
Under review as a conference paper at ICLR 2023

FEDREP: A BYZANTINE-ROBUST, COMMUNICATION-
EFFICIENT AND PRIVACY-PRESERVING FRAMEWORK
FOR FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) has recently become a hot research topic, in which Byzan-
tine robustness, communication efficiency and privacy preservation are three impor-
tant aspects. However, the tension among these three aspects makes it hard to simul-
taneously take all of them into account. In view of this challenge, we theoretically
analyze the conditions that a communication compression method should satisfy
to be compatible with existing Byzantine-robust methods and privacy-preserving
methods. Motivated by the analysis results, we propose a novel communication
compression method called consensus sparsification (ConSpar). To the best of
our knowledge, ConSpar is the first communication compression method that
is designed to be compatible with both Byzantine-robust methods and privacy-
preserving methods. Based on ConSpar, we further propose a novel FL framework
called FedREP, which is Byzantine-robust, communication-efficient and privacy-
preserving. We theoretically prove the Byzantine robustness and the convergence
of FedREP. Empirical results show that FedREP can significantly outperform
communication-efficient privacy-preserving baselines. Furthermore, compared
with Byzantine-robust communication-efficient baselines, FedREP can achieve
comparable accuracy with an extra advantage of privacy preservation.

1 INTRODUCTION

Federated learning (FL), in which participants (also called clients) collaborate to train a learning
model while keeping data privately-owned, has recently become a hot research topic (Konevcnỳ
et al., 2016; McMahan & Ramage, 2017). Compared to traditional data-center based distributed
learning (Haddadpour et al., 2019; Jaggi et al., 2014; Lee et al., 2017; Lian et al., 2017; Shamir et al.,
2014; Sun et al., 2018; Yu et al., 2019a; Zhang & Kwok, 2014; Zhao et al., 2017; 2018; Zhou et al.,
2018; Zinkevich et al., 2010), service providers have less control over clients and the network is
usually less stable with smaller bandwidth in FL applications. Furthermore, participants will also take
the risk of privacy leakage in FL if privacy-preserving methods are not used. Consequently, Byzantine
robustness, communication efficiency and privacy preservation have become three important aspects
of FL methods (Kairouz et al., 2021) and have attracted much attention in recent years.

Byzantine robustness. In FL applications, failure in clients or network transmission may not get
discovered and resolved in time (Kairouz et al., 2021). Moreover, some clients may get attacked by
an adversarial party, sending incorrect or even harmful information purposely. The clients in failure
or under attack are also called Byzantine clients. To obtain robustness against Byzantine clients, there
are mainly three different ways, which are known as redundant computation, server validation and
robust aggregation, respectively. Redundant computation methods (Chen et al., 2018; Konstantinidis
& Ramamoorthy, 2021; Rajput et al., 2019) require different clients to compute gradients for the
same training instances. These methods are mostly for traditional data-center based distributed
learning, but unavailable in FL due to the privacy principle. In server validation methods (Xie et al.,
2019b; 2020b), server validates clients’ updates based on a public dataset. However, the performance
of server validation methods depends on the quantity and quality of training instances. In many
scenarios, it is hard to obtain a large-scale high-quality public dataset. The third way is to replace
the mean aggregation on server with robust aggregation (Alistarh et al., 2018; Bernstein et al., 2019;
Blanchard et al., 2017; Chen et al., 2017; Ghosh et al., 2020; Karimireddy et al., 2021; Li et al.,

1

Under review as a conference paper at ICLR 2023

Table 1: Comparison among different methods in terms of the three aspects of federated learning
Method Byzt.-robust Comm.-efficient Privacy-preserving

RCGD (Ghosh et al., 2021) X X -
F2ed-Learning (Wang et al., 2020) X - X

SHARE (Velicheti et al., 2021) X - X
SparseSecAgg (Ergun et al., 2021) - X X

FedREP (Ours) X X X

2019; Sohn et al., 2020; Yin et al., 2018; 2019). Compared to redundant computation and server
validation, robust aggregation usually has a wider scope of application. Many Byzantine-robust FL
methods (Wang et al., 2020; Xie et al., 2019a) take this way.

Communication efficiency. In many FL applications, server and clients are connected by wide
area network (WAN), which is usually less stable and has smaller bandwidth than the network in
traditional data-center based distributed machine learning. Therefore, communication cost should
also be taken into consideration. Local updating technique (Konevcnỳ et al., 2016; McMahan et al.,
2017; Yu et al., 2019b; Zhao et al., 2017; 2018), where clients locally update models for several
iterations before global aggregation, is widely used in FL methods. Communication cost can also be
reduced by communication compression techniques, which mainly include quantization (Alistarh
et al., 2017; Faghri et al., 2020; Gandikota et al., 2021; Safaryan & Richtárik, 2021; Seide et al.,
2014; Wen et al., 2017), sparsification (Aji & Heafield, 2017; Chen et al., 2020; Stich et al., 2018;
Wangni et al., 2018) and sketching1 (Rothchild et al., 2020). Error compensation (also known as error
feedback) technique (Gorbunov et al., 2020; Wu et al., 2018; Xie et al., 2020c) is proposed to alleviate
the accuracy decrease for communication compression methods. Moreover, different techniques can
be combined to further reduce communication cost (Basu et al., 2020; Lin et al., 2018).

Privacy preservation. Most of the existing FL methods send gradients or model parameters during
training process while keeping data decentralized due to the privacy principle. However, sending
gradients or model parameters may also cause privacy leakage problems (Kairouz et al., 2021; Zhu
et al., 2019). Random noise is used to hide the true input values in some privacy-preserving techniques
such as differential privacy (DP) (Abadi et al., 2016; Jayaraman et al., 2018; McMahan et al., 2018)
and sketching (Liu et al., 2019; Zhang & Wang, 2021). Secure aggregation (SecAgg) (Bonawitz et al.,
2017; Choi et al., 2020) is proposed to ensure the privacy of computation. Based on secure multiparty
computation (MPC) and Shamir’s t-out-of-n secret sharing (Shamir, 1979), SecAgg allows server to
obtain only the average value for global model updating without knowing each client’s local model
parameters (or gradients). Since noises can be simply added to stochastic gradients in most of the
exsiting FL methods to provide input privacy, we mainly focus on how to combine SecAgg with
Byzantine-robust and communication-efficient methods in this work.

There are also some methods that consider two of the three aspects (Byzantine robustness, communica-
tion efficiency and privacy preservation), including RCGD (Ghosh et al., 2021), F2ed-Learning (Wang
et al., 2020), SHARE (Velicheti et al., 2021) and SparseSecAgg (Ergun et al., 2021), which we sum-
marize in Table 1. However, the tension among these three aspects makes it hard to simultaneously
take all of the three aspects into account. In view of this challenge, we theoretically analyze the
tension among Byzantine robustness, communication efficiency and privacy preservation, and propose
a novel FL framework called FedREP. The main contributions are listed as follows:

• We theoretically analyze the conditions that a communication compression method should
satisfy to be compatible with Byzantine-robust methods and privacy-preserving methods.
Motivated by the analysis results, we propose a novel communication compression method
called consensus sparsification (ConSpar). To the best of our knowledge, ConSpar is
the first communication compression method that is designed to be compatible with both
Byzantine-robust methods and privacy-preserving methods.
• Based on ConSpar, we further propose a novel FL framework called FedREP, which is

Byzantine-robust, communication-efficient and privacy-preserving.

1Sketching technique can be used in different ways for reducing communication cost or protecting privacy.
Thus, sketching appears in both communication-efficient methods and privacy-preserving methods.

2

Under review as a conference paper at ICLR 2023

• We theoretically prove the Byzantine robustness and the convergence of FedREP.
• We empirically show that FedREP can significantly outperform existing communication-

efficient privacy-preserving baselines. Furthermore, compared with Byzantine-robust
communication-efficient baselines, FedREP can achieve comparable accuracy with an
extra advantage of privacy preservation.

2 PRELIMINARY

In this work, we mainly focus on the conventional federated learning setup withm clients and a single
server (Kairouz et al., 2021), which collaboratively to solve the finite-sum optimization problem:

min
w∈Rd

F (w) =

m∑
k=1

pkFk(w) s.t. Fk(w) =
1

|Dk|
∑
i∈Dk

fi(w), k = 1, 2, . . . ,m, (1)

where w is the model parameter and d is the dimension of parameter. fi(w) is the empirical loss of
parameter w on the i-th training instance. Dk denotes the index set of instances stored on the k-th
client and Fk(w) is the local loss function of the k-th client. We assume that Dk ∩ Dk′ = ∅ when
k 6= k′, and consider the instances on different clients with the same value as several distinct instances.
pk is the weight of the k-th client satisfying that pk > 0 and

∑m
k=1 pk = 1. A common setting of pk

is that pk = |Dk|/(
∑m
k=1 |Dk|). For simplicity, we assume |Dk| = |Dk′ | for all k, k′ ∈ [m] and thus

pk = 1/m. The analysis in this work can be extended to general cases in a similar way.

Most federated learning methods (Karimireddy et al., 2020; McMahan et al., 2017; 2018) to solve
problem (1) are based on distributed stochastic gradient descent and its variants, where clients locally
update model parameters according to its own training instances and then communicate with server
for model aggregation in each iteration. However, the size of many widely-used models (Devlin et al.,
2018; He et al., 2016) is very large, leading to heavy communication cost. Thus, techniques to reduce
communication cost are required in FL. Moreover, FL methods should also be robust to potential
Byzantine attack and privacy attack in real-world applications.

Byzantine attack. Let [m] = {1, 2, . . . ,m} denote the set of clients. G ⊆ [m] denotes the set of
good (non-Byzantine) clients, which will execute the algorithm faithfully. The rest clients [m] \ G are
Byzantine, which may act maliciously and send arbitrary values. The server, which is usually under
service provider’s control, will faithfully execute the algorithm as well. This Byzantine attack model
is consistent to that in many previous works (Karimireddy et al., 2021). Although there are some
works (Burkhalter et al., 2021) focusing on another types of attacks called backdoor attacks (Kairouz
et al., 2021), in this paper we mainly focus on Byzantine attacks. The purpose of Byzantine attacks
is to degrade the model performance. One typical technique to defend against Byzantine attacks
is robust aggregation (Kairouz et al., 2021), which guarantees bounded aggregation error even if
Byzantine clients send incorrect values.

Privacy attack. In a typical FL method, server is responsible for using the average of clients’
local updating values for global model updating. However, local updating information may be
used to recover client’s training instances (Zhu et al., 2019), which will increase the risk of privacy
leakage. Thus, server is prohibited to directly receive individual client’s updating information by
the requirement of privacy preservation (Kairouz et al., 2021). Secure aggregation (Bonawitz et al.,
2017) is a typical privacy-preserving method, which only allows server to have access to the average
value for global model updating.

There are mainly two different types of FL settings, which are also called cross-silo FL and cross-
device FL (Kairouz et al., 2021). We mainly focus on the cross-silo FL setting in this paper, where the
number of clients m is usually not too large and all clients can participate in each training iteration.
Meanwhile, in this paper we mainly focus on synchronous FL methods.

3 METHODOLOGY

In this section, we analyze the conditions that a communication compression method should satisfy to
be compatible with Byzantine-robust methods and privacy-preserving methods. Based on the analysis,
we propose a novel communication compression method called consensus sparsification and a novel

3

Under review as a conference paper at ICLR 2023

federated learning framework called FedREP that is Byzantine-robust, communication-efficient and
privacy-preserving. In FedREP, we adopt robust aggregation technique to obtain Byzantine robustness
due to its wider scope of application than redundant computation and server validation. For privacy
preservation, we mainly focus on secure aggregation, which is a widely used technique in FL to make
server only have access to the average of clients’ local updating values.

3.1 MOTIVATION

We first analyze the compatibility of existing communication compression methods with secure
aggregation (SecAgg) (Bonawitz et al., 2017). SecAgg is usually adopted together with quantization
since it requires to operate on a finite field to guarantee the privacy preservation. Traditional
quantization methods that represent each coordinate in lower bits can compress gradients in floating
point number (32 bits) only up to 1/32 of the original size. Even with quantization, SecAgg still
suffers from heavy communication cost. Thus, sparsification is required to further reduce the
communication cost (Ergun et al., 2021). However if we simply combine traditional sparsification
methods (e.g., random-K and top-K sparsification) with SecAgg, the random mask in SecAgg will
damage the sparsity. Thus, non-Byzantine clients should agree on the non-zero coordinates in order
to keep the sparsity in SecAgg.

Then we analyze the compatibility of sparsification with robust aggregation. As previous
works (Karimireddy et al., 2021) have shown, to obtain Byzantine robustness, it requires the distances
between compressed updates from different clients (a.k.a. dissimilarity between clients) to be small.
Specifically, we present the definition of (δ, c)-robust aggregator in Definition 1.

Definition 1 ((δ, c)-robust aggregator (Karimireddy et al., 2021; 2022)). Assume constant δ ∈ [0, 12)
and index set G ⊆ [m] satisfies |G| ≥ (1 − δ)m. Suppose that we are given m random vectors
v1, . . . ,vm ∈ Rd such that E‖vk − vk′‖2 ≤ ρ2 for any fixed k, k′ ∈ G. vk can be arbitrary
value if k ∈ [m] \ G. Aggregator Agg(·) is said to be (δ, c)-robust if the aggregation error
e = Agg({vk}mk=1)− 1

|G|
∑
k∈G vk satisfies that

E‖e‖2 ≤ cδρ2. (2)

As shown in previous works (Karimireddy et al., 2022), many widely-used aggregators, such as
Krum (Blanchard et al., 2017), geoMed (Chen et al., 2017) and coordinate-wise median (Yin
et al., 2018), combined with averaging in buffers (please refer to Section 3.3), satisfy Definition 1.
Moreover, O(δρ2) is the tightest order (Karimireddy et al., 2021). Thus, a compression method which
is compatible with robust aggregation should satisfy the condition that the expectation of dissimilarity
between clients’ updates is kept small after compression. Therefore, we theoretically analyze the
expectation of dissimilarity after sparsification. For space saving, we only present the results here.
Proof details can be found in Appendix B.

Theorem 1. Let {vk}mk=1 denote random vectors that satisfy E‖vk − vk′‖2 = (ρk,k′)
2 and

E‖vk‖2 = (µk)2 for any fixed k, k′ ∈ G. More specifically, E[(vk)j − (vk′)j]
2 = ξk,k′,j(ρk,k′)

2

and E[(vk)2j] = ζk,j(µk)2, where ξk,k′,j > 0, µk,j > 0,
∑
j∈[d] ξk,k′,j = 1 and

∑
j∈[d] ζk,j = 1 for

any fixed k, k′ ∈ G. Let C(·) denote any sparsification operator and Nk denote the set of non-zero
coordinates in C(vk). For any fixed k, k′ ∈ G, we have:

E‖C(vk)−C(vk′)‖2 = (ρk,k′)
2 ·
∑
j∈[d]

(
ξk,k′,jPr[j ∈ Nk ∩Nk′]

)
+ (µk)2 ·

∑
j∈[d]

(
ζk,jPr[j ∈ Nk \ Nk′]

)
+ (µk′)

2 ·
∑
j∈[d]

(
ζk′,jPr[j ∈ Nk′ \ Nk]

)
. (3)

Please note that when dissimilarity between the k-th and the k′-th clients is not too large, (µk)2 and
(µk′)

2 are usually much larger than (ρk,k′)
2. In Equation (3), terms (µk)2 and (µk′)

2 vanish if and
only if Nk \ Nk′ = Nk′ \ Nk = ∅ with probability 1, which is equivalent to that Nk = Nk′ with
probability 1. Furthermore, in order to lower the dissimilarity bewteen any pair of non-Byzantine
clients, all non-Byzantine clients should agree on the non-zero coordinates of sparsified vectors.
Motivated by the analysis results in these two aspects, we propose the consensus sparsification.

4

Under review as a conference paper at ICLR 2023

3.2 CONSENSUS SPARSIFICATION

We introduce the consensus sparsification (ConSpar) method in this section. For simplicity, we
assume the hyper-parameter K is a multiple of client number m. We use utk to denote the local
memory for error compensation (Stich et al., 2018) on client k at the t-th iteration. Initially, u0

k = 0.

Let gtk denote the updates vector to be sent from client k at the t-th iteration. Client k first generates
a coordinate set T tk by top-Km sparsification criterion. More specifically, T tk contains the coordinates
according to the largest Km absolute values in gtk. Then, set T̃ tk is generated by randomly selecting
(Km − r

t
k) elements from T tk , where random variable rtk follows the binomial distribution B(Km , α)

(0 ≤ α ≤ 1). Thus, |T̃ tk | = K
m − r

t
k. Then, setRtk is generated by randomly selecting rtk elements

from [d] \ T̃ tk . Finally, client k computes Itk = T̃ tk ∪Rtk and sends Itk to server. The main purpose
of the operations above is to obfuscate the top-Km dimension for privacy preservation. Larger α could
provide stronger privacy preservation on the coordinates, but may degrade the model accuracy, as we
will empirically show in Section 5. The sent coordinates are totally random when α = 1.

When server has received {Itk}mk=1 from all clients, it decides the coordinate set of sparsified gradients
It = ∪mk=1Itk, and broadcasts It to all clients. Finally, each client receives It, and computes
the sparsified g̃tk according to it.2 More specifically, (g̃tk)j = (gtk)j if j ∈ It and (g̃tk)j = 0

otherwise, where (g̃tk)j denotes the value in the j-th coordinate of g̃tk. Since |Itk| = K
m , we have

|It| = | ∪mk=1 Itk| ≤
∑m
k=1 |Itk| = K. Please note that clients only need to send (g̃tk)It to the server

since clients and the server have reached an agreement on the non-zero coordinates It of sparsified
gradients. More specifically, (g̃tk)It = ((g̃tk)j1 , . . . , (g̃

t
k)j|It|), where js ∈ It (s = 1, . . . , |It|) are

in ascending order. When server has received {(g̃tk)It}mk=1, it uses robust aggregation to obtain
(G̃t)It = Agg({(g̃tk)It}mk=1). Please note that (G̃t)It is still a sparsified vector. Moreover, server is
only required to broadcast (G̃t)It since It has already been sent to clients before. Thus, ConSpar is
naturally a two-way sparsification method without the need to adopt DoubleSqueeze technique (Tang
et al., 2019). Then we analyze the dissimilarity between clients after consensus sparsification. Please
note that we do not assume the behaviour of Byzantine clients, which may send arbitrary Itk.
Proposition 1. Let {g̃tk}mk=1 denote the consensus sparsification results of vectors {gtk}mk=1 and then
we have E‖g̃tk − g̃tk′‖2 ≤ E‖gtk − gtk′‖2 for any fixed k, k′ ∈ G.

Proposition 1 indicates that ConSpar will not enlarge the dissimilarity between clients, which is
consistent with Theorem 1. Meanwhile, SecAgg can be used in the second communication round and
random masks are needed to add on the consensus non-zero coordinates only. Then we analyze the
privacy preservation of the mechanism that we use to generate Itk in ConSpar. To begin with, we
present the definition of ε-differential privacy (ε-DP) in Definition 2.
Definition 2. Let ε > 0 be a real number. A random mechanismM is said to provide ε-differential
privacy if for any two adjacent input datasets T1 and T2 and for any subset of possible outputs S:

Pr[M(T1) ∈ S] ≤ exp(ε) · Pr[M(T2) ∈ S].

In the mechanism that we use to generate Itk in ConSpar, T1 and T2 are the top-Km coordinate sets.
Definition 2 leaves the definition of adjacent datasets open. In this work, coordinate sets T1 and T2
that satisfy T1, T2 ⊆ [d] and |T1| = |T2| = K

m are defined to be adjacent if T1 and T2 differ only
on one element. Liu et al. (2020) provides DP guarantee for sparsification methods with only one
selected coordinate. Our definition is more general and includes the one coordinate special case
where |T1| = |T2| = 1. Now we show that the coordinate generation mechanism provides ε-DP.
Theorem 2. For any α ∈ (0, 1], the mechanism in consensus sparsification that takes the set of top

coordinates T tk as an input and outputs Itk provides
(

ln
(

(1+α)·Km (d−Km+1)

2α

))
-differential privacy.

Finally, we analyze the communication complexity of ConSpar. Clients need to send candidate
coordinate set Itk, receive It, send local gradient in the form of (g̃tk)It , and then receive (G̃t)It in
each iteration. Thus, each client needs to communicate no more than (Km + K) integers and 2K
floating point numbers in each iteration. When each integer or floating point number is represented

2We use tilde to denote sparse vectors in this paper for easy distinguishment.

5

Under review as a conference paper at ICLR 2023

by 32 bits (4 bytes), the total communication load of each client is no more than (96 + 32
m)K bits

in each iteration. The communication load is not larger than that of vanilla top-K sparsification,
in which 4 × 32K = 128K bits are transmitted in each iteration. Meanwhile, although ConSpar
requires two communication rounds, the extra communication round is acceptable. For one reason,
there is little computation between the two rounds, which will not significantly increase the risk
of client disconnection during the aggregation process. For another reason, the cost of the extra
communication round is negligible when combined with SecAgg since SecAgg already requires
multiple communication rounds and can deal with offline clients.

3.3 FEDREP

As we have shown, ConSpar is compatible with each of robust aggregation and SecAgg. However,
robust aggregation and SecAgg can not be simply applied together since SecAgg is originally designed
for linear aggregation (such as summation and averaging) while robust aggregation is usually non-
linear. This is also known as the tension between robustness and privacy (Kairouz et al., 2021).
Buffers on server are widely studied in Byzantine-robust machine learning (Karimireddy et al., 2022;
Velicheti et al., 2021; Wang et al., 2020; Yang & Li, 2021), which can be used to make such a trade-off
between robustness and privacy. We also introduce buffers in FedREP. The details of FedREP are
illustrated in Algorithm 1 and Algorithm 2 in Appendix A.

Let integer s denote the buffer size. For simplicity, we assume client number m is a multiple of buffer
size s and hence there are m

s buffers on server. At the beginning of the t-th global iteration, each
client k locally trains model using optimization algorithm A and training instances Dk based on wt

and obtain model parameter wt+1
k = A(wt;Dk). The update to be sent is gtk = utk + (wt −wt+1

k),
where utk is the local memory for error compensation with u0

k = 0. Then client k generates
coordinate set Itk by consensus sparsification (please see Section 3.2), and sends Itk to the server.

When server receives all clients’ suggested coordinate sets, it broadcasts It = ∪mk=1Itk, which is
the set of coordinates to be transmitted in the current iteration, to all clients. In addition, server will
randomly assign a buffer for each client. More specifically, server randomly picks a permutation
π of [m] and assign buffer bl to clients {π(ls + k)}sk=1 (l = 0, 1, . . . , ms − 1). Then for each
buffer, bl = 1

s

∑s
k=1(g̃tπ(ls+k))It is obtained by secure aggregation3 and global update (G̃t)It =

Agg({bl}m/sl=1) is obtained by robust aggregation among buffers. During this time, clients could
update the local memory for error compensation by computing ut+1

k = gtk − g̃tk. Finally, (G̃t)It is
broadcast to all clients for global updating by wt+1 = wt − G̃t.

We have noticed that the consensus sparsification is similar to the cyclic local top-K sparsifica-
tion (CLT-K) (Chen et al., 2020), where all clients’ non-zero coordinates are decided by one client in
each communication round. However, there are significant differences between these two sparsifica-
tion methods. CLT-K is designed to be compatible with all-reduce while consensus sparsification is
designed to be compatible with robust aggregation and SecAgg in FL. In addition, when there are
Byzantine clients, CLT-K does not satisfy the d′-contraction property since Byzantine clients may
purposely send wrong non-zero coordinates. Meanwhile, some works (Karimireddy et al., 2022)
show that averaging in groups before robust aggregation (as adopted in FedREP) can help to enhance
the robustness of learning methods on heterogeneous datasets. We will further explore this aspect in
future work since it is beyond the scope of this paper.

Finally, we would like to discuss more about privacy. In the ideal case, server would learning nothing
more than the aggregated result. However, obtaining the ideal privacy-preserving property itself
would be challenging, and even more so when we attempt to simultaneously guarantee Byzantine
robustness and communication efficiency (Kairouz et al., 2021). In FedREP, server has access to
the partially aggregated mean bl and the coordinate set Itk. However, as far as we know, the risk
of privacy leakage increased by the two kinds of information is limited. Server does not know the
momentum sent from each single client, and only has access to the coordinate set Itk without knowing
the corresponding values or even the signs. Although it requires further work to study how much
information can be obtained from the coordinates, to the best of our knowledge, there are almost no
exsiting methods that can recover the training data only based on the coordinates.

3Random quantization can be simply adopted before secure aggregation to make the values on a finite field
for more privacy preservation. However for simplicity, we do not include it in the description here.

6

Under review as a conference paper at ICLR 2023

4 CONVERGENCE

In this section, we theoretically prove the convergence of FedREP. Due to limited space, proof details
are in Appendix B. Firstly, we present the definition of d′-contraction operator (Stich et al., 2018).
Definition 3 (d′-contraction). C : Rd → Rd is called a d′-contraction operator (0 < d′ ≤ d) if

E‖x− C(x)‖2 ≤ (1− d′/d) ‖x‖2, ∀x ∈ Rd. (4)

The d′-contraction property of consensus sparsification is shown in Proposition 2.
Proposition 2. If the fraction of Byzantine clients is not larger than δ (0 ≤ δ < 1

2), consensus sparsi-

fication is a d′cons-contraction operator, where d′cons = d(1− e−
αK[(1−δ)m−1]

md) + K
me
−αK[(1−δ)m−1]

md .

Therefore, the existing convergence results of d′-contraction operator (Stich et al., 2018) can be
directly applied to consensus sparsification when there is no Byzantine attack. Then we theoretically
analyze the convergence of FedREP. For simplicity in the analysis, we consider the secure aggre-
gation and the robust aggregation on server as a unit secure robust aggregator, which is denoted by
SRAgg(·). Therefore, G̃t = SRAgg({g̃tk}mk=1). The assumptions are listed below.

Assumption 1 (Byzantine setting). The fraction of Byzantine clients is not larger than δ (0 ≤ δ < 1
2)

and the secure robust aggregator SRAgg(·) is (δ, c)-robust with constant c ≥ 0.
Assumption 2 (Lower bound). F (w) is bounded below: ∃F ∗ ∈ R, F (w) ≥ F ∗,∀w ∈ Rd.
Assumption 3 (L-smoothness). Global loss function F (w) is differentiable and L-smooth:
||∇F (w)−∇F (w′)|| ≤ L||w −w′||, ∀w,w′ ∈ Rd.
Assumption 4 (Bounded bias). ∀k ∈ G, we have E[∇fitk(w)] = ∇Fk(w) and there exists B ≥ 0

such that ‖∇Fk(w)−∇F (w)‖ ≤ B, ∀w ∈ Rd.
Assumption 5 (Bounded gradient). ∀k ∈ G, stochastic gradient∇fitk(w) has bounded expectation:
∃D ∈ R+, such that ‖∇Fk(w)‖ ≤ D,∀w ∈ Rd.

Assumption 1 is common in Byzantine-robust distributed machine learning, which is consistent with
previous works (Karimireddy et al., 2022). The rest assumptions are common in distributed stochastic
optimization. Assumption 5 is widely used in the analysis of gradient compression methods with
error compensation. We first analyze the convergence for a special case of FedREP where the training
algorithm A is local SGD with learning rate η and interval I . Specifically, wt+1

k is computed by the
following process: (i) wt+1,0

k = wt; (ii) wt+1,j+1
k = wt+1,j

k −η·∇fit,jk (wt+1,j
k), j = 0, 1, . . . , I−1;

(iii) wt+1
k = wt+1,I

k , where it,jk is uniformly sampled from Dk. Assumption 6 is made for this case.
Assumption 6 (Bounded variance). Stochastic gradient∇fitk(w) is unbiased with bounded variance:
E[∇fitk(w)] = Fk(w) and ∃σ ∈ R+, such that E‖∇fitk(w)−∇Fk(w)‖2 ≤ σ2,∀w ∈ Rd,∀k ∈ G.

According to Assumption 5 and 6, the second order moment of stochastic gradient ∇fitk(w) is
bounded by (D2 + σ2). Let ut = 1

|G|
∑
k∈G u

t
k and let et = SRAgg({g̃tk}mk=1) − 1

|G|
∑
k∈G g̃

t
k

denote the aggregation error . We first show that E‖utk‖2 and E‖et‖2 are both bounded above.
Lemma 1. Under Assumption 1, 2, 3, 4, 5 and 6, let constant H = d/d′cons and take learning rate
ηt = η > 0, we have E‖utk‖2 ≤ 4H2I2(D2 + σ2) · η2, ∀k ∈ G.
Lemma 2. Under the same conditions in Lemma 1, we have E‖et‖2 ≤ 8cδI2(4H2+1)(D2+σ2)·η2.

Based on Lemma 1 and Lemma 2, we have the following theorem.
Theorem 3. For FedREP, under the same conditions in Lemma 1 and Lemma 2, we have:

1

T

T−1∑
t=0

E‖∇F (wt)‖2 ≤ 2[F (ŵ0)− F ∗]
ηIT

+ ηγ1 + η2γ2 + ∆, (5)

where

γ1 = 2IL · [2(1− I−1)LD + 2HD
√
D2 + σ2 + (D2 + σ2) + 8cδ(4H2 + 1)(D2 + σ2)],

γ2 = 8H2I2L2(D2 + σ2) and ∆ = 2BD + 4
√

2cδ(4H2 + 1)(D2 + σ2)D.

7

Under review as a conference paper at ICLR 2023

When taking η = O(1/
√
T), Theorem 3 guarantees that FedREP has a convergence rate ofO(1/

√
T)

with an extra error ∆, which consists of two terms. The first term 2BD comes from the bias of
stochastic gradients, which reflects the degree of heterogeneity between clients. The term vanishes
in i.i.d. cases where B = 0. The second term 4

√
2cδ(4H2 + 1)(D2 + σ2)D comes from the

aggregation error. The term vanishes when there is no Byzantine client (δ = 0). Namely, the extra
error ∆ vanishes in i.i.d. cases without Byzantine clients. Then we analyze the convergence of
FedREP with general local training algorithms that satisfy Assumption 7, which illustrates two
important properties of a training algorithm.
Assumption 7. Let w′ = A(w;Dk). There exist constants ηA > 0, A1 ≥ 0 and A2 > 0 such that
local training algorithm A satisfies ‖E[GA(w;Dk)] − ∇Fk(w)‖ ≤ A1 and E‖GA(w;Dk)‖2 ≤
(A2)2, where GA(w;Dk) = (w −w′)/ηA, ∀k ∈ [m].

In Assumption 7, GA(w;Dk) can be deemed as an estimation of gradient ∇Fk(w) by algorithm A
with bounded bias A1 and bounded second order moment (A2)2. The expectation appears due to the
randomness in algorithm A. Many widely used algorithms satisfy Assumption 7. For vanilla SGD,
let ηA be the learning rate and GA(w;Dk) is exactly the stochastic gradient. Thus, we have A1 = 0
and (A2)2 = D2 + σ2 under Assumption 5 and 6. Moreover, previous works (Allen-Zhu et al., 2020;
El-Mhamdi et al., 2020; Karimireddy et al., 2021) have shown that using history information such as
momentum is necessary in Byzantine-robust machine learning. We show that local momentum SGD
also satisfies Assumption 7 in Proposition 3 in Appendix B.
Theorem 4. Let constant H = d/d′cons. For FedREP, under Assumption 1, 2, 3, 4, 5 and 7, we have:

1

T

T−1∑
t=0

E‖∇F (wt)‖2 ≤ 2[F (ŵ0)− F ∗]
ηAT

+ ηAγA,1 + (ηA)2γA,2 + ∆A, (6)

where
γA,1 = 2(A2)2L+ 4HA2DL+ 16cδ(4H2 + 1)(A2)2L,

γA,2 = 8H2(A2)2L2 and ∆A = 2A1D + 2BD + 4
√

2cδ(4H2 + 1)A2D.

Compared to the error ∆ in Theorem 3, there is an extra term 2A1D in ∆A, which is caused by the
bias of gradient estimation in algorithm A. Meanwhile, we would like to point out that Theorem 4
provides convergence guarantee for general algorithms. For some specific algorithm, tighter upper
bounds may be obtained by adopting particular analysis technique. We will leave it for future work
since we mainly focus on a general framework in this paper.

5 EXPERIMENT

In this section, we evaluate the performance of FedREP and baselines on image classification task.
Each method is evaluated on CIFAR-10 dataset (Krizhevsky et al., 2009) with a widely used deep
learning model ResNet-20 (He et al., 2016). Training instances are equally and uniformly distributed
to each client. All experiments in this work are conducted by PyTorch on a distributed platform with
dockers. More specifically, we set 32 dockers as clients, among which 7 clients are Byzantine. One
extra docker is set to be the server. Each docker is bound to an NVIDIA Tesla K80 GPU. Unless
otherwise stated, we set local training algorithm A to be local momentum SGD with momentum
hyper-parameter β = 0.9 (see Equation (182) in Appendix B) for FedREP. We run each method in the
same environment for 120 epochs. Initial learning rate is chosen from {0.1, 0.2, 0.5, 1.0, 2.0, 5.0}.
At the 80-th epoch, learning rate will be multiplied by 0.1 as suggested in (He et al., 2016). The best
top-1 accuracy w.r.t. epoch is used as final metrics. We test each method under bit-flipping attack,
‘A Little is Enough’ (ALIE) attack (Baruch et al., 2019) and ‘Fall of Empires’ (FoE) attack (Xie
et al., 2020a). The updates sent by Byzantine clients with bit-flipping attack are in the opposite
direction. ALIE and FoE are two omniscient attacks, where attackers are assumed to know the
updates on all clients and use them for attack. We set attack magnitude hyper-parameter to be
0.5 for FoE attack. For FedREP, we test the performance when the robust aggregator is geometric
median (geoMed) (Chen et al., 2017), coordinate-wise trimmed-mean (TMean) (Yin et al., 2018)
and centered-clipping (CClip) (Karimireddy et al., 2021), respectively. More specifically, we adopt
Weiszfeld’s algorithm (Pillutla et al., 2019) with iteration number set to be 5 for computing geoMed.
The trimming fraction in TMean is set to 7/16. For CClip, we set clipping radius to be 0.5 and
iteration number to be 5. Batch size is set to be 25.

8

Under review as a conference paper at ICLR 2023

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

 = 0.00 (=0.042440)
 = 0.20 (=0.044184)
 = 0.50 (=0.046255)
 = 0.80 (=0.047939)
 = 0.95 (=0.048599)
 = 0.99 (=0.048713)
 = 1.00 (=0.048725)

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

 = 0.00 (=0.037733)
 = 0.20 (=0.040195)
 = 0.50 (=0.044336)
 = 0.80 (=0.047536)
 = 0.95 (=0.048573)
 = 0.99 (=0.048712)
 = 1.00 (=0.048725)

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

 = 0.00 (=0.042945)
 = 0.20 (=0.044130)
 = 0.50 (=0.046277)
 = 0.80 (=0.047980)
 = 0.95 (=0.048609)
 = 0.99 (=0.048714)
 = 1.00 (=0.048724)

Figure 1: Top-1 accuracy w.r.t. epochs of FedREP with CClip when there are 7 Byzantine clients
under bit-flipping attack (left), ALIE attack (middle) and FoE attack (right).

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

RCGD-EF (=0.05)
FedREP w/ geoMed (s=2, 0.05)
FedREP w/ TMean (s=2, 0.05)
FedREP w/ CClip (s=2, 0.05)

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

RCGD-EF (=0.05)
FedREP w/ geoMed (s=2, 0.05)
FedREP w/ TMean (s=2, 0.05)
FedREP w/ CClip (s=2, 0.05)

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

RCGD-EF (=0.05)
FedREP w/ geoMed (s=2, 0.05)
FedREP w/ TMean (s=2, 0.05)
FedREP w/ CClip (s=2, 0.05)

Figure 2: Top-1 accuracy w.r.t. epochs of FedREP and RCGD-EF when there are 7 Byzantine clients
under bit-flipping attack (left), ALIE attack (middle) and FoE attack (right).

We first empirically evaluate the effect of α on the performance of FedREP. We set I = 1, s = 2 and
K = 0.05d. We compare the performance of FedREP when α = 0, 0.2, 0.5, 0.8, 0.95, 0.99 and 1.
As illustrated in Figure 1, the performance of FedREP with CClip changes little when α ranges from
0 to 0.95. Final accuracy will decrease rapidly when α continues to increase. A possible reason is
that some coordinates could grow very large in local error compensation memory when α is near 1.
More results of FedREP with geoMed and TMean are presented in Appendix C.1. Since the effect
of α is small when 0 ≤ α ≤ 0.95, we set α = 0 in the following experiments. In addition, as the
empirical results in Appendix C.2 show, Byzantine attacks on coordinates have little effect on the
performance of FedREP. Thus, we assume no attacks on the coordinates in the following experiments.

Then we compare FedREP with a Byzantine-robust communication-efficient baseline called Robust
Compressed Gradient Descent with Error Feedback (RCGD-EF) (Ghosh et al., 2021). For fairness,
we set the compression operator Q(·) in RCGD-EF to be top-K sparsification, and set Γ = 0.05,
which is the ratio of transmitted dimension number to total dimension number, for both FedREP and
RCGD-EF. Local updating interval I is set to 5 for each method. As illustrated in Figure 2, FedREP
has comparable performance to RCGD-EF under bit-flipping and FoE attack, but outperforms RCGD-
EF under ALIE attack. Meanwhile, FedREP is naturally a two-way sparsification method while
RCGD-EF is not. Moreover, FedREP provides extra privacy preservation compared to RCGD-EF.

Due to limited space, more empirical results are presented in the appendices. Empirical results in
Appendix C.3 show the effect of momentum hyper-parameter β. Empirical results in Appendix C.4
show that FedREP can significantly outperform the communication-efficient privacy-preserving
baseline SparseSecAgg (Ergun et al., 2021). Empirical results in Appendix C.5 show that compared
with the Byzantine-robust privacy-preserving baseline SHARE (Velicheti et al., 2021), FedREP has
comparable convergence rate and accuracy with much smaller communication cost.

6 CONCLUSION

In this paper, we theoretically analyze the tension among Byzantine robustness, communication
efficiency and privacy preservation in FL. Motivated by the analysis results, we propose a novel
Byzantine-robust, communication-efficient and privacy-preserving FL framework called FedREP.
Theoretical guarantees for the Byzantine robustness and the convergence of FedREP are provided.
Empirical results show that FedREP can significantly outperform communication-efficient privacy-
preserving baselines. Furthermore, compared with Byzantine-robust communication-efficient base-
lines, FedREP can achieve comparable accuracy with an extra advantage of privacy preservation.

9

Under review as a conference paper at ICLR 2023

Reproducibility Statement. In this work, we empirically test the performance of FedREP and
the baselines on the public dataset CIFAR-10 (Krizhevsky et al., 2009) with the widely used deep
learning model ResNet-20 (He et al., 2016). Common settings for all the experiments in this work
are presented at the beginning of Section 5. More settings for each single experiment are presented
along with the empirical results in Section 5 and Appendix C. In addition, we provide the core part of
our code in the supplementary material. All the proof details for the theoretical results in this work
can be found in Appendix B.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp.
440–445, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. In Advances in Neural Information Process-
ing Systems, pp. 1709–1720, 2017.

Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. In Advances in
Neural Information Processing Systems, pp. 4613–4623, 2018.

Zeyuan Allen-Zhu, Faeze Ebrahimian, Jerry Li, and Dan Alistarh. Byzantine-resilient non-convex
stochastic gradient descent. arXiv preprint arXiv:2012.14368, 2020.

Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses for
distributed learning. In Advances in Neural Information Processing Systems, pp. 8635–8645, 2019.

Debraj Basu, Deepesh Data, Can Karakus, and Suhas N Diggavi. Qsparse-local-SGD: Distributed
SGD with quantization, sparsification, and local computations. IEEE Journal on Selected Areas in
Information Theory, 1(1):217–226, 2020.

Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. signSGD with
majority vote is communication efficient and fault tolerant. In Proceedings of the International
Conference on Learning Representations, 2019.

Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al. Machine learning with adversaries: Byzantine
tolerant gradient descent. In Advances in Neural Information Processing Systems, pp. 119–129,
2017.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175–1191, 2017.

Lukas Burkhalter, Hidde Lycklama, Alexander Viand, Nicolas Küchler, and Anwar Hithnawi. RoFL:
Attestable robustness for secure federated learning. arXiv preprint arXiv:2107.03311, 2021.

Chia-Yu Chen, Jiamin Ni, Songtao Lu, Xiaodong Cui, Pin-Yu Chen, Xiao Sun, Naigang Wang,
Swagath Venkataramani, Vijayalakshmi Viji Srinivasan, Wei Zhang, et al. Scalecom: Scalable
sparsified gradient compression for communication-efficient distributed training. In Advances in
Neural Information Processing Systems, pp. 13551–13563, 2020.

Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. Draco: Byzantine-
resilient distributed training via redundant gradients. In Proceedings of the 35th International
Conference on Machine Learning, pp. 903–912, 2018.

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial settings:
Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 1(2):1–25, 2017.

10

Under review as a conference paper at ICLR 2023

Beongjun Choi, Jy-yong Sohn, Dong-Jun Han, and Jaekyun Moon. Communication-computation
efficient secure aggregation for federated learning. arXiv preprint arXiv:2012.05433, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

El-Mahdi El-Mhamdi, Rachid Guerraoui, and Sébastien Rouault. Distributed momentum for
Byzantine-resilient learning. arXiv preprint arXiv:2003.00010, 2020.

Irem Ergun, Hasin Us Sami, and Basak Guler. Sparsified secure aggregation for privacy-preserving
federated learning. arXiv preprint arXiv:2112.12872, 2021.

Fartash Faghri, Iman Tabrizian, Ilia Markov, Dan Alistarh, Daniel M Roy, and Ali Ramezani-Kebrya.
Adaptive gradient quantization for data-parallel sgd. In Advances in Neural Information Processing
Systems, pp. 3174–3185, 2020.

Venkata Gandikota, Daniel Kane, Raj Kumar Maity, and Arya Mazumdar. vqsgd: Vector quantized
stochastic gradient descent. In International Conference on Artificial Intelligence and Statistics,
pp. 2197–2205, 2021.

Avishek Ghosh, Raj Kumar Maity, and Arya Mazumdar. Distributed Newton can communicate
less and resist byzantine workers. In Advances in Neural Information Processing Systems, pp.
18028–18038, 2020.

Avishek Ghosh, Raj Kumar Maity, Swanand Kadhe, Arya Mazumdar, and Kannan Ramchandran.
Communication-efficient and byzantine-robust distributed learning with error feedback. IEEE
Journal on Selected Areas in Information Theory, 2(3):942–953, 2021.

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly converging
error compensated sgd. In Advances in Neural Information Processing Systems, pp. 20889–20900,
2020.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Trading
redundancy for communication: Speeding up distributed SGD for non-convex optimization. In
Proceedings of the International Conference on Machine Learning, pp. 2545–2554, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann,
and Michael I Jordan. Communication-efficient distributed dual coordinate ascent. In Advances in
Neural Information Processing Systems, pp. 3068–3076, 2014.

Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan Gu. Distributed learning without
distress: Privacy-preserving empirical risk minimization. In Advances in Neural Information
Processing Systems, pp. 6346–6357, 2018.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends R© in Machine Learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143, 2020.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for Byzantine robust
optimization. In Proceedings of the International Conference on Machine Learning, pp. 5311–5319,
2021.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on heterogeneous
datasets via bucketing. In Proceedings of the International Conference on Learning Representa-
tions, 2022.

11

Under review as a conference paper at ICLR 2023

Jakub Konevcnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency.
arXiv:1610.05492, 2016.

Konstantinos Konstantinidis and Aditya Ramamoorthy. Byzshield: An efficient and robust system
for distributed training. Proceedings of Machine Learning and Systems, 3:812–828, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, 2009.

Jason D Lee, Qihang Lin, Tengyu Ma, and Tianbao Yang. Distributed stochastic variance reduced
gradient methods by sampling extra data with replacement. The Journal of Machine Learning
Research, 18(1):4404–4446, 2017.

Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling. RSA: Byzantine-robust
stochastic aggregation methods for distributed learning from heterogeneous datasets. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 1544–1551, 2019.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. In Advances in Neural Information Processing Systems, pp. 5330–5340, 2017.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing the
communication bandwidth for distributed training. In Proceedings of the International Conference
on Learning Representations, 2018.

Ruixuan Liu, Yang Cao, Masatoshi Yoshikawa, and Hong Chen. Fedsel: Federated sgd under local
differential privacy with top-k dimension selection. In International Conference on Database
Systems for Advanced Applications, pp. 485–501, 2020.

Zaoxing Liu, Tian Li, Virginia Smith, and Vyas Sekar. Enhancing the privacy of federated learning
with sketching. arXiv preprint arXiv:1911.01812, 2019.

Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine learning without
centralized training data. Google Research Blog, 3, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282, 2017.

H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially
private recurrent language models. In Proceedings of the International Conference on Learning
Representations, 2018.

Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning.
arXiv preprint arXiv:1912.13445, 2019.

Shashank Rajput, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. Detox: A redundancy-
based framework for faster and more robust gradient aggregation. In Advances in Neural Informa-
tion Processing Systems, pp. 10320–10330, 2019.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learning with
sketching. In Proceedings of the International Conference on Machine Learning, pp. 8253–8265,
2020.

Mher Safaryan and Peter Richtárik. Stochastic sign descent methods: New algorithms and better
theory. In Proceedings of the International Conference on Machine Learning, pp. 9224–9234,
2021.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech dnns. In Annual Conference of the
International Speech Communication Association, 2014.

12

Under review as a conference paper at ICLR 2023

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization using
an approximate newton-type method. In Proceedings of the International Conference on Machine
Learning, pp. 1000–1008, 2014.

Jy-yong Sohn, Dong-Jun Han, Beongjun Choi, and Jaekyun Moon. Election coding for distributed
learning: Protecting signsgd against Byzantine attacks. In Advances in Neural Information
Processing Systems, pp. 14615–14625, 2020.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In
Advances in Neural Information Processing Systems, pp. 4447–4458, 2018.

Shizhao Sun, Wei Chen, Jiang Bian, Xiaoguang Liu, and Tie-Yan Liu. Slim-dp: a multi-agent system
for communication-efficient distributed deep learning. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 721–729, 2018.

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel stochas-
tic gradient descent with double-pass error-compensated compression. In Proceedings of the
International Conference on Machine Learning, pp. 6155–6165, 2019.

Raj Kiriti Velicheti, Derek Xia, and Oluwasanmi Koyejo. Secure Byzantine-robust distributed
learning via clustering. arXiv preprint arXiv:2110.02940, 2021.

Lun Wang, Qi Pang, Shuai Wang, and Dawn Song. Towards bidirectional protection in federated
learning. arXiv preprint arXiv:2010.01175, 2020.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-
efficient distributed optimization. In Advances in Neural Information Processing Systems, pp.
1299–1309, 2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in Neural
Information Processing Systems, pp. 1509–1519, 2017.

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized SGD
and its applications to large-scale distributed optimization. In Proceedings of the International
Conference on Machine Learning, pp. 5325–5333, 2018.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. SLSGD: Secure and efficient distributed
on-device machine learning. Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 213–228, 2019a.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent with
suspicion-based fault-tolerance. In Proceedings of the International Conference on Machine
Learning, pp. 6893–6901, 2019b.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking Byzantine-tolerant
sgd by inner product manipulation. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence, pp. 261–270, 2020a.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno++: Robust fully asynchronous SGD. In
Proceedings of the International Conference on Machine Learning, pp. 10495–10503, 2020b.

Cong Xie, Shuai Zheng, Oluwasanmi O Koyejo, Indranil Gupta, Mu Li, and Haibin Lin. CSER:
Communication-efficient sgd with error reset. In Advances in Neural Information Processing
Systems, pp. 12593–12603, 2020c.

Yi-Rui Yang and Wu-Jun Li. BASGD: Buffered asynchronous SGD for Byzantine learning. In
Proceedings of the International Conference on Machine Learning, pp. 11751–11761, 2021.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In Proceedings of the International Conference on
Machine Learning, pp. 5650–5659, 2018.

13

Under review as a conference paper at ICLR 2023

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Defending against saddle point
attack in Byzantine-robust distributed learning. In Proceedings of the International Conference on
Machine Learning, pp. 7074–7084, 2019.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient
momentum SGD for distributed non-convex optimization. In Proceedings of the International
Conference on Machine Learning, pp. 7184–7193, 2019a.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted SGD with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 5693–5700, 2019b.

Mengjiao Zhang and Shusen Wang. Matrix sketching for secure collaborative machine learning. In
International Conference on Machine Learning, pp. 12589–12599, 2021.

Ruiliang Zhang and James Kwok. Asynchronous distributed admm for consensus optimization. In
Proceedings of the International Conference on Machine Learning, pp. 1701–1709, 2014.

Shen-Yi Zhao, Ru Xiang, Ying-Hao Shi, Peng Gao, and Wu-Jun Li. SCOPE: scalable composite
optimization for learning on spark. In Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 2928–2934, 2017.

Shen-Yi Zhao, Gong-Duo Zhang, Ming-Wei Li, and Wu-Jun Li. Proximal SCOPE for distributed
sparse learning. In Advances in Neural Information Processing Systems, pp. 6551–6560, 2018.

Yi Zhou, Yingbin Liang, Yaoliang Yu, Wei Dai, and Eric P Xing. Distributed proximal gradient
algorithm for partially asynchronous computer clusters. The Journal of Machine Learning Research,
19(1):733–764, 2018.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances in Neural
Information Processing Systems, pp. 14747–14756, 2019.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic gradient
descent. In Advances in Neural Information Processing Systems, pp. 2595–2603, 2010.

14

Under review as a conference paper at ICLR 2023

A DETAILS OF FEDREP

The detailed algorithms of FedREP on server and clients are illustrated in Algorithm 1 and Algo-
rithm 2, respectively.

Algorithm 1 FedREP (Server)

Input: client number m, iteration number T , buffer size s, robust aggregator Agg(·);
for t = 0 to T − 1 do

Receive {Itk}mk=1 from all clients and compute It = ∪mk=1Itk;
Broadcast It to all clients;
Pick a random permutation π of [m];
Assign buffer bl to clients {π(ls+ k)}sk=1 for l = 0, 1, . . . , ms − 1;
for l = 0 to m

s − 1 do
Obtain bl = 1

s

∑s
k=1(g̃tπ(ls+k))It via SecAgg protocol;

end for
Compute: (G̃t)It = Agg({bl}m/sl=1);
Broadcast (G̃t)It to all clients;

end for

Algorithm 2 FedREP (Client)

Input: client number m, iteration number T ,
local optimization algorithm A and sparsification size K;

Initialization: model parameter w0 and local memory u0
k = 0;

for t = 0 to T − 1 do
/* Locally train learning model and update error compensation */
Locally train learning model and obtain parameter wt+1

k = A(wt;Dk);
Compute gtk = utk + (wt −wt+1

k);

/* Two-stage aggregation with sparsification */
Generate coordinate set Itk by consensus sparsification (see Section 3.2 in the main text);
Send Itk to the server;
Receive coordinate set It and assigned buffer number l from the server;
Compute (g̃tk)It and send it to the assigned buffer bl via SecAgg protocol;
Update memory: ut+1

k = gtk − g̃tk;
Receive (G̃t)It from the server and recover G̃t according to It;

/* Update model parameters*/
Update parameters: wt+1 = wt − G̃t;

end for
Output model parameter wT ;

15

Under review as a conference paper at ICLR 2023

B PROOF DETAILS

In this section, we present the proof details of the theoretical results in the paper.

B.1 PROOF OF THEOREM 1

Proof. For any fixed k, k′ ∈ [m],

E‖C(vk)− C(vk′)‖2

=E

 ∑
j∈Nk∩Nk′

[(vk)j − (vk′)j]
2

+ E

 ∑
j∈Nk\Nk′

(vk)2j

+ E

 ∑
j∈Nk′\Nk

(vk′)
2
j

 (7)

=E

 ∑
j∈Nk∩Nk′

ξk,k′,j(ρk,k′)
2

+ E

 ∑
j∈Nk\Nk′

ζk,j(µk)2

+ E

 ∑
j∈Nk′\Nk

ζk′,j(µk′)
2

 (8)

=
∑
j∈[d]

ξk,k′,j(ρk,k′)
2 · Pr[j ∈ Nk ∩Nk′]

+
∑
j∈[d]

ζk,j(µk)2 · Pr[j ∈ Nk \ Nk′] +
∑
j∈[d]

ζk′,j(µk′)
2 · Pr[j ∈ Nk′ \ Nk] (9)

=(ρk,k′)
2 ·
∑
j∈[d]

(
ξk,k′,jPr[j ∈ Nk ∩Nk′]

)
+ (µk)2 ·

∑
j∈[d]

(
ζk,jPr[j ∈ Nk \ Nk′]

)
+ (µk′)

2 ·
∑
j∈[d]

(
ζk′,jPr[j ∈ Nk′ \ Nk]

)
. (10)

B.2 PROOF OF PROPOSITION 1

Proof. Let It denote the set of non-zero coordinates after consensus sparsification. In general cases,
for any fixed k, k′ ∈ [m], we have:

E‖g̃tk − g̃tk′‖2 =
∑
j∈It

E[(gtk)j − (gtk′)j]
2 (11)

≤
∑
j∈[d]

E[(gtk)j − (gtk′)j]
2 (12)

= E‖gtk − gtk′‖2. (13)

B.3 PROOF OF THEOREM 2

Proof. LetM be the the mechanism in consensus sparsification that takes the set of top coordinates
T as an input and outputs a random coordinate set. T1, T2 ⊆ [d] are two arbitrary adjacent input
coordinate sets that satisfy |T1| = |T2| = K

m and S is any subset of possible outputs ofM. When S
is empty, Pr[M(T1) ∈ S] = Pr[M(T2) ∈ S] = 0. Thus, for any ε > 0, we have:

0 = Pr[M(T1) ∈ S] ≤ exp(ε) · Pr[M(T2) ∈ S] = 0. (14)

Without loss of generality, we suppose that S is non-empty. For any I ∈ S, let |T1 ∩ I| = U1

and |T2 ∩ I| = U2. T1 and T2 only differ on one element since they are adjacent. Thus, we have
U2 = U1 − 1, U1 or U1 + 1. Set T̃1 is generated by randomly selecting (Km − r1) elements from T1,
where r1 follows the binomial distribution Pr(Km , α). Thus, ∀i = 0, 1, . . . ,K/m,

Pr[r1 = i] =

(
K/m

i

)
αi(1− α)K/m−i. (15)

16

Under review as a conference paper at ICLR 2023

To obtain I as the final output, only the elements in T1 ∩ I can be selected. Thus, r1 should equal
or be larger than |T1 \ I| = K

m − U1. Furthermore, for r1 ≥ K
m − U1, the probability that all

elements are selected from T1 ∩ I is
(

U1

K/m−r1

)
/
(

K/m
K/m−r1

)
=
(

U1

r1−(K/m−U1)

)
/
(
K/m
r1

)
. Finally, the

r1 elements in I \ T̃1 should be selected from [d] \ T̃1, of which the probability is 1/
(
d−K/m+r1

r1

)
since |[d] \ T̃1| = d− (K/m− r1) = d−K/m+ r1. Thus, we have:

Pr[M(T1) = I]

=

K/m∑
i=K/m−U1

{
Pr[r1 = i]×

(
U1

i−(K/m−U1)

)(
K/m
i

) × 1(
d−K/m+i

i

)} (16)

=

K/m∑
i=K/m−U1

{[(
K/m

i

)
αi(1− α)K/m−i

]
×

(
U1

i−(K/m−U1)

)(
K/m
i

) × 1(
d−K/m+i

i

)} (17)

=

K/m∑
i=K/m−U1

{
αi(1− α)K/m−i

(
U1

i− (K/m− U1)

)
× 1(

d−K/m+i
i

)} (18)

=

U1∑
i=0

{
αK/m−i(1− α)i

(
U1

U1 − i

)
× 1(

d−i
K/m−i

)} (19)

= αK/m ·
U1∑
i=0

{(
1− α
α

)i(
U1

i

)
× 1(

d−i
d−K/m

)} . (20)

Thus, Pr[M(T1) = I] is monotonically increasing with respect to U1. Similarly,

Pr[M(T2) = I] = αK/m ·
U2∑
i=0

{(
1− α
α

)i(
U2

i

)
× 1(

d−i
d−K/m

)} , (21)

which is monotonically increasing with respect to U2. Thus, Pr[M(T1)=I]
Pr[M(T2)=I] takes the maximum value

when U1 = U2 + 1. Therefore,

Pr[M(T1) = I]

Pr[M(T2) = I]
≤
αK/m ·

∑U2+1
i=0

[(
1−α
α

)i (U2+1
i

)
× 1

(d−i
d−K/m)

]
αK/m ·

∑U2

i=0

[(
1−α
α

)i (U2

i

)
× 1

(d−i
d−K/m)

] (22)

=

∑U2+1
i=0

[(
1−α
α

)i 1

(d−i
d−K/m)

×
(
U2+1
i

)]
∑U2

i=0

[(
1−α
α

)i 1

(d−i
d−K/m)

×
(
U2

i

)] (23)

=

1

(d
d−K/m)

+
∑U2+1
i=1

[(
1−α
α

)i 1

(d−i
d−K/m)

×
(
U2+1
i

)]
1

(d
d−K/m)

+
∑U2

i=1

[(
1−α
α

)i 1

(d−i
d−K/m)

×
(
U2

i

)] (24)

=

1 + 1−α
α ·

∑U2+1
i=1

[(
1−α
α

)i−1 (d
d−K/m)

(d−i
d−K/m)

×
(
U2+1
i

)]
1 + 1−α

α ·
∑U2

i=1

[(
1−α
α

)i−1 (d
d−K/m)

(d−i
d−K/m)

×
(
U2

i

)] . (25)

Let

S0(α) =

U2∑
i=1

[(
1− α
α

)i−1 (d
d−K/m

)(
d−i

d−K/m
) × (U2

i

)]
(26)

and

S1(α) =

U2+1∑
i=1

[(
1− α
α

)i−1 (d
d−K/m

)(
d−i

d−K/m
) × (U2 + 1

i

)]
. (27)

17

Under review as a conference paper at ICLR 2023

We have

Pr[M(T1) = I]

Pr[M(T2) = I]
≤

1 + 1−α
α · S1(α)

1 + 1−α
α · S0(α)

(28)

= 1 +
1−α
α · (S1(α)− S0(α))

1 + 1−α
α · S0(α)

(29)

≤ 1 +
1−α
α · (S1(α)− S0(α))

1−α
α · S0(α)

(30)

=
S1(α)

S0(α)
. (31)

Since U1 = U2 + 1 ≤ K/m, we have U2 ≤ K/m− 1. Thus,

S1(α) =

U2+1∑
i=1

(
1−α
α

)i−1 (d
d−K/m

)(
U2+1
i

)(
d−i

d−K/m
) (32)

≤
U2∑
i=1

(
1−α
α

)i−1 (d
d−K/m

)(
U2+1
i

)(
d−i

d−K/m
) +

U2+1∑
i=2

(
1−α
α

)i−1 (d
d−K/m

)(
U2+1
i

)(
d−i

d−K/m
) (33)

=

U2∑
i=1

(
1−α
α

)i−1 (d
d−K/m

)(
U2+1
i

)(
d−i

d−K/m
) +

U2∑
i=1

(
1−α
α

)i (d
d−K/m

)(
U2+1
i+1

)(
d−i−1
d−K/m

) (34)

=

U2∑
i=1

(
1−α
α

)i−1 (d
d−K/m

)(
U2

i

)
U2+1
U2+1−i(

d−i
d−K/m

) +

U2∑
i=1

(
1−α
α

) (
1−α
α

)i−1 (d
d−K/m

)(
U2

i

)
U2+1
i+1(

d−i
d−K/m

)K/m−i
d−i

(35)

≤
U2∑
i=1

(
1−α
α

)i−1 (d
d−K/m

)(
U2

i

)
U2+1

U2+1−U2(
d−i

d−K/m
) +

U2∑
i=1

(
1−α
α

) (
1−α
α

)i−1 (d
d−K/m

)(
U2

i

)
U2+1
1+1(

d−i
d−K/m

)K/m−U2

d−U2

(36)

=

[
(U2 + 1) +

1−α
α ·

U2+1
2

K/m−U2

d−U2

]
·
U2∑
i=1

[(
1− α
α

)i−1 (d
d−K/m

)(
d−i

d−K/m
) × (U2

i

)]
(37)

≤

(K/m− 1 + 1) +
1−α
α ·

K/m−1+1
2

K/m−K/m+1
d−K/m+1

 · S0(α) (38)

=

(
K

m
+

K
m (1− α)(d− K

m + 1)

2α

)
· S0(α) (39)

≤

(
K

m
(d− K

m
+ 1) +

K
m (1− α)(d− K

m + 1)

2α

)
· S0(α) (40)

≤
(1 + α) · Km (d− K

m + 1)

2α
· S0(α). (41)

Therefore,
Pr[M(T1) = I]

Pr[M(T2) = I]
≤ S1(α)

S0(α)
≤

(1 + α) · Km (d− K
m + 1)

2α
. (42)

Consequently,

Pr[M(T1) = I] ≤ exp

(
ln

(
(1 + α) · Km (d− K

m + 1)

2α

))
· Pr[M(T2) = I], (43)

which shows thatM provides ln
(

(1+α)·Km (d−Km+1)

2α

)
-DP.

18

Under review as a conference paper at ICLR 2023

Then we provide a stronger result for the case where α is close to 1. Specifically, when 1
2 ≤ α ≤ 1,

Pr[M(T1) = I]

Pr[M(T2) = I]
≤ 1 +

1−α
α · (S1(α)− S0(α))

1 + 1−α
α · S0(α)

≤ 1 +
1− α
α
· (S1(α)− S0(α)). (44)

Since U1 = U2 + 1 ≤ K/m, we have U2 ≤ K/m− 1. Thus,

S1(α)− S0(α) =

U2+1∑
i=1

(
1−α
α

)i−1 (d
d−K/m

)(
U2+1
i

)(
d−i

d−K/m
) −

U2∑
i=1

(
1−α
α

)i−1 (d
d−K/m

)(
U2

i

)(
d−i

d−K/m
) (45)

=

U2∑
i=1

(
1−α
α

)i−1 (d
d−K/m

) [(
U2+1
i

)
−
(
U2

i

)](
d−i

d−K/m
) +

(
1−α
α

)U2
(

d
d−K/m

)(
d−U2−1
d−K/m

) (46)

=

U2∑
i=1

(
1−α
α

)i−1 (d
d−K/m

)(
U2

i−1
)(

d−i
d−K/m

) +

(
1−α
α

)U2
(

d
d−K/m

)(
d−U2−1
d−K/m

) (47)

≤

(
d

d−K/m
)(

d−U2

d−K/m
) U2∑
i=1

(
1− α
α

)i−1(
U2

i− 1

)
+

(
1−α
α

)U2
(

d
d−K/m

)(
d−U2−1
d−K/m

) (48)

≤

(
d

d−K/m
)(

d−U2

d−K/m
) U2∑
i=0

(
1− α
α

)i(
U2

i

)
+

(
1−α
α

)U2
(

d
d−K/m

)(
d−U2−1
d−K/m

) (49)

=

(
d

d−K/m
)(

d−U2

d−K/m
) (1 +

1− α
α

)U2

+

(
1−α
α

)U2
(

d
d−K/m

)(
d−U2−1
d−K/m

) (50)

≤

(
d

d−K/m
) (

1
α

)U2(
d−U2−1
d−K/m

) +

(
1−α
α

)U2
(

d
d−K/m

)(
d−U2−1
d−K/m

) (51)

≤

(
d

d−K/m
)
2U2(

d−U2−1
d−K/m

) +

(
1− 1

2
1
2

)U2 (
d

d−K/m
)(

d−U2−1
d−K/m

) (52)

= (2U2 + 1) ·

(
d

d−K/m
)(

d−U2−1
d−K/m

) (53)

≤ (2K/m + 1) ·
(

d

K/m

)
(54)

≤ (2K/m + 1) · dK/m. (55)

Consequently,

Pr[M(T1) = I] ≤ exp

(
ln

(
1 +

1− α
α
· (2K/m + 1) · dK/m

))
· Pr[M(T2) = I]. (56)

It shows that when 1
2 ≤ α ≤ 1, M provides εM-DP, where εM =

ln
(
1 + 1−α

α · (2
K/m + 1) · dK/m

)
. Specially, when α = 1, εM = ln(1 + 0) = 0. It is

consistent to that the coordinate set is totally random when α = 1.

B.4 PROOF OF PROPOSITION 2

Proof. ∀k ∈ G, ∀0 ≤ t < T , we have:

It =
⋃

k′∈[m]

Itk′ ⊇
⋃
k′∈G

Itk′ =

 ⋃
k′∈G\{k}

Itk′

 ∪ Itk
 . (57)

19

Under review as a conference paper at ICLR 2023

Therefore,

E[‖g̃tk‖2|Itk] = E

∑
j∈It

(gtk)2j

∣∣∣∣Itk
 (58)

= E

∑
j∈Itk

(gtk)2j

∣∣∣∣Itk
+ E

 ∑
j∈(It\Itk)

(gtk)2j

∣∣∣∣Itk
 (59)

=
∑
j∈Itk

(gtk)2j + E

 ∑
j∈(It\Itk)

(gtk)2j

∣∣∣∣Itk
 (60)

=
∑
j∈Itk

(gtk)2j +
∑
j 6∈Itk

(gtk)2j · Pr
[
j ∈ It|Itk

]
. (61)

For any j 6∈ Itk,

Pr
[
j ∈ It|Itk

]
≥ Pr

j ∈
 ⋃
k′∈G\{k}

Itk′

∣∣∣∣Itk
 (62)

= Pr

j ∈
 ⋃
k′∈G\{k}

(
T̃ tk′ ∪Rtk′

)∣∣∣∣Itk
 (63)

= Pr

j ∈
 ⋃
k′∈G\{k}

T̃ tk′

 ∪
 ⋃
k′∈G\{k}

Rtk′

∣∣∣∣Itk
 (64)

= Pr

j ∈
 ⋃
k′∈G\{k}

T̃ tk′

∣∣∣∣Itk
+ Pr

j ∈
 ⋃
k′∈G\{k}

Rtk′

 \
 ⋃
k′∈G\{k}

T̃ tk′

∣∣∣∣Itk
 . (65)

For simplicity, let

ν = Pr

j ∈
 ⋃
k′∈G\{k}

T̃ tk′

∣∣∣∣Itk
 ∈ [0, 1], (66)

and we have:

Pr
[
j ∈ It|Itk

]
= ν + (1− ν) · Pr

j ∈
 ⋃
k′∈G\{k}

Rtk′

∣∣∣∣∣Itk, j 6∈
 ⋃
k′∈G\{k}

T̃ tk′

 (67)

= ν + (1− ν) ·

1− Pr

j 6∈
 ⋃
k′∈G\{k}

Rtk′

∣∣∣∣∣Itk, j 6∈
 ⋃
k′∈G\{k}

T̃ tk′

 (68)

= ν + (1− ν) ·

1−
∏

k′∈G\{k}

Pr

j 6∈ Rtk′
∣∣∣∣∣Itk, j 6∈

 ⋃
k′∈G\{k}

T̃ tk′

 (69)

(i)
= ν + (1− ν) ·

1−
∏

k′∈G\{k}

K/m∑
i=0

Pr[rtk′ = i] ·
(

1− i

d−K/m+ i

) (70)

(ii)
≥ ν + (1− ν) ·

1−
∏

k′∈G\{k}

K/m∑
i=0

Pr[rtk′ = i] ·
(

1− i

d

) (71)

20

Under review as a conference paper at ICLR 2023

= ν + (1− ν) ·

1−
∏

k′∈G\{k}

K/m∑
i=0

Pr[rtk′ = i]−
K/m∑
i=0

i · Pr[rtk′ = i]

d

 (72)

= ν + (1− ν) ·

1−
∏

k′∈G\{k}

(
1− E[rtk′]

d

) (73)

(iii)
= ν + (1− ν) ·

1−
∏

k′∈G\{k}

(
1− αK

md

) (74)

= ν + (1− ν) ·

[
1−

(
1− αK

md

)|G|−1]
(75)

≥ ν + (1− ν) ·

[
1−

(
1− αK

md

)(1−δ)m−1
]

(76)

(iv)
≥ ν ·

[
1−

(
1− αK

md

)(1−δ)m−1
]

+ (1− ν) ·

[
1−

(
1− αK

md

)(1−δ)m−1
]

(77)

= 1−
(

1− αK

md

)(1−δ)m−1

, (78)

where (i) holds because when rtk = i, the probability that element j is among the i randomly selected
elements from [d] \ T̃ tk is i

d−K/m+i since |[d] \ T̃ tk | = d−K/m+ i. Inequality (ii) holds because
i ≤ K/m. Equation (iii) holds because rtk′ follows the binomial distribution B(Km , α). Inequality

(iv) holds because 1−
(

1− E[rtk]
d

)(1−δ)m−1
≤ 1.

Since 0 ≤ α ≤ 1 and 0 < K
m < d, we have 0 ≤ αK

md < 1. Thus,

(
1− αK

md

)(1−δ)m−1

=

[(
1− αK

md

)−md
αK

]−αK[(1−δ)m−1]
md

≤ e−
αK[(1−δ)m−1]

md . (79)

Therefore,
Pr
[
j ∈ It|Itk

]
≥ 1− e−

αK[(1−δ)m−1]
md . (80)

Substituting it into (61), it is obtained that

E[‖g̃tk‖2|Itk] ≥
∑
j∈Itk

(gtk)2j +
(

1− e−
αK[(1−δ)m−1]

md

)
·
∑
j 6∈Itk

(gtk)2j (81)

=
∑
j∈Itk

(gtk)2j +
(

1− e−
αK[(1−δ)m−1]

md

)
·

‖gtk‖2 −∑
j∈Itk

(gtk)2j

 (82)

=
(

1− e−
αK[(1−δ)m−1]

md

)
· ‖gtk‖2 + e−

αK[(1−δ)m−1]
md

∑
j∈Itk

(gtk)2j . (83)

Take total expectation and we have:

E‖g̃tk‖2 = E[E[‖g̃tk‖2|Itk]] =
(

1− e−
αK[(1−δ)m−1]

md

)
· ‖gtk‖2 + e−

αK[(1−δ)m−1]
md · E

∑
j∈Itk

(gtk)2j

 .
(84)

Also,

E

∑
j∈Itk

(gtk)2j

∣∣∣rtk

21

Under review as a conference paper at ICLR 2023

=E

∑
j∈T̃ tk

(gtk)2j

∣∣∣rtk
+ E

∑
j∈Rtk

(gtk)2j

∣∣∣rtk
 (85)

=E

∑
j∈T̃ tk

(gtk)2j

∣∣∣rtk
+

rtk
d−K/m+ rtk

· E

∑
j 6∈T̃ tk

(gtk)2j

∣∣∣rtk
 (86)

=E

∑
j∈T̃ tk

(gtk)2j

∣∣∣rtk
+

rtk
d−K/m+ rtk

·

‖gtk‖2 − E

∑
j∈T̃ tk

(gtk)2j

∣∣∣rtk
 (87)

=
rtk

d−K/m+ rtk
· ‖gtk‖2 +

d−K/m
d−K/m+ rtk

· E

∑
j∈T̃ tk

(gtk)2j

∣∣∣rtk
 (88)

=
rtk

d−K/m+ rtk
· ‖gtk‖2 +

d−K/m
d−K/m+ rtk

· K/m− r
t
k

K/m
· E

∑
j∈T tk

(gtk)2j

∣∣∣rtk
 (89)

≥ rtk
d−K/m+ rtk

· ‖gtk‖2 +
d−K/m

d−K/m+ rtk
· K/m− r

t
k

K/m
· K/m

d
· ‖gtk‖2 (90)

=
rtk

d−K/m+ rtk
· ‖gtk‖2 +

d−K/m
d−K/m+ rtk

· K/m− r
t
k

d
· ‖gtk‖2 (91)

=
drtk + (d−K/m)(K/m− rtk)

d(d−K/m+ rtk)
· ‖gtk‖2 (92)

=
(K/m) · (d−K/m+ rtk)

d(d−K/m+ rtk)
· ‖gtk‖2 (93)

=
K

md
‖gtk‖2. (94)

Thus,

E

∑
j∈Itk

(gtk)2j

 = E

E
∑
j∈Itk

(gtk)2j

∣∣∣rtk
 ≥ E

[
K

md
‖gtk‖2

]
=

K

md
‖gtk‖2. (95)

Substituting (95) into (84), we have:

E‖g̃tk‖2 ≥
(

1− e−
αK[(1−δ)m−1]

md +
K

md
e−

αK[(1−δ)m−1]
md

)
· ‖gtk‖2 (96)

=

(
1−

(d− K
m)e−

αK[(1−δ)m−1]
md

d

)
· ‖gtk‖2. (97)

Since g̃tk is the consensus sparsification result of gtk, we have:

E‖g̃tk − gtk‖2 = E

 ∑
j∈G\It

(gtk)2j

 (98)

= E

∑
j∈G

(gtk)2j −
∑
j∈It

(gtk)2j

 (99)

= ‖gtk‖2 − E‖g̃tk‖2 (100)

≤
(d− K

m)e−
αK[(1−δ)m−1]

md

d
· ‖gtk‖2 (101)

=

(
1−

d(1− e−
αK[(1−δ)m−1]

md) + K
me
−αK[(1−δ)m−1]

md

d

)
· ‖gtk‖2. (102)

22

Under review as a conference paper at ICLR 2023

By definition, consensus sparsification is a d′cons-contraction operator, where

d′cons = d
(

1− e−
αK[(1−δ)m−1]

md

)
+
K

m
e−

αK[(1−δ)m−1]
md .

B.5 PROOF OF LEMMA 1

Proof. When training algorithm A is I-iteration local SGD with learning rate η, we have wt+1,0
k =

wt, wt+1,j+1
k = wt+1,j

k − ηt · ∇fit,jk (wt+1,j
k) (j = 0, 1, . . . , I − 1) and wt+1

k = wt+1,I
k , where it,jk

is uniformly sampled from Dk. Therefore, we have the following inequality for all k ∈ G:

E‖ut+1
k ‖

2 = E‖gtk − g̃tk‖2 (103)
(i)
≤
(

1− d′cons
d

)
E‖gtk‖2 (104)

=

(
1− d′cons

d

)
E‖utk + (wt −wt+1

k)‖2 (105)

(ii)
≤
(

1− d′cons
d

)[
(1 +

d′cons
2d

)E‖utk‖2 + (1 +
2d

d′cons
)E‖wt+1,0

k −wt+1,I
k ‖2

]
(106)

(iii)
≤
(

1− d′cons
2d

)
E‖utk‖2 +

2d

d′cons
E‖wt+1,0

k −wt+1,I
k ‖2 (107)

≤
(

1− d′cons
2d

)
E‖utk‖2 +

2Id

d′cons

I−1∑
j=0

E‖wt+1,i
k −wt+1,i+1

k ‖2 (108)

=

(
1− d′cons

2d

)
E‖utk‖2 +

2Id

d′cons

I−1∑
j=0

E‖ηt · ∇fit,jk (wt+1,j
k)‖2 (109)

(iv)
≤
(

1− d′cons
2d

)
E‖utk‖2 +

2I2d

d′cons
(ηt)

2(D2 + σ2), (110)

where (i) is derived based on Proposition 2. (ii) is derived based on that ‖x + y‖2 ≤ (1 + θ)‖x‖2 +

(1+θ−1)‖y‖2 for any constant θ > 0. (iii) is derived based on that (1− d′cons
d)(1+

d′cons
2d) < 1− d′cons

2d

and (1− d′cons
d)(1 + 2d

d′cons
) < 2d

d′cons
. (iv) is derived based on Assumption 5 and Assumption 6.

When ηt = b√
t+λ

where constant b > 0 and λ = 4d
d′cons

, the second term on the RHS

2I2d

d′cons
(ηt)

2(D2 + σ2) =
2I2d

d′cons
(D2 + σ2) · b2

t+ λ
(111)

=

(
8I2d2b2

(d′cons)
2

(D2 + σ2)

)
· 1

t+ λ
· d
′
cons

4d
(112)

=

(
8I2d2b2

(d′cons)
2

(D2 + σ2)

)
· 1

t+ λ
· (d
′
cons

2d
− d′cons

4d
) (113)

=

(
8I2d2b2

(d′cons)
2

(D2 + σ2)

)
· 1

t+ λ
· (d
′
cons

2d
− 1

λ
) (114)

≤
(

8I2d2b2

(d′cons)
2

(D2 + σ2)

)
· 1

t+ λ
· (d
′
cons

2d
− 1

t+ λ+ 1
) (115)

=

(
8I2d2b2

(d′cons)
2

(D2 + σ2)

)
·

(
d′cons
2d (t+ λ+ 1)− 1

(t+ λ)(t+ λ+ 1)

)
(116)

=

(
8I2d2b2

(d′cons)
2

(D2 + σ2)

)
·

(
1

t+ λ+ 1
−

(1− d′cons
2d)

t+ λ

)
. (117)

23

Under review as a conference paper at ICLR 2023

Combining (110) and (117), we have

E‖ut+1
k ‖

2 ≤
(

1− d′cons
2d

)
E‖utk‖2 +

(
8I2d2b2

(d′cons)
2

(D2 + σ2)

)
·

(
1

t+ λ+ 1
−

(1− d′cons
2d)

t+ λ

)
.

(118)
Therefore,(

E‖ut+1
k ‖

2 − 8I2d2b2(D2 + σ2)

(d′cons)
2(t+ λ+ 1)

)
≤
(

1− d′cons
2d

)(
E‖utk‖2 −

8I2d2b2(D2 + σ2)

(d′cons)
2(t+ λ)

)
.

(119)
Recursively using (119), we have(

E‖utk‖2 −
8I2d2b2(D2 + σ2)

(d′cons)
2(t+ λ)

)
≤
(

1− d′cons
2d

)t(
E‖u0

k‖2 −
8I2d2b2(D2 + σ2)

(d′cons)
2λ

)
< 0.

(120)
Thus,

E‖utk‖2 ≤
8I2d2(D2 + σ2)

(d′cons)
2

· b2

t+ λ
=

8I2d2(D2 + σ2)

(d′cons)
2

· (ηt)2. (121)

Finally,

E‖ut‖2 = E‖ 1

|G|
∑
k∈G

utk‖2 ≤
1

|G|
∑
k∈G

E‖utk‖2 ≤
8I2d2(D2 + σ2)

(d′cons)
2

· (ηt)2. (122)

When ηt = η, by (110), we have

E‖ut+1
k ‖

2 ≤
(

1− d′cons
2d

)
E‖utk‖2 +

2I2d

d′cons
η2(D2 + σ2) (123)(

E‖ut+1
k ‖

2 − 4I2d2

(d′cons)
2
η2(D2 + σ2)

)
≤
(

1− d′cons
2d

)
·
(
E‖utk‖2 −

4I2d2

(d′cons)
2
η2(D2 + σ2)

)
.

(124)

Recursively using (124), we have

E‖utk‖2 −
4I2d2

(d′cons)
2
η2(D2 + σ2) ≤

(
1− d′cons

2d

)t
·
(
E‖u0

k‖2 −
4I2d2

(d′cons)
2
η2(D2 + σ2)

)
< 0.

(125)
Thus,

E‖utk‖2 ≤
4I2d2(D2 + σ2)

(d′cons)
2

· η2. (126)

Finally,

E‖ut‖2 = E‖ 1

|G|
∑
k∈G

utk‖2 ≤
1

|G|
∑
k∈G

E‖utk‖2 ≤
4I2d2(D2 + σ2)

(d′cons)
2

· η2. (127)

B.6 PROOF OF LEMMA 2

Proof. Based on Assumption 6 and Assumption 5, we have that ∀k ∈ G,

E‖g̃tk‖2 ≤ E‖gtk‖2 =E‖utk + (wt −wt+1
k)‖2 (128)

≤2E‖utk‖2 + 2E‖wt −wt+1
k ‖

2 (129)

≤2E‖utk‖2 + 2I2(ηt)
2(D2 + σ2). (130)

By Lemma 1, if ηt = b√
t+λ

where constant b > 0 and λ = 4d
d′cons

, we have

E‖g̃tk‖2 ≤ 2I2(8H2 + 1)(D2 + σ2) · (ηt)2, ∀k ∈ G. (131)

24

Under review as a conference paper at ICLR 2023

Ek 6=k′
[
‖g̃tk − g̃tk′‖2

]
≤ 2E‖g̃tk‖2 + 2E‖g̃tk′‖2 ≤ 8I2(8H2 + 1)(D2 + σ2) · (ηt)2. (132)

Therefore, by Definition 1 and (132),

E‖et‖2 =E

∥∥∥∥∥SRAgg({g̃tk}mk=1)− 1

|G|
∑
k∈G

g̃tk

∥∥∥∥∥
2

(133)

≤ cδ · Ek 6=k′
[
‖g̃tk − g̃tk′‖2

]
(134)

≤ 8cδI2(8H2 + 1)(D2 + σ2) · (ηt)2. (135)

Similarly, if ηt = η > 0, we have

E‖g̃tk‖2 ≤ 2I2(4H2 + 1)(D2 + σ2) · η2, ∀k ∈ G. (136)

and
E‖et‖2 ≤ 8cδI2(4H2 + 1)(D2 + σ2) · η2. (137)

B.7 PROOF OF THEOREM 3

Proof. Let ut = 1
|G|
∑
k∈G u

t
k be the averaging memory of non-Byzantine clients. ŵ is defined as

ŵt = wt − ut. The iteration rule for ŵ is derived as follows:

ŵt+1 = wt+1 − ut+1 (138)

=
(
wt − SRAgg({g̃tk}mk=1)

)
− 1

|G|
∑
k∈G

(
utk + (wt −wt+1

k)− g̃tk

)
(139)

= wt − SRAgg({g̃tk}mk=1)−

(
ut +

1

|G|
∑
k∈G

(wt −wt+1
k)− 1

|G|
∑
k∈G

g̃tk

)
(140)

= (wt − ut)− 1

|G|
∑
k∈G

(wt −wt+1
k)−

(
SRAgg({g̃tk}mk=1)− 1

|G|
∑
k∈G

g̃tk

)
(141)

= ŵt −

(
wt − 1

|G|
∑
k∈G

wt+1
k

)
− et, (142)

where et = SRAgg({g̃tk}mk=1)− 1
|G|
∑
k∈G g̃

t
k is the estimation error of 1

|G|
∑
k∈G g̃

t
k.

Let Ḡt = (wt − 1
|G|
∑
k∈G w

t+1
k)/(ηI). Then we have

Ḡt =
1

I|G|
∑
k∈G

I−1∑
j=0

∇fit,jk (wt+1,j
k), t = 0, 1, . . . , T − 1, (143)

and
ŵt+1 = ŵt − ηI · Ḡt − et, t = 0, 1, . . . , T − 1. (144)

The equation can be interpreted as that ŵt+1 is obtained by performing an SGD step on ŵt with
learning rate ηI , gradient approximation Ḡt and error et.
Based on Assumption 3 and the inequality that ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2,

F (ŵt+1) =F (ŵt − ηI · Ḡt − et) (145)

≤F (ŵt)−∇F (ŵt)T (ηI · Ḡt + et) +
L

2
‖ηI · Ḡt + et‖2 (146)

≤F (ŵt)− ηI · ∇F (ŵt)T Ḡt −∇F (ŵt)Tet + η2I2L‖Ḡt‖2 + L‖et‖2 (147)

=F (ŵt)− ηI ·
(
‖∇F (ŵt)‖2 +∇F (ŵt)T [Ḡt −∇F (ŵt)]

)
−∇F (ŵt)Tet + η2I2L‖Ḡt‖2 + L‖et‖2 (148)

25

Under review as a conference paper at ICLR 2023

=F (ŵt)− ηI · ‖∇F (ŵt)‖2 − ηI · ∇F (ŵt)T [Ḡt −∇F (ŵt)]

−∇F (ŵt)Tet + η2I2L‖Ḡt‖2 + L‖et‖2. (149)

Taking expectation on both sides, we have

E[F (ŵt+1)|wt,ut] ≤ F (ŵt)− ηI · ‖∇F (ŵt)‖2 − ηI · E
[
∇F (ŵt)T [Ḡt −∇F (ŵt)]

∣∣∣wt,ut
]

− E[∇F (ŵt)Tet|wt,ut] + η2I2L · E[‖Ḡt‖2|wt,ut] + L · E[‖et‖2|wt,ut].
(150)

Based on Assumption 3 and that −‖x‖2 ≤ − 1
2‖y‖

2 + ‖x− y‖2, we have:

−‖∇F (ŵt)‖2 = − ‖∇F (wt) + [∇F (ŵt)−∇F (wt)]‖2 (151)

≤ − 1

2
‖∇F (wt)‖2 + ‖∇F (ŵt)−∇F (wt)‖2 (152)

= − 1

2
‖∇F (wt)‖2 + ‖∇F (wt − ut)−∇F (wt)‖2 (153)

≤ − 1

2
‖∇F (wt)‖2 + L2‖ut‖2. (154)

In addition, using Assumption 3, Assumption 4, Assumption 5 and Equation (143), we have:

− E
[
∇F (ŵt)T [Ḡt −∇F (ŵt)]

∣∣∣wt,ut
]

= −∇F (ŵt)T · E[Ḡt −∇F (ŵt)|wt,ut]

≤ ‖∇F (ŵt)‖ ·
∥∥∥E[Ḡt −∇F (ŵt)|wt,ut]

∥∥∥ (155)

≤ D ·

∥∥∥∥∥∥E
∇F (ŵt)− 1

I|G|
∑
k∈G

I−1∑
j=0

∇fit,jk (wt+1,j
k)

∣∣∣∣∣∣wt,ut

∥∥∥∥∥∥ (156)

≤ D ·

∥∥∥∥∥∥ 1

I|G|
∑
k∈G

I−1∑
j=0

E
[
∇F (wt − ut)−∇Fk(wt+1,j

k)
∣∣∣wt,ut

]∥∥∥∥∥∥ (157)

≤ D

I|G|
∑
k∈G

I−1∑
j=0

E
[∥∥∥∇F (wt+1,0

k − ut)−∇F (wt+1,j
k)

∥∥∥∣∣∣wt,ut
]

+
D

I|G|
∑
k∈G

I−1∑
j=0

E
[∥∥∥∇F (wt+1,j

k)−∇Fk(wt+1,j
k)

∥∥∥∣∣∣wt,ut
]

(158)

≤ D

I|G|
∑
k∈G

I−1∑
j=0

(
L · E

[∥∥∥wt+1,0
k − ut −wt+1,j

k

∥∥∥∣∣∣wt,ut
]

+B
)

(159)

≤ DL

I|G|
∑
k∈G

I−1∑
j=0

(
‖ut‖+ E

[∥∥∥wt+1,0
k −wt+1,j

k

∥∥∥∣∣∣wt,ut
])

+BD (160)

≤ DL

I|G|
∑
k∈G

I−1∑
j=0

(j−1∑
j′=0

E
[∥∥∥wt+1,j′

k −wt+1,j′+1
k

∥∥∥∣∣∣wt,ut
])

+DL · ‖ut‖+BD. (161)

With Assumption 5, we have:

E
[∥∥∥wt+1,j′

k −wt+1,j′+1
k

∥∥∥∣∣∣wt,ut
]

= E
[∥∥∥η · ∇f

it,j
′

k

(wt+1,j′

k)
∥∥∥∣∣∣wt,ut

]
≤ ηD. (162)

Therefore,

− E
[
∇F (ŵt)T [Ḡt −∇F (ŵt)]

∣∣∣wt,ut
]

26

Under review as a conference paper at ICLR 2023

≤ DL

I|G|
∑
k∈G

I−1∑
j=0

(j−1∑
j′=0

ηD
)

+DL · ‖ut‖+BD (163)

=
4L2

I|G|
∑
k∈G

I−1∑
j=0

(
jηD

)
+DL · ‖ut‖+BD (164)

=
4L2

I|G|
· |G|I(I − 1)

2
ηD +DL · ‖ut‖+BD (165)

= 2(I − 1)ηDL2 +DL · ‖ut‖+BD. (166)

Note that E[XY] ≤
√
E[X2] · E[Y 2]. Using Assumption 5 and Lemma 2, we have:

−E[∇F (ŵt)Tet|wt,ut] ≤ E[‖∇F (ŵt)‖ · ‖et‖|wt,ut] (167)

≤
√

E[‖∇F (ŵt)‖2|wt,ut] · E[‖et‖2|wt,ut] (168)

≤
√

8cδI2(4H2 + 1)D2(D2 + σ2) · η2 (169)

= ηI
√

8cδ(4H2 + 1)(D2 + σ2)D. (170)

According to Assumption 5 and 6,

E[‖Ḡt‖2|wt,ut] = E

∥∥∥∥∥∥ 1

I|G|
∑
k∈G

I−1∑
j=0

∇fit,jk (wt+1,j
k)

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣wt,ut

 (171)

≤ 1

I|G|
∑
k∈G

I−1∑
j=0

E
[∥∥∥∇fit,jk (wt+1,j

k)
∥∥∥2∣∣∣∣wt,ut

]
(172)

≤ 1

I|G|
∑
k∈G

I−1∑
j=0

(D2 + σ2) (173)

= D2 + σ2. (174)

Substituting (137), (154), (166), (170) and (174) into (150), we have:

E[F (ŵt+1)|wt,ut] ≤ F (ŵt)− ηI · ‖∇F (ŵt)‖2 − ηI · E
[
∇F (ŵt)T [Ḡt −∇F (ŵt)]

∣∣∣wt,ut
]

− E[∇F (ŵt)Tet|wt,ut] + η2I2L · E[‖Ḡt‖2|wt,ut] + L · E[‖et‖2|wt,ut]
(175)

≤ F (ŵt)− ηI

2
‖∇F (wt)‖2 + ηIL2‖ut‖2

+ ηI
[
2(I − 1)ηDL2 +DL‖ut‖+BD

]
+ ηI

√
8cδ(4H2 + 1)(D2 + σ2)D

+ η2I2L(D2 + σ2) + L · [8cδI2(4H2 + 1)(D2 + σ2) · η2]. (176)

Note that E‖ut‖ =
√

[E‖ut‖]2 ≤
√

[E‖ut‖2]. Taking total expectation on both sides and using that
E‖ut‖2 ≤ 4H2I2(D2 + σ2) · η2, we have:

E[F (ŵt+1)] ≤ E[F (ŵt)]− ηI

2
E‖∇F (wt)‖2 + ηIL2[4H2I2(D2 + σ2) · η2]

+ ηI
[
2(I − 1)ηDL2 +DL ·

√
4H2I2(D2 + σ2) · η2 +BD

]
+ ηI

√
8cδ(4H2 + 1)(D2 + σ2)D

+ η2I2L(D2 + σ2) + L · [8cδI2(4H2 + 1)(D2 + σ2) · η2]. (177)

27

Under review as a conference paper at ICLR 2023

Namely,

E[F (ŵt+1)] ≤ E[F (ŵt)]− ηI

2
E‖∇F (wt)‖2

+ (ηI)2L
[
2(1− I−1)DL+ 2HD

√
D2 + σ2 + (D2 + σ2) + 8cδ(4H2 + 1)(D2 + σ2)

]
+ (ηI)3

[
4H2L2(D2 + σ2)

]
+ (ηI)

[
BD +

√
8cδ(4H2 + 1)(D2 + σ2)D

]
. (178)

By taking summation from t = 0 to T − 1, we have:

E[F (ŵT)] ≤ E[F (ŵ0)]− ηI

2
·
T−1∑
t=0

E‖∇F (wt)‖2

+ T (ηI)2L
[
2(1− I−1)DL+ 2HD

√
D2 + σ2 + (D2 + σ2) + 8cδ(4H2 + 1)(D2 + σ2)

]
+ T (ηI)3

[
4H2L2(D2 + σ2)

]
+ T (ηI)

[
BD +

√
8cδ(4H2 + 1)(D2 + σ2)D

]
. (179)

Note that ŵ0 = w0 and F (ŵT) ≥ F ∗. Thus,

1

T

T−1∑
t=0

E‖∇F (wt)‖2 ≤ 2[F (ŵ0)− F ∗]
ηIT

+ η · 2IL
[
2(1− I−1)DL+ 2HD

√
D2 + σ2 + (D2 + σ2) + 8cδ(4H2 + 1)(D2 + σ2)

]
+ η2 ·

[
8H2I2L2(D2 + σ2)

]
+ 2

[
BD +

√
8cδ(4H2 + 1)(D2 + σ2)D

]
. (180)

In summary,
1

T

T−1∑
t=0

E‖∇F (wt)‖2 ≤ 2[F (ŵ0)− F ∗]
ηIT

+ ηγ1 + η2γ2 + ∆, (181)

where γ1 = 2IL · [2(1 − I−1)LD + 2HD
√
D2 + σ2 + (D2 + σ2) + 8cδ(4H2 + 1)(D2 + σ2)],

γ2 = 8H2I2L2(D2 + σ2) and ∆ = 2BD + 4
√

2cδ(4H2 + 1)(D2 + σ2)D.

B.8 ANALYSIS FOR LOCAL MOMENTUM SGD

We present the following proposition, which illustrates that Assumption 7 holds when A is set to be
local momentum SGD.

Proposition 3. Under Assumption 3, 5 and 6, local momentum SGD satisfies Assumption 7. Moreover,
for local momentum SGD with learning rate η > 0, update interval I ∈ N+ and momentum hyper-
parameter β ∈ [0, 1), we have ηA = ηI , A1 = β(1−βI)

I(1−β) D +
√
D2 + σ2 + (I−12 + β2(1−βI−1)

I(1−β)2 −
β(I−1)
I(1−β)) · L

√
D2 + σ2 and (A2)2 = D2 + σ2.

Proof. When A is set to be local momentum SGD with learning rate η, update interval I and
momentum hyper-parameter β, let m0,j

k = 0 be the initial momentum and wt+1
k (t = 0, 1, . . . , T−1)

is computed by the following process:

mt+1,0
k = mt,I

k ;

wt+1,0
k = wt;

mt+1,j+1
k = β ·mt+1,j

k + (1− β) · ∇fit,jk (wt+1,j
k), j = 0, 1, . . . , I − 1;

wt+1,j+1
k = wt+1,j

k − η ·mt+1,j+1
k , j = 0, 1, . . . , I − 1;

wt+1
k = wt+1,I

k .

(182)

28

Under review as a conference paper at ICLR 2023

Let ηA = ηI , we have

GA(wt;Dk) = (wt −wt+1
k)/(ηI) =

1

I

I−1∑
j=0

(wt+1,j
k −wt+1,j+1

k) =
1

I

I−1∑
j=0

mt+1,j+1
k . (183)

In addition,

mt+1,j+1
k = β ·mt+1,j

k + (1− β) · ∇fit,jk (wt+1,j
k) (184)

= β · (β ·mt+1,j−1
k + (1− β) · ∇fit,j−1

k
(wt+1,j−1

k)) + (1− β) · ∇fit,jk (wt+1,j
k)

(185)

= β2 ·mt+1,j−1
k + β(1− β) · ∇fit,j−1

k
(wt+1,j−1

k) + (1− β) · ∇fit,jk (wt+1,j
k) (186)

=

= βj+1mt+1,0
k + (1− β)

j∑
j′=0

βj−j
′
∇f

it,j
′

k

(wt+1,j′

k). (187)

Now we prove that E‖mt,j
k ‖2 ≤ D2 + σ2 (j = 0, 1, . . . , I) by deduction on t.

Step 1. When t = 0, we have E‖m0,j
k ‖2 = 0 ≤ D2 + σ2.

Step 2 (deduction). Suppose E‖mt,j
k ‖2 ≤ D2 + σ2, we have E‖mt+1,0

k ‖2 = E‖mt,I
k ‖2 ≤ D2 + σ2

and E‖∇f
it,j
′

k

(wt+1,j′

k)‖2 ≤ D2 + σ2. Since

βj+1 + (1− β)

j∑
j′=0

βj−j
′

= βj+1 + (1− β)
1− βj+1

1− β
= 1, (188)

mt+1,j+1
k can be deemed as a weighted averaging of mt+1,0

k and {∇f
it,j
′

k

(wt+1,j′

k)}jj′=0. Thus,

E‖mt+1,j+1
k ‖2 ≤ D2 + σ2, j = 1, 2, . . . , I. (189)

By mathematical deduction, ∀t = 0, 1, . . . , T , we have

E‖mt,j
k ‖

2 ≤ D2 + σ2, j = 0, 1, 2, . . . , I. (190)

Therefore,

E‖GA(wt;Dk)‖2 = E

∥∥∥∥∥∥1

I

I−1∑
j=0

mt+1,j+1
k

∥∥∥∥∥∥
2

≤ D2 + σ2. (191)

Substituting (187) into (183), we have:

GA(wt;Dk) =
1

I

I−1∑
j=0

[
βj+1mt+1,0

k + (1− β)

j∑
j′=0

βj−j
′
∇f

it,j
′

k

(wt+1,j′

k)
]

(192)

=
β(1− βI)
I(1− β)

mt+1,0
k +

1− β
I

I−1∑
j=0

 j∑
j′=0

βj−j
′
∇f

it,j
′

k

(wt+1,j′

k)

 (193)

=
β(1− βI)
I(1− β)

mt+1,0
k +

1− β
I

I−1∑
j′=0

I−1∑
j=j′

βj−j
′
∇f

it,j
′

k

(wt+1,j′

k)

 (194)

=
β(1− βI)
I(1− β)

mt+1,0
k +

1− β
I

I−1∑
j′=0

[
1− βI−j′

1− β
∇f

it,j
′

k

(wt+1,j′

k)

]
(195)

=
1

I

β(1− βI)
1− β

mt+1,0
k +

I−1∑
j′=0

(1− βI−j
′
)∇f

it,j
′

k

(wt+1,j′

k)

 . (196)

29

Under review as a conference paper at ICLR 2023

Therefore,

E[GA(wt;Dk)−∇Fk(wt)] =
1

I

[
β(1− βI)

1− β
· E[mt+1,0

k −∇Fk(wt)]

+

I−1∑
j′=0

(1− βI−j
′
) · E[∇f

it,j
′

k

(wt+1,j′

k)−∇Fk(wt)]

]
. (197)

Since E‖mt+1,0
k −∇Fk(wt)‖ ≤

√
D2 + σ2 +D and that

E‖∇f
it,j
′

k

(wt+1,j′

k)−∇Fk(wt)‖

≤ E‖∇f
it,j
′

k

(wt+1,j′

k)−∇Fk(wt+1,j′

k)‖+ E‖∇Fk(wt+1,j′

k)−∇Fk(wt)‖ (198)

≤
√
D2 + σ2 + L · ‖wt+1,j′

k −wt‖ (199)

≤
√
D2 + σ2 + L

j′−1∑
j′′=0

‖mt+1,j′′+1
k ‖ (200)

≤
√
D2 + σ2 + j′L

√
D2 + σ2, (201)

we have

‖E[GA(wt;Dk)]−∇Fk(wt)‖

≤ 1

I

[
β(1− βI)

1− β
· [
√
D2 + σ2 +D] +

I−1∑
j′=0

(1− βI−j
′
) · [
√
D2 + σ2 + j′L

√
D2 + σ2]

]
(202)

=
1

I

[
β(1− βI)

1− β
D + I

√
D2 + σ2 + L

√
D2 + σ2 ·

I−1∑
j′=0

(j′ − j′βI−j
′
)

]
(203)

=
1

I

[
β(1− βI)

1− β
D + I

√
D2 + σ2 + L

√
D2 + σ2 ·

(I(I − 1)

2
+
β2(1− βI−1)

(1− β)2
− β(I − 1)

1− β

)]
(204)

=
β(1− βI)
I(1− β)

D +
√
D2 + σ2 +

(I − 1

2
+
β2(1− βI−1)

I(1− β)2
− β(I − 1)

I(1− β)

)
· L
√
D2 + σ2. (205)

B.9 PROOF OF THEOREM 4

Proof. Similar to Lemma 1 and Lemma 2, we have the following inequalities to bound the local
memory and the aggregation error, respectively, for general training algorithm A that satisfies
Assumption 7:

E‖ut+1
k ‖

2 = E‖gtk − g̃tk‖2 (206)
(i)
≤
(

1− d′cons
d

)
E‖gtk‖2 (207)

=

(
1− d′cons

d

)
E‖utk + (wt −wt+1

k)‖2 (208)

(ii)
≤
(

1− d′cons
d

)[
(1 +

d′cons
2d

)E‖utk‖2 + (1 +
2d

d′cons
)E‖ηA ·GA(wt;Dk)‖2

]
(209)

(iii)
≤
(

1− d′cons
2d

)
E‖utk‖2 +

2d

d′cons
(ηA)2 · E‖GA(wt;Dk)‖2 (210)

(iv)
≤
(

1− d′cons
2d

)
E‖utk‖2 +

2d

d′cons
(ηA)2(A2)2, (211)

30

Under review as a conference paper at ICLR 2023

where (i) is derived based on Proposition 2. (ii) is derived based on that ‖x + y‖2 ≤ (1 + θ)‖x‖2 +

(1+θ−1)‖y‖2 for any constant θ > 0. (iii) is derived based on that (1− d′cons
d)(1+

d′cons
2d) < 1− d′cons

2d

and (1− d′cons
d)(1 + 2d

d′cons
) < 2d

d′cons
. (iv) is derived based on Assumption 7. Therefore,(

E‖ut+1
k ‖

2 − 4d2

(d′cons)
2

(ηA)2(A2)2
)
≤
(

1− d′cons
2d

)
·
(
E‖utk‖2 −

4d2

(d′cons)
2

(ηA)2(A2)2
)
.

(212)
Recursively using (212), we have(

E‖utk‖2 −
4d2

(d′cons)
2

(ηA)2(A2)2
)
≤
(

1− d′cons
2d

)t
·
(
E‖u0

k‖2 −
4d2

(d′cons)
2

(ηA)2(A2)2
)
< 0.

(213)
Thus,

E‖utk‖2 ≤
4d2(A2)2

(d′cons)
2
· (ηA)2. (214)

Let H = d′cons/d. Finally, it is obtained that

E‖ut‖2 = E‖ 1

|G|
∑
k∈G

utk‖2 ≤
1

|G|
∑
k∈G

E‖utk‖2 ≤
4d2(A2)2

(d′cons)
2
· (ηA)2 = 4H2(A2)2(ηA)2. (215)

Based on Assumption 7, we have that ∀k ∈ G,

E‖g̃tk‖2 ≤ E‖gtk‖2 =E‖utk + (wt −wt+1
k)‖2 (216)

≤2E‖utk‖2 + 2E‖wt −wt+1
k ‖

2 (217)

≤2E‖utk‖2 + 2(ηA)2(A2)2 (218)

≤2(4H2 + 1)(A2)2 · (ηA)2. (219)

Thus,

Ek 6=k′
[
‖g̃tk − g̃tk′‖2

]
≤ 2E‖g̃tk‖2 + 2E‖g̃tk′‖2 ≤ 8(4H2 + 1)(A2)2 · (ηA)2. (220)

Therefore, by Definition 1 and (220),

E‖et‖2 =E

∥∥∥∥∥SRAgg({g̃tk}mk=1)− 1

|G|
∑
k∈G

g̃tk

∥∥∥∥∥
2

(221)

≤ cδ · Ek 6=k′
[
‖g̃tk − g̃tk′‖2

]
(222)

≤ 8cδ(4H2 + 1)(A2)2 · (ηA)2. (223)

Let w̄t+1 = 1
|G|
∑
k∈G w

t+1
k . Combining with Equation (142), we have:

ŵt+1 = ŵt − (wt − w̄t+1)− et. (224)

The equation can be interpreted as that ŵt+1 is obtained by adding a small term −(wt − w̄t+1) on
ŵt with error et. Therefore,

F (ŵt+1) =F (ŵt − (wt − w̄t+1)− et) (225)

≤F (ŵt)−∇F (ŵt)T (wt − w̄t+1 + et) +
L

2
‖wt − w̄t+1 + et‖2 (226)

≤F (ŵt)−∇F (ŵt)T (wt − w̄t+1)−∇F (ŵt)Tet + η2I2L‖wt − w̄t+1‖2 + L‖et‖2
(227)

=F (ŵt)− 1

|G|
∑
k∈G

∇F (ŵt)T (wt −wt+1
k)

−∇F (ŵt)Tet + L

∥∥∥∥∥wt − 1

|G|
∑
k∈G

wt+1
k

∥∥∥∥∥
2

+ L‖et‖2 (228)

31

Under review as a conference paper at ICLR 2023

≤F (ŵt)− ηA‖∇F (ŵt)‖2 − 1

|G|
∑
k∈G

∇F (ŵt)T [wt −wt+1
k − ηA · ∇F (ŵt)]

−∇F (ŵt)Tet +
L

|G|
∑
k∈G

∥∥wt −wt+1
k

∥∥2 + L‖et‖2 (229)

=F (ŵt)− ηA‖∇F (ŵt)‖2 − 1

|G|
∑
k∈G

∇F (ŵt)T [ηA ·GA(wt;Dk)− ηA · ∇F (ŵt)]

−∇F (ŵt)Tet +
L

|G|
∑
k∈G

∥∥ηA ·GA(wt;Dk)
∥∥2 + L‖et‖2. (230)

Taking expectation on both sides, we have

E[F (ŵt+1)|wt,ut]

≤ F (ŵt)− ηA‖∇F (ŵt)‖2 − ηA
|G|
∑
k∈G

E
[
∇F (ŵt)T [GA(wt;Dk)−∇F (ŵt)]

∣∣∣wt,ut
]

− E[∇F (ŵt)Tet|wt,ut] +
(ηA)2L

|G|
∑
k∈G

E
[∥∥GA(wt;Dk)

∥∥2 ∣∣∣wt,ut
]

+ L · E[‖et‖2|wt,ut].

(231)

By using Assumption 3, Assumption 4, Assumption 7, we have:

− E
[
∇F (ŵt)T [GA(wt;Dk)−∇F (ŵt)]

∣∣∣wt,ut
]

= −∇F (ŵt)T
[
E[GA(wt;Dk)|wt,ut]−∇F (ŵt)

]
(232)

≤ ‖∇F (ŵt)‖ ·
∥∥E[GA(wt;Dk)|wt,ut]−∇F (ŵt)

∥∥ (233)

≤ ‖∇F (ŵt)‖ ·
{∥∥E[GA(wt;Dk)|wt,ut]−∇Fk(wt)

∥∥
+ ‖∇Fk(wt)−∇F (wt)‖+ ‖∇F (wt)−∇F (ŵt)‖

}
(234)

≤D · (A1 +B + L‖wt − ŵt‖) (235)

=A1D +BD +DL‖ut‖. (236)

Note that E[XY] ≤
√
E[X2]E[Y 2]. Based on Assumption 5, Assumption 7 and (223), we have:

−E[∇F (ŵt)Tet|wt,ut] ≤ E[‖∇F (ŵt)‖ · ‖et‖|wt,ut] (237)

≤
√

E[‖∇F (ŵt)‖2|wt,ut] · E[‖et‖2|wt,ut] (238)

≤
√
D2 · 8cδ(4H2 + 1)(A2)2(ηA)2 (239)

= ηA ·
√

8cδ(4H2 + 1)A2D. (240)

According to Assumption 7,

E[‖GA(wt;Dk)‖2|wt,ut] ≤ (A2)2. (241)

Substituting (154), (223), (236), (240) and (241) into (231), we have:

E[F (ŵt+1)|wt,ut] ≤ F (ŵt)− ηA
2
‖∇F (wt)‖2 + ηAL

2‖ut‖2

+ ηA

[
A1D +BD +DL‖ut‖

]
+ ηA ·

√
8cδ(4H2 + 1)A2D

+ (ηA)2L(A2)2 + L · [8cδ(4H2 + 1)(A2)2 · (ηA)2]. (242)

Note that E‖ut‖ =
√

[E‖ut‖]2 ≤
√

[E‖ut‖2] and that E‖ut‖2 = 4H2(A2)2(ηA)2. Taking total
expectation on both sides, we have:

E[F (ŵt+1)] ≤ E[F (ŵt)]− ηA
2
E‖∇F (wt)‖2 + ηAL

2[4H2(A2)2(ηA)2]

32

Under review as a conference paper at ICLR 2023

+ ηA

[
(A1D +BD + 2HA2DLηA) +

√
8cδ(4H2 + 1)A2D

]
+ (ηA)2L(A2)2 + L · [8cδ(4H2 + 1)(A2)2 · (ηA)2]. (243)

Namely,

E[F (ŵt+1)] ≤ E[F (ŵt)]− ηA
2
E‖∇F (wt)‖2 + ηA[A1D +BD +

√
8cδ(4H2 + 1)A2D]

+ (ηA)3[4H2(A2)2L2] + (ηA)2[(A2)2L+ 2HA2DL+ 8cδ(4H2 + 1)(A2)2L].
(244)

By taking summation from t = 0 to T − 1, we have:

E[F (ŵT)] ≤ E[F (ŵ0)]− ηA
2
·
T−1∑
t=0

E‖∇F (wt)‖2 + TηA[A1D +BD +
√

8cδ(4H2 + 1)A2D]

+ T (ηA)3[4H2(A2)2L2] + T (ηA)2[(A2)2L+ 2HA2DL+ 8cδ(4H2 + 1)(A2)2L].
(245)

Note that ŵ0 = w0 and F (ŵT) ≥ F ∗. Thus,

1

T

T−1∑
t=0

E‖∇F (wt)‖2 ≤ 2[F (ŵ0)− F ∗]
ηAT

+ [2A1D + 2BD + 4
√

2cδ(4H2 + 1)A2D]

+ (ηA)2 · [8H2(A2)2L2] + ηA · [2(A2)2L+ 4HA2DL+ 16cδ(4H2 + 1)(A2)2L].
(246)

In summary,

1

T

T−1∑
t=0

E‖∇F (wt)‖2 ≤ 2[F (ŵ0)− F ∗]
ηAT

+ ηAγA,1 + (ηA)2γA,2 + ∆A, (247)

where γA,1 = 2(A2)2L + 4HA2DL + 16cδ(4H2 + 1)(A2)2L, γA,2 = 8H2(A2)2L2 and ∆A =

2A1D + 2BD + 4
√

2cδ(4H2 + 1)A2D.

33

Under review as a conference paper at ICLR 2023

C MORE EXPERIMENTAL RESULTS

In this section, we present more empirical results, which are consistent to the ones in the main text of
this paper and further support our conclusions.

C.1 MORE EXPERIMENTS ABOUT THE EFFECT OF ALPHA

We present more empirical results about FedREP with aggregators geoMed and TMean in this section.
The experimental settings are the same as those in the main text. As illustrated in Figure 3, the
empirical results are consistent with that in the main text. In addition, we have also noticed that the
performance of FedREP with TMean is not stable enough under ALIE attack. A possible reason is
that the aggregator TMean is not robust enough against ALIE attack since FedREP with each of the
other two aggregators (geoMed and CClip) has a relatively stable empirical results. We will further
study this phenomenon in future works.

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

 = 0.00 (=0.042552)
 = 0.20 (=0.044048)
 = 0.50 (=0.046224)
 = 0.80 (=0.047965)
 = 0.95 (=0.048597)
 = 0.99 (=0.048712)
 = 1.00 (=0.048724)

(a) geoMed, bit-flipping attack

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

 = 0.00 (=0.035255)
 = 0.20 (=0.038599)
 = 0.50 (=0.043455)
 = 0.80 (=0.047307)
 = 0.95 (=0.048550)
 = 0.99 (=0.048710)
 = 1.00 (=0.048726)

(b) geoMed, ALIE attack

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

 = 0.00 (=0.042726)
 = 0.20 (=0.044222)
 = 0.50 (=0.046194)
 = 0.80 (=0.048004)
 = 0.95 (=0.048609)
 = 0.99 (=0.048713)
 = 1.00 (=0.048726)

(c) geoMed, FoE attack

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

 = 0.00 (=0.042515)
 = 0.20 (=0.044207)
 = 0.50 (=0.046214)
 = 0.80 (=0.047958)
 = 0.95 (=0.048602)
 = 0.99 (=0.048713)
 = 1.00 (=0.048724)

(d) TMean, bit-flipping attack

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

 = 0.00 (=0.034080)
 = 0.20 (=0.037386)
 = 0.50 (=0.043033)
 = 0.80 (=0.047204)
 = 0.95 (=0.048537)
 = 0.99 (=0.048712)
 = 1.00 (=0.048723)

(e) TMean, ALIE attack

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

 = 0.00 (=0.042663)
 = 0.20 (=0.044137)
 = 0.50 (=0.046253)
 = 0.80 (=0.047973)
 = 0.95 (=0.048606)
 = 0.99 (=0.048713)
 = 1.00 (=0.048715)

(f) TMean, FoE attack

Figure 3: Top-1 accuracy w.r.t. epochs of FedREP with geoMed (top row) and TMean (bottom row)
under bit-flipping attack (left column), ALIE attack (middle column) and FoE attack (right column).

C.2 EXPERIMENTS ABOUT BYZANTINE ATTACKS ON COORDINATES

In each iteration of FedREP, clients will send the coordinate set Itk to server. However, Byzantine
clients may send arbitrary coordinates. Although the theoretical analysis in the main text has included
this case, we also provide empirical results about Byzantine behaviour on sending coordinates.
We set α = 0 for non-Byzantine clients and consider four different Byzantine settings, where
Byzantine clients send the correct coordinates (noAtk), send the coordinates of Km smallest absolute
values (minAtk), send random coordinates (randAtk) and send coordinates that is the same as a
non-Byzantine client (sameAtk), respectively. We set K = 0.065d while the other settings are the
same as those in Section 5 in the main text. As illustrated in Figure 4, although the Byzantine attack
on coordinates slightly changes the communication cost, it has little effect on the convergence rate
and final top-1 accuracy. The main reason is that the top-Km coordinates of each non-Byzantine client
can always be sent to server in FedREP, no matter what is sent from Byzantine clients.

34

Under review as a conference paper at ICLR 2023

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

noAtk (=0.045089)
minAtk (=0.050816)
randAtk (=0.050543)
sameAtk (=0.036856)

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

noAtk (=0.038115)
minAtk (=0.044416)
randAtk (=0.045736)
sameAtk (=0.032452)

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

noAtk (=0.043903)
minAtk (=0.050301)
randAtk (=0.050124)
sameAtk (=0.036333)

Figure 4: Top-1 accuracy w.r.t. epochs of FedREP with different Byzantine behaviour on sending
coordinates when there are 7 Byzantine clients with bit-flipping attack (left), ALIE attack (middle)
and FoE attack (right), respectively.

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

RCGD-EF (=0.05)
FedREP w/ geoMed (=0, =0.047456)
FedREP w/ geoMed (=0.9, =0.046973)

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

RCGD-EF (=0.05)
FedREP w/ TMean (=0, =0.043590)
FedREP w/ TMean (=0.9, =0.046349)

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

RCGD-EF (=0.05)
FedREP w/ CClip (=0, =0.046645)
FedREP w/ CClip (=0.9, =0.048389)

Figure 5: Top-1 accuracy w.r.t. epochs when there are 7 Byzantine clients with ALIE attack. β is
the hyper-parameter of local momentum. Local momentum is not used when β = 0. The robust
aggregator in FedREP is set to be geoMed (left), TMean (middle) and CClip (right), respectively.

C.3 EXPERIMENTS ABOUT LOCAL MOMENTUM

Previous works (Karimireddy et al., 2021) have shown that using momentum can help to reduce the
variance of stochastic gradients and obtain stronger Byzantine robustness. We also provide empirical
results about the momentum in this section. The experimental settings keep the same as in Section 5
in the main text. As illustrated in Figure 5, using local momentum can make FedREP more robust to
Byzantine attack ALIE, which is consistent with previous works (Karimireddy et al., 2021).

C.4 COMPARISON WITH SPARSESECAGG

We first empirically compare the performance of FedREP with the communication-efficient privacy-
preserving FL baseline SparseSecAgg (Ergun et al., 2021) when there is no attack. We test the
performance of FedREP with buffer size s = 4, 8 and 16, respectively. We set Γ = 0.05 and 0.1
for SparseSecAgg in the two experiments, respectively. Correspondingly, we set K = 0.05d and
K = 0.1d in the two experiments for FedREP since the transmitted dimension number in FedREP
is uncertain but not larger than K. Thus, we have Γ ≤ K/d for FedREP. The top-1 accuracy
w.r.t. epochs is illustrated in Figure 6. The results show that FedREP can significantly outperform
the existing communication-efficient privacy-preserving baseline SparseSecAgg when there is no
Byzantine attack.

In addition, we have tried different learning rates for SparseSecAgg and it has the best perfor-
mance when learning rate equals 5. As illustrated in Figure 7, FedREP significantly outperforms
SparseSecAgg on top-1 accuracy when communication cost is similar. The communication cost of
SparseSecAgg is much more than FedREP when the performance on top-1 accuracy is comparable.
For one reason, FedREP is based on top-K sparsification while SparseSecAgg is based on random-K
sparsification. For another reason, FedREP adopts error-compensation technique while SparseSecAgg
does not.

35

Under review as a conference paper at ICLR 2023

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

SparseSecAgg (=0.1)
SparseSecAgg (=0.05)
FedREP w/ mean (s=4, 0.1)
FedREP w/ mean (s=4, 0.05)

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

SparseSecAgg (=0.1)
SparseSecAgg (=0.05)
FedREP w/ mean (s=8, 0.1)
FedREP w/ mean (s=8, 0.05)

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

SparseSecAgg (=0.1)
SparseSecAgg (=0.05)
FedREP w/ mean (s=16, 0.1)
FedREP w/ mean (s=16, 0.05)

Figure 6: Top-1 accuracy w.r.t. epochs of FedREP and SparseSecAgg when there is no attack. The
buffer size s for FedREP is set to be 4 (left), 8 (middle) and 16 (right), respectively.

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

SparseSecAgg (=0.05, lr=1)
SparseSecAgg (=0.05, lr=2)
SparseSecAgg (=0.05, lr=5)
SparseSecAgg (=0.05, lr=10)
SparseSecAgg (=0.05, lr=20)
FedREP w/ mean (s=4, 0.1)
FedREP w/ mean (s=4, 0.05)

0 20 40 60 80 100 120
Epoch

0

20

40

60

80
T

op
-1

 A
cc

ur
ac

y

SparseSecAgg (=0.1, lr=1)
SparseSecAgg (=0.1, lr=2)
SparseSecAgg (=0.1, lr=5)
SparseSecAgg (=0.1, lr=10)
SparseSecAgg (=0.1, lr=20)
FedREP w/ mean (s=4, 0.1)
FedREP w/ mean (s=4, 0.05)

0 20 40 60 80 100 120
Epoch

0

20

40

60

80

T
op

-1
 A

cc
ur

ac
y

SparseSecAgg (=0.2, lr=1)
SparseSecAgg (=0.2, lr=2)
SparseSecAgg (=0.2, lr=5)
SparseSecAgg (=0.2, lr=10)
SparseSecAgg (=0.2, lr=20)
FedREP w/ mean (s=4, 0.1)
FedREP w/ mean (s=4, 0.05)

Figure 7: Top-1 accuracy w.r.t. epochs of FedREP and SparseSecAgg when there is no attack. Γ for
SparseSecAgg is set to 0.05 (left), 0.1 (middle) and 0.2 (right), respectively. The learning rate (lr) for
FedREP is set to 0.5.

C.5 COMPARISON WITH SHARE

We empirically compare the performance of FedREP and SHARE (Velicheti et al., 2021) in this
section. Both FedREP and SHARE are FL frameworks that can work with various local training
algorithms on clients. Compared to SHARE, the main advantage of FedREP is the consensus
sparsification. Moreover, FedREP degenerates to SHARE when consensus sparsification hyper-
parameter K = md. Therefore, we compare SHARE and FedREP with different Γ when keeping
other conditions the same. Specifically, we set buffer size (a.k.a. cluster size in SHARE) to be 4
and local training algorithms to be vanilla SGD for each method. The other settings are the same as
those in Section 5 of the main text of this paper. Since the actually transmitted dimension number is
uncertain in each communication round for FedREP, we count the average transmitted dimension
number of all communication rounds and use it as a measurement of communication cost. The
experimental results of FedREP and SHARE when there are no Byzantine clients are illustrated in
Figure 8. The experimental results of FedREP and SHARE when there are 3 Byzantine clients under
bit-flipping attack, ALIE attack and FoE attack are illustrated in Figure 9, Figure 10 and Figure 11,
respectively. As we can see from the empirical results, compared to SHARE, there is almost no loss
on the convergence rate and final accuracy when Γ is about 0.079 for FedREP. In addition, there is
only a little loss on final accuracy when Γ is as low as about 0.017.

Interestingly, when under ALIE attack, empirical results show that FedREP has an even higher final
accuracy compared to SHARE. We conduct an extra experiment to compare the performance of
FedREP and SHARE when there are 7 Byzantine clients with ALIE attack. We set local training
algorithm to be momentum SGD with β = 0.9 and buffer size s = 2 in the extra experiment. The
other settings are the same. As illustrated in Figure 12, FedREP can still outperform SHARE in this
setting. A possible reason is that the consensus sparsification in FedREP can lower the dissimilarity
between the updates of different clients and thus lower the aggregation error (please see Definition 1
in the main text for more details). However, it requires more effort to further explore this aspect
and we leave it for future work. In summary, FedREP has a comparable performance to SHARE on
convergence rate and final accuracy, but has much less communication cost than SHARE.

36

Under review as a conference paper at ICLR 2023

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ geoMed (=1)
FedREP w/ geoMed (=0.017508)
FedREP w/ geoMed (=0.042067)
FedREP w/ geoMed (=0.079317)

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ TMean (=1)
FedREP w/ TMean (=0.017463)
FedREP w/ TMean (=0.041630)
FedREP w/ TMean (=0.079052)

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ CClip (=1)
FedREP w/ CClip (=0.017426)
FedREP w/ CClip (=0.042002)
FedREP w/ CClip (=0.079803)

Figure 8: Top-1 accuracy w.r.t. epochs of FedREP and SHARE when there are no Byzantine clients.

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ geoMed (=1)
FedREP w/ geoMed (=0.017437)
FedREP w/ geoMed (=0.041667)
FedREP w/ geoMed (=0.078613)

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ TMean (=1)
FedREP w/ TMean (=0.017402)
FedREP w/ TMean (=0.041535)
FedREP w/ TMean (=0.078218)

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ CClip (=1)
FedREP w/ CClip (=0.017352)
FedREP w/ CClip (=0.041493)
FedREP w/ CClip (=0.078295)

Figure 9: Top-1 accuracy w.r.t. epochs when there are 3 Byzantine clients with bit-flipping attack.

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ geoMed (=1)
FedREP w/ geoMed (=0.017196)
FedREP w/ geoMed (=0.040748)
FedREP w/ geoMed (=0.077141)

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ TMean (=1)
FedREP w/ TMean (=0.017010)
FedREP w/ TMean (=0.041234)
FedREP w/ TMean (=0.077125)

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ CClip (=1)
FedREP w/ CClip (=0.016933)
FedREP w/ CClip (=0.040427)
FedREP w/ CClip (=0.076797)

Figure 10: Top-1 accuracy w.r.t. epochs when there are 3 Byzantine clients with ALIE attack.

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ geoMed (=1)
FedREP w/ geoMed (=0.017379)
FedREP w/ geoMed (=0.041840)
FedREP w/ geoMed (=0.078841)

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ TMean (=1)
FedREP w/ TMean (=0.017452)
FedREP w/ TMean (=0.041739)
FedREP w/ TMean (=0.078464)

0 20 40 60 80 100 120
Epoch

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ CClip (=1)
FedREP w/ CClip (=0.017387)
FedREP w/ CClip (=0.041497)
FedREP w/ CClip (=0.078958)

Figure 11: Top-1 accuracy w.r.t. epochs when there are 3 Byzantine clients with FoE attack.

0 20 40 60 80 100 120
Epoch

20

30

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ geoMed (=1)
FedREP w/ geoMed (=0.015485)
FedREP w/ geoMed (=0.035190)
FedREP w/ geoMed (=0.061076)

0 20 40 60 80 100 120
Epoch

20

30

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ TMean (=1)
FedREP w/ TMean (=0.014886)
FedREP w/ TMean (=0.034046)
FedREP w/ TMean (=0.058367)

0 20 40 60 80 100 120
Epoch

20

30

40

50

60

70

80

90

T
op

-1
 A

cc
ur

ac
y

SHARE w/ CClip (=1)
FedREP w/ CClip (=0.016484)
FedREP w/ CClip (=0.037341)
FedREP w/ CClip (=0.066773)

Figure 12: Top-1 accuracy w.r.t. epochs when there are 7 Byzantine clients with ALIE attack.

37

	Introduction
	Preliminary
	Methodology
	Motivation
	Consensus Sparsification
	FedREP

	Convergence
	Experiment
	Conclusion
	Details of FedREP
	Proof Details
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Proposition 2
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 3
	Analysis for Local Momentum SGD
	Proof of Theorem 4

	More Experimental Results
	More Experiments about the Effect of Alpha
	Experiments about Byzantine Attacks on Coordinates
	Experiments about Local Momentum
	Comparison with SparseSecAgg
	Comparison with SHARE

