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ABSTRACT

Medical vision-language models still struggle to match radiologists’ attention and
to verbalize findings with explicit spatial grounding. We address this gap with
a two-stage multimodal framework for chest X-ray interpretation built on the
MIMIC-Eye dataset. In the first stage introduces a gaze-token classifier that fuses
image patches, bounding-box masks, transcription embeddings, and radiologist
fixations. A curriculum-scheduled, trust-calibrated composite loss supervises the
gaze token, boosting both accuracy and spatial alignment. Adding fixation super-
vision raises AUC 4.4% and F1 13.3%, and Pearson correlation rises to 0.306,
confirming clinically relevant focus. In stage 2, classifier predictions are trans-
lated into region-specific diagnostic sentences. Confidence-weighted keywords
are extracted, mapped to 17 thoracic regions through an expert dictionary, and ex-
panded with a prompted large language model, boosting clinical-term BERTScore
and ROUGE scores over keyword baselines. All components are toggle-able
for ablation, and the full pipeline is reproducible, offering a new benchmark for
interpretable, gaze-aware chest-X-ray analysis. Integrating eye-tracking signals
demonstrably enhances both diagnostic accuracy and the transparency of gener-
ated reports.

1 INTRODUCTION

Radiology reports shape clinical decision making: treatment plans, follow-up imaging, and even sur-
gical interventions often depend on the language a radiologist chooses to record |Casey et al.|(2021));
Liu et al.[(2019). Accordingly, report-generation systems must be precise as well as capturing sub-
tle pathologies and be explainable, so that every statement can be traced back to verifiable image
evidence [Tanida et al.| (2023). Producing such reports automatically from chest X-rays is therefore
both a high-impact goal and a stringent test of multi-modal reasoning [Yang et al.|(2023).

Yet the underlying data are stubbornly heterogeneous. Pixel-level visual cues, sentence-level textual
descriptions, and time-stamped attentional traces collected via eye-tracking each operate on differ-
ent scales and carry different noise profiles|Karargyris et al.| (2021); |Lanfredi et al.|(2022). Aligning
these modalities is complicated by (i) reader-specific gaze patterns, (ii) limited bounding-box cover-
age, and (iii) the need to express findings in radiologist-approved terminology. A successful solution
must fuse all three signals without diluting any one of them Ma et al.| (2024).

To this end, we present four contributions. An overview of the pipeline is shown in Figure 1.

* Gaze-Token Guided Multimodal Fusion for Disease Prediction. A learnable gaze token is
injected into the ViT patch stream and modulated by a bounded gating layer; its attention is
supervised by a trust-calibrated composite loss combining pixel fidelity (Mean Squared Er-
ror (MSE), Kullback-Leibler (KL)), pattern similarity (Pearson correlation), and geometric
alignment (normalised Center-of-Mass (COM)). All four terms are weighted by fixation
density, entropy, and anatomy masks, then scheduled via a curriculum that increases gaze
influence. This unifies spatial precision and alignment while preventing gaze dominance.

e Quantitative Gaze-Attention Validation. Controlled ablations show consistent focus on
clinically relevant regions: Jensen-Shannon Divergence (JSD) < 0.45, Pearson correla-
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tion ~ 0.30, and attention entropy approaches the human upper bound, without sacrificing
classification scores.

* Region-Grounded, Keyword-Driven Report Generation. Stage 2 converts classifier logits
into coherent reports by (i) extracting confidence-weighted diagnostic keywords, (ii) map-
ping them to 17 canonical thoracic regions, and (iii) prompting an LLM to emit region-
conditioned sentences. The pipeline preserves spatial grounding from image to text and
improves clinical keyword recall.

* Modular, Inspectable MIMIC-Eye Pipeline. Encoders, projection blocks, fusion gates,
composite losses, and the report generator are toggle-able via config flags. Intermediate
outputs are saved, enabling transparent error analysis, reproducible ablations, and easy in-
tegration with other public medical-imaging datasets.
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Figure 1: Overview of the proposed multi-modal pipeline. Radiograph, bounding-box masks, tran-
scripts, and eye-tracking fixations are aligned through a contrastive objective; at inference, it takes
only the radiograph modules to generate region-grounded radiology reports.

2 RELATED WORK

Recent medical vision—language models couple large-scale chest-X-ray corpora with transformer
backbones to align image embeddings and report tokens|[Lu & Wang|(2025); [You et al.|(20234). Ap-
proaches such as MedCLIP [Wang et al.| (2022)), BioViL [Bannur et al.| (2023a), and Llama-Med pre-
train with paired (image, sentence) contrastive objectives and subsequently fine-tune for tagging or
report generation, demonstrating strong zero-shot transfer to unseen pathologies|Zhang et al.| (2023)).
Although effective at global alignment, these methods operate on whole-image/whole-sentence pairs
and provide limited guidance on where in the image a predicted phrase originates (2025).
Parallel efforts leverage gaze traces as an auxiliary supervisory signal: fixation maps are injected
either as soft attention masks or as auxiliary channels, encouraging the encoder to focus on diag-
nostically salient regions without requiring extra pixel-level labels Ma et al.| (2024); [Wang et al.
(2024).

Complementary to vision-language alignment, keyword and region- aware generators explicitly

ground narrative statements in anatomic sub-regions [Tanida et al.| (2023); (Chen et al.| (2024). A
complementary direction prompts LLMs with gaze and region cues to steer generation without re-

training (Kim et al 2025). Pipelines such as MS-CXR [Boecking et al| (2024) and REFLACX
[Lanfredi et al.|(2022) first predict diagnostic keywords, then slot them into structured prompt con-
ditioned on pre-computed bounding boxes, yielding reports with higher factual correctness. These
frameworks, however, depend on accurate region detectors and omit attentional cues. Finally, con-
trastive and multimodal fusion techniques combine heterogeneous inputs; images, clinical labels,
bounding boxes, and gaze sequences within a unified representation space; InfoNCE (Information
Noise-Contrastive Estimation) style losses balance the modalities while late-fusion transformers

aggregate their features [Liu et al.| (2021); [Hayat et al.| (2022). Our work intersects these strands
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by integrating gaze-guided contrastive learning with a region-grounded, keyword-driven generator,
thereby coupling attentional supervision with spatially explicit report generation.

3 METHODOLOGY

3.1 OVERVIEW AND MOTIVATION

Our goal is to build a multimodal fusion architecture that integrates four complementary information
sources encountered during chest X-ray interpretation: (1) the chest X-ray; (2) binary masks that
mark anatomically defined bounding boxes; (3) the radiologist’s transcription; and (4) eye-tracking
fixation sequences recorded during the radiologist’s reading. We fuse these four streams with a gaze-
token Vision Transformer. Image patches, mask projections, sentence embeddings, and fixation
embeddings are projected to 768-dimension tokens, concatenated, and processed by multi-head self-
attention. A learnable gaze token attends to image-patch tokens through a bounded gating layer,
letting human gaze steer but not dominate-internal attention.

Unlike prior pipelines, we incorporate eye-tracking data as an auxiliary supervisory signal, offering
fine-grained attentional guidance without explicit localization labels. Pre-rendered bounding box
masks, introduce broad spatial priors without requiring dense supervision; bridging the gap between
image space and semantic concepts. Together, these components yield features that transfer well
across datasets and support interpretable downstream generation tasks.

(1) Image with Labels (2) Bounding Box (3) Radiologist’s Transcription (4) Gaze Data (Co-ordinates, Pupil Size, Duration)
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Figure 2: Multimodal chest-X-ray classifier (Stage 1): image, bounding-box, text, and gaze fea-
tures are independently encoded, concatenated, refined by a cross-modal attention block, and passed
through an MLP fusion network whose global and condition-specific heads are ensembled to predict
eight disease labels.

3.2 INPUT MODALITIES AND CONTRASTIVE LEARNING

Figure 2 gives an overview of the four encoders. Unless noted otherwise, all projected feature
vectors have dimensionality, d = 768.

Radiograph (img). Each 224 x 224 radiograph is processed by a ViT-BASE |Dosovitskiy et al.
(2020) backbone that has been transfer-learned on CheXpert|Irvin et al.|(2019). From the class token
embedding (CLS) token zine € R7®® we derive the image embedding with a two-layer projection
head:

hipe = LN (W5 GELU (LN (W12img))) 5 (1)

where Wy, Wy are learned linear maps, LN denotes Layer Normalization and GELU denotes Gaus-
sian Error Linear Unit. A Dropout (0.15) layer follows each linear transformation in the high-
capacity (“enhanced”) configuration.
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Bounding-box mask (bbox). The union of all reader-annotated boxes is rasterised into a bi-
nary 224 x 224 mask and passed through a lightweight convolutional encoder built from stacked
CoNV+NORM+GELU+ blocks with intermittent 2x 2 pooling. The resulting feature map is global-
average-pooled and linearly projected to dimension d, producing the embedding hypox. This channel
supplies a coarse anatomical prior without requiring dense supervision.

Report text (fext). Transcripts are encoded by BioClinical BERT |Alsentzer et al.|(2019). We freeze
the backbone and project the [CLS] representation with 2y,

hlexl == W4 GELU (LN(W3ztext)) 5 (2)
followed by LN and Dropout, matching the implementation.

Fixation sequence (gaze). A variable-length sequence of (z,y, At, pupil) tuple is first embedded
to 64 dimensions and then encoded by a bi-directional gated recurrent unit (bi-GRU). The enhanced
model employs two layers with hidden size 384, giving a 1,536-dimensional concatenated state that
is linearly projected to hg,z.

3.2.1 GAZE-MODEL VARIANTS: BASELINE VS. ENHANCED

We instantiate two configurations that differ solely in how they exploit fixation data.

Baseline gaze. Fixation tuples are encoded by a bidirectional GRU (bi-GRU) and temporally
pooled to a vector hgy,e, which is concatenated with the other modality features. This variant pro-
duces no attention map and is trained only with the classification loss L5 (and optional image-text
InfoNCE Lrr¢), so gaze influences the model solely through the fused feature.

Enhanced gaze. The enhanced configuration introduces three mechanisms: (1) Explicit attention
maps. A lightweight decoder converts the fused token into a 14 x 14 heat map A ,oq4e (One value per
ViT patch). For supervision or visualization this map can be bilinearly up-sampled to 28 x 28 and,
if needed, to 224 x 224; (2) Trust-calibrated supervision. Raw fixations are smoothed into A g..
A composite loss: MSE, KL divergence, Pearson correlation, and centre-of-mass aligns A o4e] With
Aqe; each term is modulated by fixation density, entropy, and anatomy masks and introduced by
a curriculum scheduler (Eq. 6); (3) Cross-modal consistency. An InfoNCE term (Eq. 5) aligns
image and text embeddings, reinforcing semantic agreement between visual regions and the report
transcript; no dedicated gaze—text contrastive loss is used.

These additions guide the network to reproduce radiologists’ visual search patterns rather than treat
fixation statistics as auxiliary features.

3.3 FUSION AND PREDICTION

Token sequence. The ViT yields a gaze-augmented image embedding h;y,,. Patch attentions are
rolled out and re-pooled with fixation-entropy weights before projection. Bounding-box, text, and
gaze branches produce hppox, hiext, hgaze. In this context X is the concatenated feature vector that
collects the four modality embeddings before any further attention or MLP processing:

X = [himg || hppox || hyey || hgaze] € R3072,

When enabled, a learnable 768-d gaze token gates information into hjy, in the next step and is not
kept as a separate token.

Attention/gating. X is refined by one lightweight attention-gating block (8 heads, GELU, dropout
0.15); otherwise the block is skipped.

Fusion MLP and classifier. The (optionally refined) 3072-d vector passes through a two-layer
MLP (3072 — 1536 — 768, GELU, dropout 0.15) to form hyson, which feeds a global sigmoid head
that outputs eight disease logits £ € R®.

This lets fixation cues steer the image embedding via gaze-weighted pooling and the optional gaze
token while keeping the classifier simple and parameter-efficient.
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3.4 TRAINING OBJECTIVES

Classification loss. Multi-label focal loss L¢s with class-balanced positives supervises the eight
disease labels.

(2) InfoNCE contrastive loss. For image—gaze and image—text pairs we minimize the InfoNCE
objective [van den Oord et al| (2019), derived from noise-contrastive estimation |Gutmann &
Hyvarinen| (2012)):

1 exp(sim(h;, h;)/7)
LNCE = — — , 3
NE = TR 2 T S oG, b 7 ©

where sim(u, v) = m and 7 = 0.07.

Proposed Composite gaze-alignment loss. Let Apoq € R?24%224 be the decoded attention map
and Ay, the fixation heat map:

HCOM(Amodel) - COM(Agaze)HZ )
224+/2 '

CoM

Lewe = wq (|| Aot — Aguel3 + KL (0 (Ague) I| 0 (Amode)) + 1 = p(Amode, Ague) +

MSE KL Corr

4)
where w, = v/ Nfx Gscore Weighs samples by fixation density and quality; o is softmax.

Total loss.

L= Lgs+ /\NCE Lnce + )\gaze Lgazea /\NCE = 0~17 )\gaze =0.3. 6)
Thus, 60% of the optimisation signal targets label accuracy, 10% enforces cross-modal consistency,
and 30% enforces spatial alignment with radiologist gaze. All experiments: AdamW (LR 6x1079),
batch 32 (8 low-mem), 40 epochs, cosine; “Fine Tune” folds validation into training for a final pass
(test unchanged; hyperparameters fixed). For baselines: 5x 1076, 32, 35; ViT-only: 5Xx 1075, 128,
20. Experiments ran on an Intel Core 19-14900K CPU and a single NVIDIA RTX 4090 GPU (24
GB VRAM).

3.5 Two-STAGE KEYWORD EXTRACTION PIPELINE

We extract keywords per condition in two steps. Stage 1: Gemini 2.5 Pro reads the full report
and the eight target pathologies, then proposes a ranked list for each condition (temperature=0.1,
top — k = 1). Requests run in mini-batches of 30 with exponential backoff (base 3 s; timeout 120s)
and progress logging. Stage 2: A second Gemini pass filters the candidates by removing lexical
variants, boilerplate (e.g., “no evidence of”’), duplicates, and cross-condition leakage. It outputs
a simple YES/NO per keyword; confidence is suppressed so decisions rely on semantic meaning,
reducing bias from overconfident errors. On the development set (7,322 keywords), 49.5% are
kept and 50.5% dropped. The final vocabulary is compact and precise (about 390 £ 230 unique
keywords per condition; e.g., Atelectasis 164, Lung Opacity 782, Support Devices 683) and is used
for anatomical-region matching and structured report generation.

3.6 ANATOMICAL REGION MAPPING AND REPORT GENERATION

We maintain a dictionary of 17 thoracic regions, each represented by a bounding-box tuple
(Zmins Ymin, Tmax, Ymax) and a list of lexical aliases. During training, EyeGaze/REFLACX boxes
are normalized to [0, 1] using the recorded image dimensions (W, H), validated, and robustly ag-
gregated per region; at inference, Gemini-cleaned keywords are matched (case-insensitive, fuzzy
similarity) to the alias lists. Successful matches activate binary region flags, yielding a sparse
17-dimensional anatomical mask shared across image, gaze, and text streams. The normalized re-
gion bounds are later scaled to a 512x 512 dimension for mask rendering and visualization.
Normalization, validation, and robust averaging. For each annotation table we (i) normalize co-
ordinates, (ii) apply a validation gate requiring 0 < 27 < 22 < 1,0 < y1 < y2 < 1, known (W, H),
a valid region identifier, and a confidence score (for REFLACX); and (iii) aggregate all valid boxes
per region by an element-wise median. If the median is degenerate (non-positive width/height or
area < Thox), We fall back to a confidence-weighted average, with b; € [0, 1]4 and confidences ¢; (de-
fault ¢;=1 if absent), returning a mapping M|[r] € [0, 1]* for each region r. The complete procedure
is summarized in Algorithm I}
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Algorithm 1 Anatomical Region Bounds Aggregation

Require: Patient set P; region list R = {ry, ..., 717}
Ensure: Normalized per-region bounds M : R — [0, 1]
1: Initialize L[r] - @ forall™ € R

2: forallp € P do

3 Load image size (W, H') and boxes B

4 for all (7, x1,y1,T2,y2,c) € Bdo

5 (1,91, 2, y2) « (z1/W, y1/H, z2/W, y2/H)

6: ifre Rand0 <z <22 <land0 < y; < y2 < 1then
7: Append ((@1,y1,22,y2), cor 1) to L[r]
8:

9

10

4

end if
end for
. end for
11: forall7 € R do
12: B+ {b:(b,c) € L[r]}, C+ {c:(b,c) € L[r]}

13: b« median(B) > element-wise

14: if (boy — bz < Toox) Or (by, — by, < Thox) then

15: Mir] + Zicibi > confidence-weighted avg.
>icite

16: else

17: M[r] «+ b

18:  endif

19: end for

20: return M

Report generation. The classifier outputs posterior probabilities for eight target pathologies. Con-
ditions with p(c) > 0.60 and their activated regions are passed to a Gemini 2.5 Pro prompt that (tem-
perature = 0.3, top-k = 1) injects regional context, enforces radiology style, and produces distinct
findings and impression . The prompt includes strict instructions to avoid unsupported statements.
API calls use up to five retries with exponential backoff; on final failure, a concise local fallback
paragraph is emitted. We serialize per-condition probabilities, matched keyword sources, and con-
tributing region indices to support interpretability dashboards. This replaces the earlier (unused)
phrase-level provenance scheme and preserves the high-recall region mapping while leveraging
LLM’s fluency to produce coherent, anatomically faithful reports without rigid prompts.

4 EVALUATIONS

4.1 DATASET CURATION AND ALIGNMENT PROCESS

Dataset. We curate a task-specific subset of MIMIC-Eye v1.0.0 to obtain a fully aligned, mul-
timodal corpus that supports both gaze-aware detection and region-grounded report generation.
The source archive couples 3,689 posterior—anterior chest radiographs with two heterogeneous eye-
tracking streams: (1) EyeGaze High-frequency binocular gaze, automatically generated bounding
boxes for seventeen thoracic regions, and single-reader audio transcripts; (2) REFLACX Radiolo-
gist fixations, spoken descriptions, and free-hand lesion ellipses but no anatomical region masks.
Coverage across modalities is uneven. Modality Coverage Analysis Of the 3,689 source stud-
ies, 3,502 (94.9%) contain valid radiographs, 3,445 (93.4%) provide usable gaze sequences, 3,398
(92.1%) include transcripts, and 1,847 (50.1%) provide complete bounding-box annotations from
EyeGaze; every REFLACX study lacks region masks entirely, necessitating computational comple-
tion. A small number of radiographs are unreadable owing to truncated JPEGs; several EyeGaze
sessions contain malformed gaze tables or mismatched identifiers; and every REFLACX study lacks
region masks altogether. Our curation procedure therefore proceeds in three stages.

Integrity filtering. We discard studies with corrupt images or invalid gaze logs, retaining only cases
that provide a valid radiograph and at least one usable fixation sequence.

Quality Assurance Metrics. Specifically, we exclude 184 studies (4.99%): 67 corrupted images,
89 malformed gaze tables, and 28 missing identifiers. Post-filtering, the retained corpus achieves
99.2% image validity, 97.8% gaze-sequence completeness, and 100% transcript availability.
Fixation normalisation. EyeGaze coordinates are already screen-normalised. REFLACX pixel co-
ordinates are mapped to the unit square by dividing by the recorded image crop, yielding a common
(x,y) € [0,1]? reference frame. Pupil area is harmonised by converting left- and right-eye diam-
eters to area and scaling by the subject-specific mean of the first two valid seconds, matching the
relative scale used in REFLACX.
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Normalization Validation. Cross-dataset alignment achieves a spatial correlation of = 0.94 be-
tween EyeGaze and REFLACX normalised fixations, while pupil-area scaling reduces inter-subject
variance by 73.2%, with standardised areas spanning [0.1, 2.8] relative units.

Bounding-box completion. EyeGaze region boxes are kept as-is. To compensate for their ab-
sence in REFLACX, we train a lightweight YOLO on EyeGaze annotations and infer one highest-
confidence box per region for every REFLACX image. Detailed gaze-normalization steps are given

in Appendix[A.6

The resulting corpus supplies, for every retained study: (1) a radiograph; (2) a normalised fixation
sequence with per-sample pupil area and duration; (3) a complete set of seventeen thoracic region
masks; (4) the original radiology-report text; and (5) CheXpert-style condition labels.

Quantitative Results. Our pipeline processes the 3,689 initial radiographs and produces 2,877
fully-aligned multimodal samples, yielding a 67.1% retention rate. We partition the dataset patient-
wise into 1,984 training samples (80.1%), 493 validation samples (19.9%), and 400 test samples
(16.2%). The curated dataset exhibits moderate class imbalance: No Finding (38.2%), Lung Opac-
ity (23.1%), Support Devices (18.7%), Atelectasis (14.2%), Cardiomegaly (13.6%), Pleural Effusion
(12.9%), Edema (11.8%), and Pneumonia (9.4%). Multi-label cases constitute 42.7% of the corpus,
with a mean label density of 1.67 &+ 0.92 conditions per study. All preprocessing scripts and the
manifest that link gaze, images, region masks, and clinical labels will be released to facilitate repro-
ducibility.

4.2 DISEASE CLASSIFICATION AND GAZE-ATTENTION EVALUATION

Modalities

Metrics Images, Labels, + + + Fixation

Bounding Box Transcription Fixations Enhanced
AUC 0.821 0.822 0.834 0.857
F1 0.579 0.621 0.629 0.656
Recall 0.673 0.756 0.762 0.768
Precision 0.509 0.527 0.559 0.615
Loss 0.491 0.519 0.537 0.520
Pearson Correlation 0.198 + 0.198 0.225 £ 0.164 0.265 + 0.173 0.306 + 0.170
MSE 0.045 £ 0.016 0.042 + 0.015 0.044 £ 0.015 0.042 +0.013
P Value 0.005 + 0.042 0.001 + 0.011 0.004 + 0.039 0.003 + 0.029
Jensen-Shannon Divergence 0.464 4 0.082 0.444 £+ 0.076 0.456 £ 0.080 0.437 £+ 0.075
Normalized Scanpath Saliency ~ 0.109 % 0.048 0.118 £ 0.047 0.123 £ 0.046 0.138 + 0.046
Human Attention Entropy 9.873 +0.323 9.898 + 0.313 9.898 + 0.313 9.898 + 0.313

10.561 +£ 0.095

10.597 +£ 0.060

10.549 + 0.089

10.589 + 0.057

Model Attention Entropy

Table 1: Disease-classification and attention-alignment metrics on MIMIC-Eye. Columns show a
progressive ablation: visual baseline (images + labels + bounding box), + transcript, + raw fixations,
and the full fixation-enhanced model. Green numbers are the best value for each metric (lower
is better for Loss, MSE, JSD). For extended ablations of CNN backbones and text encoders, see
Appendix Tables [§]and [0

Modality Ablation Results. We retain the eight most prevalent CheXpert-style conditions and
drop the six minority classes that together constitute < 1.5% of the curated MIMIC-Eye split. Ap-
pendix Table [/| lists per-class prevalence. Moreover, an identical 8-class subset is used in prior
work (Ma et al.| 2024). Table 1 reveals four key findings. First, the baseline modality (images,
labels, and bounding boxes) yields strong results (AUC = 0.821, F1 = 0.579), validating the util-
ity of spatial priors. Second, adding transcriptions slightly increases performance (AUC = 0.822,
F1 = 0.621). Third, incorporating raw fixations improves both AUC (0.834) and F1 (0.629), con-
firming their value as weak supervision. When fixations are used as explicit spatial supervision
(Fixation-Enhanced), performance improves further (AUC = 0.857, F1 = 0.656) while also rais-
ing interpretable attention maps. Finally, LLM hallucinations remain possible; mitigation beyond
prompt grounding and thresholding is left to future work. As illustrated in Figure 3, the predicted
saliency closely mirrors expert fixations, visually corroborating the quantitative alignment metrics
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reported above. All reported test results use image-only inference; other modalities are training-time
signals only.

For Fixation-Enhanced, six complementary metrics quantify model-gaze alignment. Pearson corre-
lation is 0.306 4 0.170, which meets Cohen’s moderate threshold (r > 0.30) |Cohen| (1988)). MSE
is 0.042 £ 0.013, and Jensen—Shannon divergence is 0.437 4 0.075, close to the inter-reader up-
per bound of 0.45 |Bylinskii et al.[(2019). Normalized Scanpath Saliency (NSS) is 0.138 &£ 0.046;
below the human-alignment threshold of 1.0 |Peters & Ittil (2005); Bylinskii et al.| (2019)), but still
indicative of saliency correlation. Human attention entropy is 9.898 4 0.313, while model entropy
is 10.589 % 0.057, both consistent with the typical 9-11 bit range in clinical gaze studies [Zhang
& et al| (2024). These results, reported as p & o, align closely with inter-reader statistics from
MIMIC-Eye Hsieh et al.| (2023), confirming that gaze-supervised contrastive learning yields inter-
pretable attention without sacrificing diagnostic utility. For percentile-based P-scores, values > 0.50
imply fixation—saliency concentration |Riche et al.|(2013).

Condition Precision Recall F1 Accuracy Support AUC
Atelectasis 0. 45 0.72 0.56  0.79 56 0.85
o oe  Cardiomegaly 0.47 0.73 058 0.77 71 0.84
Edema 0.49 0.79 0.86  0.64 48 0.92
o ¢ Lung Opacity 0.39 0.68 0.61 0.71 88 0.76
No Finding 0.73 0.86 0.88 0.77 168  0.89
oz °* Pleural Effusion  0.61 0.85 0.67 0.83 73 0.94
Pneumonia 0.36 049 053 0281 43 0.71

Support Devices  0.56 091 0.67 0.87 65 0.94

Figure 3: Smoothed human-fixation map (left) o

vs. model attention map from the fixation- Table 2: Test-set precision, recall, F1, accuracy,
enhanced classifier (right). Brighter pixels indi- support, and AUC for each of the eight disease
cate higher saliency. labels

Per-Condition Performance. Table 2 lists precision, recall, F1 and AUC for each label. The
model performs best on No Finding (F1 = 0.79, AUC = 0.89; 168 cases), consistent with its larger
support and homogeneous appearance. Among pathologies, Support Devices and Pleural Effusion
are most reliable (F1 = 0.67 / 0.67; AUC = 0.94 / 0.92) thanks to high-contrast cues such as tubes,
lines or costophrenic blunting. Edema attains the highest recall (0.79) but a modest precision (0.49;
F1 =0.56), showing sensitivity to diffuse opacities yet confusion with Atelectasis and Lung Opacity.
Atelectasis and Pneumonia have the lowest precisions (0.45 / 0.36), and Pneumonia records the
weakest AUC (0.71), reflecting small supports (56 / 43) and overlapping radiographic patterns. In
safety-critical radiology, recall is prioritised; the model’s macro recall of 0.72 satisfies this while
maintaining macro AUC 0.83 and macro F1 0.62. Precision gaps stem mainly from class imbalance,
consolidation-like ambiguity, and coarse label granularity. Remedies include class-specific threshold
calibration, cost-sensitive re-weighting, additional region-level supervision and enlarging minority-
class data. External state-of-the-art comparisons are omitted because, to our knowledge, no prior
work reports radiology report generation results on the integrated MIMIC-Eye dataset; existing
gaze-aware or report-generation systems evaluate on other datasets/splits with different label spaces
and protocols.

4.3 EVALUATION OF REPORT-GENERATION QUALITY

Table 3 reports results on 400 held-out studies across six LLMs. Surface-overlap scores remain
low, for Gemini 2.5 Pro the fixation-enhanced pipeline (A) reaches BLEU 0.093 £ 0.089, ROUGE
0.245+0.118, METEOR 0.316£0.131; reflecting paraphrasing and the loss of rare tokens |Papineni
et al.| (2002)); [Lin| (2004); Banerjee & Lavie| (2005). Gemini provides the strongest semantic simi-
larity (BERT Score 0.743 + 0.072) and the best discourse coherence (MEDICAL 0.343 + 0.118)
Deutsch et al.[(2023). METEOR is marginally higher for Qwen 3 32B (0.328+0.118) and LLaMA 4
Scout-17B (0.33240.123). Clinically, Gemini leads on CheXpert F1 (0.528+0.237), a “Fair” agree-
ment tier Irvin et al.|(2019); MedGemma 27B-IT attains the highest RadGraph-F1 (0.141 4 0.140),
with Gemini close behind (0.129 + 0.134), revealing residual gaps in fine-grained entity—relation
grounding [Jain et al.| (2021). Gemini provides the strongest semantic similarity (BERT Score
0.743 4 0.072) [Zhang* et al.| (2020) and the best discourse coherence (MEDICAL 0.343 + 0.118)
Deutsch et al.[(2023). METEOR is marginally higher for Qwen 3 32B (0.328+0.118) and LLaMA 4
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LLM Models
Metri Model Gemini LLaMA 4 MedGemma BioMistral Qwen 3 GPT
etric odels 2.5 Pro Scout-17B 27B-IT 7B-DARE 32B 0SS
A 0.093 = 0.089  0.059 £ 0.058 0.086 = 0.088  0.062 £ 0.045 0.053 £ 0.050 0.071 & 0.075
BLEU B 0.025 £0.018  0.051 £0.022 0.064 & 0.019  0.055 £ 0.030 0.037 £ 0.014  0.040 & 0.019
C 0.023 £0.041  0.045+0.045 0.040 & 0.043  0.049 £ 0.040 0.029 +0.020  0.035 = 0.028
A 0.245£0.118  0.172+0.081 023240120 0.206 £ 0.080  0.184 +0.079  0.216 =& 0.106
ROUGE B 0.082 £ 0.047  0.166 £ 0.054 0.167 £ 0.052  0.183 £0.061  0.139 £ 0.041  0.167 = 0.052
C 0.042 £0.053  0.157 £ 0.066 0201 = 0.080 0.014 £ 0.070  0.129 & 0.049  0.106 == 0.065
A 0316 £0.131 033240123 03240141 0293+0.120 0328+ 0.118 0.327 £0.134
METEOR B 0.1154£0.077 0293 +£0.103 0281 & 0.098 0.280 = 0.099  0.317 £ 0.084  0.315 = 0.098
C 0.1103 £0.076 0315+ 0.115 0281 £0.136 0.265+0.109 0293 +£0.100 0213 £ 0.116
A 0743 £0.072  0.692 +0.071 0.695+0.073 0.710 £0.062  0.686 + 0.060  0.715 = 0.072
BERT Score B 0.543 £ 0.062  0.669 £ 0.047 0.685 % 0.049  0.698 £ 0.054 0.671 £ 0.042  0.685 = 0.049
C 0.440 £ 0.067  0.680 £ 0.056  0.687 & 0.053  0.652 = 0.058  0.661 £ 0.045  0.592 & 0.051
A 0.528 £0.237 052840202 05540221 0.537 £0.205 0.533+0208 0213 & 0.215
CHEXPERTF1 B 0.054 £0.158 04154 0.191 0493 = 0.192 0482 £0.204 0.484 +0.190 0.434 & 0.193
C 0.045 £ 0.158 0478 £ 0478 0434 & 0206 0.435+£0.203 0435+ 0.185  0.394 & 0.193
A 0.129 £0.134 0120+ 0.118  0.141 & 0.140  0.094 £ 0.099  0.098 £ 0.099  0.109 & 0.114
RADGRAPHFI B 0.008 £0.029  0.113+£0.101  0.122 4 0.067 0.053 £ 0.068 0.081 £ 0.061  0.065 = 0.067
C 0.102£0.119  0.104 £0.103  0.065 2 0.119  0.082 £ 0.089  0.063 £ 0.079  0.056 = 0.058
A 0343 £0.118 0296+ 0.098 034540122 0310111 0.280 £ 0.089  0.304 & 0.107
MEDICAL Score B 0246 £0.099 0271 4 0.080 0.298 &= 0.089 0.264 £ 0.097 0.259 & 0.079  0.275 = 0.089
C 0.233£0.148 0265+ 0.086 0261 £0.109 0279 & 0.100 0238 £0.072 0.262 & 0.091

Table 3: Report-generation scores (mean =+ std) on the 400-study test set. Rows are metrics; each
metric has three variants: A: fixation-enhanced pipeline, B: raw-fixation pipeline, C: Image, Bound-
ingbox, Transcript (no fixations). Columns compare six LLM back-ends.

Scout-17B (0.33240.123). Clinically, Gemini leads on CheXpert F1 (0.528+0.237), a “Fair” agree-
ment tier|Irvin et al.[(2019); MedGemma 27B-IT attains the highest RadGraph-F1 (0.141 £ 0.140),
with Gemini close behind (0.129 + 0.134), revealing residual gaps in fine-grained entity—relation
grounding Jain et al.| (2021). Overall, the models show strong semantic fidelity yet limited phrase-
level factual alignment, motivating structured prompts with RadGraph entities, relation-aware de-
coding, or RL fine-tuning to raise RadGraph-F1 and MEDICAL scores without sacrificing linguistic
diversity.

5 CONCLUSION

We introduced a two-stage multimodal pipeline that fuses visual, spatial, textual, and attentional
cues for chest X-ray interpretation. Stage 1 combines gaze-weighted ViT features with a calibrated
composite loss, achieving macro AUC 0.83, macro F1 0.62, and macro recall 0.72, and improving
human—model attention alignment to Pearson » = 0.306. Stage 2 converts classifier outputs into
region-grounded reports: using a keyword—anatomy dictionary and an LLM prompt, Gemini 2.5 Pro
attains BERTScore 0.743, CheXpert F1 0.528, RadGraph-F1 0.129, and MEDICAL 0.343. This
indicates strong semantic fidelity, with remaining gaps in entity-level factual grounding.

Limitations and outlook. Our aligned split (2,877 studies) is single-centre, so broader datasets
are needed for external validity. REFLACX lacks region masks, so YOLO-derived boxes may
bias supervision. Eye-tracking data are scarce; although the baseline runs without gaze, the full
gains require this signal. We benchmarked six LLMs (Gemini 2.5 Pro, LLaMA 4 Scout-17B,
MedGemma 27B-IT, BioMistral 7B-DARE, Qwen 3 32B, GPT-OSS) to support reproducibility.
Gemini leads on discourse and semantics, MedGemma on RadGraph-F1, yet fine-grained factuality
remains modest (= 0.13). Future work will enlarge and diversify data, add weak or self-supervised
region labels, calibrate per-class thresholds for high-recall triage, explore gaze prediction without
hardware, and extend to CT and ultrasound. By coupling human attention with region-aware lan-
guage generation, this framework advances transparent, clinically trustworthy Al reporting.
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A APPENDIX

A.1 MIMIC-EYE DATASET SPECIFICATIONS AND PROCESSING DETAILS

A.1.1 DATASET COMPOSITION

Metric Count Description

Total Patients 3,192  Unique individuals in the dataset
REFLACX Records 2,617  Records annotated with REFLACX labels
Eye Gaze Records 1,100  Records with gaze-tracking information

Full Multimodal Records 63 Records containing image, REFLACX & gaze data

Table 4: Core dataset metrics.

File Type Count  Description

JPG Images 6,292  Chest X-ray images in JPEG

CSV Files 113,043 Eye gaze and associated metadata
JSON Files 4,112 Structured reports and annotations

Table 5: File distribution across modalities.

A.1.2 DETAILED MODALITY ANALYSIS

Modality Combination Count % of Records
Image + REFLACX 2,653 69.9%
Image + Eye Gaze 1,037 28.4%
Full Multimodal (Image + REFLACX + Gaze) 63 1.7%
Image Only 0 0%

Table 6: Distribution of modality combinations.

REFLACX Annotations.

Total REFLACX Records: 2,617

* Unique REFLACX Patients: 2,199

REFLACX Records with Eye Gaze: 63 (2.4%)

Dataset Coverage: 71.6% of total records

Eye-Gaze Tracking.
* Total Eye-Gaze Records: 1,100
* Unique Eye-Gaze Patients: 1,038
* Eye-Gaze Records with REFLACX: 63 (5.7%)

» Dataset Coverage: 30.1% of total records
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Condition Total % of Dataset
No Finding 1,130 33.9%
Lung Opacity 831 24.9%
Pleural Effusion 750 22.5%
Support Devices 686 20.6%
Cardiomegaly 624 18.7%
Atelectasis 593 17.8%
Edema 445 13.4%
Pneumonia 370 11.1%
Consolidation (Removed) 149 4.5%
Pneumothorax (Removed) 124 3.7%
Lung Lesion (Removed) 95 2.9%
Enlarged Cardiomediastinum (Removed) 68 2.0%
Fracture (Removed) 46 1.3%
Pleural Other (Removed) 31 0.9%

Table 7: Condition distribution in the MIMIC-Eye dataset. Eight high-prevalence conditions were
retained for analysis, while six tail classes with low frequency were removed to ensure statistical
power, clinical relevance, and balanced multimodal coverage.

A.2 CONDITION FILTERING STRATEGY

We retained eight primary conditions (top section of Table A.1.3) and excluded the six tail classes
for three complementary reasons:

1. Statistical Power and Model Stability - Each retained condition exceeds 10% prevalence,
delivering at least 250 training samples and adequate positive cases for validation/testing.
Tail classes fall below 5%, inflating variance and hindering robust multi-label optimisation.

2. Clinical Relevance and Non-Redundancy - The eight selected phenotypes represent the
most common findings on portable CXRs in critical-care settings and are routinely used
for triage. Several discarded labels (e.g., Consolidation, Fracture) are radiographically
subsumed by broader retained categories such as Lung Opacity or Pleural Effusion, intro-
ducing label redundancy without tangible clinical benefit.

3. Balanced Multi-Modal Coverage - Full-multimodal studies (n = 63) overwhelmingly
feature the eight kept conditions (> 90% coverage), whereas the six tail labels occur in only
four fully multimodal cases. Retaining them would preclude meaningful gaze-condition
alignment experiments.

This pruning preserves >86% of the original label information while yielding a balanced, inter-
pretable, and computationally tractable dataset.

A.3 LATENT-SPACE STRUCTURE VIA T-SNE

To visualise non-linear relationships in the CheXpert-initialised image feature space, we projected
3,654 study-level vectors into two dimensions using t-SNE (perplexity = 40, § = 0.5). The com-
posite plot highlights global structure and class imbalance, while condition-specific overlays reveal
pathology-dependent manifolds.

15



Under review as a conference paper at ICLR 2026

+-SNE Analysis: Atelectasis +SNE Analysis: Cardiomegaly -SNE Analysis: Consolidation

mpenset 2

-SNE Analysis: Pleural Effusion +-SNE Analysis: Support Devices

Figure 4: t-SNE class-specific overlays. Each subplot highlights the distribution of a given condi-
tion: (A.3) Atelectasis, (A.4) Cardiomegaly, (A.5) Consolidation, (A.6) Edema, (A.7) Lung Opacity,
(A.8) No Finding, (A.9) Pleural Effusion, (A.10) Support Devices. Observed manifolds align with
expected radiographic co-occurrences and variations.

A.4 INTER-CONDITION CORRELATION MATRIX

Condition Correlation Matrix
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Figure 5: Pearson correlation coefficients between binary condition labels prior to pruning. Strong
negative associations are observed between No Finding and all pathological classes (mean p =~
—0.29). Positive couplings are most pronounced for fluid-related findings such as Pleural Effusion-
Edema (p = 0.24) and Atelectasis -Support Devices (p = 0.24).
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A.5 BOUNDING BoX COMPLETION USING YOLOV8N FOR REFLACX DATA

We developed an enhanced bounding box completion framework that integrates radiologist-provided
REFLACX annotations with predictions from YOLOVS8n to achieve comprehensive spatial coverage
in chest X-rays. The framework ensures both clinical fidelity and computational efficiency, while
providing standardized representations suitable for multimodal medical AI models. A total of 17
anatomical regions were defined to consistently capture the thoracic cavity. This standardization ad-
dresses variability in annotation styles and facilitates uniform downstream processing. To preserve
expert knowledge, REFLACX annotations are prioritized. YOLOVS8n predictions are only used to
fill missing or incomplete regions. This strategy ensures maximum coverage without overriding
radiologist expertise. All completed bounding boxes are transformed into spatial attention masks.
Gaussian smoothing is applied to generate soft anatomical boundaries, enabling more effective in-
tegration with multimodal models. A low confidence threshold of 0.05 was adopted to maximize
medical sensitivity, while an IoU threshold of 0.5 was applied to manage overlapping regions. These
thresholds were selected to balance recall of subtle findings with control over redundant detections.
The framework employs memory-optimized inference for large-scale processing. Comprehensive
quality control measures are implemented, including:

» Spatial coverage metrics: percentage of image area covered by annotations,

* Anatomical completeness: assessment of essential region coverage,

* Confidence distribution analysis: evaluation of detection reliability, and

* Source attribution: breakdown of contributions from REFLACX versus YOLOv8n.

This design provides richer and more standardized spatial context, enabling downstream multimodal
models to benefit from improved spatial fidelity and clinical robustness.

A.6 GAZE NORMALIZATION PROCEDURE

The REFLACX fixation dataset provides gaze coordinates in image pixel space (‘x_position®,
‘y_position‘), whereas the EyeGaze dataset records gaze as normalized screen coordinates
(‘FPOGX*, ‘FPOGY") in the range [0, 1]. To create a common dataset, we normalized REFLACX
gaze values into the same [0, 1] coordinate system.

Step 1: Extract Image Bounds

REFLACX includes bounding boxes of the displayed image within the DICOM viewer:

Image bounds: xmin_shown_from_image, ymin_shown_from_image,
xmax_-shown_from_image, ymax_shown_from_image.

Screen bounds: xmin_in_screen_coordinates, ymin_in_screen_coordinates,
xmax_in_screen_coordinates, ymax_in_screen_coordinates.

Step 2: Normalize REFLACX Gaze

We compute normalized gaze coordinates as:

x_position — zmin_shown_from_image

Lnorm = : : ;
xmax_shown_from_image — xmin_shown_from_image

y_position — ymin_shown_from_image

Ynorm = - - ;
ymaz_shown_from_image — ymin_shown_from_image

Values outside [0, 1] due to calibration noise are clipped.
Step 3: Alignment with EyeGaze

EyeGaze coordinates (‘FPOGX‘, ‘FPOGY ‘) are already normalized in screen space. After normal-
ization, both datasets represent gaze positions in the same [0, 1] range, enabling direct comparison
and fusion.

Step 4: Pupil Normalization
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REFLACX provides a precomputed pupil_area_normalized. For EyeGaze, we estimate the
pupil area from left and right pupil diameters:
m (LPD*® RPD”
A=——— +——
2 2 2
We then normalize pupil area relative to a baseline average computed over the first 1-2 seconds of
valid gaze data.

Step 5: Fixation Duration
Fixation duration is derived as:
d = timestamp_end_fization — timestamp_start_fization
for REFLACX, and directly from FPOGD for EyeGaze.
Outcome
After these steps, both REFLACX and EyeGaze datasets share the following common fields:
* Normalized gaze position: (Znorm; Ynorm )
* Pupil area (normalized)

¢ Fixation duration

* Timestamp

This harmonization ensures comparability of gaze features across datasets.

B ADDITIONAL ABLATION RESULTS

We pair three pretrained image backbone ViT-B [Dosovitskiy et al.| (2020), BioVil-T Bannur et al.
(2023Db)), CXR-CLIP|You et al.|(2023b) with four CNN encoders- vanilla CNN, ResNet-50Todi et al.
(2023), ConvNeXT-T |He et al.|(2015)), EfficientNetV2-S|Tan & Le|(2021) and list their performance
in

Image backbone CNN encoder loss auc fl recall precision
ViT-B (CheXpert) CNN 0.491 0.821 0.679 0.673 0.509
ViT-B (CheXpert) ConvNeXT-T 0.499 0.810 0.624 0.624 0.504
ViT-B (CheXpert) ResNet-50 0.504 0.813 0.609 0.671 0.503
ViT-B (CheXpert) EfficientNetV2-S 0.510 0.818 0.612 0.664 0.511
BioVil-T CNN 0.562 0.706 0.457 0.668 0.325
BioVil-T ConvNeXT-T 0.571 0.692 0.446 0.639 0.320
BioVil-T ResNet-50 0.507 0.831 0.610 0.660 0.509
BioVil-T EfficientNetV2-S 0.577 0.665 0.424 0.688 0.290
CXR-CLIP CNN 0.466 0.795 0.558 0.645 0.446
CXR-CLIP ConvNeXT-T 0.480 0.795 0.567 0.631 0.463
CXR-CLIP ResNet-50 0.488 0.792 0.553 0.636 0.443
CXR-CLIP EfficientNetV2-S 0.486 0.788 0.552 0.614 0.451

Table 8: Image and CNN-backbone ablation on the img+bbox setting.

Keeping the best image encoder- ViT-B and CNN baseline, we swap three biomedical language
models: BioClinical BERT |Alsentzer et al. (2019), PubMedBERT |Gu et al.| (2021), and BioMed
RoBERTa|Gururangan et al.| (2020), and list their performance in[9]

Image backbone = CNN encoder Text encoder loss auc f1 recall precision
ViT-B (CheXpert) CNN BioClinicaBERT 0.519 0.822 0.621 0.756 0.527
ViT-B (CheXpert) CNN PubMedBERT 0.518 0.833 0.615 0.745 0.524
ViT-B (CheXpert) CNN BioMed RoBERTa 0.519 0.819 0.621 0.756 0.517

Table 9: Image + CNN + text-encoder ablation
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B.1 HYPERPARAMETER SETTINGS

Enhanced gaze models. Learning rate 6 x 106; epochs 40; cosine scheduler with warmup; batch

size 32 (or 8 on low-memory systems).

Model Learning rate Batch size Epochs Scheduler
Enhanced-gaze (ours) 6 x107° 32 40 Cosine + warmup
MIMIC baseline 5x107° 32 35 Cosine
ViT-only 5x107° 128 20 Cosine

Table 10: Training schedules used across model variants.

Optimizer (AdamW) Value Notes

b1 0.9

B2 0.98

€ 1x107°

Weight decay per-run arg  As set in training arguments
Gradient clipping 0.4 max_grad-norm = 0.4

Table 11: Optimizer and regularization configuration.

B.2 REPORT GENERATION EVALUATION

Metric

Purpose

Threshold Interpretation

BLEU-1 to BLEU-4

Measures n-gram precision;
evaluates lexical overlap with
reference reports

>0.20 indicates acceptable
word-level match; >0.30 sug-
gests good domain alignment

ROUGE-1/ROUGE-2 / ROUGE-L

Recall-oriented metric captur-
ing clinical phrase and se-
quence overlap

ROUGE-L F1 >0.25 consid-
ered reasonable for medical re-
ports; higher recall (>0.35) de-
sirable in impression section

Clinical Keyword Overlap

Alignment of disease-specific
and anatomical terminology be-
tween generated and reference
reports

Coverage >70% ensures core
clinical terms preserved; lower
overlap risks omission of key
conditions

Sentence-BERT Similarity

Embedding-based  contextual
coherence across sections

Cosine similarity >0.80 indi-
cates strong semantic align-
ment; 0.65-0.80 suggests par-
tial but acceptable agreement

Table 12: Evaluation metrics and threshold interpretations for report generation
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B.3 ATTENTION METRICES THRESHOLDS AND REPORT GENERATION EVALUATION

Metric

Interpretation

Thresholds / Benchmarks

Pearson Correlation ()

Measures linear alignment be-
tween human and Al attention
maps.

r > 0.30 = moderate alignment (Cohen, 1988). r > 0.50

= strong alignment. Typical radiology gaze studies: 0.20 -0.40
acceptable (Cohen| |1988).

Mean Squared Error (MSE)

Pixel-wise distance between
normalized human and Al at-
tention maps.

No universal cutoff; lower is better. MSE < 0.05 generally indi-
cates good alignment in saliency benchmarking (Pan et al.||2016).

P-value (statistical test)

Significance of AI -human
correlation above chance.

p < 0.05 = statistically significant alignment. p < 0.01 =strong
evidence against null hypothesis (Fisher{[1992).

Jensen -Shannon Divergence
(JSD)

Distribution similarity of at-
tention maps (bounded [0,1]).

JSD < 0.20 = strong similarity; 0.20 -0.40 = moderate similar-
ity. Inter-radiologist JSD ~ 0.45 = human upper bound (MIMIC-
Eye) (Menéndez et al.||1997).

Normalized
Saliency (NSS)

Scanpath

Measures how well model
saliency coincides with fixa-
tion locations.

NSS > 1.0 = good human-level alignment (Le Meur & Baccinol
2013). Values < 0.2 = weak, but still indicate non-random over-
lap.

Human Attention Entropy

Entropy of human fixation
maps; reflects variability in
gaze.

Typical radiology range: 9 -11 bits (clinical gaze studies). Values
outside this may indicate atypical fixation patterns.

Model Attention Entropy

Entropy of Al saliency maps;
reflects diversity of model fo-
cus.

Desirable range similar to human entropy (9 -11 bits). Large devi-
ations suggest over- or under-concentration of attention.

Table 13: Interpretation and practical thresholds for attention alignment metrics. Thresholds are
drawn from cognitive psychology, saliency benchmarking, and clinical gaze -Al alignment studies.

B.4 CLINICAL KNOWLEDGE INTEGRATION

B.4.1

ANATOMICAL REGION MAPPING

To support anatomically grounded modeling, we defined 17 standardized chest X-ray regions covering the
cardiac, pulmonary, pleural, and mediastinal compartments. Each region is encoded with normalized bounding
box coordinates and annotated with its clinical significance. This design provides a consistent spatial reference
system for integrating human knowledge with Al attention mechanisms.

Region

Definition

Clinical Significance

Cardiac silhouette

Heart border and mediastinal contour

Cardiomegaly, heart failure assess-
ment

Left lung

Complete left pulmonary field

Primary site for pathology detection

Right lung

Complete right pulmonary field

Primary site for pathology detection

Left upper lung zone

Left lung above hilum level

Upper lobe pathology, TB predilec-
tion

Left mid lung zone

Left lung at hilum level

Middle lobe
pathology

syndrome, lingular

Left lower lung zone

Left lung below hilum level

Aspiration pneumonia, effusion

Right hilar structures

Right pulmonary vessels and bronchi

Lymphadenopathy, vascular conges-
tion

Left hilar structures

Left pulmonary vessels and bronchi

Lymphadenopathy, vascular conges-
tion

Right costophrenic an-
gle

Right diaphragm -chest wall junction

Pleural effusion detection

Left costophrenic angle

Left diaphragm -chest wall junction

Pleural effusion detection

Upper mediastinum

Superior mediastinal compartment

Support devices, central lines

Trachea

Central airway structure

Endotracheal tube placement

Table 14: Standardized anatomical regions with definitions and clinical significance.
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B.4.2 CONDITION-TO-REGION CLINICAL KNOWLEDGE MATRIX

To integrate domain expertise, we constructed a condition-to-region mapping matrix. Each medical condition
is linked to its primary and secondary anatomical regions, alongside an attention weight reflecting clinical
importance. A textual rationale provides medical justification for the associations.

Condition Primary Regions Secondary Regions ‘Weight Clinical Rationale
Atelectasis Left lung, Right lung Lower lung zones 0.8 Gravity-dependent collapse, post-
operative complications
Cardiomegaly Cardiac silhouette Upper mediastinum 0.95 Heart size >50% thoracic width,
CHEF indicator
Edema Left lung, Right lung Hilar structures 0.7 Bilateral perihilar distribution, Ker-
ley B lines
Lung opacity Lung zones (up- | Entire lungs 0.85 Consolidation, diffuse patterns
per/mid/lower)
Pleural effusion Costophrenic angles Lower lung zones 0.9 Gravity-dependent fluid collection
Pneumonia Upper and lower lung zones | Mid lung zones 0.8 Lobar or bronchopneumonia pat-
terns
Support devices Upper mediastinum, Car- | Hilar structures 0.9 Central lines, ET tubes, pacemakers
diac silhouette, Trachea
No finding Cardiac ~ silhouette, Left | Upper lung zones 0.6 Normal baseline anatomical assess-
lung, Right lung ment

Table 15: Clinical condition -to -region mapping with weights and rationale.

This structured mapping enables the multimodal model to align disease-specific reasoning with anatomically
localized evidence, improving explainability and clinical coherence.

B.5 REPORT TEMPLATE SYSTEM AND MODEL OUTPUTS

This section documents the report generation framework, including the prompt template used for LLM-driven
radiology reporting and representative outputs from different models for a given DICOM study.

B.5.1 PROMPT TEMPLATE

The following template was employed for all LLM-based report generation experiments. It integrates structured
system instructions, clinical analysis data, and task-specific instructions to ensure consistent reporting style and
lexical alignment with expert references.

# Medical Report Generation Prompt Template
## Overview

This document contains the complete prompt template used for generating medical reports via
< Large Language Model (LLM) integration.

## Complete Prompt Structure
The prompt template consists of three main sections that are dynamically combined:
### 1. System Instruction

You are an expert radiologist with 20+ years of experience. Generate a concise, accurate
< chest X-ray report based on AI predictions.

Your report uses AI model predictions to generate accurate radiological reports.
Use clear radiological terminology and anatomical specificity based on *xmodel predictions
kK.

#H# REPORTING GUIDELINES:

1. x*AI PREDICTION ANALYSIS**
— Use AI predictions as the primary source for findings
- Correlate predictions with clinical knowledge
- Prioritize high-confidence predictions in reporting

2. *»xCONFIDENCE-BASED REPORTINGx**
- >70% = Report directly and confidently
- 50-70% = Use appropriate clinical uncertainty
- <50% = Do not report

3. **INCLUDE DEVICE FINDINGS+**
- Always describe any visible medical device (e.g. tubes, catheters, lines), even if
<+ incidental
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— Mention if the *xtipx* is not visible or fully imaged
- Report device positioning and termination when visible

4. *+xUSE PROVIDED TERMINOLOGY **

— Prefer using x*exact phrasesxx from ‘CLINICAL KEYWORDS' to improve alignment with
< ground truth

— When high-confidence keywords are provided, incorporate them verbatim when clinically
< appropriate
5. *xAVOID OVER-HEDGING=**

- Do not say "subtle findings cannot be excluded" unless prediction confidence is mixed
5 (50-70%)

- If the study is normal and high confidence, use definitive phrases: "No focal
consolidation, pleural effusion, or pneumothorax."
— Be decisive when model confidence is high (>70%)

6. **STYLE & STRUCTURE=x*
- Match expert radiologist tone
- Avoid unnecessary hedging or speculation
— Each section (FINDINGS, IMPRESSION) should be continuous text (no bullet points)
— Include non-pathological findings such as tubes, lines, or structural anomalies

7. **ANATOMICAL SPECIFICITYx*x*
— Use precise anatomical terms when supported by high-confidence predictions
— Reference specific lung zones, cardiac contours, and bony structures as appropriate
- Always mention any visible medical device, line, or tube if present

REPORTING STYLE: {reporting_style}
### 2. Clinical Data Section
=== CLINICAL ANALYSIS DATA ===

MODEL PREDICTIONS (Clinical Decision Basis):
[Dynamic condition predictions with confidence scores]

CLINICAL KEYWORDS (Condition-Based) :
[Dynamic keywords organized by condition and confidence level]

RELEVANT ANATOMICAL REGIONS (Condition-Based):
[Dynamic anatomical regions mapped to predicted conditions]

[Optional: Patient Information section if provided]
PATIENT INFORMATION:
— [Dynamic patient data fields]

### 3. Task Instruction Section

=== REPORTING TASK ===
Generate a [TEMPLATE_STYLE] with sections: [SECTIONS]

SPECIFIC INSTRUCTIONS FOR THIS CASE:
[Dynamic case-specific instructions based on predictions]

### FORMATTING INSTRUCTIONS:
— Structure:

FINDINGS:
[continuous paragraph]

IMPRESSION:
[continuous paragraph]

### INPUT STRUCTURE:

— ‘CLINICAL KEYWORDS': Use exact phrases when clinically appropriate to maximize alignment
— '‘MODEL PREDICTIONS': Primary guide - use to focus attention and generate findings

— ‘RELEVANT ANATOMICAL REGIONS‘: Reference these locations when describing findings

### OPTIMIZATION GOALS:

- x+xMaximize lexical similarity*x to expert reference reports

- *xUse provided terminology verbatimx* when possible

— x*xInclude device findings*x (tubes, catheters, lines) even if incidental
- *x%xBe anatomically specificxx when high-confidence predictions support it

EXAMPLE REPORT FORMATS:

Example 1 (Device Present):
FINDINGS:
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Feeding tube extends into the upper abdomen, the tip is not imaged. Lung volumes are normal.
<> Mediastinal contours and heart size within normal limits. No consolidation or pleural
< effusion. No pneumothorax. No acute osseous abnormality.

IMPRESSION:
No acute cardiopulmonary process.

Example 2 (Multiple Findings):

FINDINGS:

PA and lateral views of the chest demonstrate well-expanded lungs. In comparison to the

< prior study, there is interval obscuration of the right heart border and the medial right
< hemidiaphragm. Correlation with the lateral view suggests that this is likely due to

< interval development of small bilateral pleural effusions. Underlying consolidation is

> not excluded. No pneumothorax. Cardiomediastinal silhouette is otherwise stable.

IMPRESSION:
Interval development of small bilateral pleural effusions. Underlying consolidation not
— excluded.

Example 3 (Normal Study):

FINDINGS:

The lungs are hyperinflated reflective of COPD. Apparent increased opacity projecting over
< the right lung apex correlates with posterior right fifth rib fracture with callus.

<+ Streaky bibasilar opacities likely reflect atelectasis. No focal consolidation to suggest
<+ pneumonia. No pleural effusion or pneumothorax. The heart is normal in size, and the

<+ mediastinal contours are normal.

IMPRESSION:
No acute cardiopulmonary process. Focal opacity in the retrocardiac region.

**REMEMBER+*: Do NOT mention attention maps, saliency, heatmaps, or
explainability data. Use model predictions and provided keywords only.

### GOAL:
Maximize lexical and semantic similarity to the expert reference report.
Prioritize clinical specificity and exact terminology alignment.

CHEST X-RAY REPORT:

/no_think

## Dynamic Components

### Condition Predictions Format

Condition: [CONDITION_NAME]

— Confidence: [XX.X%]

- Clinical Significance: [HIGH/MODERATE/LOW]
- Keywords: [relevant medical terms]

### Clinical Keywords Format

High Confidence (>80%):
- [keywordl], [keyword2], [keyword3]

Moderate Confidence (60-80%) :
- [keyword4], [keyword5], [keyword6

Lower Confidence (40-60%) :
- [keyword7], [keyword8], [keyword9]

### Anatomical Regions Format

Primary Focus Areas:
- [anatomical_region_1]: [associated_condition]
- [anatomical_region_2]: [associated_condition]

Secondary Areas:
— [anatomical_region_3]: [associated_condition]

## Report Templates

### Standard Template

— *xxStyle:*x "professional chest X-ray report"

- x*Sections:xx ["FINDINGS", "IMPRESSION"]

— x*xLength:x% Moderate (2-4 sentences per section)

### Detailed Template

— *xxStyle:*x "comprehensive radiological analysis"

- *xxSections:*+ ["FINDINGS", "IMPRESSION", "RECOMMENDATIONS"]
- x*xLength:+x Extensive (4-6 sentences per section)
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### Concise Template

— x*xStyle:x* "brief clinical summary"

- *xSections:** ["FINDINGS", "IMPRESSION"]

- x*xLength:x% Brief (1-2 sentences per section)

## Key Safety Features

### Attention Data Prohibition

— x*%CRITICAL:*% No mention of attention maps, saliency, heatmaps, or AI explainability
— Only use model predictions and clinical keywords

- Ensure reports are clinically safe and interpretable

### Confidence-Based Reporting

— High confidence (>70%): Direct reporting

— Moderate confidence (50-70%): Appropriate uncertainty language
— Low confidence (<50%): Do not report finding

### Medical Device Detection

- Always report visible medical devices

— Describe positioning and termination when visible

- Note if device tips are not visible or fully imaged

## Implementation Notes

### Dynamic Variables

- ‘{reporting_style}‘: Determined by case complexity

- ‘{template_config}‘': Based on selected template

- ‘{condition_predictions}‘: Live model outputs

- ‘{prediction_keywords} ‘: Extracted clinical keywords

- ‘{relevant_anatomical_regions} ‘: Mapped anatomical areas

### LLM Integration

— Compatible with LM Studio API

- Uses ‘/no_think‘ directive for direct response - specifically for qwen3
- Optimized for medical report generation models

- Supports both text-only and vision-language models

B.5.2 GROUND TRUTH REPORT (REFERENCE)

For DICOM ID 6c2b39fa-2c251fcf-addd31da-83faee60-044fa8f9, the expert-provided reference report is:

Given Report:

FINAL REPORT

INDICATION: F with cirrhosis, recent PNA and alc hep presenting with fever

101.1 1 week ago. // evidence of PNA?
TECHNIQUE: PA and lateral views the chest.
COMPARISON:

FINDINGS:

Enteric tube passes below the inferior field of view. The lungs are clear
without consolidation, effusion or edema. The cardiomediastinal silhouette

within normal limits. No acute osseous abnormalities.
IMPRESSION:

Enteric tube in place. ©No focal consolidation.

Cleaned Report:

Findings: Enteric tube passes below the inferior field of view. The lungs are clear without consolidation,
effusion or edema. The cardiomediastinal silhouette is within normal limits. No acute osseous abnormalities.
Impression: Enteric tube in place. No focal consolidation.
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B.5.3 MODEL-GENERATED REPORTS

Gemini 2.5 Pro

Findings: A gastric tube is seen extending into the upper abdomen with its tip likely within the stomach. The
lungs are well-aerated. There is no focal consolidation, pleural effusion, or pneumothorax. The cardiac silhou-
ette and mediastinal contours are within normal limits. The visualized osseous structures are unremarkable.
Impression: No acute cardiopulmonary process. A gastric tube is in place.

Qwen3

Findings: The chest radiograph demonstrates aerated lung fields without evidence of focal consolidation or
pleural effusion in any zone. The cardiac silhouette is within normal limits. A gastric tube is visualized
extending into the upper abdomen; however, the tip is not fully imaged. An additional lead is noted in the upper
mediastinum. No acute osseous abnormalities are identified.

Impression: No acute cardiopulmonary process. A gastric tube and an additional lead are visualized.

Llama 4

Findings: The cardiac silhouette appears normal in size. Lung fields are aerated without focal consolidation or
pleural effusion. A gastric tube is visible, extending into the upper abdomen, but its tip is not imaged. No acute
infiltrates or opacities are seen.

Impression: No acute cardiopulmonary process identified. Clinical correlation is recommended regarding
support devices.

MedGemma

Findings: The lungs are well-expanded bilaterally. No evidence of focal consolidation, pleural effusion, or
pneumothorax. The cardiac silhouette and mediastinal contours are within normal limits. A gastric tube is
visualized extending into the upper abdomen; the tip is not fully imaged. A laparoscopic gastric band is also
noted.

Impression: No acute cardiopulmonary process. Visible support devices include a gastric tube and a laparo-
scopic gastric band.

BioMistral

Findings: A gastric tube is present in the upper abdomen, with the tip not imaged. The lungs are well-expanded
bilaterally with no pleural effusion. Cardiomegaly is present. An acute infiltrate is seen in the left upper lung
zone and a chronic infiltrate in the right lower lung zone.

Impression: Gastric tube present. Cardiomegaly and pulmonary infiltrates. No pleural effusion or pneumoth-
orax.

B.5.4 COMPARATIVE SUMMARY

Table[I6]summarizes the alignment of model outputs with the ground truth report.

Model Tube Detection Lung Findings Cardiac Findings Extra/Hallucinated
Ground Truth Yes Clear Normal silhouette None
Gemini 2.5 Pro Yes Clear Normal None
Qwen3 Yes Clear Normal Lead (hallucinated)
Llama 4 Yes Clear Normal Suggests correlation
MedGemma Yes Clear Normal Laparoscopic band
BioMistral Yes Infiltrates (false) | Cardiomegaly (false) Multiple findings

Table 16: Comparison of model-generated reports against ground truth reference.
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