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Abstract

Cerebral Visual Impairment (CVI) is set to become the lead-001
ing cause of vision impairment but remains underrepre-002
sented in assistive technology research. eXtended Reality003
(XR) smart glasses show promise for supporting people with004
CVI understand and interact with their environment, and005
early studies indicate strong user interest. However, most006
solutions remain confined to lab settings and are not ready007
for real-world use. This paper identifies 40 interrelated008
challenges to deploying XR smart glasses as assistive tools009
for CVI. These are organised into three tiers—Foundation,010
System, and Interface—across nine high-level domains. The011
challenges span technical, design, and evaluation gaps that012
must be addressed to move beyond prototypes. We call on013
the computer vision, HCI, and systems communities to treat014
accessibility-driven deployment as a core design goal, sup-015
ported by cross-disciplinary collaboration and real-world016
evaluation.017

1. Introduction018

Cerebral Visual Impairment (CVI) is now the leading cause019
of vision loss in children in developed countries [26, 53,020
63], and is expected to become a major cause of adult vi-021
sion loss as these children grow up [8]. Unlike Ocular Vi-022
sion Impairment (OVI), which is caused by problems with023
the eyes, CVI results from damage or delays in the brain’s024
visual processing areas [62]. This often affects higher-level025
visual abilities, such as recognising objects and focusing at-026
tention, more than low-level functions like acuity or field027
of view [47, 58]. People with CVI also often have other028
neurological conditions, and their assistive technology (AT)029
needs are different from those with ocular vision loss [14].030

Extended reality (XR) smart glasses have recently gained031
interest as an assistive tool for environment understanding032
and interaction due to their support for visual feedback,033
wearable, and hands-free nature [14, 16]. Early studies034
show that people with CVI are interested in using such de-035

vices in their daily lives to provide real-time support for 036
tasks like reading, recognising objects, or identifying peo- 037
ple [16]. However, most XR systems are still in early stages 038
and work only in lab settings [32, 44]. There are many real- 039
world challenges that must be solved before smart glasses 040
can become reliable tools for everyday use. 041

This paper builds on two recent studies: a co-design 042
study with people with CVI that explored their needs and 043
prototyped smart glasses solutions [16], and a concep- 044
tual framework for wearable intelligent assistants developed 045
through discussions with users, researchers, and developers 046
[31]. Drawing on these studies and our own experience de- 047
veloping XR tools for CVI, we identify 40 key challenges 048
in deploying XR smart glasses as assistive devices. Fig- 049
ure 1 shows how they are organised into nine high-level 050
domains across three tiers: Foundation, System, and In- 051
terface. These tiers are interdependent—limitations at the 052
foundational level often constrain system functionality and 053
interface design. 054

Addressing these challenges is key to moving beyond 055
prototypes toward deployable solutions that support people 056
with CVI—and can also advance the broader field of assis- 057
tive XR smart glasses. We invite researchers and developers 058
to shift focus from short-term prototypes to long-term solu- 059
tions that can be used in the real world. 060

2. Related Work 061

2.1. Smart Glasses and XR for Visual Assistance 062

Smart glasses, or head-mounted displays (HMDs), have 063
gained traction as assistive technologies due to their wear- 064
able, hands-free design and support for visual tasks. Kim 065
and Choi [34] reviewed 57 studies across domains such 066
as surgery, industrial maintenance, and assistive support, 067
finding that hands-free, real-time interaction was especially 068
valuable in visually demanding, task-intensive settings. 069

For people with vision impairments, Li et al. [44] re- 070
viewed 41 studies focused on using HMDs for low vision 071
support. These systems used various extended reality (XR) 072
technologies—such as augmented, mixed, or virtual real- 073

1



ICCV
#*****

ICCV
#*****

ICCV 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Hardware &
Form Factor

Data &
Machine Learning

Responsible
Sensing & Recording

Multimodal
Sensing

Contextual
Interpretation

Input &
Output
Coordination

Profile &
Knowledge
Grounding

Adaptive
Reasoning

Human InteractionInterface

System

Foundation

Figure 1. Three-tiered framework of deployment challenges for assistive XR smart glasses: The framework is organised into Foundation,
System, and Interface levels, each with the high-level domains of the challenges.

ity—to improve perception and mobility. Augmented re-074
ality (AR) and mixed reality (MR) were found to be more075
useful for assistive purposes, while virtual reality (VR) was076
mostly used for therapy and training [18].077

More recently, Kasowski et al. [32] reviewed 76 studies078
using XR technologies to support people with low vision.079
They described a range of techniques, including contrast en-080
hancement [80, 81, 83], edge highlighting, and spatial audio081
cues to support navigation [29, 82]. While the findings show082
that XR tools can be helpful, the review also pointed out083
that most systems were not tested in real-world settings and084
lacked input from users during design. Importantly, none of085
these reviews found work for people with CVI, indicating a086
clear gap in research for brain-based visual impairments.087

2.2. Assistive Technology for CVI088

Research on AT for CVI has mainly focused on children,089
often through case studies [12, 39] or parent-reported expe-090
riences [21, 48]. There is very little work exploring how091
adults with CVI use AT in real-world settings. Gamage092
et al.[15] reviewed existing literature and found only three093
studies at the intersection of CVI and AT [7, 46, 59]. How-094
ever, these studies mostly discussed ideas or adapted tech-095
nologies originally designed for low vision, rather than pro-096
viding solutions for CVI.097

Through focus groups with people with CVI, Gamage098
et al. [14] identified seven key AT challenges: unaware-099
ness, locating, identifying, reading, sensory overload, mo-100
bility and luminance & contrast sensitivity. In a follow up101
study, they worked with two adults with CVI in an eight-102
month co-design process focused on developing XR smart103
glasses solutions [16]. The study found that smart glasses104
could support a range of daily activities, including locating105
objects, reading text, recognising people, engaging in con-106
versations, and managing sensory stress (see Figure 2 for107
examples). Both participants expressed strong interest in108
using the device as part of their everyday lives.109

However, the study also revealed several barriers to real-110
world deployment. Technical challenges such as environ-111

mental variability impacting model reliability and hard- 112
ware limitations, and design issues like the need for hyper- 113
personalisation and managing cognitive load, limited the 114
system’s performance outside of controlled environments. 115

2.3. The TOM Framework for Wearable Assistants 116

Janaka et al. [31] proposed a conceptual framework for 117
building wearable intelligent assistants, called The Other 118
Me (TOM). TOM is an open-source system that outlines 119
the core components needed for developing context-aware 120
wearable devices. It includes key components such as sens- 121
ing the environment, understanding the user’s context, and 122
making decisions based on that information. While TOM is 123
not specific to XR or assistive technology, it offers a useful 124
way to think about the conceptual building blocks required 125
when developing smart glasses. 126

In our work, we build on the co-design study, the TOM 127
framework, and our own development experience to better 128
frame the challenges of deploying XR smart glasses for peo- 129
ple with CVI. 130

3. Approach 131

Our analysis started with the TOM framework [31], that 132
broke down the system into 13 conceptual modules, such 133
as context sensing, user sensing, coordination and reason- 134
ing. We then conducted an open-ended review to identify 135
deployment challenges within each category. This drew on 136
prior research on XR smart glasses for people with CVI, as 137
well as broader work in low vision and assistive technolo- 138
gies where applicable. This process identified 75 challenges 139
spanning technical, usability, and infrastructural issues. 140

The three authors then collaboratively consolidated over- 141
lapping challenges. For example, “understanding user” and 142
“understanding context” were merged into a single domain: 143
Contextual Interpretation. Similarly, recurring issues for 144
example in data and machine learning across multiple ar- 145
eas were grouped under Data and Machine Learning. This 146
process resulted in nine high-level domains. 147
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Highlighting techniques for locating
items in a cluttered environment.

Assisting with reading text by
using visual overlays.

Adding name tags to help
recognise people.

Reducing visual clutter in
conversations.

Figure 2. Examples of XR smart glasses solutions using the Apple
Vision Pro for people with CVI, adapted from Gamage et al. [16].

Each challenge was then classified as either a Founda-148
tion, System, or Interface-level challenge (see Figure 1).149
The final result is a set of 40 deployment challenges organ-150
ised across three tiers and nine high-level domains. The151
following sections (Sections 4, 5, and 6) present these chal-152
lenges in detail.153

4. Foundation-Level Challenges154

These challenges stem from foundational barriers in hard-155
ware design, data and machine learning, and responsible156
sensing and recording.157

4.1. Hardware and Form Factor158

Smart glasses are constrained by hardware and form-factor159
challenges that cascade into every aspect of their design and160
performance [27, 56].161
On-Device Compute Budgets: Wearables have limited162
processing power, making it difficult to run multiple mod-163
els concurrently or maintain real-time responsiveness on de-164
manding situations. Tasks such as object recognition, spa-165
tial mapping, and speech-to-text transcription compete for166
limited compute resources, often causing dropped frames,167
delayed feedback, or thermal throttling. Users also de-168
scribe that system lag made them unsure whether their169
commands had been registered, or whether the system had170
failed silently [16]. While edge acceleration strategies can171
help [71], they must be balanced against accuracy and172
modality coverage, particularly in contexts where users rely173

on fast cues for orientation and safety. 174

Power and Battery: Bright AR displays, active depth sen- 175
sors, and continuous audio feedback rapidly deplete the lim- 176
ited battery capacity typical of head-worn devices. Prior 177
studies on AT report average runtime under two hours [27], 178
which is likely to be insufficient for everyday tasks such as 179
commuting, attending appointments, or navigating unfamil- 180
iar environments. Frequent charging interrupts the continu- 181
ity of assistance and undermines user trust in the system’s 182
reliability. While energy-saving strategies like selectively 183
disabling idle modules can extend runtime, they must be 184
carefully aligned with user solutions to avoid suppressing 185
timely cues and feedback. 186

Form-Factor Bulk and Thermal Constraints: Achiev- 187
ing a compact and comfortable form factor requires care- 188
ful trade-offs between hardware features and physical de- 189
sign. While adding advanced sensors and processors can 190
improve functionality, they also increase bulk and thermal 191
output. Incorporating heat sinks or cooling components ex- 192
acerbates this bulk, often resulting in eyewear that feels 193
cumbersome or appears socially intrusive. Discomfort from 194
device weight is a leading cause of prosthetic abandonment 195
in prior AT research [56]. Developing lightweight, ther- 196
mally efficient designs remains a critical yet unresolved en- 197
gineering challenge for wearable smart glasses. 198

Display Modality Trade-Offs: XR smart glasses typically 199
use either optical see-through (OST) or video see-through 200
(VST) display architectures [40]. OST systems, such as 201
Microsoft HoloLens, preserve direct view of the physical 202
world through optics but often struggle with low-contrast 203
overlays, especially in bright or outdoor environments. In 204
contrast, VST systems like the Apple Vision Pro use pass- 205
through camera feeds, enabling sharper, high-contrast aug- 206
mentations but at the cost of mediating the user’s access 207
to the real scene. However, many commercial VST de- 208
vices limit user control over passthrough processing, reduc- 209
ing their ability in passthrough manipulation [16]. Hybrid 210
or adaptive display systems are still in early research stages 211
and pose additional design and engineering challenges. 212

4.2. Data and Machine Learning 213

Recent advances in AI and machine learning have signifi- 214
cantly expanded the capabilities of XR smart glasses [34]. 215
However, delivering reliable experiences for people with 216
CVI still depends on addressing these foundational chal- 217
lenges. 218

Data Scarcity and Label Quality: While numerous pub- 219
lic datasets exist for general computer vision tasks [10, 45], 220
they rarely capture scenarios specific to CVI such as envi- 221
ronments that induce stress, biomarkers indicating cogni- 222
tive load, or visual elements (e.g., color, contrast) that ef- 223
fectively capture attention. This limits the ability to train 224
models that generalise to the needs of people with CVI. 225
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Although prior work has highlighted the importance of226
accessibility-focused datasets [23], collecting such data is227
both resource-intensive and often hampered by inconsistent228
annotation standards. Synthetic data augmentation offers229
a partial solution, but typically falls short in capturing the230
nuanced contextual challenges experienced by people with231
CVI in real-world settings.232

User Variability and Personalisation: CVI presents with233
high inter-individual variability, including challenges such234
as light streaks, difficulty in face recognition, and difficulty235
with object localisation [47, 58]. As a result, one-size-fits-236
all models are often ineffective, while highly personalised237
solutions face challenges related to data scarcity. Although238
techniques such as meta-learning and few-shot adaptation239
show promise for enabling rapid personalisation [78], they240
remain underdeveloped in real-world assistive contexts. Is-241
sues such as over-fitting [64] and catastrophic forgetting [9]242
continue to limit their practical deployment.243

Model Inference Latency and Runtime: Even with244
mobile-optimised architectures such as MobileNetV3, in-245
ference on embedded hardware can introduce delays signif-246
icant enough to disrupt the real-time responsiveness [24].247
Such responsiveness is critical for tasks like obstacle avoid-248
ance or identifying shops from a moving vehicle for peo-249
ple with vision impairments. Attempts to reduce latency250
through techniques like model pruning or quantization of-251
ten degrade prediction accuracy, highlighting a trade-off be-252
tween speed and accuracy [37]. These are compounded253
when multiple models compete for limited compute, ampli-254
fying latency and reducing overall system responsiveness.255

Local vs. Server Inference: Rich contextual reasoning256
demands extensive computational power, especially with257
large language models (LLMs). Off-loading inference to258
cloud servers supplies the necessary resources but intro-259
duces latency, connectivity dependence, and potential pri-260
vacy issues. On-device inference, by contrast, provides261
low-latency, yet is limited by constrained compute bud-262
gets, often reducing model accuracy. Balancing these op-263
posing constraints—fast but lightweight local models ver-264
sus more capable yet slower and network-dependent server265
models—remains a key challenge.266

Model Degradation: Over time, models may degrade due267
to changing environments (e.g., seasonal variation, con-268
struction zones) or shifts in user behaviour (e.g., after re-269
habilitation or training). For people who may rely on con-270
sistent performance across months or years, degradation271
without notification or remediation poses significant risks.272
While periodic retraining is the standard solution, it requires273
automatic data collection and labelling currently unavail-274
able on wearables.275

Continual Learning: Deployable systems must adapt to276
new objects, environments, and evolving user preferences277
without undergoing full retraining. Yet this process faces278

major challenges such as catastrophic forgetting, balancing 279
stability and plasticity, and operating under resource con- 280
straints of wearable devices [73, 85]. Real-world data noise, 281
shifting task distributions, and diverse usage scenarios add 282
further complexity. Although numerous mitigation strate- 283
gies exist [73], no single method fully addresses all chal- 284
lenges, highlighting the need for more robust and resource- 285
efficient continual learning solutions. 286

LLM Hallucination and State Persistence: LLMs have 287
shown potential as assistive agents by handling complex 288
reasoning and dialogue tasks. However, beyond the engi- 289
neering challenges of running LLMs efficiently on-device 290
(see Model Inference and Runtime, Local vs. Server Infer- 291
ence), key limitations remain particularly in hallucination 292
and poor state persistence. For example, an LLM might in- 293
correctly detect an “EXIT” sign where none exists or forget 294
critical user context, such as a peanut allergy, and falsely 295
claim a product is safe—posing serious risks. While emerg- 296
ing research is exploring ways to ground LLMs using ver- 297
ified sensory inputs [69, 75, 84], these methods are rarely 298
tailored to the unique needs of people with CVI. 299

4.3. Responsible Sensing and Recording 300

Continuous sensing is essential for smart glasses to provide 301
real-time support, yet it introduces significant risks around 302
privacy, data handling, and transparency. 303

Privacy Concerns: Always-on cameras and microphones 304
raise ethical and legal issues, especially when recording oc- 305
curs without clear user intent. Prior studies have shown that 306
people with low vision often feel uneasy using devices with 307
perceived surveillance tools [72]. Clear, accessible controls 308
such as LEDs to signal recording are essential. Privacy must 309
be a core design priority, not an afterthought, to ensure ac- 310
ceptance and wide adoption. 311

Edge-Case Logging with Contextual Annotation: Im- 312
proving robustness for CVI-specific scenarios requires cap- 313
turing rare but critical events such as sudden head or eye 314
movements that are typically underrepresented in training 315
data. However, recording these events along with contex- 316
tual metadata (e.g., location, environment) raises significant 317
privacy concerns. De-identifying and processing data closer 318
with edge computing offers a promising direction. Still, 319
there is a need to define operational, technical, and ethical 320
standards for privacy-preserving logging and annotation in 321
AT [5, 19]. 322

Privacy-First Storage: Secure on-device capture is not 323
enough if long-term storage lacks user control. Sensitive 324
data such as banking details can still be exposed if the de- 325
vice is lost or compromised. Best practices include en- 326
crypted storage with user-defined retention and deletion 327
settings, but ensuring transparent, tamper-proof deletion is 328
critical for both user trust and regulatory compliance. 329
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5. System-Level Challenges330

These challenges are primarily engineering and implemen-331
tation issues that hinder the deployment for real-world use.332

5.1. Multimodal Sensing333

Multimodal sensing enables smart glasses to perceive both334
the environment and the user, through explicit signals like335
hand gestures and implicit cues such as elevated heart rate336
during object search [31]. For people with CVI, who may337
experience changing vision and cognitive fatigue, relying338
on a single sensor modality is often inadequate [16]. In-339
tegrating multimodal sensor data enables more responsive340
and context-aware support, but also introduces new chal-341
lenges in drift, reliability and protocols.342

Sensing Accuracy and Drift: Sensors are prone to drift,343
misalignment, and noise, which can distort spatial cues and344
bio signals. This compromises the reliability of downstream345
systems that depend on accurate sensing. Studies in wear-346
able AT have shown that sensor drift often goes unnoticed347
by users but can lead to sudden guidance failures that un-348
dermines trust [52, 55]. While progress has been made in349
mitigating these effects [11, 79], they remain a challenge350
for reliable use in real-world environments [55].351

Environmental Robustness and Reliability: Sensor per-352
formance often degrades in real-world conditions such as353
low light, transitional lighting, or reflective surfaces. For354
example, reflections can distort depth sensing, and poor355
lighting can impair camera input. These issues are rarely356
captured in lab settings [16]. Assistive XR systems must357
be designed to handle such variability. At minimum,358
they should detect suboptimal sensor conditions and clearly359
communicate this to users for better awareness and trust.360

Sensor Sampling Rate: Fixed sampling rates present361
trade-offs between accuracy and efficiency. Low-frequency362
sampling may miss critical physiological or contextual363
changes, while high-frequency sampling drains battery and364
generates heat. Adaptive sampling, which adjusts based on365
task or user state, has shown promise in wearables, but is366
still under explored in assistive XR applications [1, 3].367

Biometric Data Standardisation: Inconsistent data stan-368
dards across wearable platforms create major integration369
challenges. Biometric signals such as heart rate, gaze,370
and pupil dilation are often locked behind proprietary371
SDKs with incompatible formats and time-stamping. This372
fragmentation complicates real-time sensor access and in-373
creases the effort required for cross-platform develop-374
ment. Without standardised middleware protocols, hyper-375
personalised systems for people with CVI remain fragile376
and difficult to scale. While unified frameworks have gained377
traction in fields like healthcare and fitness [51], they are378
still largely absent in assistive technologies.379

5.2. Contextual Interpretation 380

Accurately interpreting multimodal sensor data requires ad- 381
dressing challenges in aligning with context, such as user 382
intent, task demands, and environmental conditions. 383

Concept Disambiguation: In dynamic environments, the 384
classification of an object such as a person can vary depend- 385
ing on user intent, for example, whether they are considered 386
an obstacle or a point of interaction. For instance, if a per- 387
son with CVI is looking for the waiter at a cafe, misidentify- 388
ing a waiter as an obstacle may lead the system to guide the 389
user away instead of toward their intended interaction. Vi- 390
sion models trained on generic datasets often fail to capture 391
this distinction, leading to misleading cues. Research shows 392
that both visual context and prior knowledge influence how 393
objects are interpreted in real time [35, 68], making it es- 394
sential for systems to integrate both semantic understanding 395
and situational awareness. 396

Contextual Framing: Recognising an object is only part 397
of the challenge; systems must also understand its relevance 398
to the user’s current task. For example, detecting a person 399
ahead could prompt different actions such as guiding the 400
user to join a queue or warning them to stop at a cross- 401
walk. While Concept Disambiguation focuses on correctly 402
identifying the object (‘person’ or ‘obstacle’), Contextual 403
Framing determines the appropriate response based on that 404
identification. One approach is to have users manually trig- 405
ger tasks, but inferring intent from past behaviour and cur- 406
rent actions offers a more seamless experience. Though it 407
is technically complex, achieving this level of situational 408
awareness remains an open challenge. 409

Temporal Context Alignment: Interpreting dynamic en- 410
vironments requires linking sensor data over time. For a 411
person with CVI, a heart-rate spike while trying to locate a 412
person in a visually cluttered street may signal stress that, 413
if temporally linked, could prompt the system to simplify 414
guidance. Without temporal alignment, the system treats 415
events in isolation, missing opportunities to support the user 416
more effectively. Mechanisms like rewindable logs [17] for 417
models can help bridge these gaps, reducing cognitive load 418
and improving system responsiveness. 419

Spatial and Interaction Continuity: Systems must pre- 420
serve spatial coherence across visually complex environ- 421
ments. Many current solutions fail to maintain state through 422
disruptions, such as when a tracked person is briefly oc- 423
cluded, forcing users to reselect targets. Unstable overlays, 424
such as jittering or drifting arrows, can further disorient 425
people with CVI [16]. These issues are especially problem- 426
atic in cluttered or dynamic scenes, where occlusions dis- 427
rupt both memory persistence and accurate world mapping. 428
Advances in solutions like SLAM are critical to preserve 429
interaction continuity and spatial alignment [22, 76]. 430
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5.3. Input and Output Coordination431

Effective assistance depends on aligning multiple inputs,432
such as sensor data and contextual cues, with outputs de-433
livered through XR overlays, audio, and haptic feedback,434
all while respecting computational constraints. However,435
several system-level challenges needs to be addressed.436
Task Prioritisation Under Compute Constraints Real-437
time resource management is a key challenge when mul-438
tiple tasks compete for limited compute. Non-critical pro-439
cesses must yield to more urgent tasks; for example, reading440
a sign should be de-prioritised if the user is actively navigat-441
ing around obstacles. Static scheduling approaches often442
fail under load, causing latency. To maintain responsive-443
ness, systems must adopt dynamic prioritisation that adjusts444
based on environmental context and user intent [61].445
Multimodal Signal Coordination: Synchronising inputs446
like sensor data and contextual cues with outputs such as447
visual, audio, and haptic feedback requires real-time filter-448
ing and fusion to highlight relevant signals and reduce dis-449
tractions. Even slight delays can disrupt the experience and450
divide the user’s attention. For instance, if a user taps on451
text and the visual highlight appears before the audio cue,452
the mismatch can cause confusion. Reliable coordination453
depends on real-time synchronisation, automatic recovery454
from misalignment, and predictive buffering—all of which455
remain technically challenging in real-world conditions.456
Notification Rate Control: Managing the frequency and457
timing of notifications is essential, particularly in visu-458
ally cluttered environments. A high volume of notifica-459
tions, such as bounding boxes appearing while scanning a460
crowded bookshelf, can overwhelm users and increase cog-461
nitive load. For people with CVI, this can lead to missed462
cues or task abandonment [16]. Adaptive systems that can463
batch, delay, or pace non-urgent prompts are important.464
Techniques like cooldown intervals and context-aware mod-465
ulation, where notification rates adjust based on user ac-466
tivity (for example, walking versus standing), have shown467
promising results [25, 36].468
Notification Modality Optimisation: Selecting the ap-469
propriate notification channel is critical for real-time as-470
sistance. Audio cues can be drowned out on busy streets,471
whereas haptic signals may feel intrusive in quiet settings.472
Effective delivery therefore requires sensing ambient con-473
ditions and adapting to user preferences. For language-474
focused tasks, people with CVI often prefer combined vi-475
sual and audio feedback [16]. Systems must rapidly switch476
or blend modalities to convey essential information.477
Abstraction Level Control: Delivering feedback at the478
proper level of detail is important. Commands that are too479
precise, such as “rotate 37°,” can overwhelm users, while480
vague prompts like “turn right” are ambiguous in cluttered481
spaces. Visual guidance faces the same trade-off; in object-482
search tasks, people with CVI preferred an initial arrow for483

orientation followed by a highlight on the target object [16]. 484
The optimal abstraction level should depend on the scene 485
complexity. LLMs can help generate context-aware instruc- 486
tions, but further study is needed [28]. 487

5.4. Adaptive Reasoning 488

Deployment of assistive XR smart glasses requires more 489
than accurate perception. Systems must manage uncer- 490
tainty, edge cases, and provide explanations for actions. 491

Conflict Resolution: Multimodal systems often face con- 492
flicting sensor inputs. For instance, the depth sensor might 493
detect motion even when cameras sees a static scene. These 494
discrepancies can lead to unsafe guidance if not properly 495
managed. Fixed rules are too rigid and risk missing impor- 496
tant context, while advanced solutions must weigh sensor 497
confidence, past reliability, and the environment [4, 49]. 498

Uncertainty Management: Ambiguity is a natural part of 499
machine learning, and failing to communicate uncertainty 500
can lead to serious risks. For instance, an error misclassify- 501
ing a glass wall as an open path can put users in danger. To 502
ensure safe use, systems should express uncertainty in ways 503
that are clear but not distracting. Techniques like greyed- 504
out overlays or prompts such as “Please verify visually” 505
can help users recognise uncertain outputs [16]. Effectively 506
communicating uncertainty supports safer decision-making 507
and promotes collaboration between the user and system. 508

Explainability: Explainability involves two parts: under- 509
standing why the system made a decision and presenting 510
that reasoning in a clear, usable form (often referred to as 511
interpretability). Many models produce outputs without re- 512
vealing the reasoning behind them, which limits user trust 513
and understanding during real-time use. Techniques such 514
as saliency maps, confidence scores, and attention visuali- 515
sations show promise [67, 77], but they require alignment 516
with both computational resources and user context. For 517
example, if a system identifies a food item as gluten-free, it 518
should explain whether this was based on a product label, 519
a trusted database, or ingredient recognition. A simple la- 520
bel like “gluten-free” is not sufficient for users with medical 521
needs. Clarifying messages such as “Identified from front 522
label” or “Verified against certified database” allow users to 523
assess reliability and decide if further checks are necessary. 524
Clear, context-aware explanations are essential for safe and 525
trustworthy assistive guidance. 526

Adaptation to Edge Cases: ML systems often struggle 527
with rare but important edge cases, such as digital menu 528
boards with changing layouts, mirrored elevators, or un- 529
conventional signage [57]. These scenarios are difficult to 530
avoid in real-world environments, so handling them reli- 531
ably is essential. This requires both model-level improve- 532
ments (see Data and Machine Learning) and system-level 533
responses, such as clear messages like “I’m unsure, proceed 534
with caution” to help users navigate uncertainty safely. 535
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5.5. Profile and Knowledge Grounding536

Smart glasses must adapt to each user and their environment537
by maintaining up-to-date profiles of preferences, abilities,538
routines, and familiar spaces. The challenge is keeping this539
information current without introducing friction.540
User Profile Acquisition Overhead: Personalisation de-541
pends on user-specific data, such as preferences, frequently542
visited locations, and familiar faces. However, traditional543
onboarding flows with long setup steps can feel burdensome544
and often lead to abandonment [13, 20, 66]. For exam-545
ple, [16] describes a people recognition feature that required546
manual entry of family members. A more intuitive approach547
would be to prompt the user after repeated encounters, such548
as “Would you like to name this person for future recog-549
nition?” The key challenge is designing methods for col-550
lecting meaningful profile data without disrupting the user551
experience.552
Live Profile Adaptation: User preferences and abilities553
change over time due to therapy, aging, or shifts in envi-554
ronment. Static profiles can quickly become outdated, re-555
sulting in guidance that no longer fits the user’s needs. For556
example, a person with CVI may gradually improve their557
ability to manage visual attention [16]. The challenge is to558
support dynamic profile updates by monitoring signals such559
as task patterns, performance, and user success.560
Knowledge Base Synchronisation: Assistive features such561
as sign recognition, indoor navigation, and transit updates562
rely on accurate, up-to-date world knowledge. The core563
challenge is to synchronise these knowledge bases with-564
out interrupting or slowing down the user experience, par-565
ticularly when dealing with large or frequently changing566
datasets. Efficient strategies like federated distillation, dif-567
ferential syncing and background updates during idle times568
can help while keeping content timely and relevant [86].569

6. Interface-Level Challenges570

These challenges focuses on XR smart glass specific inter-571
action barriers that even with strong system-level perfor-572
mance can lead to abandonment and unsafe use.573

6.1. Human Interaction574

Many are classic HCI problems [2, 33, 41, 42, 50, 65], but575
their impact is amplified in assistive contexts.576
Affordance and Interpretability: XR smart glasses intro-577
duce a unique affordance challenge: real-world objects of-578
ten lack clear indicators of interactivity in AR environments579
[74]. Users may be unsure whether they can tap, select, or580
speak to an object, particularly when visual cues are subtle581
or inconsistent. This issue is especially challenging for peo-582
ple with CVI, who may struggle with low contrast, visual583
clutter, or ambiguous symbols. To enable intuitive interac-584
tion, objects should clearly convey their function through585

the use of consistent indicators. Addressing this challenge 586
is critical to making XR systems not only interpretable but 587
also usable in everyday assistive contexts. 588
Input Reliability and Accuracy: Multimodal inputs such 589
as voice, gaze, and hand gestures often fail under real-world 590
conditions. Background noise can disrupt speech recog- 591
nition, gaze tracking may drift with attention shifts, and 592
gestures are frequently misread or triggered unintentionally 593
[2, 41, 50]. Hand-based input can be especially difficult for 594
people with CVI, particularly those with limited fine motor 595
control [16]. Identifying reliable input methods that align 596
with users’ specific abilities and constraints remains a core 597
interaction challenge. 598
Latency and Responsiveness: Timely feedback is essen- 599
tial for maintaining situational awareness. Delays in visual 600
overlays or audio prompts can interrupt user flow and lead 601
to confusion. LLM-based systems often introduce high la- 602
tency, with on-device inference taking over 30 seconds and 603
cloud responses up to 10 seconds [43]. The challenge lies 604
not only in reducing these delays (see Section 4: Data and 605
Machine Learning), but also in communicating latency and 606
maintaining a smooth, reliable user experience. 607
Ergonomics and Accessibility: Smart glasses often re- 608
quire precise hand gestures, which can be difficult for peo- 609
ple with motor or coordination impairments. These de- 610
mands may cause fatigue, accidental inputs, or discomfort, 611
adding to the input reliability challenges discussed earlier. 612
Hardware design also affects usability; heavy frames, un- 613
balanced batteries, or poorly placed sensors can cause strain 614
and reduce wearability [42, 56]. Ergonomic and accessi- 615
ble design—both in hardware and interaction—is crucial for 616
long-term comfort and inclusive adoption. 617
Learnability: XR smart glasses often combine multiple in- 618
put modes (gaze, voice, gesture and app-based controls), 619
each with distinct interaction styles that can overwhelm 620
or frustrate users. Given the affordance challenges, clear 621
guidance and gradual on-boarding are essential. Simplified 622
setup, consistent feedback, and staged feature introduction 623
help build user confidence and support long-term use, but 624
remain a key design challenge [30]. 625
Feedback and Confirmation: Immediate, clear feedback 626
helps users confirm their input has been received and under- 627
stood [65]. Without cues like audio signals or visual indi- 628
cators, users may become uncertain, leading to repeated ac- 629
tions or hesitation [16]. The challenge is to provide timely 630
feedback while managing the output challenges discussed 631
in Input and Output Coordination. 632

7. Discussion 633

This paper outlines 40 interrelated challenges spanning 634
three tiers that are barriers for real-world deployment of XR 635
smart glasses for people with CVI. This tiered structure re- 636
veals that deployment is not just a matter of technical readi- 637
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ness but also of aligning system behaviour and interaction638
design with real-world needs.639

A key insight from this three-tier lens is the need to bal-640
ance bottom-up and top-down strategies across these tiers.641
A bottom-up strategy focuses on improving core technolo-642
gies such as sensing, data quality, and latency, but may de-643
lay user-facing progress. A top-down strategy, starting from644
lived experiences and daily needs, can help prioritise which645
technical improvements matter most. We propose that real-646
world deployment requires a dual approach: aligning tech-647
nical development with user context and grounding user so-648
lutions in technical feasibility.649

Some of these issues are starting to gain research atten-650
tion, including explainability [77], responsible data prac-651
tices [19], and display modality trade-offs [40]. Others,652
such as XR-specific affordances, biometric data standards,653
and notification management, are still underexplored.654

However, real-world deployment is also shaped by655
broader constraints beyond the three tiers, such as Cost and656
Funding. Development and real-world deployment of XR657
smart glasses requires sustained investment. The cost of658
hardware, data collection and user involvement can be a ma-659
jor barrier—especially if intended for everyday use. Part-660
nering with commercial stakeholders and public institutions661
can help distribute costs and accelerate development.662

7.1. Broader Implications663

Tackling these challenges calls for coordinated progress664
across technical, interaction, and systems-level domains665
and opens up both short-term and long-term opportunities666
for research.667
Computer Vision: Existing models are typically trained668
in controlled settings and evaluated on fixed benchmarks.669
Real-world deployment requires models that are context-670
aware, robust to ambiguity, and capable of adapting in dy-671
namic, noisy environments—particularly on edge devices.672
Sensor Fusion & Embedded Systems: Coordinating data673
from asynchronous, noisy sources such as cameras, depth674
sensors, IMUs, and microphones remains difficult under675
constraints of mobility, latency, and power. Research must676
develop fusion techniques that are efficient and reliable on677
wearable hardware.678
Human–Computer Interaction (HCI): Designing for679
CVI challenges introduce new design directions. Interfaces680
must account for cognitive load, perceptual variability, and681
alternative feedback preferences. Inclusive co-design and682
adaptive interface strategies are essential.683
Multimodal AI: There is a growing need for systems that684
integrate visual, auditory, and tactile feedback based on685
real-time context and user state. This shifts the focus686
from static, single-modality outputs to dynamic, context-687
sensitive interaction strategies.688
ML Systems and Infrastructure: Reliable deployment689

requires infrastructure that supports continual learning, 690
privacy-preserving adaptation, and on-device inference. 691
This includes developing pipelines that can operate with 692
sparse labels, noisy inputs, and intermittent connectivity. 693
Short-term opportunities include: 694
• Enabling access to eye tracking data through manufac- 695

turer APIs to support adaptive feedback and attention- 696
aware interaction. 697

• Developing benchmark datasets that capture CVI-relevant 698
conditions such as clutter, motion sensitivity, and lumi- 699
nance variability. 700

• Prototyping task-aware XR guidance that adapts to intent, 701
such as distinguishing between exploration and naviga- 702
tion modes. 703

• Developing design toolkits to help researchers model 704
CVI-relevant constraints. 705

Longer-term directions include: 706
• Building vision models that gracefully degrade or offer 707

fallback strategies under uncertainty. 708
• Creating wearable platforms that adapt sensing and feed- 709

back based on user fatigue or cognitive state. 710
• Establishing shared standards for ethical, transparent, and 711

user-controlled data handling in wearables. 712

8. Call to Action 713

While investment in XR technologies continues to grow, 714
most commercial systems remain focused on entertainment, 715
productivity, or social media—not accessibility [54]. This 716
gap leaves people with vision impairments underserved and 717
reinforces the marginal status of AT as an afterthought. 718

Some of today’s most widely adopted features originated 719
from work to support accessibility and were later gener- 720
alised for broader use [6, 38, 60, 70]. For instance, speech- 721
to-text systems were initially developed to support people 722
with hearing loss, but now power mainstream products like 723
live captions, assistants, and transcription tools [38, 70]. 724

We call on the computer vision, HCI, and systems com- 725
munities to treat deployment in accessibility as a first- 726
class design goal, not a downstream application. This 727
shift requires collaborative partnerships, new evaluation 728
paradigms, and a commitment to real-world complexity. 729

9. Conclusion 730

XR smart glasses hold real promise as assistive technol- 731
ogy for people with CVI, but realising this potential re- 732
quires addressing critical deployment challenges. Spanning 733
three tiers, the 40 challenges outlined in this paper offers a 734
roadmap for future progress. While we do not propose tech- 735
nical implementations or quantitative validation, our goal 736
is to spark cross-disciplinary collaboration and highlight 737
how designing for accessibility can drive innovation toward 738
more human-centered XR systems. 739
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