intermediate
 271 variables used in the forward and backward passes as well as additional memory overhead of I/O
 272 and computation. Therefore, we present a more detailed and practical memory profiling for training
 273 LLaMA-1B model in Section 4.

274 4 EXPERIMENTS

275 We evaluate the performance of COSMOS on pre-training various sizes of LLMs, in comparison
 276 with baseline algorithms including Adam (Kingma, 2014), Adam-mini (Zhang et al., 2024b), Ga-

270 Lore (Zhao et al., 2024a), SOAP (Vyas et al., 2024) and MUON (Jordan et al., 2024). Note that for
 271 SOAP, MUON and COSMOS, the embedding and output weights are trained by Adam.
 272

273 **Models and datasets.** We train LLaMA-type models (Touvron et al., 2023) on the C4 dataset
 274 (Raffel et al., 2020), which is a colossal, cleaned version of Common Crawl’s web crawl corpus
 275 for pre-training. We conduct comprehensive experiments and ablation studies on 130M models and
 276 demonstrate the token efficiency of COSMOS. We then scale up to 350M and 1B models to show-
 277 case the memory efficiency and small computational overhead of COSMOS. Due to limited compu-
 278 tational resources, experiments on these larger models are less comprehensive, while still capable of
 279 illustrating the efficacy of our method. We train for one epoch on a portion of the C4 dataset, ranging
 280 from 5B to 26B tokens, and scaling with the model size according to the scaling law (Kaplan et al.,
 281 2020). We set the maximum sequence length as 1024 by default.

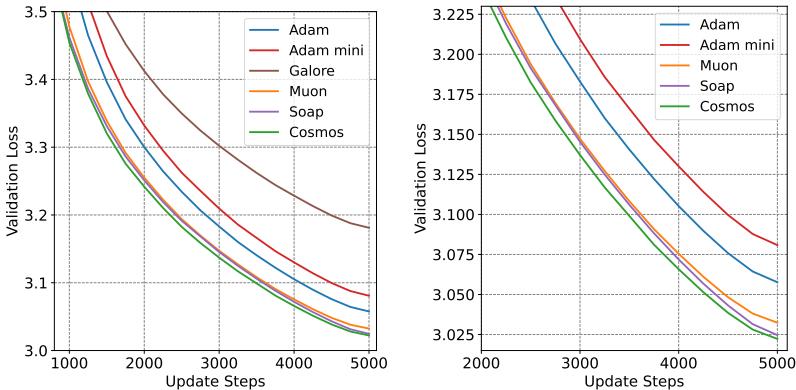
282 Besides LLaMA models and C4 dataset, we also conducted experiments with modded-NanoGPT
 283 (Jordan et al., 2024) on FineWeb (Penedo et al., 2024) and GPT-2 (Radford et al., 2019) on WikiText-
 284 103 (Merity et al., 2016) to evaluate the effectiveness of COSMOS across different settings.
 285

4.1 COMPARISON ON Llama-130M

286 For LLaMA-130M, we train on a 5B subset of the C4 dataset. We compare COSMOS’s validation
 287 loss with that of Adam, Adam-mini, GaLore, MUON, and SOAP.

288 **Hyperparameters.** For each method, we tune the corresponding learning rate to obtain optimal
 289 performance. We select the rank $r = 64$ for COSMOS and $r = 256$ for GaLore. To avoid multiple
 290 hyperparameter tuning, we set the discount factor in COSMOS as $\gamma = \eta/\eta_0$, where η_0 is the learning
 291 rate of Adam for training the embedding and output weights in the implementation of COSMOS.
 292 Other hyperparameter choices follow Zhao et al. (2024a) and are provided in detail in Section A.1.1.

293 **Main results.** We plot the validation loss curves in Figure 1. As illustrated, COSMOS consistently
 294 outperforms MUON with better stability and is comparable to SOAP. This showcases that our hybrid
 295 approach leveraging the leading eigensubspace captures the most important information for efficient
 296 update, allowing COSMOS to achieve similar per-token efficiency as SOAP. In addition, all three
 297 methods outperform the vanilla Adam and are much better than Adam-mini and GaLore, validating
 298 that inter-coordinate dependence is crucial for efficient optimization. We report the final validation
 299 perplexity in Table 2.



300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313 Figure 1: Performance on LLaMA-130M. COSMOS consistently outperforms baseline methods.
 314 In the right plot, we hide GaLore to better compare the performance of COSMOS with SOAP and
 315 MUON, as the curves are close in the left plot.

316 **Ablation on learning rates.** We experiment with different learning rates while keeping the rank
 317 $r = 64$ and discount factor $\gamma = \eta/\eta_0$ for COSMOS. As shown in the Table 3, COSMOS is not very
 318 sensitive to the learning rate, and it achieves the best performance at 5e-4. As a comparison, MUON
 319 is more sensitive to the learning rate, and it underperforms COSMOS across all learning rates.

320 **Ablation on rank and discount factor.** We also experiment with different ranks r and discount
 321 factors γ while keeping the learning rate as 5e-4 for COSMOS, and the results are summarized in
 322 Table 4. As illustrated, COSMOS is not very sensitive to r and γ , and the best discount factor is
 323 around 0.25 to 0.5 across different ranks. In practice, our choice $\gamma = \eta/\eta_0$ falls in this range, so it
 serves as a valid heuristic that prevents extra tuning of γ . We provide details in Section A. Moreover,

we observe that as rank increases, COSMOS performs slightly worse and is more sensitive to the choice of γ . One possible explanation is that when the rank is large, the top- r eigenvalues of M_t contain some smaller values that are close to the remaining eigenvalues. For these eigenvalues, the one-step power iteration (Line 5 in Algorithm 1) cannot accurately approximate their corresponding eigensubspaces, leading to larger approximation errors and worse performance.

Table 2: Validation perplexity after training on C4 dataset. We train for 5000 steps on 130M and 350M models and 13000 steps on 1B model. COSMOS achieves the best validation perplexity.

Size(Tokens)	130M(5B)	350M(10B)	1B(26B)
Adam	21.28	17.28	12.97
Adam-mini	21.78	18.03	-
GaLore	24.07	19.03	-
SOAP	20.59	16.32	-
MUON	20.69	16.49	12.57
COSMOS	20.54	16.21	12.46

Table 3: Validation perplexity under different learning rates. We set $\gamma = \eta/\eta_0$ and $r = 64$ for COSMOS. Our method outperforms MUON across all learning rates.

lr	2e-4	5e-4	1e-3	2e-3
MUON	21.72	20.75	20.69	26.74
COSMOS	21.17	20.54	20.62	21.00

Table 4: Valid perplexity of COSMOS under different r and γ . COSMOS is not very sensitive to r and γ , and consistently outperforms MUON (20.69) except for only one config ($r = 128, \gamma = 1$).

$r \setminus \gamma$	0.1	0.25	0.5	1
32	20.58	20.55	20.54	20.54
64	20.62	20.54	20.57	20.61
128	20.65	20.58	20.63	20.72

Effect of normalization. COSMOS applies a normalization step (Line 9 in Algorithm 1) after the NS transformation compared to MUON (Algorithm 3). Empirically, we find that COSMOS also outperforms the normalized version of MUON (see Figure 5 in Section D.1). This implies that normalization is not the only driving force behind COSMOS’s efficiency.

GaLore degradation on long sequences. In our experiment, we observe that GaLore performs much worse than COSMOS and other baselines, including Adam. Such a degradation is less significant on the shorter sequences with length 256 (see Figure 8 in Section D.5, the setting adopted in the original GaLore paper (Zhao et al., 2024a). This observation of GaLore degradation on long sequences aligns with Liang et al. (2024), while a similar phenomenon appearing in fine-tuning is reported by Pan et al. (2024). In contrast, COSMOS consistently outperforms Adam from short to long sequences without suffering from degradation.

4.2 SCALING UP TO LLaMA-350M AND LLaMA-1B

To further illustrate the efficiency of COSMOS, we scale up to larger models and more tokens. For LLaMA-350M, we train on a 10B subset of the C4 dataset for 5000 steps. We compare COSMOS with Adam, Adam-mini, GaLore, MUON, and SOAP. For LLaMA-1B, we train on a 26B subset for 13000 steps. Given limited GPU resources, we compare COSMOS with Adam and MUON. Adam serves as the standard baseline, while MUON achieves better performance than Adam while requiring less memory and little computational overhead. Although SOAP show superior performance among baselines, we exclude it from our comparison as its complete training for the 1B model exceeds our available resources. More experiment details are provided in Sections A.1.2 and A.1.3.

Main results of token efficiency. Figures 2a and 2b display the validation loss curves for the 350M and 1B models, and Table 2 presents their final validation perplexities. COSMOS demonstrates superior performance compared to all baselines across both model sizes, matching the results on the 130M model and showcasing consistent token efficiency across different model sizes.

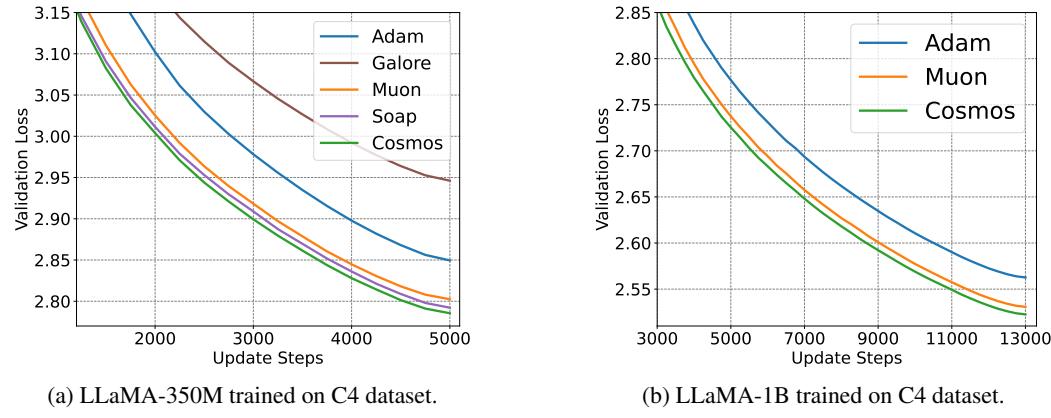


Figure 2: Comparison of performance on LLaMA-350M and LLaMA-1B trained on the C4 dataset.

Memory and computation time profiling. To illustrate the memory efficiency and small computation overhead of COSMOS, we conduct a profiling experiment on the 1B model. We fix the batch size as 10 and the gradient accumulation steps as 25 for all methods and record the maximum GPU memory usage and time spent during the entire forward-backward propagation and optimizer update process for one iteration. As shown in Table 5, COSMOS achieves much lower maximum GPU memory usage than Adam (**6.8%**) and SOAP (**19.4%**), with slightly more overhead compared to MUON. In terms of wall-clock time per iteration, COSMOS is comparable to MUON and is much better than SOAP. The fastest Adam method cannot achieve the same level of token efficiency as COSMOS. Therefore, COSMOS strikes a good balance between token and memory/computation overheads, achieving the best final perplexity at a much lower cost.

To better compare the methods in a practical setting, we evaluate the maximal batch size and throughput of COSMOS and baselines on a single NVIDIA A100 GPU with 80GB memory. The input sequence length is set to 1024. As shown in Table 6, COSMOS is **10.8%** faster than SOAP and comparable to MUON.

Table 5: GPU memory usage and wall-clock time per iteration on 1B model. We fix the batch size to be 10 for all methods. COSMOS has significantly less memory usage than SOAP and is comparable to memory-efficient methods like MUON, without introducing much computation overhead.

Method	Memory	Wall-clock time
Adam	62.75 G	34.73 s
SOAP	72.58 G	39.51 s
MUON	58.25 G	35.56 s
COSMOS	58.47 G	35.75 s

Table 6: System performance on single NVIDIA A100-80G GPU and corresponding throughput (number of samples processed per second on C4 dataset) of 1B model. Max batch size is defined as the maximum number of samples that fit within the GPU’s memory capacity. Throughput is reported as the number of samples the GPU processes per second (samples/s).

Method	Max batch size	Throughput(sample/s)
Adam	13	7.24
SOAP	10	6.33
MUON	14	7.23
COSMOS	14	7.07

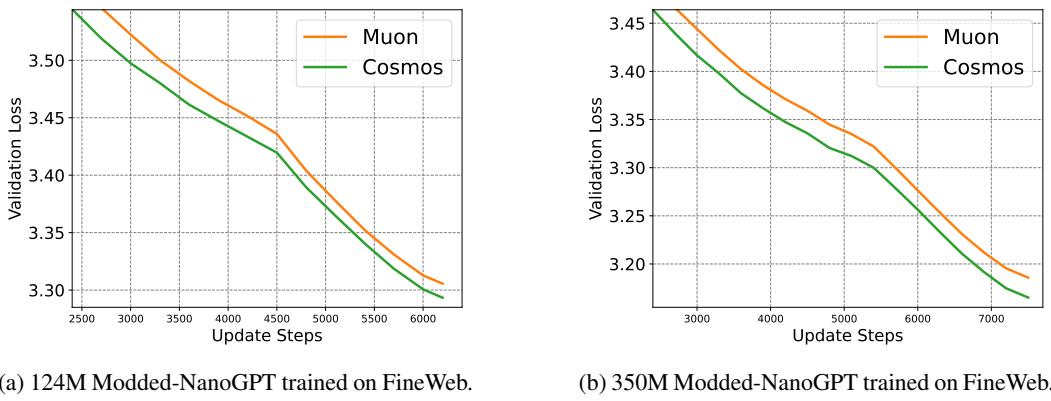
Wall-Clock time plot for LLaMA-1B. Based on the throughput we calculate in Table 6, we rescale the X-axis of Figure 2b to be wall-clock time and present the result in Figure 7 in Section D.4. Our results indicate that, in terms of actual training time, COSMOS still outperforms MUON and the Adam baseline, demonstrating COSMOS’s potential for efficient pretraining.

4.3 ADDITIONAL EXPERIMENTS ON OTHER SETTINGS

Most current works on pretraining optimizers, due to limitations in resources and time, focus on a single model architecture and a single dataset — for example, GaLore (Zhao et al. (2024a), LLaMA

432 on C4), SOAP (Vyas et al. (2024), OLMo (Groeneveld et al., 2024) on C4) and Muon (Jordan et al.
 433 (2024), Modded-NanoGPT on FineWeb). Our experiments on LLaMA with C4 are already aligned
 434 with these prior works, validating the performance of COSMOS. To demonstrate that COSMOS
 435 retains its advantages under other settings as well, however, we also conduct experiments in the
 436 following additional settings:

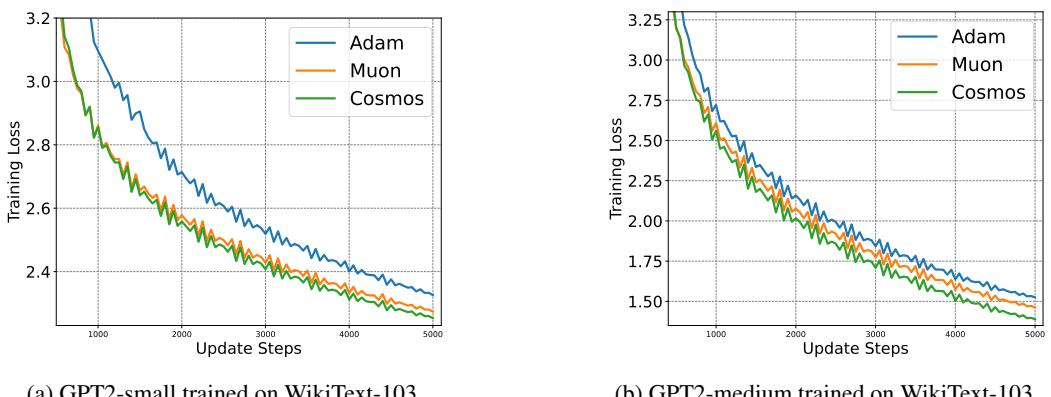
437 **Modded-NanoGPT on FineWeb:** To further verify the advantage of COSMOS over Muon, we
 438 conduct experiments in Muon’s original setting, namely Modded-NanoGPT on FineWeb. Since
 439 Muon has already performed extensive hyperparameter tuning in this setting, we do not tune Muon
 440 again but use the provided reproducible log. For COSMOS, we simply align the learning rate with
 441 that of Muon and follow other settings. We present the results in Figure 3. See Section B for the
 442 detailed configuration.



443 (a) 124M Modded-NanoGPT trained on FineWeb. (b) 350M Modded-NanoGPT trained on FineWeb.

444 Figure 3: Comparison of optimization performance on 124M and 350M Modded-NanoGPT trained
 445 on the FineWeb dataset. COSMOS consistently outperforms MUON.

446 **GPT2 on Wikitext-103:** We also trained GPT2-small and GPT2-medium on WikiText-103 to com-
 447 pare COSMOS with Adam and Muon. In this setting, COSMOS still outperforms Muon and Adam.
 448 We present the result in Figure 4. See Section D.2 for the detailed configuration.



449 (a) GPT2-small trained on WikiText-103. (b) GPT2-medium trained on WikiText-103.

450 Figure 4: Comparison of COSMOS, MUON and Adam on WikiText-103 using GPT2-small and
 451 GPT2-medium models. COSMOS consistently outperforms MUON and Adam.

452 5 CONCLUSION

453 We develop a hybrid adaptive optimizer, COSMOS, which leverages the varying importance of
 454 eigensubspaces in the gradient matrix to achieve token efficiency, memory efficiency, and high
 455 computation throughput simultaneously. By decomposing the gradient matrix into leading and re-
 456 maining eigensubspaces and applying SOAP-like and MUON-like updates to them correspondingly,
 457 COSMOS uses significantly less memory than SOAP while achieving equal or better optimization
 458 performance. Comprehensive experiments show that COSMOS performs consistently well across
 459 different settings.

486 REFERENCES
487

488 ACHIAM, J., ADLER, S., AGARWAL, S., AHMAD, L., AKKAYA, I., ALEMAN, F. L., ALMEIDA,
489 D., ALTENSCHMIDT, J., ALTMAN, S., ANADKAT, S. ET AL. (2023). Gpt-4 technical report.
490 *arXiv preprint arXiv:2303.08774*.

491 ANIL, R., GUPTA, V., KOREN, T., REGAN, K. and SINGER, Y. (2020). Scalable second order
492 optimization for deep learning. *arXiv preprint arXiv:2002.09018*.

493 BA, J., GROSSE, R. and MARTENS, J. (2017). Distributed second-order optimization using
494 kronecker-factored approximations. In *International Conference on Learning Representations*.

495 BERNSTEIN, J. and NEWHOUSE, L. (2024). Modular duality in deep learning. *arXiv preprint*
496 *arXiv:2410.21265*.

497 CHEN, X., LIANG, C., HUANG, D., REAL, E., WANG, K., LIU, Y., PHAM, H., DONG, X.,
498 LUONG, T., HSIEH, C.-J. ET AL. (2023). Symbolic discovery of optimization algorithms. *arXiv*
499 *e-prints arXiv-2302*.

500 DAHL, G. E., SCHNEIDER, F., NADO, Z., AGARWAL, N., SASTRY, C. S., HENNIG, P., MEDA-
501 PATI, S., ESCHENHAGEN, R., KASIMBEG, P., SUO, D. ET AL. (2023). Benchmarking neural
502 network training algorithms. *arXiv preprint arXiv:2306.07179*.

503 DUCHI, J., HAZAN, E. and SINGER, Y. (2011). Adaptive subgradient methods for online learning
504 and stochastic optimization. *Journal of machine learning research*, **12**.

505 ELFWING, S., UCHIBE, E. and DOYA, K. (2018). Sigmoid-weighted linear units for neural network
506 function approximation in reinforcement learning. *Neural networks*, **107** 3–11.

507 ESCHENHAGEN, R., IMMER, A., TURNER, R. E., SCHNEIDER, F. and HENNIG, P. (2023).
508 Kronecker-factored approximate curvature for modern neural network architectures. *arXiv*
509 *preprint arXiv:2311.00636*.

510 GAO, K., LIU, X., HUANG, Z., WANG, M., WANG, Z., XU, D. and YU, F. (2021). A trace-
511 restricted kronecker-factored approximation to natural gradient. In *Proceedings of the AAAI Con-
512 ference on Artificial Intelligence*, vol. 35.

513 GEORGE, T., LAURENT, C., BOUTHILLIER, X., BALLAS, N. and VINCENT, P. (2018). Fast
514 approximate natural gradient descent in a kronecker-factored eigenbasis. *arXiv preprint*
515 *arXiv:1806.03884*.

516 GROENEVELD, D., BELTAGY, I., WALSH, P., BHAGIA, A., KINNEY, R., TAFJORD, O., JHA,
517 A. H., IVISON, H., MAGNUSSON, I., WANG, Y. ET AL. (2024). Olmo: Accelerating the science
518 of language models. *arXiv preprint arXiv:2402.00838*.

519 GUPTA, V., KOREN, T. and SINGER, Y. (2018). Shampoo: Preconditioned stochastic tensor opti-
520 mization. In *International Conference on Machine Learning*. PMLR.

521 JORDAN, K., JIN, Y., BOZA, V., JIACHENG, Y., CECSISTA, F., NEWHOUSE, L. and BERNSTEIN,
522 J. (2024). Muon: An optimizer for hidden layers in neural networks.
523 <https://kellerjordan.github.io/posts/muon/>

524 KAPLAN, J., MCCANDLISH, S., HENIGHAN, T., BROWN, T. B., CHESS, B., CHILD, R., GRAY,
525 S., RADFORD, A., WU, J. and AMODEI, D. (2020). Scaling laws for neural language models.
526 *arXiv preprint arXiv:2001.08361*.

527 KINGMA, D. P. (2014). Adam: A method for stochastic optimization. *arXiv preprint*
528 *arXiv:1412.6980*.

529 LIANG, K., LIU, B., CHEN, L. and LIU, Q. (2024). Memory-efficient llm training with online
530 subspace descent. *arXiv preprint arXiv:2408.12857*.

531 LIN, W., DANGEL, F., ESCHENHAGEN, R., BAE, J., TURNER, R. E. and MAKHZANI, A. (2024).
532 Can we remove the square-root in adaptive gradient methods? a second-order perspective. *arXiv*
533 *preprint arXiv:2402.03496*.

540 LIU, H., LI, Z., HALL, D., LIANG, P. and MA, T. (2023). Sophia: A scalable stochastic second-
 541 order optimizer for language model pre-training. *arXiv preprint arXiv:2305.14342*.
 542

543 LIU, J., SU, J., YAO, X., JIANG, Z., LAI, G., DU, Y., QIN, Y., XU, W., LU, E., YAN, J. ET AL.
 544 (2025). Muon is scalable for llm training. *arXiv preprint arXiv:2502.16982*.
 545

546 LIU, Y., OTT, M., GOYAL, N., DU, J., JOSHI, M., CHEN, D., LEVY, O., LEWIS, M., ZETTLE-
 547 MOYER, L. and STOYANOV, V. (2019). Roberta: A robustly optimized bert pretraining approach.
 548 *arXiv preprint arXiv:1907.11692*.
 549

550 LOSHCHILOV, I. (2017). Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*.
 551

552 MARTENS, J. (2010). Deep learning via hessian-free optimization. In *Proceedings of the 27th
 International Conference on International Conference on Machine Learning*.
 553

554 MARTENS, J., BA, J. and JOHNSON, M. (2018). Kronecker-factored curvature approximations for
 555 recurrent neural networks. In *International Conference on Learning Representations*.
 556

557 MARTENS, J. and GROSSE, R. (2015). Optimizing neural networks with kronecker-factored ap-
 558 proximate curvature. *arXiv preprint arXiv:1503.05671*.
 559

560 MERITY, S., XIONG, C., BRADBURY, J. and SOCHER, R. (2016). Pointer sentinel mixture models.
 561 *arXiv preprint arXiv:1609.07843*.
 562

563 OSAWA, K., TSUJI, Y., UENO, Y., NARUSE, A., YOKOTA, R. and MATSUOKA, S. (2018). Large-
 564 scale distributed second-order optimization using kronecker-factored approximate curvature for
 565 deep convolutional neural networks. *arXiv preprint arXiv:1811.12019*.
 566

567 PAN, R., LIU, X., DIAO, S., PI, R., ZHANG, J., HAN, C. and ZHANG, T. (2024). Lisa: Layer-
 568 wise importance sampling for memory-efficient large language model fine-tuning. *arXiv preprint
 569 arXiv:2403.17919*.
 570

571 PEIRSON, A., AMID, E., CHEN, Y., FEINBERG, V., WARMUTH, M. K. and ANIL, R. (2022).
 572 Fishy: Layerwise fisher approximation for higher-order neural network optimization. In *Has it
 573 Trained Yet? NeurIPS 2022 Workshop*.
 574

575 PENEDO, G., KYDLÍČEK, H., LOZHKOV, A., MITCHELL, M., RAFFEL, C. A., VON WERRA, L.,
 576 WOLF, T. ET AL. (2024). The fineweb datasets: Decanting the web for the finest text data at
 577 scale. *Advances in Neural Information Processing Systems*, **37** 30811–30849.
 578

579 PUIU, C. O. (2022a). Brand new k-facs: Speeding up k-fac with online decomposition updates.
 580 *arXiv preprint arXiv:2210.08494*.
 581

582 PUIU, C. O. (2022b). Randomized k-facs: Speeding up k-fac with randomized numerical linear
 583 algebra. In *International Conference on Intelligent Data Engineering and Automated Learning*.
 584

585 RADFORD, A., WU, J., CHILD, R., LUAN, D., AMODEI, D., SUTSKEVER, I. ET AL. (2019).
 586 Language models are unsupervised multitask learners. *OpenAI blog*, **1** 9.
 587

588 RAFFEL, C., SHAZEE, N., ROBERTS, A., LEE, K., NARANG, S., MATENA, M., ZHOU, Y., LI,
 589 W. and LIU, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text
 590 transformer. *Journal of machine learning research*, **21** 1–67.
 591

592 ROBERTS, J. D. (1980). Linear model reduction and solution of the algebraic riccati equation by
 593 use of the sign function. *International Journal of Control*, **32** 677–687.
 594

595 SHAH, I., POLLONO, A. M., STRATOS, K., MONK, P., CHALUVARAJU, A., HOJEL, A., MA,
 596 A., THOMAS, A., TANWER, A., SHAH, D. J. ET AL. (2025). Practical efficiency of muon for
 597 pretraining. *arXiv preprint arXiv:2505.02222*.
 598

599 SHAZEE, N. and STERN, M. (2018). Adafactor: Adaptive learning rates with sublinear memory
 600 cost. *arXiv preprint arXiv:1804.04235*.
 601

594 SHI, H.-J. M., LEE, T.-H., IWASAKI, S., GALLEGOS-POSADA, J., LI, Z., RANGADURAI, K.,
 595 MUDIGERE, D. and RABBAT, M. (2023). A distributed data-parallel pytorch implementa-
 596 tion of the distributed shampoo optimizer for training neural networks at-scale. *arXiv preprint*
 597 *arXiv:2309.06497*.

598 SU, J., AHMED, M., LU, Y., PAN, S., BO, W. and LIU, Y. (2024). Roformer: Enhanced trans-
 599 former with rotary position embedding. *Neurocomputing*, **568** 127063.

600 TOUVRON, H., MARTIN, L., STONE, K., ALBERT, P., ALMAHAI, A., BABAEI, Y., BASH-
 601 LYKOV, N., BATRA, S., BHARGAVA, P., BHOSALE, S. ET AL. (2023). Llama 2: Open foundation
 602 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*.

603 VYAS, N., MORWANI, D., ZHAO, R., SHAPIRA, I., BRANDFONBRENER, D., JANSON, L. and
 604 KAKADE, S. (2024). Soap: Improving and stabilizing shampoo using adam. *arXiv preprint*
 605 *arXiv:2409.11321*.

606 WANG, S., ZHOU, P., LI, J. and HUANG, H. (2024). 4-bit shampoo for memory-efficient network
 607 training. *arXiv preprint arXiv:2405.18144*.

608 ZHAI, X., KOLESNIKOV, A., HOULSBY, N. and BEYER, L. (2022). Scaling vision transformers.
 609 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*.

610 ZHANG, Y., CHEN, C., DING, T., LI, Z., SUN, R. and LUO, Z.-Q. (2024a). Why transformers
 611 need adam: A hessian perspective. *arXiv preprint arXiv:2402.16788*.

612 ZHANG, Y., CHEN, C., LI, Z., DING, T., WU, C., YE, Y., LUO, Z.-Q. and SUN, R. (2024b).
 613 Adam-mini: Use fewer learning rates to gain more. *arXiv preprint arXiv:2406.16793*.

614 ZHAO, J., ZHANG, Z., CHEN, B., WANG, Z., ANANDKUMAR, A. and TIAN, Y. (2024a). Galore:
 615 Memory-efficient llm training by gradient low-rank projection. *arXiv preprint arXiv:2403.03507*.

616 ZHAO, R., MORWANI, D., BRANDFONBRENER, D., VYAS, N. and KAKADE, S. (2024b). Decon-
 617 structing what makes a good optimizer for language models. *arXiv preprint arXiv:2407.07972*.

618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 A EXPERIMENT DETAILS ON LLAMA MODELS

649
 650 Many aspects of our setup such as models are the same as in Zhao et al. (2024a). We train language
 651 models on C4 tokenized with the T5 tokenizer (Raffel et al., 2020) and report results in terms of
 652 validation loss.

653 **Models.** We start from the GaLore Codebase (Zhao et al., 2024a) and train LLaMA models of three
 654 sizes: 130M, 350M, and 1B. The models have widths of 768, 1024, and 2048 and depths of 12,
 655 16, and 24. We use the 130M model to explore various ablations as shown in Section 4.1. The
 656 MLP hidden dimension of the 130M model is 4 times the width and the hidden dimension of the
 657 350M and 1B model is $\frac{8}{3}$ times the width. The activation function is SiLU (Elfwing et al., 2018). The
 658 architecture uses RoPE positional encodings (Su et al., 2024). Attention heads are always dimension
 659 64. For more architecture details please refer to Zhao et al. (2024a). We train in mixed precision
 660 with FP32.

661 **Algorithms.** We use the standard Pytorch implementation of Adam, and the official GaLore imple-
 662 mentation provided by Zhao et al. (2024a). Since Two-Sided SOAP is too memory consuming and
 663 is not within our comparison scope, we modify the code provided by Vyas et al. (2024) to apply
 664 One-Sided SOAP discussed in Vyas et al. (2024). We use the official Adam-mini implementation
 665 provided by Zhang et al. (2024b). For MUON and NS5, we use their implementation provided by
 666 Jordan et al. (2024) in their Github records. We implement our COSMOS starting from an older
 667 version of Pytorch implementation of AdamW.

668 **Default hyperparameters.** In all algorithms, we choose first order momentum $\beta_1 = 0.9$ to align
 669 with and get a fair comparison with Adam baseline. We choose second order momentum $\beta_2 =$
 670 0.98 , which is also a widely used configuration after Liu et al. (2019) mentioned that it provides
 671 better training stability than 0.999. We set smoothing term $\epsilon = 1e-8$ to align with the standard
 672 hyperparameter choice. We use the linear learning rate schedule to decay the learning rate to 0. To
 673 align with Zhao et al. (2024a), we set the warmup ratio to be 10% and weight decay to be 0.

674 **Token counts.** For all of our runs we use a sequence length of 1024. For the 130M model, we
 675 set the batch size to be 960, and for the 350M and 1B models, we set the batch size to be 2000.
 676 We train the 130M and 350M models for 5k steps and train the 1B model for 13k steps. Thus
 677 the number of training tokens for the 130M mode $\approx 5B$, which is beyond the “chinchilla optimal”
 678 number of tokens. The numbers of training tokens for the 350M model and 1B model are 10B and
 679 26B respectively, which follow the chinchilla optimal” number of tokens.

680 A.1 LEARNING RATE TUNING

681 To avoid unfair comparisons caused by excessive hyperparameter tuning, for all algorithms we set
 682 the learning rate as the only tunable hyperparameter in all the main results in Section 4. The rank r
 683 for COSMOS for all main results is fixed at 64.

685 A.1.1 TUNING ON 130M MODEL

687 For Adam, we tune the learning rate on $\{2.5e-4, 5e-4, 1e-3, 2e-3, 4e-3, 8e-3\}$. In our experiments,
 688 $2e-3$ is the optimal learning rate and $8e-3$ diverges. Then for SOAP, we also tune the learning rate
 689 on $\{5e-4, 1e-3, 2e-3, 4e-3\}$. For Adam-mini, we just use the optimal learning rate of Adam, which
 690 is also $2e-3$.

691 For GaLore, We follow the setting in Zhao et al. (2024a), set rank=256, and scale factor $\alpha = 0.25$.
 692 According to Zhao et al. (2024a), the learning rate of Galore should be larger than Adam’s. They
 693 mentioned that Galore is not sensitive to hyperparameter and they use the same learning rate $1e-2$
 694 for all size of models after tuning, we simply tune galore in a range near $1e-2$, which is $\{5e-3, 1e-2,$
 695 $2e-2, 4e-2\}$. The projection update frequency is 200 for 20k training steps, thus we decrease it to 50
 696 for our 5k training steps.

697 For the implementation of MUON and COSMOS, the embedding and output layer will use Adam
 698 while other parts will use MUON/COSMOS algorithm. To avoid multiple hyperparameter tuning,
 699 we fix the learning rate for embedding and output layer to $2e-3$, which is the optimal learning rate
 700 for Adam, and only tune the learning rate of hidden layers, whose optimizer is MUON/COSMOS.
 701 To be more specific, we tune the learning rate of hidden layers on $\{1e-4, 2e-4, 5e-4, 1e-3, 2e-3\}$.
 It is worth noting that (Liu et al., 2025) suggests the optimal learning rate for MUON should be

702 0.2–0.4 times that of the Adam learning rate used for the embedding layer (2e-3 in our setting),
 703 which exactly falls within the range we searched.

704 For COSMOS, as we mentioned before, to avoid tuning γ , we simply set γ to be the ratio of the
 705 learning rate of hidden layers to the learning rate of the embedding layer (which is fixed at 2e-3).
 706 We find that this trick can provide a satisfactory result without extra tuning on γ . Please note that
 707 we find in many extra experiments that this trick isn't the optimal choice for γ . Tuning γ may output
 708 a better result.

710 **A.1.2 TUNING ON 350M MODEL**

712 For Adam and SOAP, we tune the learning rate on $\{2.5e-4, 5e-4, 1e-3, 2e-3, 4e-3, 8e-3\}$, which
 713 is same as the range in Section A.1.1. For GaLore, we set the rank to be 384, projection update
 714 frequency to be 50, and scale factor $\alpha = 0.25$. Then we tune the learning rate of GaLore on $\{5e-3,$
 715 $1e-2, 2e-2, 4e-2\}$, which is also same as what we do in Section A.1.1.

716 For the implementation of MUON and COSMOS, we still fix the learning rate for embedding and
 717 output layer to be 2e-3 and only tune the learning rate of MUON/COSMOS for hidden layers. For
 718 MUON and COSMOS, we tune the learning rate on $\{1e-4, 2e-4, 5e-4, 1e-3, 2e-3\}$ to align with our
 719 setting in Section A.1.1. Also for COSMOS, we still set γ to be the ratio of the learning rate of
 720 hidden layers to the learning rate of the embedding layer (which is fixed at 2e-3).

722 **A.1.3 TUNING ON 1B MODEL**

724 We do not have enough resources to tune hyperparameters carefully on the 1B model. For Adam,
 725 we first try learning rate $\eta = 2e-3$, but an extremely large loss spike occurred in the early stage.
 726 Then we decrease η to 1e-3 and get the baseline result. For MUON and COSMOS, we still fix the
 727 learning rate for embedding and output layer to be 2e-3 and tune their learning rate on $\{2e-4, 5e-4\}$.
 728 For COSMOS, we still set γ to be the ratio of the learning rate of hidden layers to the learning rate
 729 of the embedding layer.

730 **A.1.4 DISCUSSION ON LEARNING RATE TUNING**

732 We are discussing the learning rate used by MUON in their reproducible logs here to demonstrate
 733 that our learning rate falls within a reasonable range.

734 There are two versions of Muon implemented in the reproducible logs of modded nanogpt. In the
 735 early versions, the algorithm they used was consistent with what we described in Algorithm 3. This
 736 algorithm has been used on both 124M and 1.5B GPT models and achieved SOTA performance.

738 In this version, they used Adam's baseline learning (3.6e-3) rate as the learning rate for the embedding
 739 and output layers on a 124M model, and used 3.6e-4 as the cleaning rate for Muon. In our
 740 experiment, since the Adam baseline learning rate we obtained was 2e-3, which is a little different
 741 with 3.6e-3, we also use this learning rate as the learning rate for the embedding and output layers.
 742 We avoid adjusting the learning rates of the embedding and output layers, as this would result in
 743 the tuning of both learning rates for two parts of parameters. Generally speaking, this would yield
 744 better results than adjusting only one learning rate, but this effect is not fair compared to the Adam
 745 algorithm with only one learning rate. For Muon's learning rate in our experiments, our traversal set
 746 $\{1e-4, 2e-4, 5e-4, 1e-3, 2e-3\}$ is also relatively close to their 3.6e-4.

746 In the later reproducible logs, they made a simple modification to Muon, but did not mention whether
 747 this would improve the effect. This modification is to change the line 7 in Algorithm 3 to be $W_{t+1} \leftarrow$
 748 $W_t - \eta B_t \cdot \sqrt{\frac{m}{n}}$.

750 Considering that n for different matrix parameters in the same LLM are the same (e.g., 768 in the
 751 124M GPT), this method is just a simple rescale. However, due to the current scale being reduced
 752 by \sqrt{n} times, this method generally requires a larger learning rate. For example, in their subsequent
 753 logs, they used 0.02. This learning rate is nearly equivalent to using $0.02/\sqrt{768} \approx 7.2e-4$ in the
 754 first version, which is also close to our traversal set $\{1e-4, 2e-4, 5e-4, 1e-3, 2e-3\}$.

755 Since MUON did not specify which version would be more advantageous, we used the first version
 in our experiments, as it provided more reproducible logs. At the time we began experimenting with

756 MUON, the second version was not yet available. For consistency, we therefore continued with the
 757 first version, which was also adopted in the subsequent work on MUON scaling (Liu et al., 2025).
 758

759 A.2 ABLATION OF r AND γ ON 130M MODEL

760 For the ablation experiments on COSMOS in Section 4.1, we tune discount factor γ and rank r
 761 together to show COSMOS isn't very sensitive to hyperparameters. We fix the learning rate for em-
 762 bedding and output layers to be $2e-3$, fix the learning rate for COSMOS to be $5e-4$, and sweep over
 763 the cross product of $r \in \{32, 64, 128\}$ and $\gamma \in \{0.1, 0.25, 0.5, 1\}$. With all these hyperparameters
 764 COSMOS outputs comparable results to MUON.

765 A.3 ABLATION OF NORMALIZATION

766 As mentioned in the normalization paragraph in Section 4.1, to exclude the possibility that the better
 767 performance of COSMOS than MUON is simply because the normalization function NORM, we
 768 modify the normalization method of MUON to be NORM and rerun the experiments for 130M and
 769 350M models. We still tune the learning rate of MUON + NORM on $\{5e-3, 1e-2, 2e-2, 4e-2\}$, and
 770 present their best performance.

771 A.4 PROFILING EXPERIMENTS

772 We do the profiling experiments on the 1B model. We set the sequence length to 1024, which
 773 aligns with our previous settings. We set batch size 10 and accumulation steps 25. Then we record
 774 the maximum GPU memory usage and time usage on this setting by using Pytorch API during the
 775 entire forward-backward and optimizer update process.

776 B EXPERIMENTS DETAILS ON MODDED-NANO GPT

777 As discussed in Section 4.3, we directly use Muon's reproducible logs on modded NanoGPT. In
 778 the setting of GPT-2 Small (124M), they set the learning rate for embedding layer (optimized with
 779 Adam) to be $3.6e-3$, and the learning rate for hidden layers (optimized with Muon) to be $3.6e-4$.
 780 Also they use Warmup-Stable-Decay (WSD) schedule instead of Cosine schedule. Their batch size
 781 is 512, sequence length is 1024 and number of iterations is 6200.

782 In the training of 124M model, we followed their original setting for Muon and only additionally
 783 searched β_1 within $\{0.9, 0.95\}$. For COSMOS, we adopted the same setting as Muon, also searching
 784 β_1 in $\{0.9, 0.95\}$. For β_2 and γ in COSMOS, we set them to 0.95 and 0.2 without additional search.

785 In the training of GPT-2 Medium (350M), they used a very uncommon setting: the learning rate
 786 for embedding layer is 0.3, which is very large. But the learning rate for output layer is still $3e-3$.
 787 They also reduced the momentum for the embedding layer and output layer to 0.8 – which is also
 788 an uncommon choice.

789 To demonstrate the generality of COSMOS across various settings, our experiments on the 350M
 790 model completely follow their setting. We only additionally search β_1 within $\{0.9, 0.95\}$ for both
 791 Muon and COSMOS. However, since this setting is indeed uncommon and subsequent work on
 792 Muon scaling (Shah et al., 2025; Liu et al., 2025) did not follow it, we did not adopt this setting in
 793 our other experiments (LLaMA on C4 and GPT2 on Wikitext103).

794 C TWO-SIDED COSMOS

795 For simplicity, we only consider the one-side version of COSMOS in this paper. Like SOAP, COS-
 796 MOS can be further generalized to a two-sided version. Similar to two-sided SOAP in Vyas et al.
 797 (2024), we provide a two-sided variant of COSMOS in Algorithm 4.

800 D ADDITIONAL EXPERIMENTS

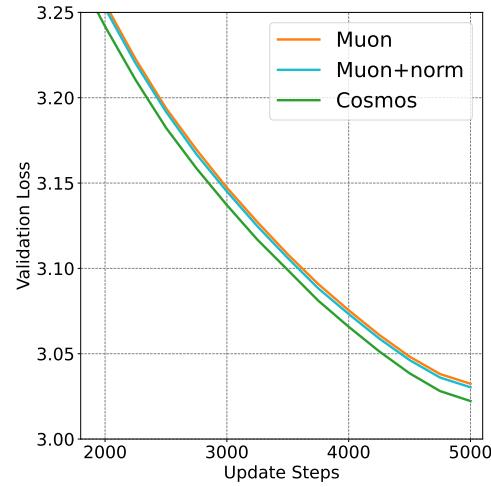
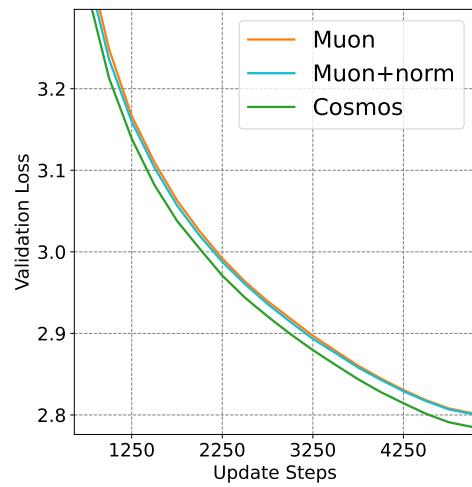
801 This section provides supplementary experiments not presented in the main text.

802 D.1 EXPERIMENTS FOR NORMALIZATION ABLATION

803 We conduct additional experiments on LLaMA-130M and LLaMA-350M to validate that normal-
 804 ization is not the main reason for COSMOS outperforming MUON. As shown in Figure 5, normal-
 805 ization does not make much difference to MUON, while COSMOS consistently outperforms both
 806 of them.

810
 811 **Algorithm 4** Two-sided version of COSMOS for a $m \times n$ layer. Per layer, we maintain six matrices:
 $U \in \mathbb{R}^{n \times r}$, $O \in \mathbb{R}^{m \times r}$, $S, R \in \mathbb{R}^{r \times r}$, $V \in \mathbb{R}^{m \times r}$ and $M \in \mathbb{R}^{m \times n}$.

812 **input** Learning rate η , combination weight γ , projection rank $r \ll n$, momentum parameters
 813 (β_1, β_2) , perturbation parameter ϵ . For simplicity, we omit the initialization.
 814 1: **for** $t = 0, \dots$ **do**
 815 2: Sample batch \mathcal{M}_t
 816 3: $G_t \leftarrow \nabla_W \phi_{\mathcal{M}_t}(W_t)$
 817 4: $M_t \leftarrow \beta_1 M_{t-1} + (1 - \beta_1) G_t$
 818 5: $U_t \leftarrow \text{QR}(\beta_2 U_{t-1} S_{t-1} + (1 - \beta_2) G_t^\top G_t U_{t-1})$
 819 6: $O_t \leftarrow \text{QR}(\beta_2 R_{t-1} O_{t-1} + (1 - \beta_2) G_t G_t^\top O_{t-1})$
 820 7: $S_t \leftarrow U_t^\top (\beta_2 U_{t-1} S_{t-1} U_{t-1}^\top + (1 - \beta_2) G_t^\top G_t) U_t$
 821 8: $R_t \leftarrow O_t^\top (\beta_2 O_{t-1} R_{t-1} O_{t-1}^\top + (1 - \beta_2) G_t G_t^\top) O_t$
 822 9: $V_t \leftarrow \beta_2 V_{t-1} + (1 - \beta_2) (O_t^\top G_t U_t) \odot (O_t^\top G_t U_t)$
 823 10: $A_t = O_t \left(\frac{O_t^\top M_t U_t / (1 - \beta_1^t)}{\sqrt{(V_t + \epsilon) / (1 - \beta_2^t)}} \right) U_t^\top$
 824 11: $B_t \leftarrow \text{NORM} \left(\text{NS5} \left(\frac{M_t - O_t^\top O_t M_t U_t U_t^\top}{\|M_t - O_t^\top O_t M_t U_t U_t^\top\|_F} \right) \right)$
 825 12: $\tilde{G}_t \leftarrow A_t + \gamma \cdot B_t \cdot \sqrt{m}$
 826 13: $W_{t+1} \leftarrow W_t - \eta \cdot \text{NORM}(\tilde{G}_t)$
 827 14: **end for**



851 Figure 5: Comparison of COSMOS, MUON, and MUON with normalization on LLaMA-130M and
 852 LLaMA-350M for C4.

853
 854
 855

D.2 EXPERIMENTS ON WIKITEXT

856 This section discuss the details of the experiments on WikiText (Merity et al., 2016) and GPT-
 857 2 (Radford et al., 2019). To be more specific, we train GPT2-small(125M) and GPT2-medium
 858 (355M) on the Wikitext-103 dataset. We discard learnable position embeddings and use RoPE (Su
 859 et al., 2024) as a replacement.

860 For GPT2-small, we tune the learning rate of Adam on $\{5e-4, 1e-3, 2e-3, 4e-3, 8e-3\}$, and find $4e-3$
 861 is the optimal learning rate for Adam. Then in MUON/COSMOS, we use learning rate $4e-3$ for the
 862 embedding layer and $4e-4$ for MUON/COSMOS.

864 Similarly, for GPT2-medium, we tune the learning rate of Adam on $\{5e-4, 1e-3, 2e-3, 4e-3, 8e-3\}$,
 865 and find $2e-3$ is the optimal learning rate for Adam. Then in MUON/COSMOS, we use learning
 866 rate $2e-3$ for the embedding layer and $5e-4$ for MUON/COSMOS.

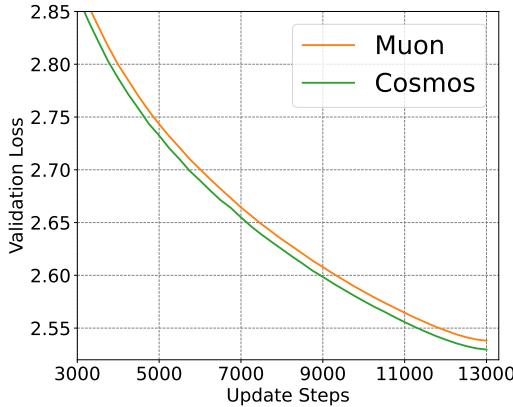
867 For COSMOS, γ is still set to be the ratio of the hidden layer learning rate to the embedding layer
 868 learning rate in both models.

870 We set the sequence length to be 1024, and the batch size is also 1024. We train both models for 5k
 871 steps, which means the models are trained on 5B tokens. For such many training tokens on Wikitext-
 872 103, overfitting will occur and validation loss will start to increase after training for a certain number
 873 of steps. Therefore, we use the training loss as the metric for comparison.

874 The results for GPT2-small and GPT2-medium are provided in Figures 4a and 4b, respectively.
 875 We observe that COSMOS consistently outperforms MUON, showing that it does not overfit any
 876 particular model or dataset.

877 D.3 SMALLER LEARNING RATE FOR MUON/COSMOS ON LLAMA-1B

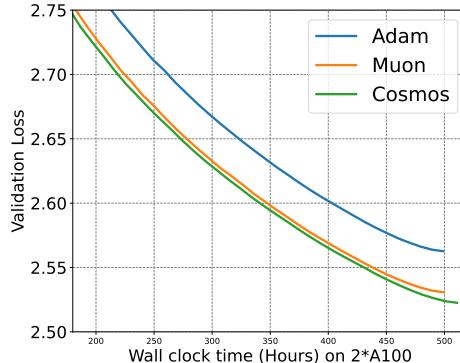
879 As discussed in section A.1.3, we tune the learning rate for MUON/COSMOS on $\{2e-4, 5e-4\}$. We
 880 find $5e-4$ is better and present its corresponding results in the main text. Here we present the result
 881 for $2e-4$ in Figure 6, where COSMOS still outperforms MUON.



896 Figure 6: LLAMA-1B trained on C4 dataset with learning rate $2e-4$ for MUON/COSMOS. COS-
 897 MOS still outperforms MUON.

899 D.4 WALL-CLOCK TIME PLOT FOR LLAMA-1B

901 Based on the throughput we calculate in Table 6, we rescale the X-axis of Figure 2b to be wall-clock
 902 time and present the result in Figure 7.



916 Figure 7: Wall-Clock time plot for our training on LLAMA-1B.

918

D.5 EXPERIMENTS ON SHORTER SEQUENCES

919

920 To validate the correctness of our implementation, we compare GaLore with COSMOS and Adam
 921 on 256 sequence length as adopted in Zhao et al. (2024a). As shown in Figure 8, GaLore and Adam
 922 are more comparable in this shorter sequence setting, suggesting our implementation is correct and
 923 the degradation of GaLore shown in Figure 1 and Table 2 is mainly due to long sequence length.

924

925

926

927

928

929

930

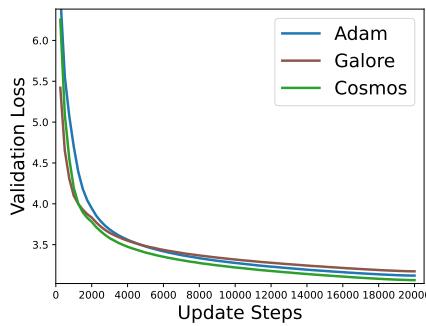
931

932

933

934

935



936 Figure 8: Comparison of COSMOS, Adam, and GaLore on 256 sequence length. The performance
 937 of GaLore on shorter sequences does not deteriorate as for long sequences, validating the correctness
 938 of our implementation.

939

E LLM USAGE

940

941 In preparing this paper, large language models (LLMs) such as ChatGPT were used only for light
 942 editing purposes, including minor grammar checking and sentence polishing. No part of the re-
 943 search ideation, methodology design, experimental execution, or analysis was conducted with the
 944 assistance of LLMs.

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971