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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable success across
various domains, yet their optimization remains a significant challenge due to the
complex and high-dimensional loss landscapes they inhabit. While adaptive op-
timizers such as AdamW are widely used, they suffer from critical limitations,
including an inability to capture interdependencies between coordinates and high
memory consumption. Subsequent research, exemplified by SOAP, attempts to
better capture coordinate interdependence but incurs greater memory overhead,
limiting scalability for massive LLMs. An alternative approach aims to reduce
memory consumption through low-dimensional projection, but these methods lose
the gradient information in the residual space, resulting in less effective optimiza-
tion. In this paper, we propose COSMOS, a novel hybrid optimizer that lever-
ages the varying importance of eigensubspaces in the gradient matrix to achieve
memory efficiency without compromising optimization performance. The design
of COSMOS is motivated by our empirical insights and practical considerations.
Specifically, COSMOS applies SOAP to the leading eigensubspace, which cap-
tures the primary optimization dynamics, and MUON to the remaining eigensub-
space, which is less critical but computationally expensive to handle with SOAP.
This hybrid strategy significantly reduces memory consumption while maintain-
ing robust optimization performance, making it particularly suitable for massive
LLMs. Numerical experiments on various datasets and transformer architectures
are provided to demonstrate the effectiveness of COSMOS.

1 INTRODUCTION

The optimization of Large Language Models (LLMs) is fundamental to their success, enabling these
models to achieve state-of-the-art performance across diverse tasks. However, the non-convex loss
landscapes inherent to LLMs, which can contain hundreds of billions or even trillions of parame-
ters (Achiam et al., 2023), present significant optimization challenges. Adaptive optimizers, such as
Adam (Kingma, 2014) and its variants AdamW (Loshchilov, 2017), have emerged as de facto stan-
dards due to their ability to dynamically adjust learning rates based on the second moment of the
gradient. Despite their widespread adoption, these methods suffer from two critical limitations that
impede their effectiveness and scalability in the context of increasingly large and complex LLMs:

(I) Adam and its variants have limitations in adaptive learning rates. By adjusting learning rates
independently for each parameter, the method reduces computational complexity but may not fully
capture parameter interdependencies. In complex architectures of LLMs, this independent approach
can lead to suboptimal parameter updates (Zhang et al., 2024a).

(II) Another limitation of Adam and its variants lies in the substantial memory requirement for
storing per-parameter adaptive learning rates and gradient statistics. As LLM sizes increase, memory
consumption becomes prohibitively large, impeding scalability.

To address the limitations of Adam and its variants, researchers have pursued two main approaches.
The first approach, exemplified by algorithms such as Shampoo (Gupta et al., 2018) and the more
recent SOAP (Vyas et al., 2024), employs sophisticated techniques to capture curvature information
and parameter interdependencies. These methods utilize rotational matrices, derived through (ap-
proximate) singular value decomposition (SVD) of the gradient matrix, to provide a more compre-
hensive representation of the loss landscape’s geometry. This approach allows for a better approx-
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imation of the full preconditioning matrix, enabling the capture of inter-coordinate dependencies.
However, the improved capability of representing parameter interactions comes at the cost of sub-
stantial computational and memory overhead, rendering these algorithms challenging to implement
for large-scale LLMs, where memory efficiency is crucial.

The second approach focuses on reducing memory consumption through various approximation
techniques. Algorithms such as AdaFactor (Shazeer and Stern, 2018) and Adam-mini (Zhang et al.,
2024b) aim to decrease memory usage by approximating the second moment of the gradient ma-
trix. Adam-mini employs a component-specific approach, averaging second moments neuron-wise
for certain layers. Meanwhile, AdaFactor utilizes a rank-1 approximation of the second moments.
While these methods reduce memory cost, their approximations oversimplify the structure of the
gradient matrix’s second order moments, compromising optimization performance. The trade-off
between memory efficiency and the preservation of gradient statistics remains a crucial challenge.

More recent approaches, such as GaLore (Zhao et al., 2024a) and MUON (Jordan et al., 2024),
have attempted to strike a balance between computational complexity, memory consumption, and
optimization performance in LLM training. GaLore, which can be viewed as a memory-efficient
variant of SOAP, approximates the first and second moments of the gradient matrix in the leading
eigensubspace. While it effectively reduces memory consumption, Liang et al. (2024) find that its
effectiveness diminishes for sequence lengths exceeding 256. MUON, essentially an approximation
of Shampoo based on Newton-Schulz transformation proposed in Bernstein and Newhouse (2024),
aims to decrease computational complexity. However, MUON only estimates the eigensubspaces
based on the gradient on one batch, rather than capturing the comprehensive distribution of gradients
across the entire optimization process.

In this paper, we propose COSMOS, a novel hybrid optimizer that addresses the limitations of ex-
isting methods by exploiting the varying importance of eigensubspaces in the gradient matrix. Our
approach decomposes the gradient into two parts: a projection onto the leading eigensubspace and a
projection onto the remaining eigensubspace. The leading eigensubspace captures the most signifi-
cant directions of change in the gradient, typically corresponding to the most important optimization
dynamics. For this part, we apply a SOAP-like optimization strategy. However, by crucially restrict-
ing SOAP to the leading eigensubspace, COSMOS only needs to maintain the projection matrix and
the second-order moment within this small subspace, thereby retaining SOAP’s ability to capture
parameter interdependencies while substantially lowering its memory cost. The remaining eigen-
subspace, while less critical, still significantly influences optimization performance. To address this,
we employ MUON as a more efficient alternative to SOAP for this high-dimensional space. Such a
hybrid approach allows COSMOS to maintain optimization effectiveness while significantly reduc-
ing memory requirements compared to SOAP, potentially enabling the training of larger LLMs or
the use of increased batch sizes.

We highlight the key contributions of this paper as follows: (1) We propose a novel hybrid opti-
mization strategy. This leads us to develop the COSMOS algorithm, which synergizes the strengths
of SOAP and MUON by decomposing the gradient matrix into eigensubspaces of varying impor-
tance. (2) COSMOS achieves significant memory consumption reduction compared to the SOAP
algorithm, while achieving equally or better optimization performance.

2 RELATED WORK

The optimization of LLMs has seen significant advancements in recent years, with various ap-
proaches aimed at improving efficiency and performance. This section discusses key related works
in adaptive optimization, memory-efficient techniques, and specialized algorithms for LLMs.

Coordinate-wise adaptive optimizers: Adam (Kingma, 2014) and AdamW (Loshchilov, 2017)
have become standards in deep learning optimization due to their ability to dynamically adjust
learning rates based on the first and second moments of the gradients. However, these methods treat
parameters independently, failing to capture interdependencies between coordinates. This limitation
can lead to suboptimal updates, especially in the complex architectures of LLMs. Other adaptive
optimizers such as Lion (Chen et al., 2023), Sophia (Liu et al., 2023), and Adafactor (Shazeer and
Stern, 2018; Zhai et al., 2022) have shown comparable performance to AdamW in LLM pretraining
but have not significantly surpassed it, suggesting the need for non-diagonal preconditioners.
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Second-Order Optimizers: Researchers have explored second-order optimization techniques for
training large models. These methods can be broadly categorized into Hessian-free approaches and
Hessian estimation methods. Hessian-free methods, such as those proposed by Martens (2010) and
Martens and Grosse (2015), optimize without explicitly computing the Hessian matrix. On the other
hand, Hessian estimation methods maintain an efficient approximation of the Hessian for neural
networks. Notable examples include KFAC (Martens and Grosse, 2015), Shampoo (Gupta et al.,
2018) and SOAP (Vyas et al., 2024).

⋄ Shampoo and Its Variants: Shampoo (Gupta et al., 2018), another second-order optimization al-
gorithm, is motivated by the online learning algorithm Adagrad (Duchi et al., 2011). Shampoo also
employs a layer-wise Kronecker-factored preconditioner. A recent distributed implementation of
Shampoo (Shi et al., 2023) won an optimization efficiency benchmark (Dahl et al., 2023), highlight-
ing the practical utility of second-order methods in deep learning. Other works (Anil et al., 2020;
Peirson et al., 2022; Lin et al., 2024; Wang et al., 2024; Zhao et al., 2024b) have proposed various
strategies to improve Shampoo’s scalability.

⋄ SOAP: SOAP algorithm (Vyas et al., 2024) establishes a formal connection between Shampoo and
Adafactor. SOAP is equivalent to running Adafactor in the eigenbasis of Shampoo’s preconditioner,
leading to a simpler and computationally efficient algorithm. By continually updating the running
average of the second moment in the current (slowly changing) coordinate basis, SOAP mitigates
the performance degradation associated with less frequent eigendecomposition computations. SOAP
has shown significant improvements over AdamW in per-token efficiency.

Memory-efficient optimizers: As LLM sizes increase, memory efficiency becomes crucial. Several
approaches have been proposed to reduce the memory footprint of optimizers:

⋄ Adafactor and Adam-mini: Shazeer and Stern (2018) use a low-rank approximation of the sec-
ond moments to reduce memory consumption. It has been widely used in LLMs due to memory
efficiency. Zhang et al. (2024b) achieve comparable performance than AdamW with a 50% smaller
memory footprint. It reduces memory by carefully partitioning parameters into blocks and assigning
a single learning rate to each block based on the Hessian structure of neural networks.

⋄ GaLore: Zhao et al. (2024a) reduce Adam’s memory footprint by maintaining momentum in a
low-rank subspace derived from the singular value decomposition (SVD) of the gradients. However,
its effectiveness diminishes for sequence lengths exceeding 256, as shown in Liang et al. (2024).

⋄MUON: The MUON optimizer (Jordan et al., 2024) can be viewed as an efficient approximation of
Shampoo. It employs a Newton-Schulz transformation to approximately implement the Kronecker-
factored preconditioner. While computationally more complex than Adam, MUON only adds minor
overhead to the overall training time due to efficient parallelization of matrix operations.

These advancements highlight the efforts to improve the training efficiency and performance of
LLMs. However, each approach comes with its own trade-offs in terms of computational complexity,
memory requirements, and performance. Our work builds upon these insights to develop a hybrid
approach that aims to balance these factors effectively, combining the strengths of different methods
to achieve both memory efficiency and robust optimization performance for massive LLMs.

3 COSMOS: A HYBRID ADAPTIVE OPTIMIZER

We present a novel hybrid optimizer – COSMOS in Algorithm 1, which can achieve memory effi-
ciency without compromising performance for training LLMs. Without loss of generality, we use m
and n to denote the numbers of rows and columns in a m by n matrix, and we assume m > n. For
simplicity, we use the following notations:

• Matrix Sign Operator: Given a matrix X ∈ Rm×n and its reduced-SVD X = UDV ⊤, where
D ∈ Rn×n is a diagonal matrix containing all singular values of X , and U ∈ Rm×n and V ∈ Rn×n

are left and right singular vector matrices, respectively. We define
MatSgn(X) = UV ⊤.

• Newton Schulz (NS) transformation: Given a matrix X0 ∈ Rm×n, where ∥X0∥F ≤ 1, we define
NS5(X0) = X5.

where X5 is obtained by Xk+1 = aXk + bXkX
⊤
k Xk + cXkX

⊤
k XkX

⊤
k Xk for k = 0, 1, ..., 4 with

a = 3.4445, b = −4.7750 and c = 2.0315. Bernstein and Newhouse (2024) first mentioned this
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transformation to approximate the matrix sign operator without specifying the coefficient. Jordan
et al. (2024) later used an ad-hoc gradient based approach to find the set of coefficients here.

• Normalization operator: NORM(X) =
√
nX/∥X∥F, where ∥ · ∥F denotes the Frobenius norm.

The normalization operator is used to normalize the output of the NS transformation.

• Gram–Schmidt procedure: QR(X).

Algorithm 1 COSMOS for an m×n layer W . Per layer, we maintain four matrices: U ∈ Rn×r, S ∈
Rr×r, V ∈ Rm×r and M ∈ Rm×n.
input Learning rate η, combination weight γ, projection rank r ≪ n, momentum parameters

(β1, β2), perturbation parameter ϵ. For simplicity, we omit the initialization.
1: for t = 0, ... do
2: Sample batchMt

3: Gt ← ∇WϕMt
(Wt)

4: Mt ← β1Mt−1 + (1− β1)Gt

5: Ut ← QR(β2Ut−1St−1 + (1− β2)G
⊤
t GtUt−1)

6: St ← U⊤
t (β2Ut−1St−1U

⊤
t−1 + (1− β2)G

⊤
t Gt)Ut

7: Vt ← β2Vt−1 + (1− β2)(GtUt)⊙ (GtUt)

8: At =

(
MtUt/(1− βt

1)√
(Vt + ϵ)/(1− βt

2)

)
U⊤
t

9: Bt ← NORM

(
NS5

(
Mt −MtUtU

⊤
t

∥Mt −MtUtU⊤
t ∥F

))
10: G̃t ← At + γ ·Bt ·

√
m

11: Wt+1 ←Wt − η · NORM(G̃t) ·
√
m

12: end for

Design principle The design of COSMOS is guided by a simple principle: instead of maintain-
ing SOAP’s full second-moment matrix—which is memory-prohibitive—we track its dominant
eigenspace and operate in a low-dimensional subspace.

In the SOAP algorithm, the exponential moving average (EMA) of the second moment is

Ht = β2Ht−1 + (1− β2)G
⊤
t Gt, (1)

where Gt is the stochastic gradient. Because Ht ∈ Rn×n is dense, storing it is infeasible for large n.
COSMOS avoids this by maintaining (i) an orthonormal basis Ut ∈ Rn×r for the leading eigenspace
of Ht and (ii) a projected second-moment matrix St ∈ Rr×r with

St ≈ U⊤
t HtUt.

Assume at step t − 1 that Ut−1 spans the dominant eigenspace and St−1 ≈ U⊤
t−1Ht−1Ut−1. Ap-

proximating Ht−1 by its rank-r surrogate, Ut−1St−1U
⊤
t−1, and substituting into Equation (1) yields

H̃t = β2 Ut−1St−1U
⊤
t−1 + (1− β2)G

⊤
t Gt.

We then update the basis via a one-step power iteration:

Ut = QR
(
H̃t Ut−1

)
,

and refresh the projected second moment by

St = U⊤
t H̃tUt.

These two steps track the dominant eigenspace and its curvature information with O(nr) memory.

Given Ut, Line 7 of Algorithm 1 maintains the EMA of the projected gradients Vt ∈ Rm×r, and
Line 8 performs a SOAP-like adaptive update within the subspace spanned by Ut, producing At

after projecting back to the full parameter space. This is the SOAP component of COSMOS.

To complement the low-rank update, COSMOS applies a MUON-inspired preconditioner on the
orthogonal complement of Ut. Writing the orthogonal projector as P⊥

t = I − UtU
⊤
t , Line 9 forms

Bt = NORM

(
NS5

(
MtP

⊥
t

∥MtP⊥
t ∥F

))
= NORM

(
NS5

(
Mt −MtUtU

⊤
t

∥Mt −MtUtU⊤
t ∥F

))
, (2)
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where NS5 applies directly to the residual momentum; no additional matrices are stored.

Finally, Lines 10–11 combine the two components:
G̃t = At + γBt

√
m, Wt+1 = Wt − η NORM(G̃t)

√
m.

The normalization ensures the update has Frobenius norm Θ(
√
mn), matching MUON’s scaling. In

sum, COSMOS adaptively preconditions the leading eigenspace as in SOAP while using MUON on
the residual, achieving robust optimization with substantially reduced memory.

Algorithm 2 (One-side) SOAP
input Learning rate η, momentum parameters (β1, β2),

perturbation parameter ϵ.
1: for t = 0, ... do
2: Sample batchMt

3: Gt ← ∇WϕMt(Wt)
4: Mt ← β1Mt−1 + (1− β1)Gt

5: Lt ← β2G
⊤
t GtUt−1 + (1− β2)G

⊤
t GtUt−1

6: Ut ← QR(LtUt−1)
7: G′

t ←MtUt

8: Vt ← β2Vt−1 + (1− β2)(G
′
t ⊙G′

t)

9: At =

(
G′

t/(1− βt
1)√

(Vt + ϵ)/(1− βt
2)

)
U⊤
t

10: Wt+1 ←Wt − ηAt

11: end for

Algorithm 3 MUON
input Learning rate η, momentum

parameters µ.
1: for t = 0, ... do
2: Sample batchMt

3: Gt ← ∇WϕMt(Wt)
4: Mt ← µMt−1 +Gt

5: Nt ← µMt +Gt

6: Bt ← NS5(Nt/∥Nt∥F)
7: Wt+1 ←Wt − ηBt ·

√
m

8: end for

Remark 1 As can be seen, COSMOS only needs to maintain four matrices in the memory: Mt ∈
Rm×n, Ut ∈ Rn×r, St ∈ Rr×r and Vt ∈ Rm×r. In sharp contrast, even one-sided SOAP (2)
needs to maintain Mt ∈ Rm×n, Lt ∈ Rn×n, Ut ∈ Rn×n and Vt ∈ Rm×n. The resulting memory
overhead is which is significantly larger than that of COSMOS.

Remark 2 Recall that the the computation complexity of the QR decomposition on a matrix of
the shape n × r is O(nr2) when rn, so the low rank QR decomposition of β2Ut−1St−1 + (1 −
β2)G

⊤
t GtUt−1 in COSMOS is actually very quick since r ≪ n (and much quicker than that in SOAP,

which is O(n3)). Therefore, unlike SOAP which needs to consider the preconditioning frequency for
performing QR decomposition, we can carry out QR decomposition at every step with virtually no
overhead. In addition, PyTorch provides an efficient implementation of QR method, which is also
used by SOAP. In Table 5, we provide the comparison of wall-clock time per iteration to show that
compared to MUON, COSMOS only incurs a very slight increase in wall-clock time.

3.1 MEMORY USAGE COMPARISON

For comparison, we list the memory usage of the optimization states in Adam, Adam-mini, SOAP,
MUON and COSMOS for training transformer models in Table 1. For simplicity, we assume that the
attention weight matrices WQ,WK ,WV ,WO ∈ Rd×d and the MLP weight matrices W1 ∈ Rd×4d

and W2 ∈ R4d×d. Note that in practical LLMs, the dimensionalities of W1 and W2 might slightly
vary. Moreover, we assume that the rank of the projection is r = 0.05d for COSMOS.
Table 1: Memory usage of the optimization states in different algorithms for training transformers.

Adam Adam-mini SOAP MUON COSMOS

24d2 12d2 66d2 12d2 13d2

We remark that Table 1 only compares the optimization states. In practice, however, besides the
optimization states, the overall memory usage also includes the model weights and intermediate
variables used in the forward and backward passes as well as additional memory overhead of I/O
and computation. Therefore, we present a more detailed and practical memory profiling for training
LLaMA-1B model in Section 4.

4 EXPERIMENTS

We evaluate the performance of COSMOS on pre-training various sizes of LLMs, in comparison
with baseline algorithms including Adam (Kingma, 2014), Adam-mini (Zhang et al., 2024b), Ga-
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Lore (Zhao et al., 2024a), SOAP (Vyas et al., 2024) and MUON (Jordan et al., 2024). Note that for
SOAP, MUON and COSMOS, the embedding and output weights are trained by Adam.

Models and datasets. We train LLaMA-type models (Touvron et al., 2023) on the C4 dataset
(Raffel et al., 2020), which is a colossal, cleaned version of Common Crawl’s web crawl corpus
for pre-taining. We conduct comprehensive experiments and ablation studies on 130M models and
demonstrate the token efficiency of COSMOS. We then scale up to 350M and 1B models to show-
case the memory efficiency and small computational overhead of COSMOS. Due to limited compu-
tational resources, experiments on these larger models are less comprehensive, while still capable of
illustrating the efficacy of our method. We train for one epoch on a portion of the C4 dataset, ranging
from 5B to 26B tokens, and scaling with the model size according to the scaling law (Kaplan et al.,
2020). We set the maximum sequence length as 1024 by default.

Besides LLaMA models and C4 dataset, we also conducted experiments with modded-NanoGPT
(Jordan et al., 2024) on FineWeb (Penedo et al., 2024) and GPT-2 (Radford et al., 2019) on WikiText-
103 (Merity et al., 2016) to evaluate the effectiveness of COSMOS across different settings.

4.1 COMPARISON ON LLAMA-130M

For LLaMA-130M, we train on a 5B subset of the C4 dataset. We compare COSMOS’s validation
loss with that of Adam, Adam-mini, GaLore, MUON, and SOAP.

Hyperparameters. For each method, we tune the corresponding learning rate to obtain optimal
performance. We select the rank r = 64 for COSMOS and r = 256 for GaLore. To avoid multiple
hyperparameter tuning, we set the discount factor in COSMOS as γ = η/η0, where η0 is the learning
rate of Adam for training the embedding and output weights in the implementation of COSMOS.
Other hyperparameter choices follow Zhao et al. (2024a) and are provided in detail in Section A.1.1.

Main results. We plot the validation loss curves in Figure 1. As illustrated, COSMOS consistently
outperforms MUON with better stability and is comparable to SOAP. This showcases that our hybrid
approach leveraging the leading eigensubspace captures the most important information for efficient
update, allowing COSMOS to achieve similar per-token efficiency as SOAP. In addition, all three
methods outperform the vanilla Adam and are much better than Adam-mini and GaLore, validating
that inter-coordinate dependence is crucial for efficient optimization. We report the final validation
perplexity in Table 2.
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Figure 1: Performance on LLaMA-130M. COSMOS consistently outperforms baseline methods.
In the right plot, we hide GaLore to better compare the performance of COSMOS with SOAP and
MUON, as the curves are close in the left plot.

Ablation on learning rates. We experiment with different learning rates while keeping the rank
r = 64 and discount factor γ = η/η0 for COSMOS. As shown in the Table 3, COSMOS is not very
sensitive to the learning rate, and it achieves the best performance at 5e-4. As a comparison, MUON
is more sensitive to the learning rate, and it underperforms COSMOS across all learning rates.

Ablation on rank and discount factor. We also experiment with different ranks r and discount
factors γ while keeping the learning rate as 5e-4 for COSMOS, and the results are summarized in
Table 4. As illustrated, COSMOS is not very sensitive to r and γ, and the best discount factor is
around 0.25 to 0.5 across different ranks. In practice, our choice γ = η/η0 falls in this range, so it
serves as a valid heuristic that prevents extra tuning of γ. We provide details in Section A. Moreover,
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we observe that as rank increases, COSMOS performs slightly worse and is more sensitive to the
choice of γ. One possible explanation is that when the rank is large, the top-r eigenvalues of Mt

contain some smaller values that are close to the remaining eigenvalues. For these eigenvalues, the
one-step power iteration (Line 5 in Algorithm 1) cannot accurately approximate their corresponding
eigensubspaces, leading to larger approximation errors and worse performance.

Table 2: Validation perplexity after training on C4 dataset. We train for 5000 steps on 130M and
350M models and 13000 steps on 1B model. COSMOS achieves the best validation perplexity.

Size(Tokens) 130M(5B) 350M(10B) 1B(26B)
Adam 21.28 17.28 12.97

Adam-mini 21.78 18.03 -
GaLore 24.07 19.03 -
SOAP 20.59 16.32 -

MUON 20.69 16.49 12.57
COSMOS 20.54 16.21 12.46

Table 3: Validation perplexity under different learning rates. We set γ = η/η0 and r = 64 for
COSMOS. Our method outperforms MUON across all learning rates.

lr 2e-4 5e-4 1e-3 2e-3
MUON 21.72 20.75 20.69 26.74

COSMOS 21.17 20.54 20.62 21.00

Table 4: Valid perplexity of COSMOS under different r and γ. COSMOS is not very sensitive to r
and γ, and consistently outperforms MUON (20.69) except for only one config (r = 128, γ = 1).

r\γ 0.1 0.25 0.5 1
32 20.58 20.55 20.54 20.54
64 20.62 20.54 20.57 20.61

128 20.65 20.58 20.63 20.72

Effect of normalization. COSMOS applies a normalization step (Line 9 in Algorithm 1) after the
NS transformation compared to MUON (Algorithm 3). Empirically, we find that COSMOS also
outperforms the normalized version of MUON (see Figure 5 in Section D.1). This implies that
normalization is not the only driving force behind COSMOS’s efficiency.

GaLore degradation on long sequences. In our experiment, we observe that GaLore performs
much worse than COSMOS and other baselines, including Adam. Such a degradation is less sig-
nificant on the shorter sequences with length 256 (see Figure 8 in Section D.5, the setting adopted
in the original GaLore paper (Zhao et al., 2024a). This observation of GaLore degradation on long
sequences aligns with Liang et al. (2024), while a similar phenomenon appearing in fine-tuning is
reported by Pan et al. (2024). In contrast, COSMOS consistently outperforms Adam from short to
long sequences without suffering from degradation.

4.2 SCALING UP TO LLAMA-350M AND LLAMA-1B

To further illustrate the effiency of COSMOS, we scale up to larger models and more tokens. For
LLaMA-350M, we train on a 10B subset of the C4 dataset for 5000 steps. We compare COSMOS
with Adam, Adam-mini, GaLore, MUON, and SOAP. For LLaMA-1B, we train on a 26B subset for
13000 steps. Given limited GPU resources, we compare COSMOS with Adam and MUON. Adam
serves as the standard baseline, while MUON achieves better performance than Adam while requir-
ing less memory and little computational overhead. Although SOAP show superior performance
among baselines, we exclude it from our comparison as its complete training for the 1B model
exceeds our available resources. More experiment details are provided in Sections A.1.2 and A.1.3.

Main results of token efficiency. Figures 2a and 2b display the validation loss curves for the 350M
and 1B models, and Table 2 presents their final validation perplexities. COSMOS demonstrates
superior performance compared to all baselines across both model sizes, matching the results on the
130M model and showcasing consistent token efficiency across different model sizes.
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(a) LLaMA-350M trained on C4 dataset.
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(b) LLaMA-1B trained on C4 dataset.
Figure 2: Comparison of performance on LLaMA-350M and LLaMA-1B trained on the C4 dataset.

Memory and computation time profiling. To illustrate the memory efficiency and small compu-
tation overhead of COSMOS, we conduct a profiling experiment on the 1B model. We fix the batch
size as 10 and the gradient accumulation steps as 25 for all methods and record the maximum GPU
memory usage and time spent during the entire forward-backward propagation and optimizer up-
date process for one iteration. As shown in Table 5, COSMOS achieves much lower maximum GPU
memory usage than Adam (6.8%) and SOAP (19.4%), with slightly more overhead compared to
MUON. In terms of wall-clock time per iteration, COSMOS is comparable to MUON and is much
better than SOAP. The fastest Adam method cannot achieve the same level of token efficiency as
COSMOS. Therefore, COSMOS strikes a good balance between token and memory/computation
overheads, achieving the best final perplexity at a much lower cost.

To better compare the methods in a practical setting, we evaluate the maximal batch size and
throughput of COSMOS and baselines on a single NVIDIA A100 GPU with 80GB memory. The
input sequence length is set to 1024. As shown in Table 6, COSMOS is 10.8% faster than SOAP
and comparable to MUON.

Table 5: GPU memory usage and wall-clock time per iteration on 1B model. We fix the batch size to
be 10 for all methods. COSMOS has significantly less memory usage than SOAP and is comparable
to memory-efficient methods like MUON, without introducing much computation overhead.

Method Memory Wall-clock time
Adam 62.75 G 34.73 s
SOAP 72.58 G 39.51 s

MUON 58.25 G 35.56 s
COSMOS 58.47 G 35.75 s

Table 6: System performance on single NVIDIA A100-80G GPU and corresponding throughput
(number of samples processed per second on C4 dataset) of 1B model. Max batch size is defined as
the maximum number of samples that fit within the GPU’s memory capacity. Throughput is reported
as the number of samples the GPU processes per second (samples/s).

Method Max batch size Throughput(sample/s)
Adam 13 7.24
SOAP 10 6.33

MUON 14 7.23
COSMOS 14 7.07

Wall-Clock time plot for LLaMA-1B. Based on the throughput we calculate in Table 6, we rescale
the X-axis of Figure 2b to be wall-clock time and present the result in Figure 7 in Section D.4. Our
results indicate that, in terms of actual training time, COSMOS still outperforms MUON and the
Adam baseline, demonstrating COSMOS’s potential for efficient pretraining.

4.3 ADDITIONAL EXPERIMENTS ON OTHER SETTINGS

Most current works on pretraining optimizers, due to limitations in resources and time, focus on a
single model architecture and a single dataset — for example, GaLore (Zhao et al. (2024a),LLaMA
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on C4), SOAP (Vyas et al. (2024), OLMo (Groeneveld et al., 2024) on C4) and Muon (Jordan et al.
(2024), Modded-NanoGPT on FineWeb). Our experiments on LLaMA with C4 are already aligned
with these prior works, validating the performance of COSMOS. To demonstrate that COSMOS
retains its advantages under other settings as well, however, we also conduct experiments in the
following additional settings:

Modded-NanoGPT on FineWeb: To further verify the advantage of COSMOS over Muon, we
conduct experiments in Muon’s original setting, namely Modified-NanoGPT on FineWeb. Since
Muon has already performed extensive hyperparameter tuning in this setting, we do not tune Muon
again but use the provided reproducible log. For COSMOS, we simply align the learning rate with
that of Muon and follow other settings. We present the results in Figure 3. See Section B for the
detailed configuration.

2500 3000 3500 4000 4500 5000 5500 6000
Update Steps

3.30

3.35

3.40

3.45

3.50

Va
lid

at
io

n 
Lo

ss

Muon
Cosmos

(a) 124M Modded-NanoGPT trained on FineWeb.
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(b) 350M Modded-NanoGPT trained on FineWeb.

Figure 3: Comparison of optimization performance on 124M and 350M Modded-NanoGPT trained
on the FineWeb dataset.COSMOS consistently outperforms MUON.

GPT2 on Wikitext-103: We also trained GPT2-small and GPT2-medium on WikiText-103 to com-
pare COSMOS with Adam and Muon. In this setting, COSMOS still outperforms Muon and Adam.
We present the result in Figure 4. See Section D.2 for the detailed configuration.
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(a) GPT2-small trained on WikiText-103.
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(b) GPT2-medium trained on WikiText-103.

Figure 4: Comparison of COSMOS, MUON and Adam on WikiText-103 using GPT2-small and
GPT2-medium models. COSMOS consistently outperforms MUON and Adam.

5 CONCLUSION

We develop a hybrid adaptive optimizer, COSMOS, which leverages the varying importance of
eigensubspaces in the gradient matrix to achieve token efficiency, memory efficiency, and high
computation throughput simultaneously. By decomposing the gradient matrix into leading and re-
maining eigensubspaces and applying SOAP-like and MUON-like updates to them correspondingly,
COSMOS uses significantly less memory than SOAP while achieving equal or better optimization
performance. Comprehensive experiments show that COSMOS performs consistently well across
different settings.
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A EXPERIMENT DETAILS ON LLAMA MODELS

Many aspects of our setup such as models are the same as in Zhao et al. (2024a). We train language
models on C4 tokenized with the T5 tokenizer (Raffel et al., 2020) and report results in terms of
validation loss.

Models. We start from the GaLore Codebase (Zhao et al., 2024a) and train LLaMA models of three
sizes: 130M, 350M, and 1B. The models have widths of 768, 1024, and 2048 and depths of 12,
16, and 24. We use the 130M model to explore various ablations as shown in Section 4.1. The
MLP hidden dimension of the 130M model is 4 times the width and the hidden dimension of the
350M and 1B model is 8

3 times the width. The activation function is SiLU (Elfwing et al., 2018). The
architecture uses RoPE positional encodings (Su et al., 2024). Attention heads are always dimension
64. For more architecture details please refer to Zhao et al. (2024a). We train in mixed precision
with FP32.

Algorithms. We use the standard Pytorch implementation of Adam, and the official GaLore imple-
mentation provided by Zhao et al. (2024a). Since Two-Sided SOAP is too memory consuming and
is not within our comparison scope, we modify the code provided by Vyas et al. (2024) to apply
One-Sided SOAP discussed in Vyas et al. (2024). We use the official Adam-mini implementation
provided by Zhang et al. (2024b). For MUON and NS5, we use their implementation provided by
Jordan et al. (2024) in their Github records. We implement our COSMOS starting from an older
version of Pytorch implementation of AdamW.

Default hyperparameters. In all algorithms, we choose first order momentum β1 = 0.9 to align
with and get a fair comparison with Adam baseline. We choose second order momentum β2 =
0.98, which is also a widely used configuration after Liu et al. (2019) mentioned that it provides
better training stability than 0.999. We set smoothing term ϵ = 1e-8 to align with the standard
hyperparameter choice. We use the linear learning rate schedule to decay the learning rate to 0. To
align with Zhao et al. (2024a), we set the warmup ratio to be 10% and weight decay to be 0.

Token counts. For all of our runs we use a sequence length of 1024. For the 130M model, we
set the batch size to be 960, and for the 350M and 1B models, we set the batch size to be 2000.
We train the 130M and 350M models for 5k steps and train the 1B model for 13k steps. Thus
the number of training tokens for the 130M mode ≈ 5B, which is beyond the “chinchilla optimal”
number of tokens. The numbers of training tokens for the 350M model and 1B model are 10B and
26B respectively, which follow the chinchilla optimal” number of tokens.

A.1 LEARNING RATE TUNING

To avoid unfair comparisons caused by excessive hyperparameter tuning, for all algorithms we set
the learning rate as the only tunable hyperparameter in all the main results in Section 4. The rank r
for COSMOS for all main results is fixed at 64.

A.1.1 TUNING ON 130M MODEL

For Adam, we tune the learning rate on {2.5e-4, 5e-4, 1e-3, 2e-3, 4e-3, 8e-3}. In our experiments,
2e-3 is the optimal learning rate and 8e-3 diverges. Then for SOAP, we also tune the learning rate
on {5e-4, 1e-3, 2e-3, 4e-3}. For Adam-mini, we just use the optimal learning rate of Adam, which
is also 2e-3.

For GaLore, We follow the setting in Zhao et al. (2024a), set rank=256, and scale factor α = 0.25.
According to Zhao et al. (2024a), the learning rate of Galore should be larger than Adam’s. They
mentioned that Galore is not sensitive to hyperparameter and they use the same learning rate 1e-2
for all size of models after tuning, we simply tune galore in a range near 1e-2, which is {5e-3, 1e-2,
2e-2, 4e-2}. The projection update frequency is 200 for 20k training steps, thus we decrease it to 50
for our 5k training steps.

For the implementation of MUON and COSMOS, the embedding and output layer will use Adam
while other parts will use MUON/COSMOS algorithm. To avoid multiple hyperparameter tuning,
we fix the learning rate for embedding and output layer to 2e-3, which is the optimal learning rate
for Adam, and only tune the learning rate of hidden layers, whose optimizer is MUON/COSMOS.
To be more specific, we tune the learning rate of hidden layers on {1e-4, 2e-4, 5e-4, 1e-3, 2e-3}.
It is worth noting that (Liu et al., 2025) suggests the optimal learning rate for MUON should be
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0.2–0.4 times that of the Adam learning rate used for the embedding layer (2e-3 in our setting),
which exactly falls within the range we searched.

For COSMOS, as we mentioned before, to avoid tuning γ, we simply set γ to be the ratio of the
learning rate of hidden layers to the learning rate of the embedding layer (which is fixed at 2e-3).
We find that this trick can provide a satisfactory result without extra tuning on γ. Please note that
we find in many extra experiments that this trick isn’t the optimal choice for γ. Tuning γ may output
a better result.

A.1.2 TUNING ON 350M MODEL

For Adam and SOAP, we tune the learning rate on {2.5e-4, 5e-4, 1e-3, 2e-3, 4e-3, 8e-3}, which
is same as the range in Section A.1.1. For GaLore, we set the rank to be 384, projection update
frequency to be 50, and scale factor α = 0.25. Then we tune the learning rate of GaLore on {5e-3,
1e-2, 2e-2, 4e-2}, which is also same as what we do in Section A.1.1.

For the implementation of MUON and COSMOS, we still fix the learning rate for embedding and
output layer to be 2e-3 and only tune the learning rate of MUON/COSMOS for hidden layers. For
MUON and COSMOS, we tune the learning rate on {1e-4, 2e-4, 5e-4, 1e-3, 2e-3} to align with our
setting in Section A.1.1. Also for COSMOS, we still set γ to be the ratio of the learning rate of
hidden layers to the learning rate of the embedding layer (which is fixed at 2e-3).

A.1.3 TUNING ON 1B MODEL

We do not have enough resources to tune hyperparameters carefully on the 1B model. For Adam,
we first try learning rate η = 2e-3, but an extremely large loss spike occurred in the early stage.
Then we decrease η to 1e-3 and get the baseline result. For MUON and COSMOS, we still fix the
learning rate for embedding and output layer to be 2e-3 and tune their learning rate on {2e-4, 5e-4}.
For COSMOS, we still set γ to be the ratio of the learning rate of hidden layers to the learning rate
of the embedding layer.

A.1.4 DISCUSSION ON LEARNING RATE TUNING

We are discussing the learning rate used by MUON in their reproducible logs here to demonstrate
that our learning rate falls within a reasonable range.

There are two versions of Muon implemented in the reproducible logs of modded nanogpt. In the
early versions, the algorithm they used was consistent with what we described in Algorithm 3. This
algorithm has been used on both 124M and 1.5B GPT models and achieved SOTA performance.

In this version, they used Adam’s baseline learning (3.6e-3) rate as the learning rate for the embed-
ding and output layers on a 124M model, and used 3.6e-4 as the cleaning rate for Muon. In our
experiment, since the Adam baseline learning rate we obtained was 2e-3, which is a little different
with 3.6e-3, we also use this learning rate as the learning rate for the embedding and output layers.
We avoid adjusting the learning rates of the embedding and output layers, as this would result in
the tuning of both learning rates for two parts of parameters. Generally speaking, this would yield
better results than adjusting only one learning rate, but this effect is not fair compared to the Adam
algorithm with only one learning rate. For Muon’s learning rate in our experiments, our traversal set
{1e-4, 2e-4, 5e-4, 1e-3, 2e-3} is also relatively close to their 3.6e-4.

In the later reproducible logs, they made a simple modification to Muon, but did not mention whether
this would improve the effect. This modification is to change the line 7 in Algorithm 3 to be Wt+1 ←
Wt − ηBt ·

√
m
n .

Considering that n for different matrix parameters in the same LLM are the same (e.g., 768 in the
124M GPT), this method is just a simple rescale. However, due to the current scale being reduced
by
√
n times, this method generally requires a larger learning rate. For example, in their subsequent

logs, they used 0.02 This learning rate is nearly equivalent to using 0.02/
√
768 ≈ 7.2e − 4 in the

first version, which is also close to our traversal set {1e-4, 2e-4, 5e-4, 1e-3, 2e-3}.
Since MUON did not specify which version would be more advantageous, we used the first version
in our experiments, as it provided more reproducible logs. At the time we began experimenting with
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MUON, the second version was not yet available. For consistency, we therefore continued with the
first version, which was also adopted in the subsequent work on MUON scaling (Liu et al., 2025).

A.2 ABLATION OF r AND γ ON 130M MODEL

For the ablation experiments on COSMOS in Section 4.1, we tune discount factor γ and rank r
together to show COSMOS isn’t very sensitive to hyperparameters. We fix the learning rate for em-
bedding and output layers to be 2e−3, fix the learning rate for COSMOS to be 5e-4, and sweep over
the cross product of r ∈ {32, 64, 128} and γ ∈ {0.1, 0.25, 0.5, 1}. With all these hyperparameters
COSMOS outputs comparable results to MUON.

A.3 ABLATION OF NORMALIZATION

As mentioned in the normalization paragraph in Section 4.1, to exclude the possibility that the better
performance of COSMOS than MUON is simply because the normalization function NORM, we
modify the normalization method of MUON to be NORM and rerun the experiments for 130M and
350M models. We still tune the learning rate of MUON + NORM on {5e-3, 1e-2, 2e-2, 4e-2}, and
present their best performance.

A.4 PROFILING EXPERIMENTS

We do the profiling experiments on the 1B model. We set the sequence length to 1024, which
aligns with our previous settings. We set batch size 10 and accumulation steps 25. Then we record
the maximum GPU memory usage and time usage on this setting by using Pytorch API during the
entire forward-backward and optimizer update process.

B EXPERIMENTS DETAILS ON MODDED-NANOGPT
As discussed in Section 4.3, we directly use Muon’s reproducible logs on modded NanoGPT. In
the setting of GPT-2 Small (124M), they set the learning rate for embedding layer (optimized with
Adam) to be 3.6e-3, and the learning rate for hidden layers (optimized with Muon) to be 3.6e-4.
Also they use Warmup-Stable-Decay (WSD) schedule instead of Cosine schedule. Their batch size
is 512, sequence length is 1024 and number of iterations is 6200.

In the training of 124M model, we followed their original setting for Muon and only additionally
searched β1 within {0.9, 0.95}. For COSMOS, we adopted the same setting as Muon, also searching
β1 in {0.9, 0.95}. For β2 and γ in COSMOS, we set them to 0.95 and 0.2 without additional search.

In the training of GPT-2 Medium (350M), they used a very uncommon setting: the learning rate
for embedding layer is 0.3, which is very large. But the learning rate for output layer is still 3e-3.
They also reduced the momentum for the embedding layer and output layer to 0.8 – which is also
an uncommon choice.

To demonstrate the generality of COSMOS across various settings, our experiments on the 350M
model completely follow their setting. We only additionally search β1 within {0.9, 0.95} for both
Muon and COSMOS. However, since this setting is indeed uncommon and subsequent work on
Muon scaling (Shah et al., 2025; Liu et al., 2025) did not follow it, we did not adopt this setting in
our other experiments (LLaMA on C4 and GPT2 on Wikitext103).

C TWO-SIDED COSMOS
For simplicity, we only consider the one-side version of COSMOS in this paper. Like SOAP, COS-
MOS can be further generalized to a two-sided version. Similar to two-sided SOAP in Vyas et al.
(2024), we provide a two-sided variant of COSMOS in Algorithm 4.

D ADDITIONAL EXPERIMENTS

This section provides supplementary experiments not presented in the main text.

D.1 EXPERIMENTS FOR NORMALIZATION ABLATION

We conduct additional experiments on LLaMA-130M and LLaMA-350M to validate that normal-
ization is not the main reason for COSMOS outperforming MUON. As shown in Figure 5, normal-
ization does not make much difference to MUON, while COSMOS consistently outperforms both
of them.
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Algorithm 4 Two-sided version of COSMOS for a m×n layer. Per layer, we maintain six matrices:
U ∈ Rn×r, O ∈ Rm×r, S,R ∈ Rr×r, V ∈ Rm×r and M ∈ Rm×n.
input Learning rate η, combination weight γ, projection rank r ≪ n, momentum parameters

(β1, β2), perturbation parameter ϵ. For simplicity, we omit the initialization.
1: for t = 0, ... do
2: Sample batchMt

3: Gt ← ∇WϕMt
(Wt)

4: Mt ← β1Mt−1 + (1− β1)Gt

5: Ut ← QR(β2Ut−1St−1 + (1− β2)G
⊤
t GtUt−1)

6: Ot ← QR(β2Rt−1Ot−1 + (1− β2)GtG
⊤
t Ot−1)

7: St ← U⊤
t (β2Ut−1St−1U

⊤
t−1 + (1− β2)G

⊤
t Gt)Ut

8: Rt ← O⊤
t (β2Ot−1Rt−1O

⊤
t−1 + (1− β2)GtG

⊤
t )Ot

9: Vt ← β2Vt−1 + (1− β2)(O
⊤
t GtUt)⊙ (O⊤

t GtUt)

10: At = Ot

(
O⊤

t MtUt/(1− βt
1)√

(Vt + ϵ)/(1− βt
2)

)
U⊤
t

11: Bt ← NORM

(
NS5

(
Mt −O⊤

t OtMtUtU
⊤
t

∥Mt −O⊤
t OtMtUtU⊤

t ∥F

))
12: G̃t ← At + γ ·Bt ·

√
m

13: Wt+1 ←Wt − η · NORM(G̃t)
14: end for
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(a) Comparison of COSMOS, MUON and MUON
with normalization for LLaMA-130M on C4.
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(b) Comparison of COSMOS, MUON and MUON
with normalization for LLaMA-350M on C4.

Figure 5: Comparison of COSMOS, MUON, and MUON with normalization on LLaMA-130M and
LLaMA-350M for C4.

D.2 EXPERIMENTS ON WIKITEXT

This section discuss the details of the experiments on WikiText (Merity et al., 2016) and GPT-
2 (Radford et al., 2019). To be more specific, we train GPT2-small(125M) and GPT2-medium
(355M) on the Wikitext-103 dataset. We discard learnable position embeddings and use RoPE (Su
et al., 2024) as a replacement.

For GPT2-small, we tune the learning rate of Adam on {5e-4, 1e-3, 2e-3, 4e-3, 8e-3}, and find 4e-3
is the optimal learning rate for Adam. Then in MUON/COSMOS, we use learning rate 4e-3 for the
embedding layer and 4e-4 for MUON/COSMOS.
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Similarly, for GPT2-medium, we tune the learning rate of Adam on {5e-4, 1e-3, 2e-3, 4e-3, 8e-3},
and find 2e-3 is the optimal learning rate for Adam. Then in MUON/COSMOS, we use learning
rate 2e-3 for the embedding layer and 5e-4 for MUON/COSMOS.

For COSMOS, γ is still set to be the ratio of the hidden layer learning rate to the embedding layer
learning rate in both models.

We set the sequence length to be 1024, and the batch size is also 1024. We train both models for 5k
steps, which means the models are trained on 5B tokens. For such many training tokens on Wikitext-
103, overfitting will occur and validation loss will start to increase after training for a certain number
of steps. Therefore, we use the training loss as the metric for comparison.

The results for GPT2-small and GPT2-medium are provided in Figures 4a and 4b, respectively.
We observe that COSMOS consistently outperforms MUON, showing that it does not overfit any
particular model or dataset.

D.3 SMALLER LEARNING RATE FOR MUON/COSMOS ON LLAMA-1B

As discussed in section A.1.3, we tune the learning rate for MUON/COSMOS on {2e-4, 5e-4}. We
find 5e-4 is better and present its corresponding results in the main text. Here we present the result
for 2e-4 in Figure 6, where COSMOS still outperforms MUON.
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Figure 6: LLaMA-1B trained on C4 dataset with learning rate 2e-4 for MUON/COSMOS. COS-
MOS still outperforms MUON.

D.4 WALL-CLOCK TIME PLOT FOR LLAMA-1B

Based on the throughput we calculate in Table 6, we rescale the X-axis of Figure 2b to be wall-clock
time and present the result in Figure 7.
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Figure 7: Wall-Clock time plot for our training on LLaMA-1B.
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D.5 EXPERIMENTS ON SHORTER SEQUENCES

To validate the correctness of our implementation, we compare GaLore with COSMOS and Adam
on 256 sequence length as adopted in Zhao et al. (2024a). As shown in Figure 8, GaLore and Adam
are more comparable in this shorter sequence setting, suggesting our implementation is correct and
the degradation of GaLore shown in Figure 1 and Table 2 is mainly due to long sequence length.
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Figure 8: Comparison of COSMOS, Adam, and GaLore on 256 sequence length. The performance
of GaLore on shorter sequences does not deteriorate as for long sequences, validating the correctness
of our implementation.

E LLM USAGE

In preparing this paper, large language models (LLMs) such as ChatGPT were used only for light
editing purposes, including minor grammar checking and sentence polishing. No part of the re-
search ideation, methodology design, experimental execution, or analysis was conducted with the
assistance of LLMs.

18


	Introduction
	Related Work
	COSMOS: A Hybrid Adaptive Optimizer
	Memory Usage Comparison

	Experiments
	Comparison on LLaMA-130M
	Scaling Up to LLaMA-350M and LLaMA-1B
	Additional Experiments on Other Settings

	Conclusion
	Experiment Details on LLaMA Models
	Learning rate tuning
	Tuning on 130M model
	Tuning on 350M model
	Tuning on 1B model
	Discussion on learning rate tuning

	Ablation of r and  on 130M model
	Ablation of normalization
	Profiling experiments

	Experiments Details on Modded-NanoGPT
	Two-sided COSMOS
	Additional Experiments
	Experiments for Normalization Ablation
	Experiments on WikiText
	Smaller learning rate for MUON/COSMOS on LLaMA-1B
	Wall-Clock time plot for LLaMA-1B
	Experiments on shorter sequences

	LLM Usage

