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Abstract

Simulating the long-timescale dynamics of biomolecules is a central challenge in1

computational science. While enhanced sampling methods can accelerate these2

simulations, they rely on pre-defined collective variables that are often difficult3

to identify. A recent generative model, LD-FPG, demonstrated that this problem4

could be bypassed by learning to sample the static equilibrium ensemble as all-atom5

deformations from a reference structure, establishing a powerful method for all-6

atom ensemble generation. However, while this approach successfully captures a7

system’s probable conformations, it does not model the temporal evolution between8

them. Here we extend LD-FPG with a temporal propagator that operates within9

the learned latent space and compare three classes: (i) score-guided Langevin10

dynamics, (ii) Koopman-based linear operators, and (iii) autoregressive neural11

networks. Within a unified encoder–propagator–decoder framework, we evaluate12

long-horizon stability, backbone and side-chain ensemble fidelity, and functional13

free-energy landscapes. Autoregressive neural networks deliver the most robust14

long rollouts; score-guided Langevin best recovers side-chain thermodynamics15

when the score is well learned; and Koopman provides an interpretable, lightweight16

baseline that tends to damp fluctuations. These results clarify the trade-offs among17

propagators and offer practical guidance for latent-space simulators of all-atom18

protein dynamics.19

1 Introduction20

Molecular simulations are indispensable for studying the complex dynamics that govern biological21

function, yet brute-force approaches struggle to access the slow, functionally relevant motions—such22

as protein folding, ligand binding, or allosteric switching—due to rugged energy landscapes and the23

dominance of rare events [1–4]. To mitigate this gap—beyond what enhanced sampling can offer24

when suitable collective variables are hard to specify—a complementary strategy has gained traction:25

shifting the burden from raw coordinates to learned latent coordinates. In this representation-first26

view, the simulation problem is recast as a modular encoder–propagator–decoder pipeline: an encoder27

maps high-dimensional atomic configurations into a continuous, low-dimensional latent space; a28

propagator evolves the system’s state within this simplified space; and a decoder maps the resulting29

latent trajectory back to all-atom coordinates [5, 6].30

Progress within this paradigm comes from two complementary directions. The first focuses on31

learning the underlying physics, employing score-based diffusion, flow matching, and energy-based32

models to learn generative surrogates—sometimes yielding differentiable force fields—that implicitly33

define the system’s potential of mean force [7, 8]. The second centers on learning simplified34

dynamical coordinates, using time-aware autoencoders or Koopman/DMD analysis to discover an35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



intrinsic manifold where the long-term dynamics become stable, predictable, or even approximately36

linear [9–14].37

While this framework is well-established, the choice of the latent propagator—the engine that drives38

the dynamics—remains a critical open question, as different models offer distinct trade-offs between39

physical rigor, long-term stability, and expressive power. Within this paradigm, we adopt LD-FPG40

[15] as the encoder–decoder backbone that learns an all-atom equilibrium ensemble in a pooled latent41

space, and we augment it with a temporal component. We then systematically compare, within the42

same latent space, three propagator classes: (i) score-guided Langevin dynamics, which leverages43

learned forces from the equilibrium distribution; (ii) Koopman-based linear operators, which offer44

long-horizon stability and interpretability; and (iii) flexible neural networks (MLPs), which capture45

non-linear memory effects but can drift during long autoregressive rollouts [16–18].46

We evaluate these propagators on alanine-dipeptide and two GPCRs (A1AR, A2AR), assessing long-47

horizon stability, backbone and side-chain ensemble fidelity, and functional free-energy landscapes. In48

brief, autoregressive neural networks provide the most reliable long rollouts; score-guided Langevin49

best recovers side-chain thermodynamics when the score is well learned; and Koopman serves as a50

lightweight, interpretable baseline that tends to damp fluctuations.51

2 Related Work52

The encoder–propagator–decoder blueprint. The core idea of simulating in a low-dimensional53

space is well established. Molecular Latent Space Simulators (LSS) [5] explicitly factorize the54

problem into three components: an encoder to find slow collective variables (CVs), a latent propagator55

to evolve them, and a decoder to generate all-atom structures. Similarly, Deep Generative MSMs56

(DeepGenMSM) [6] pair a latent Markovian transition model with a generative decoder to emit57

molecular configurations for each state. This blueprint has been realized in various forms, including58

autoregressive simulators with RNN/LSTM propagators [16], trajectory-level generators that cast59

MD as video synthesis [19], and invertible models like Boltzmann Generators that learn a direct60

map to the equilibrium distribution [20]. We follow this modular design but (i) hold the LD-FPG61

decoder fixed to control for reconstruction quality and (ii) focus our analysis on the choice of latent62

propagator [21–24].63

Learning dynamically aware latent spaces (encoders). The quality of a latent simulation hinges64

on the quality of the latent space itself. While linear methods like time-lagged independent component65

analysis (TICA) remain strong baselines for identifying slow variables [25], deep learning has66

enabled far more expressive encoders. Time-lagged autoencoders such as the Variational Dynamics67

Encoder (VDE) learn non-linear representations predictive over a time delay ∆t [9, 26]. VAMPnets68

use a variational principle to approximate the leading Koopman eigenfunctions, corresponding69

to the slowest dynamical processes [10]. To remove hand-crafted features, modern approaches70

leverage graph neural networks (GNNs) to learn CVs directly from coordinates in a permutation- and71

symmetry-aware manner [27–30], often with information-bottleneck objectives to explicitly optimize72

predictiveness of future states [31].73

Linear dynamics in latent space (Koopman/DMD propagators). The Koopman-operator frame-74

work provides a route to linearize non-linear dynamics in a learned observable space [11]. Extended75

dynamic mode decomposition (EDMD) [32] and DMD [33] showed that a wide class of systems76

admits accurate linear predictors; subsequent work learns such observables end-to-end with deep77

encoders [34]. This has inspired Koopman autoencoders that enforce a linear evolution rule within the78

latent space [35, 36], yielding exceptional long-horizon stability by avoiding the compounding errors79

of iterated non-linear models, with continued advances in scalable kernels and consistency-enforcing80

architectures [14, 37].81

Non-linear sequence models (neural propagators). A complementary path directly learns the82

non-linear transition function. The Learning Effective Dynamics (LED) framework uses LSTMs83

to propagate latent variables and capture memory effects [16]; others pair RNNs with physical84

resampling such as Maximum Caliber to enforce kinetic consistency [38]. Continuous-time learners85

(Neural ODEs) offer flexible parametric flows [39, 40], and graph-based simulators exploit locality86

for rollouts in interacting systems [41]. To curb instability, physics-preserving architectures (Hamil-87
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tonian/Lagrangian networks) enforce conservation laws [17, 18]. Our MLP propagator serves as a88

streamlined baseline in this family.89

Physics-guided stochastic models (Langevin and diffusion). Generative models increasingly em-90

bed statistical-mechanics structure. Score-based diffusion has been used to learn effective force fields91

for coarse-grained MD [7], linking denoising, Langevin dynamics, and Fokker–Planck evolution [42].92

Recent works (e.g., DiffMD, Score Dynamics) demonstrate larger stable time steps while retaining93

short-time kinetic signals [43, 44]. A key theme is consistency between the sampled equilibrium94

ensemble and the stationary distribution of the learned dynamics [8]; stability can also benefit from95

noise augmentation during training [45]. We adopt these ideas in a latent-space setting [46, 47].96

GPCRs as a proving ground for slow dynamics. G protein-coupled receptors (GPCRs) are a97

demanding testbed: their function hinges on slow transitions among metastable states mapped by98

landmark MD/MSM studies [1, 2, 48–50]. High-resolution structures (e.g., β2AR–Gs) provide99

anchors for validating pathways [51], and reviews emphasize micro-switches and long-range allostery100

spanning orders of magnitude in time [52–54]. By evaluating on A1AR/A2AR, we benchmark101

whether latent simulators recover metastable states, kinetic pathways, and side-chain signatures102

relevant to activation.103

Positioning among recent generative simulators. Recent efforts span coordinate-space trajec-104

tory synthesis (e.g., diffusion-based GeoTDM) [55], SE(3)-equivariant flow matching for coarse-105

grained rollouts (F3low) [56], and neural operators for full 3D dynamics beyond next-step prediction106

(EGNO) [57]. Similarly, the Equivariant Graph Neural Operator (EGNO) [58], which we employ as a107

baseline, directly models 3D dynamics in coordinate space by enforcing physical symmetries. Latent108

and physics-informed approaches accelerate sampling or enforce structure—LAST for adaptive109

MD [59], ConfRover for joint conformation–dynamics learning [60], and NeuralMD with symmetric110

neural ODEs for binding dynamics [61]—while comparative studies benchmark diffusion, flow111

matching, and normalizing flows on MD tasks [62]. Complementing these advances, this work112

isolates the propagator choice by evaluating linear (Koopman), neural, and score-guided dynamics113

within the same learned latent and fixed decoder, enabling a controlled comparison of long-horizon114

stability, ensemble fidelity, and functional landscapes. We also considered MD-Gen [19], but as it115

was pre-trained on the Atlas dataset, which does not include alanine-dipeptide, re-training it for a fair116

comparison was beyond the scope of this work.117

3 Methods118

Figure 1: Framework overview. A pre-trained LD-FPG encoder (ChebNet; left) maps all-atom
coordinates X(t) to a pooled latent z(t). Within this fixed latent, one of three propagators advances
the state (red box): (a) score-guided Langevin using the LD-FPG denoiser to estimate sθ(z, τ) =
∇z log pτ (z) at a fixed low-noise level; (b) an autoregressive neural network zt+1 = fθ(zt); and
(c) a Koopman linear operator zt+1 = Azt. The frozen LD-FPG decoder (right) maps the latent
trajectory back to all-atom structures X̂(t+∆t)

Our framework extends the Latent Diffusion for Full Protein Generation (LD-FPG) model by119

incorporating a temporal propagator that operates within its learned conformational latent space. To120
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provide a self-contained description, we first briefly outline the relevant components of the LD-FPG121

architecture before detailing the three propagator models developed in this work.122

3.1 Latent Space Representation from LD-FPG123

The foundation of our method is the encoder-decoder architecture from LD-FPG. An encoder,124

implemented as a Chebyshev Graph Neural Network (ChebNet), learns a mapping from high-125

dimensional, all-atom protein coordinates X(t) ∈ RN×3 (where N is the number of heavy atoms) to126

a low-dimensional latent embedding z(t) ∈ Rd. This encoder is trained on a Molecular Dynamics127

(MD) trajectory, producing a time-series of latent vectors {z0, z1, . . . , zM} that captures the essential128

conformational dynamics of the protein. Our goal is to model the time evolution within this latent129

space, which can be expressed as a discrete-time update rule:130

zt+1 = f(zt) + ηt (1)

where f is the propagator function we aim to learn, and ηt represents a stochastic noise term.131

We systematically compare three distinct classes of propagators for learning f . Key notation is132

summarized in Table S1, and a glossary in Table S2.133

We use a one–frame latent stride for training pairs (zt, zt+1). Unless stated, rollout noise is ηt ∼134

N (0, I).135

3.2 Koopman Propagator via Dynamic Mode Decomposition136

We approximate the latent dynamics with a linear map137

zt+1 ≈ Azt, A ∈ Rd×d. (2)

Let the snapshot matrices collect columns as time:138

X = [ z0, . . . , zM−2 ] ∈ Rd×(M−1), Y = [ z1, . . . , zM−1 ] ∈ Rd×(M−1).

DMD solves minA ∥Y −AX∥2F with closed form139

A = YX+, (3)

where + is the Moore–Penrose pseudoinverse. For stability, we compute X+ via truncated SVD of X140

at rank r < d (EDMD); r is chosen by retaining singular values above a fixed energy fraction (e.g.,141

95%). New trajectories follow ẑt+1 = Aẑt + ηt with optional ηt ∼ N (0, σ2I).142

3.3 Autoregressive Neural Network Propagator143

To capture potentially complex, non-linear relationships in the dynamics, we employ a standard144

Multi-Layer Perceptron (MLP) as the propagator. The model learns a general non-linear function145

fθ parameterized by weights θ:146

zt+1 = fθ(zt) (4)

Our implementation of fθ is a sequential network consisting of fully-connected layers with ReLU147

activation functions and Dropout for regularization. The model is trained to predict the state one step148

ahead by minimizing the Mean Squared Error (MSE) loss between the predicted state and the true149

next state over the training data:150

L(θ) = 1

M − 1

M−2∑
t=0

∥fθ(zt)− zt+1∥2 (5)

The optimization is performed using the Adam optimizer. Similar to the Koopman model, trajectories151

are generated autoregressively from a starting point ẑ0 by iteratively applying the learned function:152

ẑi+1 = fθ(ẑi) + ηi.153
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Figure 2: Stability over long rollouts. RMSD and lDDT versus frame index for (a) alanine-dipeptide
and (b) A1AR. The failure time is defined as the first frame where lDDT (computed relative to the
first frame of the trajectory) drops below 0.65. Autoregressive NN maintains the longest stable
rollout on A1AR (no failure within 10,000 frames), while Koopman and Langevin fail earlier; on
alanine-dipeptide, Koopman and NN persist for thousands of frames whereas Langevin fails early.

3.4 Score-Guided Langevin Propagator154

This approach frames the dynamics from a statistical mechanics perspective, simulating the evolution155

of the system under the influence of a potential of mean force. The dynamics are governed by the156

overdamped Langevin equation, which in discretized form is:157

zt+1 = zt −∇zU(zt)h+
√
2Th ηt, (6)

where U(z) is the potential of mean force, ∆t is the integration time step, T is the temperature, and158

ηt ∼ N (0, I) is a random Gaussian vector.159

The key insight is that the force term, −∇zU(z), can be related to the score of the equilibrium160

(Boltzmann) distribution, s(z) = ∇z log p(z), since p(z) ∝ exp(−U(z)/T ). The pre-trained161

diffusion model from LD-FPG, ϵθ(zτ , τ), provides a direct way to estimate this score. According to162

score-based generative modeling theory, the score of a data distribution perturbed with noise level στ163

is related to the optimal denoiser:164

∇z log pτ (zτ ) ≈ −ϵθ(zτ , τ)
σ2
τ

. (7)

By evaluating the model at a low, fixed noise level (i.e., a small diffusion timestep τnoise), we165

approximate the score of the true data distribution, s(z) ≈ − ϵθ(z,τnoise)
σ2
τnoise

[42, 46].166

Substituting the score for the force term, we arrive at the simulation update rule:167

zi+1 = zi + Th s(zi) +
√
2Th ηi, ηi ∼ N (0, I). (8)

This method directly leverages the learned equilibrium distribution from LD-FPG to drive a physically-168

motivated, stochastic simulation in the latent space. To enhance numerical stability during long169

rollouts, we also implement optional score clipping, where the norm of the score vector s(zi) is170

capped at a predefined maximum value.171

4 Results and Discussion172

We benchmark the three latent-space propagators—Koopman, Autoregressive Neural Network (NN),173

and score-guided Langevin—within the unified LD-FPG latent (Fig. 1). Datasets and code are174

summarized in Appendix S1.2. Metrics include stability (RMSD, lDDT), equilibrium-ensemble175

fidelity (backbone and side-chain dihedral JSD), and functional free-energy landscapes. Unless noted,176

failure time is the first frame where lDDT relative to the initial frame drops below 0.65.177
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4.1 Long-horizon stability: autoregressive NN is most robust178

Figure 2 tracks RMSD and lDDT through time; failure time is the first sampled point where lDDT (vs.179

the first frame) drops below 0.65. For alanine-dipeptide (Fig. 2a), Koopman and the Autoregressive180

NN remain stable for several thousand sampled frames (failure at 4443 and 3176, respectively),181

whereas Langevin fails early (206). On A1AR (Fig. 2b), the Autoregressive NN completes the full182

10,000-frame rollout without failure; Langevin remains stable to 7476; Koopman fails at 5740. A2AR183

(Table 1; SI) follows the same ranking: Autoregressive NN > Langevin > Koopman for long-rollout184

stability.185

A note on “frames” for Langevin. For Koopman and NN, each frame corresponds to the dataset186

stride (the models are trained to map zt → zt+1), so the horizontal axis coincides with the MD187

sampling stride. By contrast, the Langevin propagator integrates a latent SDE with internal step size188

∆t and a separate sampling stride; thus a “frame” is a sampled SDE state, not a single update of189

the integrator. To make curves visually comparable, we calibrated (∆t, sampling stride) per system190

to match the short-horizon RMSD across Langevin replicas to the base simulation. Concretely, for191

alanine-dipeptide we used ∆t = 10−8 and sampled every step (one internal step per plotted frame),192

whereas for A1AR we used ∆t = 10−10 and sampled every 20 steps (effective time per plotted frame193

= 20∆t). The reported failure indices for Langevin therefore count sampled outputs; converting to194

physical time would scale the A1AR axis by 20∆t and the alanine axis by ∆t.195

Why Langevin fails early on alanine. The rapid failure of Langevin dynamics on the dipeptide196

likely stems from a combination of challenges in the training data, the system’s intrinsic properties,197

and the simulation hyperparameters. First, the large time step between frames in the source MD198

simulation can result in a sparsely sampled, fragmented latent manifold. This makes it difficult for199

the diffusion model to learn a smooth and continuous score function (s(z) = ∇z log p(z)), yielding200

a noisy or inaccurate effective force field that is prone to instability. Second, the dipeptide’s small201

size leads to large intrinsic fluctuations and high successive-frame displacements (RMSD ∼0.9Å),202

making the lDDT failure criterion particularly stringent. Finally, the simulation hyperparameters203

were reused from GPCR settings [15]. The large effective step size, chosen to model such highly204

diffusive systems, proves too aggressive when combined with the imperfect score function. This205

combination rapidly drives the simulation into unphysical regions, a deviation that is quickly detected206

by the sensitive lDDT metric.207

4.2 Equilibrium-ensemble fidelity: NN best on backbone; Langevin best on side-chains208

We evaluate how well each propagator reproduces the equilibrium ensemble in dihedral space209

using 2D free-energy maps for backbone (ϕ, ψ) and side-chain (χ1, χ2) angles (Fig. 3). Fidelity is210

quantified with the Jensen–Shannon divergence (JSD) between model and ground-truth distributions211

(Table 1); side-chain JSD is aggregated over all residues so that it captures global rotamer statistics.212

Alanine-dipeptide. All three models recover the canonical Ramachandran basins. The Autore-213

gressive NN most closely matches basin shape and separation (backbone JSD = 0.0056), slightly214

outperforming Koopman (0.0085). Langevin under-samples and over-smooths the landscape (back-215

bone JSD = 0.029), consistent with its early rollout failure on this small, rapidly fluctuating system216

(Fig. 2a). For comparison, an Equivariant Graph Neural Operator (EGNO) baseline [58] yielded217

a significantly higher backbone JSD of 0.3875, underscoring the effectiveness of our specialized218

latent-space propagators.219

A1AR : For the large GPCR, the Autoregressive NN gives the most faithful backbone ensemble220

(backbone JSD = 0.0443), while Langevin broadens low-energy regions (backbone JSD = 0.1943).221

In contrast, side-chains tell the opposite story: the score-guided Langevin dynamics sharply recovers222

rotameric structure in (χ1, χ2) with the lowest divergence (JSD = 0.0223), the NN is second-best223

(0.0436), and Koopman is notably diffuse (0.1144). Visually, the Langevin maps reproduce the224

expected χ1 bands (g+, anti, g−) present in the ground truth, whereas the NN blurs band edges and225

Koopman largely washes them out (Fig. 3, right).226

Why side-chains favor Langevin. Side-chain rotamers are governed by local barriers and short-227

range couplings. Because the Langevin propagator uses the learned score s(z) = ∇z log p(z) from228
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LD-FPG, it injects a thermodynamically consistent drift toward high-probability neighborhoods229

in latent space and adds small isotropic noise. This combination encourages frequent, barrier-230

crossing micro-moves that preserve the stationary rotamer distribution. The NN, optimized for231

one-step prediction, can accumulate exposure bias and smooth sharp multimodality over long rollouts;232

Koopman’s linear evolution further damps variance, leading to broadened or merged rotamer basins.233

Figure 3: Ensemble fidelity in dihedral space. Free-energy maps for backbone (ϕ, ψ) and, for A1AR,
side-chain (χ1, χ2) angles. Alanine-dipeptide (left) shows recovery of the canonical Ramachandran
basins by all methods, with the Autoregressive NN most closely matching basin shapes given the long
rollout. For A1AR (middle/right), NN best matches backbone statistics, while score-guided Langevin
achieves the lowest divergence for side-chains (side-chain JSD aggregated over all residues).

Amplitude of motion. Across systems, Koopman systematically underestimates fluctuations (lower234

mean RMSF than ground truth), reflecting its variance-damping bias, whereas Langevin and the NN235

better match the amplitude of motion (Table 1). Residue-resolved trends follow the same pattern (see236

Fig. S1).237

4.3 Functional GPCR surfaces: TM-distance free energies capture activation238

We test whether each propagator reproduces the inactive↔active switching of GPCRs by projecting239

trajectories onto a two-dimensional free-energy surface F (TM3–6,TM3–7). Activation is char-240

acterized by an outward motion of TM6 that increases TM3–6, while TM3–7 helps resolve the241

geometry of the intracellular opening. In Fig. 4 (A1AR) the background heat map is the ground-truth242

surface; overlaid contours correspond to Koopman (purple), Autoregressive NN (cyan), and Langevin243

(orange). Right panels show the corresponding one-dimensional profiles.244

A1AR. Both the NN and Langevin models recover the location and curvature of the principal245

low–free-energy valley. Langevin spans the valley most extensively, covering the transition corridor246

between inactive and active-like states. The NN tracks the same valley with a tighter footprint,247

under-sampling the flanks. Koopman identifies the basin center but exhibits stiffer, more isotropic248

contours and elevated apparent barriers, limiting coverage of the transition path. The one-dimensional249

slices mirror these trends: NN and Langevin reproduce the primary minimum and overall shape,250

whereas Koopman inflates barriers.251

A2AR (reference). For A2AR (Fig.S2), switching involves coordinated changes along both axes:252

TM3–6 increases with the TM6 outward motion and TM3–7 shifts as the intracellular pocket reshapes,253

yielding a diagonal valley in the (TM3–6, TM3–7) plane. Langevin again achieves the broadest254

coverage along both coordinates and reaches the transition corridor; the NN follows the valley with255

narrower support; Koopman under-covers the corridor and smooths anisotropy.256

Summary. Together with the dihedral analyses, these surfaces indicate that the non-linear (NN)257

and score-guided (Langevin) propagators better explore and connect metastable states relevant to258

GPCR activation, while the strictly linear Koopman rule provides a conservative baseline that tends259

to over-regularize barriers and shrink anisotropy.260
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Figure 4: Functional free-energy surface for A1AR. Two-dimensional free-energy over TM3–6
(“TM36”) and TM3–7 (“TM37”) distances. The background heat map shows the ground-truth surface;
overlaid contours show Koopman (purple), Autoregressive NN (cyan), and Langevin (orange). Right
panels: corresponding 1D free-energy profiles along each coordinate. NN and Langevin track
the main basin and curvature; Koopman identifies the basin but overestimates barriers and misses
anisotropy.

Table 1: Quantitative summary across systems. Failure time is the first frame with lDDT (vs. the
initial frame) < 0.65. JSDs measure divergence from ground-truth dihedral distributions. Average
RMSF is in Å. For alanine-dipeptide, we include an EGNO baseline [58] trained for 100 frames.
A2AR results are in the SI.

System / Metric Model Failure Time (frames) Backbone JSD Sidechain JSD Average RMSF (Å)
Alanine-Dipeptide Ground Truth N/A N/A N/A 0.8222

Koopman 4443 0.0085 N/A 0.8320
Autoregressive NN 3176 0.0056 N/A 0.8171
Langevin Dynamics 206 0.029 N/A 0.8233
EGNO (baseline) 1000 0.3875 N/A 1.0481

A1AR Ground Truth N/A N/A N/A 1.5809
Koopman 5740 0.0472 0.1144 0.7482
Autoregressive NN No failure (10000) 0.0443 0.0436 0.7880
Langevin Dynamics 7476 0.1943 0.0223 1.1303

A2AR Ground Truth N/A N/A N/A 1.9454
Koopman 2324 0.1195 0.1380 1.2531
Autoregressive NN 5789 0.0679 0.0691 0.8200
Langevin Dynamics 5432 0.1211 0.0065 0.7463

4.4 Outlook261

Across systems, the propagators fill complementary roles. The autoregressive NN provides the most262

reliable long-horizon rollouts and the closest backbone statistics (it is the only A1AR run without263

failure). Score-guided Langevin best reproduces side-chain thermodynamics on GPCRs and yields264

realistic local fluctuations, though it is sensitive to score quality and step size. Koopman remains a265

fast, interpretable baseline that offers medium-term stability but damps variance and blurs rotamer266

structure. In practice, we favor the NN when long all-atom trajectories are the goal and Langevin267

when rotamer distributions and local thermodynamics are paramount, provided the denoiser and268

latent connectivity are well tuned.269
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S1 Supplementary Information458

S1.1 Supplementary Figures for A2AR459

Figure S1: A2AR dihedral statistics (SI). Backbone (ϕ, ψ) and side-chain (χ1, χ2) free-energy
maps for A2AR. Trends mirror the main text: Autoregressive NN provides the best backbone match
among learning-based models, while score-guided Langevin attains the lowest divergence for side-
chains (side-chain JSD aggregated over all residues).

Figure S2: A2AR TM-distance free-energy (SI). Two-dimensional free-energy over TM3–6
(“TM36”) and TM3–7 (“TM37”) distances. The background is the ground-truth surface; three
overlapping contour sets show Koopman (purple), Autoregressive NN (cyan), and Langevin (or-
ange). Right panels: 1D free-energy profiles along each coordinate. Consistent with A1AR, NN and
Langevin follow the principal basin and curvature more closely than Koopman.
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S1.2 Simulation Datasets and Code availability460

The complete code for the LD-FPG framework is publicly available on GitHub:461

https://github.com/adityasengar/LD-FPG/ and the code for the latent propagator is available462

here: https://github.com/adityasengar/latent-dynamics-propagators463

The latent trajectories used to train the propagators were derived from three publicly available464

Molecular Dynamics (MD) simulation datasets. For each system, the original source provided465

a structure file (PDB) and a coordinate trajectory (XTC). These files were then processed using466

the LD-FPG framework’s preprocessing scripts to generate the inputs for our models, including467

a condensed.json file that provides consistent, zero-based atom indexing and defines the atom468

quadruplets required for calculating all backbone and side-chain dihedral angles.469

Alanine Dipeptide. This dataset features N-acetyl-L-alanine-N’-methylamide, a 22-atom molecule470

commonly known as alanine dipeptide. It is a canonical benchmark for developing and testing new471

simulation methods due to its simple yet non-trivial conformational landscape, which is primarily472

described by its two backbone dihedral angles (ϕ, ψ). The data was sourced from the CMB data473

repository at ftp.imp.fu-berlin.de and consists of a 250 ns simulation trajectory with solvent474

molecules removed.475

Adenosine A1 Receptor (A1AR). To test our method on a complex, biologically relevant system,476

we used a 1 µs simulation of the human adenosine A1 receptor, a prototypical Class A GPCR involved477

in cardiovascular and neurological signaling. The dataset, containing the trajectory and initial PDB478

structure for chain A of the receptor, was derived from the simulation data available on Zenodo (DOI:479

10.5281/zenodo.7944479).480

Adenosine A2A Receptor (A2AR). Our second GPCR test case was the human adenosine A2A481

receptor, another Class A GPCR that serves as a key model system for studying receptor activation482

mechanisms. The data corresponds to a simulation of the receptor in its apo (ligand-free) state and483

was sourced from a Zenodo record (DOI: 10.5281/zenodo.13460724) supplementary to a detailed484

study on its dynamics.485

S1.3 Qualitative rollouts: dihedral flips in a dipeptide and TM6 motion in a GPCR486

To complement the quantitative metrics, Fig. S3 shows structural snapshots taken directly from our487

latent-space rollouts. The top panel illustrates alanine–dipeptide; the bottom panel shows the A1AR488

GPCR. These images link the latent dynamics to familiar structural changes: local backbone dihedral489

flips in a small molecule and the hallmark outward displacement of transmembrane helix 6 (TM6) in490

a receptor.491

Alanine–dipeptide (Koopman). The upper snapshots are sampled at evenly spaced steps from492

a Koopman rollout. Across frames, the molecule visits distinct conformers driven by rotations493

about the backbone dihedrals (ϕ, ψ), covering multiple metastable Ramachandran regions rather than494

collapsing to a single geometry. This visual diversity is consistent with the small backbone JSD495

reported in Table 1 and the ensemble analysis in Sec. 4.2, while also reflecting Koopman’s tendency496

to slightly damp fluctuations.497

A1AR (Autoregressive NN). The lower snapshots are taken from a single long rollout of the498

autoregressive neural propagator, again at evenly spaced frames. The dashed circle marks the499

intracellular end of TM6. Over time TM6 swings outward from the receptor core while the seven-500

helix bundle remains well-folded, matching the activation-associated opening on the cytoplasmic side.501

This qualitative progression mirrors the quantitative TM3–6/TM3–7 free-energy analysis in Fig. 4,502

where the NN tracks the principal low-energy valley and samples the transition corridor without503

structural collapse.504
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Figure S3: Representative structural snapshots from latent rollouts. Top: Alanine–dipeptide
conformers sampled from a Koopman rollout show backbone dihedral changes across frames. Bottom:
A1AR snapshots from an autoregressive NN rollout; the dashed circle highlights the intracellular
end of TM6, which moves outward over time—a hallmark of GPCR activation. These qualitative
views align with the ensemble statistics in Table 1 and the TM-distance thermodynamics in Fig. 4.

S1.4 Supplementary Tables505
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Table S1: Summary of notation used in the description of the propagator models.

Symbol Description

zt ∈ Rd Latent space vector at time t.
X,Y ∈ Rd×(M−1) Snapshot matrices with columns as time: X = [z0, . . . , zM−2], Y = [z1, . . . , zM−1].
A ∈ Rd×d Koopman linear operator.
fθ Autoregressive neural network with parameters θ.
p(z) Equilibrium probability distribution of the latent variable z.
s(z) = ∇z log p(z) Score function of the equilibrium distribution.
ϵθ(zt, τ) Pre-trained LD-FPG diffusion model (denoiser).
στ Noise schedule standard deviation from the diffusion model at step τ .
∆t Integration time step for Langevin dynamics.
T Temperature parameter for Langevin dynamics.
ηt Stochastic noise term, typically ηt ∼ N (0, σ2I).

Table S2: Glossary of Biophysical Terms. Definitions of key concepts from molecular dynamics
and structural biology used in this work, tailored for a machine learning audience.

Term Description for an ML Audience
Collective Variable (CV) A low-dimensional function of atomic coordinates (e.g., a distance or angle)

designed to capture a specific, slow dynamic process like protein folding. Tradi-
tional simulation methods often require pre-defining good CVs; our work uses a
learned latent space to discover them automatically.

Potential of Mean Force (PMF) Essentially, an effective "energy landscape" for a molecule in solution. Lower
values correspond to more probable (stable) conformations. It is the target
distribution that score-guided Langevin dynamics aims to sample from, often
visualized as a "free-energy surface".

Dihedral Angles (ϕ, ψ, χ) Rotational angles around covalent bonds that define the geometry of a molecule.
• ϕ (phi), ψ (psi): Define the rotation of the protein backbone.
• χ (chi): Define the rotation of the amino acid side-chains.

Their statistical distributions are a sensitive measure of structural fidelity.

Ramachandran Plot A 2D plot of the backbone dihedral angles (ϕ, ψ). Certain regions of this plot are
"allowed" based on steric constraints, leading to characteristic high-probability
basins that correspond to stable secondary structures like alpha-helices and beta-
sheets.

Rotamer A discrete, low-energy, and therefore highly probable conformation of a protein’s
side-chain, defined by its set of χ angles. A key test for generative models is
whether they can reproduce the correct statistical distribution of these rotameric
states.

GPCR G protein-coupled receptor. A large and important family of transmembrane
proteins that act as cellular signal transducers. They are highly dynamic and
switch between different functional states (e.g., inactive, active), making them an
ideal and challenging test system for dynamic models.

lDDT local Distance Difference Test. A metric for assessing the quality of a protein
structure prediction by evaluating how well local inter-atomic distances are
preserved relative to a reference structure. Unlike RMSD, it is less sensitive to
global rotations and more focused on local geometric accuracy.

RMSF Root-Mean-Square Fluctuation. For each atom, this metric calculates the standard
deviation of its position over time in a simulation trajectory. It measures the
"amplitude of motion" or flexibility of different parts of the protein.
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