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ABSTRACT

Temporal question answering (QA) aims to return crisp answers to

user questions that involve temporal constraints, with phrases such

as “. . . in 2019” or “. . . before COVID”. In the former, time is an explicit
condition, in the latter it is implicit. State-of-the-art methods have

limitations along three dimensions. First, when relying on neural

inference, time constraints are often merely soft-matched, giving

room to invalid or inexplicable answers. Second, questions with

implicit time are poorly supported. Third, most systems tap into

one source of information only, either a knowledge base (KB) or a

text corpus. We propose a temporal QA system that addresses these

shortcomings. First, it explicitly identifies and enforces temporal

constraints for faithful answering with tangible evidence. Second, it

includes techniques for properly handling implicit questions. Third,
it operates over heterogeneous sources, covering KB, text and web

tables in a unified manner. The method has three stages: (i) under-

standing the question and its temporal conditions, (ii) retrieving

evidence from all sources, consistent with the temporal constraints,

and (iii) faithfully answering the question from these pieces of ev-

idence. As implicit questions are sparse in prior benchmarks, we

introduce a principled method for generating diverse questions of

this kind from heterogeneous sources. Experiments show superior

performance over a suite of baselines.

KEYWORDS

Question Answering, Temporal Questions, Explainability

1 INTRODUCTION

Motivation. Question answering (QA) comprises a spectrum of

settings for satisfying users’ information needs, ideally giving crisp,

entity-level answers to natural-language utterances [44]. Temporal

QA specifically focuses on questions with temporal conditions (e.g.,

[23, 30, 46]). Such questions pose challenges that are not properly

met by universal QA systems. Consider the following example:

𝑞1: Record company of Queen in 1975?

The band Queen had different record companies over the years, so

it is decisive to consider the explicit temporal constraint (“in 1975” ).
Other questions with explicit time are lookups of dates, such as:

𝑞2:When was Bohemian Rhapsody recorded?
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Another – underexplored and most challenging – situation is

when questions involve implicit temporal constraints. These can

involve the need to compare different time points or intervals, even

when the user input does not explicitly state it. Examples are:

𝑞3: Queen’s record company when recording Bohemian Rhapsody?
𝑞4: Queen’s lead singer after Freddie Mercury?

For 𝑞4, the system has to find out when Mercury died or left the

band, in order to compute the correct answer that Brian May (the

band’s guitarist) took over as lead singer.

The research literature on temporal QA is substantial, including

[9, 10, 15, 22–24, 30, 46, 55]. Most methods address all kinds of tem-

poral questions, but are typically less geared for implicit questions.

Some methods operate over curated knowledge bases (KBs) (e.g.,

[15, 22, 23]), while others are designed for processing text corpora

such as news collections or Wikipedia full-text (e.g., [9, 34]).

State-of-the-art limitations. We observe three major issues:

(i) Many methods solely use “soft-matching” techniques, based on

latent embeddings or language models for computing answers.

This may lead to invalid answers, where the non-temporal part

of a question is matched, but the temporal constraint is vio-

lated. For example, a question about “Queen’s record company in
1990?” may erroneously return EMI instead of the correct value

Parlophone, simply because EMI is much more prominent and

was Queen’s company on most albums. Even when the output

itself is correct, this could result from the prominence of the

answer alone. For example, “Who was Queen’s lead singer in
1975?” could return the most popular Freddie Mercury without

checking the time part at all. When we vary the question into

“. . . in 2000?”, many systems would still yield Freddie Mercury,

although he was dead then. These are indicators that the system

has incomplete inference and is unable to explain the answer

derivation. We call this phenomenon unfaithful QA.
ii) A weak spot of temporal QA systems is the handling of implicit

questions. These are infrequent in established benchmarks. Some

methods [15, 22, 33] aim to transform the implicit conditions

into explicit temporal constraints, based on classifying phrases

starting with “during”, “before” etc. However, they heavily rely

on hand-crafted rules which are rather limited in scope and

cannot robustly handle unforeseen utterances.

(iii) Existing methods operate only over a single information source,
typically either a KB or a text corpus. This implies limited cover-

age: KBs such as Wikidata are inherently incomplete and often

lack refined detail about events, whereas text collections such

as Wikipedia full-text are harder to extract answers from and

are often bound to fail on complex questions [11, 15]. QA over

heterogeneous sources, including also web tables, has been re-

cently addressed by [12, 36], but these methods are designed for

broad questions without consideration of temporal conditions.
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Figure 1: Overview of the Faith. The figure illustrates the process for answering 𝑞3 (“Queen’s record company when recording
Bohemian Rhapsody?” ) and 𝑞1 (“Record company of Queen in 1975?” ). For answering 𝑞3, two intermediate questions 𝑞31 and 𝑞32
are generated, and run recursively through the entire temporal QA system.

Approach. To overcome these limitations, we propose Faith (FAIthful

Temporal question answering over Heterogeneous sources), a tem-

poral QA system that operates over heterogeneous sources, seam-

lessly combining a KB, a text corpus and web tables. Inspired by the

architecture of [12] for non-temporal QA, Faith consists of three

main stages:

(i) temporal question understanding for representing the ques-

tion intent into a structured frame, with specific consideration

of the temporal aspects;

(ii) faithful evidence retrieval for identifying relevant pieces of

evidence from KB, text and tables, with time-aware filtering to

match the temporal conditions;

(iii) explainable heterogeneous answering to compute entity-

level answers and supporting evidence for explanation.

A key novelty in the question understanding is that implicit

constraints are resolved into explicit temporal values by generating

intermediate questions and recursively calling Faith itself. For ex-

ample, the implicit condition “when recording Bohemian Rhapsody”
in 𝑞3 is transformed into “when Queen recorded Bohemian Rhap-
sody?”, and the recursive invocation of Faith returns the explicit

condition August 1975 - September 1975. This derived explicit condi-

tion is then used in a similar vein as the explicit condition 1975 in

𝑞1, making it easier to answer the information need. Note that this

is not just question rewriting, but is driven by the full-fledged QA

system itself over the full suite of heterogeneous sources.

A second key novelty is that, in contrast to most prior works in-

cluding large language models, Faith provides tangible provenance
for the answer derivation. By providing users with explanatory

evidence for answers, Faith is a truly faithful temporal QA system.

Existing benchmarks for temporal QA focus on a single informa-

tion source at hand (either a KB or a text corpus), and include only

few questions with implicit constraints (so the weak performance

on these hardly affects the overall benchmark results). Therefore, we

devise a new method for automatically creating temporal questions

with implicit constraints, with systematic controllability of different

aspects, including the relative importance of different source types

(text, infoboxes, KB), coverage of topical domains (sports, politics

etc.), fractions of prominent vs. long-tail entities, question complex-

ity, and more. This way, we construct a new data resource named

Tiq with 10,000 questions and ground-truth answers accompanied

by supporting evidence.

Contributions. The salient contributions of this work are:

• the first temporal QA system that operates over heterogeneous

information sources, and can provide faithful answers with

explanatory evidence;

• a mechanism that transforms implicit temporal constraints into

explicit conditions, by recursively calling the QA system itself;

• a principled method for automatic construction of diverse and

difficult temporal questions, releasing a new benchmark.

2 FAITH METHOD

Figure 1 provides an overview of the system architecture, illustrated

with the processing of the running examples 𝑞3 and 𝑞1. The follow-

ing subsections present the three main components (understanding,

retrieval, answering), and will refer to these examples.

2.1 Temporal Question Understanding

The goal of the first stage is to capture the temporal information

need in a frame-like structure. Notably, this stage identifies and

2
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categorizes temporal constraints in the user input, which is later

used for pruning temporally-inconsistent answer candidates.

TSF. Inspired by [12] and [19] (both addressing other, non-temporal,

kinds of QA), we propose to learn a time-aware structured frame
(TSF) for an incoming temporal question. This representation in-

cludes both general-QA-relevant slots, like

• question entity,
• question relation,
• expected answer type,

and temporal-QA-relevant slots:

• temporal signal, indicating the kind of temporal relation,

• temporal category, indicating the type of temporal constraint,

• temporal value, indicating the time point or interval of interest

(if inferrable).

The question entity and relation are taken from the surface form of

the question (i.e. not linked to KB) to allow for uniform treatment of

heterogeneous sources. The expected answer type is learned from

the training data, in which the KB-type of the gold answer is used.

The temporal signal can be overlap (e.g., from cues like “in”,
“during” ), before (e.g., from cues like “before”, “prior to” ), or after
(e.g., from cues like “after”, “follows” ). The temporal value can be a

year, date or time period. Both, the temporal signal and value, are

derived by identifying and normalizing key phrases in the input

question. For example, the TSF for 𝑞1 is:

⟨ question entity: “Queen”,
question relation: “record company of”,
expected answer type: “record company”,
temporal signal: overlap,

temporal category: non-implicit,

temporal value: 1975 ⟩

Note that in case the question does not specify temporal constraints

(e.g. 𝑞2), the respective fields are simply kept empty.

Resolving implicit questions. For the challenging case of im-

plicit questions, such as 𝑞3 or 𝑞4, the temporal value cannot be

extracted from the question directly. To resolve this problem, we

devise a novel mechanism, the implicit question resolver, based on

recursively invoking the temporal QA system itself. To this end,

the temporal constraint in the question is identified and trans-

formed into an intermediate question. For instance, the interme-

diate question for 𝑞4 would be “when Freddie Mercury lead singer
of Queen?”. For 𝑞3, the temporal value should be a time interval

(August 1975 - September 1975). Thus, two intermediate questions are

required: (i) 𝑞31: “When Queen recorded Bohemian Rhapsody start
date?”, and (ii) 𝑞32: “When Queen recorded Bohemian Rhapsody end
date?”. Although these formulations are ungrammatical, the QA

system can process them properly, being robust to such inputs.

The intermediate questions are fed into Faith as a recursive

call, to obtain the explicit temporal value for filling the TSF of the

original question. The TSF for 𝑞3 thus becomes:

⟨ question entity: “Queen”,
question relation: “recorded company”,
expected answer type: “record company”,
temporal signal: overlap,

temporal category: implicit,

temporal value: August 1975 - September 1975 ⟩

Note the similarity to the TSF of the explicit temporal question 𝑞1.

The intermediate questions are generated by a fine-tuned sequence-

to-sequence (Seq2seq) model, specifically BART [26]. A major ob-

stacle, though, is that no prior dataset has suitable annotations and

collecting such data at scale is prohibitive. Therefore, we gener-

ated training data using InstructGPT [37], leveraging its in-context
learning [3] capabilities. We randomly select 8 implicit questions

from our train set and label them manually. For each question, we

give the intermediate question and the expected answer type as

output. The exact prompts used are shown in Table 7 and 8 in the

Appendix. The expected answer type of an intermediate question

can be date or time interval. When the expected answer type is a

time interval (e.g. for 𝑞3), two intermediate questions are created,

appending “start date” and “end date” to the generated intermediate

question, respectively (see 𝑞31 and 𝑞32 as example).

The prompts are used to annotate all implicit questions in the

train and dev sets, obtaining large-scale data for fine-tuning the

BART model. Note that GPT is used only for the generation of

training data for fine-tuning. It is not used by Faith at run-time to

avoid its (computational, monetary and environmental) costs and

dependency on black-box models.

Constructing the TSF. We also use a fine-tuned Seq2seq model,

again BART, for generating the values for the question entity, ques-

tion relation, expected answer type, temporal signal, and temporal

category slots of the TSF representation.

The training data for fine-tuning the TSF construction model is

obtained via (i) distant supervision (for question entity and question

relation), (ii) KB-type look-ups (for expected answer type), and (iii)

annotations in the benchmark (for temporal signal and temporal

category). Further detail is given in the Appendix C.

The temporal values are obtained via the recursive mechanism

discussed above for implicit questions, and via SUTime [6] and

regular expression matching for explicit questions. Phrases like

“today” or “current” are considered as well and properly normalized.

We use the creation time of the question [5], as provided in the

benchmarks, as reference time.

The TSF generated in this understanding stage is used for repre-

senting the temporal information need in the subsequent retrieval

and answering stages.

2.2 Faithful Evidence Retrieval

This stage retrieves relevant evidence matching the temporal con-

straint, that is expressed by the temporal signal and temporal value

in the TSF. We perform two steps: (i) heterogeneous retrieval, and

(ii) temporal pruning.

Heterogeneous retrieval. This largely follows the general-purpose

QA method of [12], using an entity-centric retriever, Clocq [11],

to identify and link entity mentions in the input. The input here is

the concatenation of the question entity, the question relation, and
the expected answer type of the TSF. For the linked entities, we re-

trieve the Wikipedia pages for extracting text, tables, and infoboxes.

Further, the connected KB-facts are obtained from Wikidata.

All retrieved pieces of evidence are verbalized [36] into textual

sentences, for uniform treatment. The KB-facts are verbalized by

3
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Figure 2: Steps to create implicit questions with our proposed

methodology, highlighting the key configurable parts.

concatenating their individual parts; the text evidence is split into

sentences; table rows are transformed by concatenating the indi-

vidual ⟨column headers, cell value⟩ pairs; infoboxes are handled by

linearizing all attribute-value pairs.

Temporal pruning. Explicit temporal expressions in the retrieved

pieces of evidence are identified and normalized similarly as in the

understanding stage. Evidence that does not match the temporal

criteria is pruned out. We address two kinds of situations:

(i) the question aims for a temporal value as answer and does not

have any temporal constraints (e.g., “When . . . ?”);

(ii) the question has a temporal constraint which needs to be

matched by the evidence.

In the first case, all evidence that does not contain any temporal

values is dropped. In the second case, we remove pieces of evidence

that do not match the temporal constraint.

The retrieval output is a smaller set of evidence pieces, faithfully

reflecting the temporal constraints of the question. The final answer

and its explanatory evidence are computed from this pool.

2.3 Explainable Heterogeneous Answering

In the final stage, the answer is derived from this set of evidence

snippets that is already known to satisfy the temporal conditions.

Since this part is not the main focus of this work, we employ

a state-of-the-art answering model for general-purpose QA. We

use the answering stage of Explaignn [12] that is based on graph

neural networks (GNNs), and provides supporting evidence for

the predicted answer. Thus, we ensure that the answer can be

traced back through the entire system including the answering

stage, for end user explainability. The input query to the GNNs,

is the concatenation of the question entity, question relation, and

expected answer type.

3 TIQ BENCHMARK

Benchmarks for temporal QA, like TempQuestions [21], TimeQues-

tions [23] or TempQA-Wd [33], have only few implicit questions,

falling short to evaluate one of the key challenges in temporal QA.

CronQuestions [46] has a larger fraction of implicit questions, but

these are based on a small set of hand-crafted rules. Therefore, the

questions lack syntactic diversity. Further, questions in these bench-

marks are always answerable using a single information source

(either KB or text corpus).

Therefore, we construct a new benchmark with focus on implicit

temporal questions. The obvious idea of using crowdsourcing is

expensive and error-prone. Also, crowdworkers increasingly use

LLMs as a shortcut [51]. Thus, we pursue an automated process

instead. Questions and ground-truth answers are generated from

multiple sources: Wikipedia text and infoboxes, and the Wikidata

KB. The resulting resource and all code will be released upon publi-

cation of the paper.

3.1 Construction Methodology

Overview. An implicit question has two parts: the main question
that specifies the information need disregarding time (e.g. “Queen’s
lead singer” for 𝑞4), and the implicit part that provides the temporal

constraint (e.g. “after Freddie Mercury” for 𝑞4). The key idea is to

build each of the two parts from independent pieces of evidence,

denoted as information snippets. The two snippets can come from

very different sources, but need to be thematically related. This

construction process operates as follows:

(i) sample a set of topic entities to start with;

(ii) retrieve temporal information snippets for each such topic en-

tity from Wikipedia text, Wikipedia infoboxes, and Wikidata;

(iii) concatenate information snippets using a suitable temporal sig-

nal and construct an interrogative sentence, a pseudo-question;
(iv) rephrase the pseudo-question into a natural question using a

generative model.

An overview of this process is provided in Figure 2. Naturally,

implicit constraints are global events (e.g. the CoVid pandemics),

or major events for a specific entity (e.g. a prestigious award).

Sampling topic entities. To obtain significant events, we use the

following proxy: we start with Gregorian calendar year pages in

Wikipedia (e.g. https://en.wikipedia.org/wiki/2023) that list notable

events per year (e.g. 1880 - 2025). From these year pages, we collect

information snippets about notable events. The entities in snippets

constitute the set of topic entities (href anchors are used for entity

linking [16]).

Retrieving the grounding information snippets. The snippets

collected from the year pages are further augmented by snippets

from the first five sentences (≃ first passage) of the topic entity’s

Wikipedia article, the respectiveWikipedia infobox, and the entity’s

facts from Wikidata.

As candidates for the main question part, we consider all infor-

mation snippets that are retrieved for a topic entity fromWikipedia

text, infoboxes andWikidata, irrespective of their salience. To avoid

questions that are trivially answerable without considering the tem-

poral condition, multiple candidate snippets are retrieved for the

main question, with different temporal scopes (e.g., a band’s singers

from different epochs). This is implemented by measuring semantic

similarity among candidates using SBERT [43].

Creating a pseudo-question. Among the retrieved snippets for

an entity, we identify pairs of candidate snippets that can be con-

nected by a temporal conjunction/preposition (“during”, “after” and
“before” ). For such a pair, the temporal scopes have to be consistent

with the temporal conjunction. A valid pair for the conjunction

4
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“during” would be: “Alicia Keys followed up her debut with The Diary
of Alicia Keys, which was released in December 2003.” (main ques-

tion part from Wikipedia text) and “Norah Jones, award received,
Grammy Award for Best New Artist, follows, Alicia Keys, point in
time, 2003.” (implicit part from KB).

A pseudo-question is created by concatenating the main part with

the conjunction and the implicit part. The answer is the entity from

the main part (The Diary of Alicia Keys). The answer is substituted

by the prefix “what” followed by the most frequent KB-type of the

answer (album in this case).

The pseudo-question for the example is: “What albumAlicia Keys
followed up her debut with which was released, during, Norah Jones
award received Grammy Award for Best New Artist follows Alicia
Keys?”, which is an ungrammatical and unnatural formulation.

Rephrasing to a natural question. Therefore, in the last step,

we rephrase the pseudo-question to a natural formulation. We use

InstructGPT [37] with 8 demonstration examples (pseudo-questions

and their natural re-phrasings), to generate the final question. We

experimented with different prompts; the best one is shown in

Table 9 in the Appendix.

The example pseudo-question is rephrased to: “What album did
Alicia Keys release when Norah Jones won the Grammy Award for
Best New Artist?”

3.2 Benchmark Characteristics

Topic entities. For creating Tiq (Temporal Implicit Questions)

we started with the years 1801-2025 and obtained an initial set of

229,318 entities. From this set, we uniformly sampled 10,000 topic

entities based on their frequency, to capture a similar amount of

long-tail and more prominent entities (see Table 1 for details). These

fractions can be configured as required. Since some entity types

were over-represented in the calendar year pages (e.g. politicians

or countries), we also ensured that individual entity types are not

taking up more than 10% of the topic entities. In general, the topic

entity set allows to control the domain coverage within the gener-

ated implicit questions, by choosing entities of the desired types.

We did not specifically configure the proportions to which the

individual information sources are used within the questions, since

we observed a naturally diverse distribution. Figure 3 shows the

distribution among source combinations for initiating the main and

implicit part. The questions are finally split into train (6,000), dev

(2,000), and test sets (2,000). Table 1 shows the basic statistics and

Table 2 shows representative questions of the Tiq benchmark.

Meta-data. Tiq provides implicit questions and gold answers, as

strings as well as canonicalized to Wikipedia and Wikidata. The

meta-data includes the information snippets grounding the ques-

tion, the sources these were obtained from, the explicit temporal

value expressed by the implicit constraint, the topic entity, the

question entities detected in the snippets, and the temporal signal.

4 EXPERIMENTS

4.1 Experimental setup

Benchmarks. We conduct experiments on our new Tiq benchmark

and TimeQuestions [23], which has been actively used in recent

work on temporal QA. TimeQuestions also has ordinal questions

(e.g. “what was the first album by Queen?” ). For such questions, we

Figure 3: Distribution of questions over input source combi-

nations (source for main part ; source for implicit part).

Table 1: Basic statistics for Tiq.

Sources Wikipedia text, infoboxes, and Wikidata

Questions 10,000 (train: 6,000, dev: 2,000, test: 2,000)

Avg. question length 17.96 words

Avg. no. of question entities 2.45

Unique topic entities covered 10,000

Long-tail topic entities covered 2,542 (with < 20 KB-facts)

Prominent topic entities covered 2,613 (with > 500 KB-facts)

apply the same method as outlined in Section 2, without applying

any temporal filtering.

Metrics. We use the standard QA metrics precision at 1 (P@1),

mean reciprocal rank (MRR), and hit at 5 (Hit@5) [44]. Metrics are

averaged over all questions.

Baselines. We compare Faith with a suite of baselines, covering a

diverse range of competitors:

• Generative LLMs.We comparewith InstructGpt [37] (“text-

davinci-003”) and Gpt-4 [35] (“gpt-4”) using the OpenAI API
1
.

We tried different prompts, and found the following to perform

best: “Please answer the following question by providing the crisp
answer entity, date, year, or number.”. For computing P@1, we

check whether the generated answer string matches with the

label or any alias of the gold answer. If this is the case, P@1 is

1, else 0. Other (ranking) metrics are not applicable for LLMs.

• Heterogeneous QA methods. Further, we compare with re-

cent general-purpose QA systems operating over heterogeneous

sources: Uniqorn [40], UniK-Qa [36], and the vanilla Ex-

plaignn [12].

• Temporal QAmethods. We also compare with state-of-the-art

methods for temporal QA: TempoQR (TempoQR-Hard) [30],

CronKGQA [46], and Exaqt [23].

Finally, we show results for a variant of our approach, which does

not prune out evidence temporally-inconsistent with the temporal

constraint, i.e. drops the temporal pruning component. We term

this variant Un-Faith.

Configuration. Wikidata [52] is used as the KB for Faith and all

baselines. We use Wikipedia text, tables and infoboxes as additional

information sources for all methods operating over heterogeneous

sources. The BARTmodels are initialized and trained usingHugging

Face
2
. Explaignn is run using the public code

3
.

In Faith, we choose the candidate at rank 1 as the answer for

intermediate questions in the implicit question resolver. In case too

1
https://platform.openai.com

2
https://huggingface.co

3
https://github.com/PhilippChr/EXPLAIGNN
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Table 2: Representative questions from the Tiq benchmark. The sources below indicate the source that was used for populating

the [main question part; implicit question part] of the implicit question.

1. Who bought the Gainesville
Sun after it was owned by Cowles
Media Company?

2. During Colin Harvey’s senior
football career, which club was
he a member of while he played
for the England national football
team?

3. Which album released by Chris
Brown topped the Billboard 200
when he was performing in Sydney?

4. What television series was
Hulk Hogan starring in when
he signed with World Champi-
onship Wrestling?

5.Who was Bristol Palin’s part-
ner before she participated in the
fall season of Dancing with the
Stars, and reached the finals, fin-
ishing in third place?

The New York Times Company Everton F.C. Fortune Thunder in Paradise Levi Johnston

[Text; KB] [Infobox; KB] [Text; Infobox] [Text; Text] [Infobox; Text]

6.During the onset of the COVID-
19 pandemic, who was the New
York City head of government?

7. Who was the chief executive
officer at Robert Bosch GmbH be-
fore revenue reached € 78.74 bil-
lion?

8. After graduating from the Rostov-
on-Don College of Economics and
Finance, which political party did
Gyula Horn join?

9.Which national football team
did Carlos Alberto Torres man-
age before joining Flamengo?

10. What university did Robert
Lee Moore work for after North-
western University?

Bill de Blasio Volkmar Denner Hungarian Working People’s Party Oman national football team University of Pennsylvania

[KB; Text] [KB; Infobox] [Infobox; Text] [Infobox; Infobox] [KB; KB]

Table 3: Performance comparison of Faith with baselines

on the test sets of Tiq and TimeQuestions.

Benchmark → Tiq TimeQuestions

Method ↓ P@1 MRR Hit@5 P@1 MRR Hit@5

InstructGpt [37] 0.237 n/a n/a 0.224 n/a n/a

Gpt-4 [35] 0.236 n/a n/a 0.306 n/a n/a

Uniqorn [40] n/a n/a n/a 0.331 0.409 0.538

Unik-Qa [36] 0.425 0.480 0.540 0.424 0.453 0.486

Explaignn [12] 0.446 0.584 0.765 0.525 0.587 0.673

TempoQR [30] 0.011 0.018 0.022 0.438 0.465 0.488

CronKGQA [46] 0.006 0.011 0.014 0.395 0.423 0.450

Exaqt [23] 0.232 0.378 0.587 0.565 0.599 0.664

Faith (Proposed) 0.462 0.582 0.749 0.530 0.578 0.644

Un-Faith 0.480 0.627 0.827 0.596 0.656 0.730

many evidences are obtained as input to the answering stage, we

apply SBERT[43] to score evidences and retain only the top-100

evidences. Further detail is given in the Appendix F. We follow an

epoch-wise evaluation strategy for each module and baseline, and

take the version with the best performance on the respective dev

set. All training processes and experiments are run on a single GPU

(NVIDIA Quadro RTX 8000, 48 GB GDDR6).

4.2 Main results

Answering performance of Faith and baselines on TimeQuestions

and on Tiq are in Table 3.

Faith outperforms baselines on Tiq. The main insight from

Table 3 is that Faith surpasses all baselines on the Tiq dataset for

P@1, which is the most relevant metric, demonstrating the benefits

of our proposed method for answering implicit temporal questions.

Temporal QA methods operating over KBs lack the required cover-

age on the Tiq dataset, and perform worse than general-purpose

QA methods operating over heterogeneous sources. The general-

purpose QA system Explaignn comes close to the performance of

Faith, and even slightly improves on the MRR and Hit@5 metrics.

Note, however, that Explaignn and all other baselines do not verify

that temporal constraints are met during answering. Thus, the most

prominent among answer candidates may simply be picked up, even

if no temporal information is provided or matching. Such possibly

“accidental” (unfaithful) answers are, by design, not considered by

Faith.

Trade-off between faithfulness and answering performance.

Results for Un-Faith illustrate the effect of this phenomenon on our

approach: especially the MRR and Hit@5 results are substantially

improved. Consequently, Un-Faith outperforms all competitors on

both benchmarks. However, its answers are not always faithfully

grounded in evidence sources. These results emphasize the trade-off

between faithfulness and answering performance.

Faith shows robust performance on TimeQuestions. Faith

also shows strong performance on the TimeQuestions benchmark,

on which it outperforms all baselines on P@1, except for Exaqt.

This indicates the robustness of Faith across different datasets.

Existing methods for temporal QA show major performance gaps

between the two benchmarks: the P@1 of the strongest method on

TimeQuestions, Exaqt, substantially drops from 0.565 at P@1 to

0.232 on the Tiq benchmark. Note that all methods are trained on

the specific benchmark, if applicable.

LLMs fall short on temporal questions. Another key insight

from Table 3 is that current LLMs are clearly not capable of answer-

ing temporal questions. InstructGpt andGpt-4 canmerely answer

≃ 23-30% of the questions correctly, and are constantly underper-

forming Faith and baselines operating over heterogeneous sources.

One explanation is that reasoning with continuous variables, such

as time, is a well-known weakness of LLMs [14].

4.3 In-depth analysis

Faith refrains to answer in absence of consistent evidence.

If there is no temporal information associated with the evidence

of candidate answers, or the temporal information does not satisfy

the temporal constraint, Faith will refuse answering the question.

For example, for the question “Who did Lady Jane Grey marry on
the 25th of May 1533?”, there is no answer satisfying the temporal

constraint because Lady Jane Grey did not marry anyone on the
25th of May 1533, since she was only born two years later in 1955.

However, all of the baselines provide an answer to the question,

without indicating that the temporal constraint is violated.

Since such questions without a temporally-consistent answer

are not available at large scale, we randomly sample 500 explicit

questions from TimeQuestions, and replace the temporal value

with a random date (e.g. 12 October 6267). None of the resulting

questions has a temporally-consistent answer. As expected, the

competitors still provide a ranked list of answers
4
. In contrast,

4
Except for the LLMs for which we are not able to investigate the behavior at scale,

since they would often generate longer texts.
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Table 4: Ablation study using different source combinations

as input for Faith on dev sets. Note that Faith is trained

using all sources as input for all cases.
Benchmark → Tiq TimeQuestions

Method ↓ P@1 MRR Hit@5 P@1 MRR Hit@5

KB 0.289 0.360 0.457 0.424 0.460 0.503

Text 0.170 0.236 0.320 0.218 0.272 0.340

Infoboxes 0.169 0.223 0.296 0.119 0.143 0.172

Tables 0.032 0.050 0.076 0.078 0.097 0.120

KB+Text 0.386 0.492 0.627 0.526 0.574 0.636

KB+Tables 0.294 0.372 0.475 0.446 0.486 0.537

KB+Infoboxes 0.302 0.475 0.604 0.455 0.494 0.542

Text+Tables 0.177 0.244 0.325 0.248 0.304 0.374

Text+Infoboxes 0.276 0.357 0.456 0.261 0.316 0.389

Tables+Infoboxes 0.172 0.230 0.302 0.166 0.200 0.239

All sources 0.469 0.584 0.736 0.543 0.591 0.653

Table 5: Ablation studies of Faith on dev sets.

Benchmark→ Tiq TimeQuestions

Method ↓ P@1 P@1

Faith 0.469 0.543

w/o temporal pruning 0.475 0.604

w/o implicit question resolver 0.427 0.564

w/o GNN-based answering 0.304 0.394

Figure 4: P@1 of Faith when considering top-𝑘 answers for

the intermediate question(s).

Faith successfully refrained from answering for 467 of the 500

questions (93.4%). Upon investigating the failure cases, we noticed

that the date recognition identifies four-digit numbers as years

matching with the constraint (e.g. in “Veysonnaz, Population (2018-
12-31), SFOS number, 6267” ).
Fallback to Un-Faith. Completely refraining from answering

could also be sub-optimal: the user might have made a typo (e.g.

“May 1533” instead of “May 1553” ). We investigated to fall back to

Un-Faith in such scenarios, which could be indicated to end users

with an appropriate warning. Performance on TimeQuestions was

slightly improved (P@1 from 0.530 to 0.536), while on Tiq Faith al-

ways found somematching evidence (i.e. no changes/improvement).

We further investigated to fall back to Un-Faith in case Faith an-

swered incorrectly. This substantially improved performance on

both datasets: the P@1 metric increased from 0.462 to 0.614 on Tiq

and from 0.530 to 0.667 on TimeQuestions.

Integrating heterogeneous sources is decisive. We further in-

vestigated the effect of integrating heterogeneous sources into

Faith, and tested giving each individual source independently, and

their pairwise combinations as input, in comparison to the default

setting with "All sources". Results are in Table 4. Each information

source contributes to the performance of Faith, and integrating

more information sources consistently enhances all metrics.

Ablation studies. We tested variations of our pipeline on the dev

sets. Table 5 shows results for Un-Faith (w/o temporal pruning),

results without the implicit time resolver, and results with a Seq2seq

model for answering (we used BART) instead of the GNN-based

approach. Using a GNN-based answering approach plays a crucial

role, and enhances not only answering performance, but also ex-

plainability. The implicit question resolver is decisive on Tiq, but

slightly decreases performance on TimeQuestions. Un-Faith also

shows strong performance on the dev sets. However, all modules

contribute to the explainability and faithfulness of our approach.

Relaxed temporal pruning. In Faith we consider the top-1 an-

swer(s) as temporal value(s) within the implicit question resolver.

Since there may be errors in predicting these answers (the P@1

on Tiq is 0.532, further analysis in Appendix G.3), we investigated

considering top-𝑘 answers for the intermediate questions. Figure 4

shows results of this analysis, varying 𝑘 from 1 to 20. We observed

that the P@1 improves as 𝑘 is increased initially. A maxima is

reached for a value of 4 or 5. As 𝑘 increases, the set of candidate

snippets converges resulting in a stable P@1.

Anecdotal examples. Table 6 shows sample cases for which Faith

provided the correct answer, and illustrates the answer derivation

process providing traceable evidence for end users.

Error analysis. To better understand failure cases, we conducted

an error analysis measuring the answer presence (i.e. whether the
gold answer is among answer candidates) throughout the pipeline.

We identified the following error cases (% of failure cases in Tiq/

TimeQuestions): (i) the answerwas not found in the initial retrieval

stage (2.6/28.9), (ii) the answer is lost during temporal pruning

(21.2/26.8), (iii) the answer is lost during scoring/graph shrinking

(8.6/10.2), (iv) the answer is not considered among top-5 answers

(14.3/9.8), (v) the answer is among top candidates but not at rank

1 (53.3/24.3). Note that these numbers add up to 100% for both

benchmarks, respectively (100% of failure cases).

The temporal pruning and fine-grained answer ranking are the

most error-prone steps on both benchmarks, leading to 88.8% (Tiq)

and 60.9% (TimeQuestions) of the failure cases. Improving the

question understanding and retrieval could help with the first case.

Enhancing the answering stage with mechanisms specific for tem-

poral QA could help mitigate the second failure case.

5 RELATEDWORK

General-purpose QA. Question answering is a long-standing re-

search topic with extensive work using single sources like KBs

(e.g. [2, 59, 61]) or text (e.g. [7, 20, 42]) for deriving answers.

It has been shown in multiple works that integrating differ-

ent information sources can substantially improve performance

of general-purpose QA [8, 17, 45, 49, 50, 57, 58]. More recently,

Unik-Qa [36] proposed to verbalize information snippets from a

KB, text, tables and infoboxes for integrating such heterogeneous

sources. These uniformed text snippets are then given as input to

a Fusion-in-decoder (FiD) model [20] for generating the answer.

In Udt-QA [28] the verbalization was improved. Explaignn [12]

also verbalizes information pieces, but then constructs a graph con-

sidering their relationship based on shared entities. On this graph,
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Table 6: Anecdotal examples that Faith answered correctly in Tiq and TimeQuestions. Evidence shows the supporting

information snippets along with their source provided in brackets. The part mentioning the predicted answer is in bold, and

the detected temporal values are underlined. For the first example from the Tiq benchmark, we show the answering process of

the intermediate question, which can be used by end users to verify the entire answer derivation of the system.

Benchmark Tiq

Question After managing FC Nantes, which football club did Antoine Raab take on next?
Answer Stade Lavallois

TSF ⟨ question entity: “Antoine Raab, FC Nantes football”, question relation: “After managing which club did take on next”, expected
answer type: “association football club”, temp. signal: after, temp. category: implicit, temp. value: [1946, 1949] ⟩

Evidence Antoine Raab, Managerial career, 1949–1950, Stade Lavallois. (from Infobox)

Intermediate questions (i) When Antoine Raab managed FC Nantes start date?
(ii) When Antoine Raab managed FC Nantes end date?

Answers (to int. questions) (i) 1946, (ii) 1949

TSFs (for int. questions) (i) ⟨ question entity: “FC Nantes, start, Antoine Raab”, question relation: “When managed date”, expected answer type: “year”,
temp. signal: _; temp. category: non-implicit; temp. value: _ ⟩
(ii) ⟨ question entity: “FC Nantes, end, Antoine Raab”, question relation: “When managed date”, expected answer type: “year”,
temp. signal: _; temp. category: non-implicit; temp. value: _ ⟩

Evidence (for int. questions) (i, ii) Antoine Raab, Managerial career, 1946–1949, FC Nantes. (from Infobox)

(ii) Antoine Raab, After the liberation of Nantes in 1944 Raab joined FC Nantes and played for the club until 1949. (from Text)

Benchmark TimeQuestions

Question What award did Thomas Keneally receive in the year 1982?
Answer Booker Prize

TSF ⟨ question entity: “Thomas Keneally”, question relation: “What award did receive in the year 1982”, expected answer type:

“science award”, temp. signal: overlap, temp. category: non-implicit, temp. value: 1982 ⟩
Evidence Man Booker Prize, winner, Thomas Keneally, point in time, 1982, for work, Schindler’s Ark. (from KB)

Thomas Keneally, Awards is Booker Prize, is Schindler’s Ark, winner 1982. (from table)

Thomas Keneally, He is best known for his non-fiction novel Schindler’s Ark, the story of Oskar Schindler’s rescue of Jews during
the Holocaust, which won the Booker Prize in 1982. (from Text)

iterative graph neural networks are used for predicting the answer.

All of these methods are tied to general-purpose QA, and are not

able to faithfully answer more complex temporal questions.

Another direction is to directly apply large language models

(LLMs) for general-purpose QA, since LLMs are known to store

world knowledge in their vast parameter space [3, 13, 39, 41].

However, LLMs cannot present traceable provenance for the pro-

vided outputs, and faithfulness and explainability are key con-

cerns [1, 29, 32]. Further, time is a continuous variable, and thus

LLMs often struggle to properly model the temporal dimension [14].

Temporal QA. Temporal questions pose challenges that are out-of-

scope for general-purpose QA systems. Therefore, there has been

extensive research that specifically targets temporal QA [9, 10, 15,

22–24, 27, 30, 33, 46–48, 54, 55, 60], which can largely be divided into

work using the KBs for deriving the answer (e.g. [23, 30, 33]), and

work using text (e.g. [9, 34]). Methods operating over KBs, include
template-based [15, 22, 33], KB-embedding-based [10, 30, 46, 55],

and graph-based methods [23, 48, 60]. Methods using textual inputs
typically involve an extractive or generative reader [9, 34].

Exaqt [23] proposed a method based on graph neural networks

(GNNs) that operates on a KB-subgraph which is enhanced with

temporal facts. CronKGQA [46] approaches the problem by obtain-

ing embeddings of answer candidates and temporal values individ-

ually. These embeddings are then combined and used for scoring

answer candidates directly. TempoQR [30] takes a similar approach

and augments a question embedding with answer candidate, con-

text, and temporal encodings. Again, this latent encoding is used

for predicting an answer score for the embedded answer candidate.

The three methods discussed in more detail represent the state-

of-the-art on temporal QA. However, the temporal constraints are

handled solely in the latent space, without explicitly (or faithfully)
pruning out temporally inconsistent answer candidates. Some tradi-

tional methods tried to handle implicit temporal questions explicitly,

but these approaches were based on handcrafted rules and therefore

bound to fail for unseen question patterns (e.g. [22]).

Further, different from general-purpose QA, there has not yet

been work on temporal QA that combines heterogeneous informa-

tion sources for improving the answer coverage.

Temporal KBs. More recently, there has been substantial work on

temporal KBs or knowledge graphs (KGs) [4, 18, 25, 31, 38, 53, 56].

Such temporal KBs aim to assign a temporal validity to KB-facts.

Advances in temporal KBs and their completeness can be seen

as orthogonal to this work: enhancing the temporal information

covered in KBs would be beneficial for the proposed approach also.

6 CONCLUSION

This work proposes a new approach for faithfully answering tem-

poral questions, with a focus on the more challenging implicit

questions. Experiments indicate a trade-off between faithfulness

and answering performance: even if there is no evidence consis-

tent with the temporal constraint, the predicted answer can be

correct. Future work could target this trade-off, and identify sophis-

ticated ways to answer faithfully whenever possible, and provide

the most relevant answer candidate indicating the uncertainty in

the explanation for the end user, otherwise.
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A GPT PROMPTS

The prompts ultimately used for creating the training dataset for

the generation of intermediate questions can be found in Table 7

and Table 8.

B SEQUENCE-TO-SEQUENCE MODELS

There are two different Seq2seq models based on BART in the Faith

pipeline: the model for generating (parts of) the TSF, and the model

for generating the intermediate questions. In this section, we would

like to give some more technical details on the input and output

format of these models.

TSF construction. For the TSF construction, the input is only the

question, as given by the user. The output is then the concatentation

of the individual slots, separated by two pipes (“||”): “{entities} ||

{relation} || {expected answer type} || {temporal signal} || {temporal

categorization}”. Example output for 𝑞1 (“Record company of Queen
in 1975?” ): “Queen || Record company of in 1975 || record company

|| overlap || non-implicit”.

Intermediate question generation. For generating the interme-

diate question, the input to the BART model is again the question,

that has an implicit constraint. The output is then the intermediate

question that describes the implicit constraint, and the expected

answer type for this question, separated by two pipes (“||”): “{inter-

mediate question}||{expected answer type}”. Example output for 𝑞3
(“Queen’s record company when recording Bohemian Rhapsody?” ):
“when Queen recording Bohemian Rhapsody||time interval”.

C DISTANT SUPERVISION

The distant supervision follows [12] for obtaining the entity and

relation phrase: the entity-centric retriever (see Sec. 2.2) is run on

the full question. Recall that this entity-centric retriever identifies

entity mentions in the input, disambiguates these to KB-entities,

and then retrieves information snippets for the KB-entities. If the

retrieved information snippets for a KB-entity contains the gold

answer, we treat the corresponding entity mention in the input

question as relevant, and add it to the expected output of the train-

ing data. The remaining part of the question is kept as relation

within the training data. The expected answer type is obtained

by looking up all KB-types of the gold answer. The most frequent

(proxy for most prominent) of these KB-types is kept as the ex-

pected answer type. For dates, years, strings or numbers, we added

regular expressions for identifying these.

The temporal signal and the temporal categorization (whether

question is implicit or not) is simply looked up from the meta-data

available in the benchmarks.

These individual parts are then combined and separated by pipes

(“||”), as described in Section B, to obtain the “gold label” outputs

for training the TSF construction model (see Sec. 2.1).

D QUESTION REPHRASING

The prompt used for rephrasing the pseudo-questions into natural

questions can be found in Table 9.

E INTERMEDIATE QUESTION DATASET

CONSTRUCTION

Faith requires <questions, date> pairs to train the model for an-

swering the intermediate questions. In TimeQuestions, there are

questions with temporal values as answer that can be used. How-

ever, in our new Tiq benchmark, all questions are implicit. We

generate intermediate questions using InstructGPT [37] (similar as

in section 2.1). The explicit temporal value of the implicit constraint

part (from the information snippet in the meta-data of Tiq) is the

gold answer to construct <question, date> pairs. If the answer type

of an intermediate question is a time interval, we create two ques-

tions asking for "start date" and "end date" respectively, as outlined

before. We constructed 7,723 questions from the train set and 2,542

questions for the dev set. This augmented dataset will also be made

publicly available upon acceptance.

F SBERT SCORING MODEL

The set of candidate evidences after temporal pruning can be large

(hundreds or thousands), which can affect the efficiency of the an-

swering phase. Therefore, we train a classifier based on SBERT [43]

to reduce the size of this set. The training data are the <question,

evidence> pairs, annotated with either a positive label (in case they

contain the answer) or a negative label (otherwise). We use the con-

catenation of question entity, the question relation, and the expected
answer type of the TSF to represent the question. The pairs are tok-

enized with the pre-trained language model DistilRoBERTa
5
and

fed into the network with their classification labels for fine-tuning

the model. Once the classifier is trained, we score each evidence

and select the top-100 evidences as input for the answering stage.

G ADDITIONAL EXPERIMENTS

G.1 Temporal signal accuracy

We measure the performance of the temporal signal detection in

our TSF construction. In TimeQuestions, there are 7 classes of

temporal signals: “OVERLAP”, “BEFORE”, “AFTER”,“START”, “FIN-
ISH”, “ORDINAL” and “NO SIGNAL”. In Tiq, there are 3 classes

of temporal signals: “OVERLAP”, “BEFORE”, and “AFTER”. We use

macro-averaged precision (𝑃 ), recall (𝑅), and F1-score (𝐹1) as the

metrics to evaluate the overall performance of signal detection. The

measurements are conducted on the test sets of the two benchmarks

respectively. For TimeQuestions, 𝑃 is 0.898, 𝑅 is 0.888, and 𝐹1 is

0.892. For Tiq, 𝑃 is 0.979, 𝑅 is 0.976, and 𝐹1 is 0.978. The results

indicate the feasibility of the proposed signal detection method

based on the Seq2seq model. The performance on Tiq is higher

than on TimeQuestions due to the different distribution of tem-

poral signals in the two benchmarks and it is more imbalanced

in TimeQuestions compared to Tiq. Errors when detecting the

temporal signal can lead to failures of the temporal pruning stage.

G.2 Temporal category accuracy

To inspect whether the implicit temporal constraint of a question

can be successfully detected, wemeasure the quality of the temporal

category in the TSF. We use precision (P), recall (R), and F1-score

(F1) as the metrics. The measurements are conducted on the test set

of TimeQuestions because in Tiq there are only implicit questions.

In TimeQuestions, there are four temporal question categories

(explicit, implicit, temporal answer, and ordinal). The questions that

5
https://huggingface.co/distilroberta-base.
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do not belong to the implicit category are annotated as the non-

implicit type. The performance of the implicit type is as follows.

P : 0.949, R: 0.933, F1: 0.941. The performance of the non-implicit

type is as follows. P : 0.993, R: 0.995, F1: 0.994. The results indicate
the feasibility of the proposed method. An incorrectly predicted

category may lead to errors within the implicit question resolver,

again resulting in errors during temporal pruning.

G.3 Implicit question resolver accuracy

The performance of the implicit question resolver is crucial for

implicit questions. We use precision (P), recall (R), and F1-score

(F1) as the metrics to measure the quality of this stage. We con-

duct experiments on the test set of Tiq, since we have the ground

truth annotated as metadata. The performance is as follows. When

𝑘=1 (we use the top-1 candidate as the answer to the intermediate

questions), P, R and F1 is 0.532, 0.570 and 0.527, respectively. When

𝑘=3, P, R and F1 is 0.342, 0.721 and 0.441, respectively. When 𝑘=5,

P, R and F1 is 0.224, 0.775 and 0.336, respectively. At 𝑘=1, F1 is

the greatest. As 𝑘 increases, recall improves, but more answers are

considered as well leading to noisier evidence that is included. This

can negatively affect the system’s faithfulness and performance.
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Table 7: Prompt including demonstrations for generating the dataset with intermediate questions on TimeQuestions.

Generate an explicit question and answer type for the implicit part of the temporal input question.

Input: what position did djuanda kartawidjaja take after he was replaced by sukarano

Output: when djuanda kartawidjaja replaced by sukarano||date

Input: american naval leader during the world war 2

Output: when world war 2||time interval

Input: who became president after harding died

Output: when harding died||date

Input: who did luis suarez play for before liverpool

Output: when luis suarez play for liverpool||time interval

Input: which countries were located within the soviet union prior to its dissolution

Output: when soviet union dissolution||date

Input: who started the presidency earliest and served as president during wwii in the US

Output: when wwii||time interval

Input: who replaced aldo moro as the minister of foreign affairs

Output: when aldo moro replaced as minister of foreign affairs||date

Input: what did harry s truman work before he was president

Output: when harry s truman president||time interval

Table 8: Prompt including demonstrations for generating the dataset with intermediate questions on Tiq.

Generate an explicit question and answer type for the implicit part of the temporal input question.

Input: Who was the second director of the Isabella Stewart Gardner Museum when it was built

Output: When Isabella Stewart Gardner Museum was built||time interval

Input: When Wendy Doniger was president of the Association for Asian Studies, what publishing house was she based in New York

Output: When Wendy Doniger was president of the Association for Asian Studies||time interval

Input: What administrative entity was Ezhou in before Huangzhou District became part of it

Output: When Huangzhou District became part of Ezhou||date

Input: After Bud Yorkin became the producer of NBC’s The Tony Martin Show, who was his spouse?

Output: When Bud Yorkin became the producer of NBC’s The Tony Martin Show||date

Input: What book did Ira Levin write that was adapted into a film during the same time he wrote the play Deathtrap

Output: When Ira Levin wrote the play Deathtrap||date

Input: What basketball team was Nathaniel Clifton playing for when his career history with the Rens began

Output: When Nathaniel Clifton’s career history with the Rens began||time interval

Input: What team did Stevica Ristić play for before joining Shonan Bellmare?

Output: When Stevica Ristić joining Shonan Bellmare||time interval

Input: Which album was released by the Smashing Pumpkins after Mike Byrne joined the band

Output: When Mike Byrne joined Smashing Pumpkins||time interval
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1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598
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1604

1605

1606

1607

1608

1609
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1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 9: Prompt including demonstrations for rephrasing the pseudo-questions into natural questions.

Please rephrase the following input question into a more natural question.

Input: What album Sting ( musician ) was released, during, Sting award received German Radio Award?

Question: which album was released by Sting when he won the German Radio Award?

Input: What human President of Bolivia was the second and most recent female president, after, president of Bolivia officeholder Evo Morales?

Question: Which female president succeeded Evo Morales in Bolivia?

Input: What lake David Bowie He moved to Switzerland purchasing a chalet in the hills to the north of , during, David Bowie spouse Angela Bowie?

Question: Close to which lake did David Bowie buy a chalet while he was married to Angela Bowie?

Input: What human Robert Motherwell spouse, during, Robert Motherwell He also edited Paalen ’s collected essays Form and Sense as the first issue of

Problems of Contemporary Art?

Question: Who was Robert Motherwell’s wife when he edited Paalen’s collected essays Form and Sense?

Input: What historical country Independent State of Croatia the NDH government signed an agreement with which demarcated their borders, during,

Independent State of Croatia?

Question: At the time of the Independent State of Croatia, which country signed an agreement with the NDH government to demarcate their borders?

Input: What U-boat flotilla German submarine U-559 part of, before, German submarine U-559 She moved to the 29th U-boat Flotilla?

Question: Which U-boat flotilla did the German submarine U-559 belong to before being transferred to the 29th U-boat Flotilla?

Input: What human UEFA chairperson, during, UEFA chairperson Sandor Barcs?

Question: Who was the UEFA chairperson after Sandor Barcs?

Input: What human Netherlands head of government, during, Netherlands head of state Juliana of the Netherlands?

Question: During Juliana of the Netherlands’ time as queen, who was the prime minister in the Netherlands?
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