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Abstract

Extracellular recordings are transient voltage fluctuations in the vicinity of neurons,
serving as a fundamental modality in neuroscience for decoding brain activity at
single-neuron resolution. Spike sorting, the process of attributing each detected
spike to its corresponding neuron, is a pivotal step in brain sensing pipelines.
However, it remains challenging under low signal-to-noise ratio (SNR), electrode
drift, and cross-session variability. In this paper, we propose HuiduRep, a robust
self-supervised representation learning framework that extracts discriminative and
generalizable features from extracellular recordings. By integrating contrastive
learning with a denoising autoencoder, HuiduRep learns latent representations
robust to noise and drift. With HuiduRep, we develop a spike sorting pipeline that
clusters spike representations without ground truth labels. Experiments on hybrid
and real-world datasets demonstrate that HuiduRep achieves strong robustness.
Furthermore, the pipeline outperforms state-of-the-art tools such as KiloSort4 and
MountainSort5.

1 Introduction

Extracellular electrophysiology enables single-neuron resolution via spike sorting, a critical clustering
step that assigns detected spikes to their source neurons for downstream analysis of neuronal coding
and dynamics [1]. Classical spike sorting pipelines involve preprocessing, feature extraction, and
clustering using algorithms such as Gaussian Mixture Model (GMM) or density-based methods.

Recent frameworks like MountainSort [2] and KiloSort [3] have improved throughput. MountainSort
and KiloSort4 [4] improve throughput via automated clustering and scalable template-based inference.
These tools represent the state-of-the-art in spike sorting, but they still rely on conventional clustering
paradigms and presuppose stable, high-quality signals.

Despite recent advances, spike sorting remains challenging under realistic conditions. Low SNR
hinders spike detection and separation. Overlapping or similar waveforms from nearby neurons
can produce compound spikes, violating the assumption that each spike originates from a single
neuron. Electrode drift causes gradual waveform changes, undermining stationarity assumptions and
contributing significantly to sorting errors; correcting for drift substantially improves performance.
Dense, high–channel-count probes also exacerbate waveform collisions due to overlapping electrical
fields.
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Figure 1: Overall architecture of HuiduRep and the pipeline. During training, the contrastive learning
branch adapts the MoCo v3 style framework. During inference, only the transformer encoder and
DAE module are used to extract representations.

In practice, even leading algorithms degrade under such conditions. Methods without explicit drift
correction, such as SpyKING CIRCUS [5] and earlier versions of MountainSort, lose accuracy with
substantial drift. Conventional approaches also struggle with waveform diversity and cross-session
variability, often yielding inconsistent unit identities across recordings [6]. Thus, robustly clustering
spikes in noisy, drifting data remains a key open problem.

To address these issues, we propose HuiduRep, a self-supervised representation learning framework
for extracting representations of spike waveforms for spike sorting. HuiduRep learns features that are
discriminative of neuron identity while being less affected by noise and drift. Inspired by recent trends
in extracellular recordings representation learning [3], HuiduRep combines contrastive learning with
a denoising autoencoder (DAE) [7]. As a result, HuiduRep can learn robust and informative spike
representations without any manual labeling. We further design a complete pipeline for spike sorting
with GMM clustering. The pipeline achieves robustness to low SNR and drift, and outperforms
state-of-the-art sorters such as KiloSort4 and MountainSort5 on accuracy and precision across diverse
datasets.

2 Method

2.1 Architecture of HuiduRep

The overall architecture of HuiduRep is illustrated in Figure 1. Inspired by BYOL [8], our framework
also consists of two main branches: an online network and a target network. The target network,
which is frozen during training, is updated via a momentum update based on the online network’s
parameters.

The key difference lies in the introduction of a DAE within the online network, which is designed to
reconstruct the original signals from the augmented views generated by the view generation module.
This DAE serves as an auxiliary module to guide representation learning. Moreover, we replace the
original ResNet encoder [9] in BYOL with a Transformer encoder [10]. Before feeding the input
views into the encoder, we also apply cross-channel convolution to better capture the characteristics
of spike waveforms. During training, only View 1 is fed into the DAE branch, while View 2 does not
participate in the denoising task.

Furthermore, the contrastive learning branch adapts the MoCo v3 style [11], where representations
from positive pairs (query and key) and in-batch negative samples are compared. For contrastive
learning, we adopt the InfoNCE loss [12], while for denoising, we employ the mean squared error
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(MSE) loss:

LContrastive = −log
exp(q · k+/τ)

exp(q · k+/τ) +
∑
k−

exp(q · k−/τ)
, LDenoising =

1

n

n∑
i=1

(vi − v̂i)
2

Here q denotes the query vector output by the prediction head of the online network, k+ represents
the positive key generated by the target network for the same sample, and k− refers to the negative
keys, which are the outputs of other samples in the same batch passed through the target network. τ
is a temperature hyper-parameter [13] for l2 -normalized q and k. For MSE loss, v is the embedded
feature obtained from the original input, while v̂ is the reconstruction produced by the DAE. We
apply a standard MSE loss to measure the reconstruction quality. The overall loss function of the
model is a weighted sum of the denoising loss and the contrastive loss.

To generate input views, several augmentation strategies are employed to the original spike waveforms.
These include: (1) Voltage and temporal jittering, which introduces small perturbations in both voltage
amplitude and timing; (2) Channel cropping, where a random subset of channels is selected to create
partial views of the original waveforms; (3) Collision, where noisy spikes are overlapped onto the
original waveforms to simulate spike collisions; and (4) Noise, where temporally correlated noise is
added to the waveforms to generate noised views. This Noise method is employed only for generating
View 1, enhancing the robustness and performance of the DAE. The detailed view augmentation
strategy is provided in the appendix.

During inference, HuiduRep uses the encoder from the contrastive learning branch to extract repre-
sentations of input spikes for downstream tasks. In certain cases, the DAE can be optionally applied
before the encoder to further enhance the overall performance of the model.

2.2 Spike Sorting Pipeline

Based on HuiduRep, we propose a complete pipeline for spike sorting. As illustrated in Figure 1,
our pipeline consists of the following steps: (1) Preprocessing the raw recordings by removing bad
channels and applying filtering; (2) Detecting spike events from the preprocessed recordings; (3)
Extracting waveforms around the detected spike events; (4) Using HuiduRep to extract representations
of individual spike waveforms; and (5) Clustering the spike representations to obtain their unit
assignments.

In the pipeline, the preprocessing and threshold-based detection modules of SpikeInterface were
employed to process the recordings [14]. Following extraction, the spike representations were
clustered using GMM from the scikit-learn library [15] to produce the final sorting results.

Our pipeline is modular, meaning that each component can be replaced by alternative methods. For
example, the threshold-based detection module can be substituted with more accurate detection
algorithms. In the following experiments, we demonstrate that even when using a threshold-based
detection module with relatively low accuracy, our pipeline still outperforms the state-of-the-art and
most widely used models such as KiloSort4.

3 Datasets

3.1 International Brain Laboratory (IBL) Dataset

DY016 and DY009 recordings are selected from the datasets released by IBL [16] to train and evaluate
HuiduRep. Both recordings were recorded from the hippocampal CA1 region and anatomically
adjacent areas. Similar to the processing in CEED [3], we used KiloSort2.5 [17] to preprocess the
recordings and extracted a subset of spike units labeled as good according to IBL’s quality metrics
[18] to construct our dataset. For every unit, we randomly selected 1,200 spikes for training and 200
spikes for evaluation. For each spike, we extracted a waveform with 121 samples across 21 channels,
centered on the channel with the highest peak amplitude.

For evaluation, we randomly sampled 10 units from the IBL evaluation dataset for each random seed
ranging from 0 to 99, resulting in a total of 100 data points. These two subsets are referred to as the
IBL train dataset and the IBL test dataset in the following sections.
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Table 1: ARI scores and time cost per data point (Mean ± SEM) of HuiduRep and other models
across varying counts of selected units, evaluated with random seeds from 0 to 99.

Model ARI Time (seconds)
HuiduRep 10units 71.9± 1.3 6.78± 0.18
MoCo-v3 10units 66.9± 1.4 7.51± 0.20

CEED 10units 63.5± 1.3 21.25± 0.04

HuiduRep 15units 66.9± 0.8 12.22± 0.26
MoCo-v3 15units 61.3± 1.1 13.24± 0.28

CEED 15units 57.7± 0.7 24.93± 0.09

3.2 Hybrid Janelia Dataset

HYBRID_JANELIA is a synthetic extracellular recording dataset with ground truth spike labels,
designed to evaluate spike sorting algorithms. It was generated by using the KiloSort2 eMouse [17].
The simulation includes a sinusoidal drift pattern with 20µm amplitude and 2 cycles over 1,200
seconds, as well as waveform templates from high-resolution electrode recordings.

We evaluated model performance on both the static and drift recordings of this dataset. To ensure a
fair comparison, we reported results only on spike units with SNR greater than 3 for all models.

3.3 Paired MEA64C Yger Dataset

Paired_MEA64C_Yger is a real-world extracellular recording dataset [5] that includes ground-truth
spike times, which were obtained using juxtacellular recording [19]. The dataset recorded from
isolated retinal tissues primarily targets retinal ganglion cells. It was collected using a 16×16
microelectrode array (MEA) and an 8×8 sub-array was extracted for spike sorting evaluation. For
each recording, there is one ground-truth unit.

We randomly selected 9 recordings in which the ground-truth unit has SNR greater than 3, and used
them to evaluate our method with other baseline models.

4 Experiments

To evaluate the performance of HuiduRep and other models, we created datasets where each data
point includes 15 units, using the same construction method as the IBL test dataset.

As shown in Table 1, HuiduRep significantly outperforms CEED and MoCo-v3 on both the 10-unit
and 15-unit test datasets, indicating superior representation learning capability. Furthermore, during
testing, HuiduRep has a lower number of active parameters (0.6M) compared to CEED (1.8M).
These results demonstrate that HuiduRep not only achieves better performance with reduced model
complexity, but also adapts more effectively to downstream tasks such as spike sorting, which require
strong representational ability.

To evaluate the performance of the HuiduRep Pipeline in real-world spike sorting tasks, two publicly
available datasets, Hybrid Janelia and Paired MEA64c Yger, are selected as test sets. Multiple
spike sorting tools, including KiloSort series [17] and MountainSort series [2], were evaluated. The
performance of KiloSort4 and MountainSort5 was evaluated on our local evaluation server. The
results for SimSort were cited from its original publication [20], while the performance data for the
remaining methods were obtained from the results provided by SpikeForest [21].

We recorded three metrics: accuracy (Acc), precision, and recall of different models across various
test sets. Moreover, we adopted the SpikeForest definitions for computing these metrics, which
slightly differ from the conventional calculation methods. The accuracy balances precision and recall,
and it is similar to the F1-score. These metrics are computed based on the following quantities: n1:
The number of ground-truth events that were missed by the sorter; n2: The number of ground-truth
events that were correctly matched by the sorter; n3: The number of events detected by the sorter that
do not correspond to any ground-truth event. Based on these definitions, the metrics are calculated as:

Precision =
n2

n2 + n3
, Recall =

n2

n1 + n2
, Accuracy =

n2

n1 + n2 + n3
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Table 2: Spike sorting results (Mean ± SEM) on the HYBRID_JANELIA dataset. Results for other
methods are obtained from SpikeForest. Best-performing values are highlighted in bold.

Method Hybrid_Janelia-Static (SNR > 3) Hybrid_Janelia-Drift (SNR > 3)
Accuracy Recall Precision Accuracy Recall Precision

HerdingSpikes2 [22] 0.35± 0.01 0.44± 0.02 0.53± 0.01 0.29± 0.01 0.37± 0.02 0.48± 0.02
IronClust [23] 0.57± 0.04 0.81± 0.01 0.60± 0.04 0.54± 0.03 0.71± 0.02 0.65± 0.03
JRClust [24] 0.47± 0.04 0.63± 0.02 0.59± 0.03 0.35± 0.03 0.48± 0.03 0.57± 0.02
KiloSort [25] 0.60± 0.02 0.65± 0.02 0.72± 0.02 0.51± 0.02 0.62± 0.01 0.72± 0.03

KiloSort2 [26] 0.39± 0.03 0.37± 0.03 0.51± 0.03 0.30± 0.02 0.31± 0.02 0.57± 0.04
KiloSort4 [4] 0.40± 0.03 0.45± 0.03 0.52± 0.05 0.34± 0.02 0.35± 0.02 0.61± 0.03

MountainSort4 [27] 0.59± 0.02 0.73± 0.01 0.74± 0.03 0.36± 0.02 0.57± 0.02 0.61± 0.03
MountainSort5 [28] 0.40± 0.06 0.50± 0.05 0.52± 0.08 0.33± 0.04 0.40± 0.03 0.64± 0.05
SpykingCircus [5] 0.57± 0.01 0.63± 0.01 0.75± 0.03 0.48± 0.02 0.55± 0.02 0.68± 0.03
Tridesclous [29] 0.54± 0.03 0.66± 0.02 0.59± 0.04 0.37± 0.02 0.52± 0.03 0.55± 0.04

SimSort [20] 0.62± 0.04 0.68± 0.04 0.77± 0.03 0.56± 0.03 0.63± 0.03 0.69± 0.03
Pipeline without DAE 0.69± 0.02 0.72± 0.02 0.87± 0.01 0.56± 0.02 0.61± 0.02 0.83± 0.01

Pipeline with DAE 0.70± 0.02 0.75± 0.02 0.85± 0.01 0.60± 0.02 0.65± 0.02 0.83± 0.01

Table 3: Spike sorting results (Mean ± SEM) on the Paired_MEA64C_Yger dataset. Results for
other methods are obtained from SpikeForest.Note: KiloSort2 was evaluated on 8 out of 9 recordings,
as it is failed to run on one recording.

Method Paired_MEA64C_Yger (SNR > 3, 9 recordings)
Accuracy Recall Precision

HerdingSpikes2 [22] 0.77± 0.10 0.92± 0.04 0.80± 0.09
IronClust [23] 0.73± 0.09 0.96± 0.02 0.74± 0.09
KiloSort [25] 0.80± 0.09 0.96± 0.01 0.82± 0.09
KiloSort2 [26] 0.69± 0.11 0.99± 0.01 0.70± 0.11
KiloSort4 [4] 0.71± 0.10 0.99± 0.01 0.72± 0.11

MountainSort4 [27] 0.80± 0.09 0.97± 0.02 0.81± 0.09
MountainSort5 [28] 0.57± 0.10 0.85± 0.08 0.60± 0.10
SpykingCircus [5] 0.78± 0.10 0.98± 0.01 0.79± 0.10
Tridesclous [29] 0.79± 0.09 0.97± 0.02 0.80± 0.09

Pipeline with DAE 0.80± 0.08 0.94± 0.02 0.82± 0.09

As shown in Tables 2 and 3, HuiduRep Pipeline consistently outperforms other models on the Hybrid
Janelia dataset in terms of accuracy and precision, under both static and drift conditions. However, its
recall is slightly lower than that of IronClust but significantly higher than that of the other models.
This phenomenon is potentially due to threshold-based spike detection missing low-amplitude true
spikes or IronClust detecting an excessive number of spikes, which leads to a high recall and lower
precision. On the high-density, multi-channel Paired MEA64C Yger dataset, the HuiduRep Pipeline
also achieves slightly higher accuracy and precision compared to other models. However, the recall
remains slightly lower. The performance on both datasets demonstrates the practical applicability of
the HuiduRep pipeline for real-world spike sorting tasks.

Notably, applying the DAE, originally an auxiliary module during training, before the contrastive
learning encoder during inference leads to significant improvements in both accuracy and recall
scores. We will provide an in-depth analysis of this effect in the appendix.

5 Conclusion

HuiduRep employs a view generation strategy that preserves semantic invariance while maintaining
physiological plausibility, simulating natural variability such as spike jitter, overlap, and interference.
This encourages learning robust spike representations under realistic conditions.
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Across diverse datasets from distinct neural structures, HuiduRep outperforms current approaches by
integrating contrastive learning with a DAE, showing resilience to low SNR, drift, and spike collisions.
Its architecture, inspired by neuroscience, offers improved robustness to real-world variability.

While developed for extracellular recordings, the core methodology, self-supervised learning with
physiologically grounded augmentations, can extend to other bioelectrical signals like EMG, ECoG,
and EEG, which face similar challenges. Future work may explore such extensions and the integration
of richer biological priors or advanced detection modules to further enhance generalization and
interpretability.
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A Technical Appendices and Supplementary Material

A.1 View Generation Methods

During training, our model adopts five types of view augmentation strategies as described below.

1. Collision: To simulate the overlap of spikes from different neurons, which frequently occurs
during real extracellular recordings, we randomly sample a waveform from the training
dataset and superimpose it onto the original waveform to create a collision-like scenario. We
scale the selected waveform uniformly by a value x ∼ Uniform(0.2, 1), randomly shifts
it forwards or backwards by a number of samples dictated by s ∼ Uniform(5, 60), and
finally adds this random scaled, shifted waveform to the original waveform.

2. Amplitude Jitter: To simulate the natural voltage fluctuations of spikes observed in real
extracellular recordings, we apply an amplitude scaling transformation to the original
waveform. Specifically, each sample of waveform is multiplied by a randomly sampled
factor x ∼ Uniform(0.8, 1.2).

3. Temporal Jitter: To simulate the subtle timing variations in extracellular recordings, we
apply a three-step jittering strategy: (1) upsample the waveform 8× via linear interpolation
to increase temporal resolution; (2) downsample with a random offset (1 ∼ 8) to introduce
sub-sample timing jitter; and (3) randomly shift the waveform by ±2 time steps to mimic
small phase variations.

4. Noise: To simulate the structured noise characteristics observed in extracellular recordings,
we inject spatio-temporally correlated Gaussian noise into the original waveform. The noise
is generated using the square roots of precomputed spatial and temporal covariance matrices,
which are estimated from the training data.
Let Z ∈ RC×T be a standard Gaussian noise matrix. We extend z to shape Ctotal × T by
zero-padding along the spatial dimension, where Ctotal is the total number of channels used
for estimating the spatial covariance.
Given the spatial and temporal covariance matrices Σs ∈ RCtotal×Ctotal and Σt ∈ RT×T , we
compute their matrix square roots

√
Σs and

√
Σt via singular value decomposition (SVD).

The final noise is then constructed as:

N =
√
Σs · z ·

√
Σt

Here, N ∈ RCtotal×T is the correlated noise. We take the first C rows of n and add it to the
original waveform X ∈ RC×T :

X̃ = X+N

5. Crop: To prevent the model from always relying on the central channel as the dominant
feature, which might lead to biased representations, we adopt a cropping strategy over the
channel dimension. Specifically, for each input waveform X ∈ RC×T , we define a cropping
window of size C ′ = 11 and extract a subset Xcrop ∈ RC′×T centered around a selected
channel index.
To diversify the location of the dominant channel (typically the one with the highest ampli-
tude), we randomly select the cropping center with two options:
With probability p = 0.5, we center the crop at the middle channel;
With probability 1− p, we select a nearby off-center channel such that the true dominant
channel still lies within the cropped region.

Each view augmentation strategy is applied with a specific probability to generate views of the input
spike waveform. The specific probabilities used for each augmentation method are summarized in
Table 4.

While our view augmentation strategies are inspired by CEED [3], they are not identical; notably,
we also introduce the Noise augmentation method. Importantly, Noise augmentation is applied
exclusively when constructing View 1. This design ensures that only View 1 contains localized
perturbations that simulate realistic noise conditions, which are essential for training the denoising
autoencoder (DAE) branch. In contrast, View 2 is kept relatively clean to preserve the integrity of the
contrastive learning objective and is not used for DAE training.
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Table 4: Probability of each augmentation strategy

Augmentation View1 View2
Collision 0.4 0.4

Amplitude Jitter 0.7 0.7
Temporal Jitter 0.6 0.6

Noise 0.6 0.0
Crop 1.0 1.0

A.2 Preprocessing Steps

Prior to spike detection, we preprocess the extracellular recordings using the standard bandpass and
notch filters adopted by SpikeForest [21]. Specifically, we apply a bandpass filter (typically 300–5000
Hz) to isolate spike-related activity and a notch filter (60 Hz) to suppress interference. These steps
help to reduce baseline drift and remove irrelevant frequency components, facilitating more accurate
spike detection.

The input to our HuiduRep is a waveform of shape R11×121, where 11 denotes the number of channels
and 121 denotes the number of sampling points. This means that for each detected spike waveform,
HuiduRep can take into account the information from up to 11 adjacent channels, including its
dominant channel. To handle recordings that do not conform to this shape (e.g., due to varying
channel counts), we design a preprocessing function that automatically normalizes the input to
the expected format. Specifically, our preprocessing function consists of the following steps to
standardize input waveforms to the required shape:

1. Normalization: We perform z-score normalization independently along both the temporal
and channel dimensions of the input waveform. Specifically, for the input tensor X ∈ RC×T ,
we compute:

X
′

c,t =
Xc,t − µc

σc

Here, µc and σc are the mean and standard deviation calculated along the temporal dimension
for each channel c. This normalization standardizes the amplitude distribution across time
within each channel.

2. Interpolation: To address spike waveforms with a low number of sampling points, we
employ linear interpolation to increase the temporal resolution of the signals. Specifically,
each waveform is upsampled by a factor of 1.5-2.5 via linear interpolation. Empirically,
this upsampling factor was found to best preserve waveform morphology while minimizing
computational overhead.

3. Channel Repeating: For spike waveforms with fewer than 11 channels, we replicate
channels to match the required input dimensionality of the model. Specifically, each
original channel is repeated multiple times until the total number of channels reaches
or exceeds 11. For example, a 4-channel waveform with channels [1,2,3,4] is expanded
to [1,1,1,2,2,2,3,3,3,4,4,4] by repeating each channel three times. For a more detailed
description of the channel repetition strategy, please refer to our source code repository.

4. Channel Truncation: For spike waveforms containing more than 11 channels, we crop
the input along the channel dimension to match the required input size. Similar to our
cropping augmentation method, we select a fixed window of size 11 channels centered at
the middle channel of the input. This ensures that the most relevant central channels are
retained consistently across samples.

A.3 Implementation Details

For training HuiduRep, we used the AdamW optimizer [30] with a weight decay of 1 × 10−2 to
regularize the model and reduce overfitting. Additionally, we employed a cosine annealing learning
rate scheduler with a linear warm-up phase during the first 10 epochs, where the learning rate
increased to a maximum of 1× 10−4.
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Table 5: ARI scores (Mean ± SEM, Max, Min) across different weight factor α of HuiduRep,
evaluated with IBL test dataset.

ARI / α 0.0 0.2 0.4 0.6 0.8 1.0
Mean ± SEM 70.5± 1.3 71.9± 1.3 67.0± 1.6 71.1± 1.4 65.3± 1.5 69.6± 1.4

Max 91.5 92.7 91.0 91.2 88.8 90.5
Min 43.9 43.3 37.0 45.7 37.2 39.8

Table 6: ARI scores and time cost per data point (Mean ± SEM) across different representation (Rep)
dimensions of HuiduRep, evaluated with IBL test dataset.

Rep Dimensions 16 32 48
ARI 69.7± 1.4 71.9± 1.3 72.9± 1.3

Time (seconds) 5.39 ± 0.12 6.78 ± 0.18 7.47 ± 0.23

To balance the contrastive learning branch and the DAE branch, we assigned a weight factor α to the
denoising loss to control its contribution during training:

L = α · Ldenoising + Lcontrastive

The model’s performance is evaluated across different values of α to determine the optimal trade-off
on the IBL test dataset. For each α setting, the learned representations were clustered using GMM,
and the Adjusted Rand Index (ARI) was computed against the ground truth labels.

We report the mean ± standard error (SEM), along with the max and min ARI values of each model
across the 100 data points. The result of each data point is averaged over 50 independent GMM runs.
As shown in Table 5, the best overall performance was achieved when α = 0.2, with the highest ARI
score and the highest max value. Notably, both very low (α = 0.0) and high values (α ≥ 0.8) led to
decreased performance, indicating that a moderate contribution of the denoising branch is essential
for improving robustness and the overall performance of HuiduRep.

In addition, using the same IBL test dataset and evaluation method, we also evaluated the effect
of different representation dimensions on the model’s performance with α = 0.2. As shown in
Table 6, with the representation dimension increasing, the model’s performance generally improves,
suggesting enhanced representational capacity. However, higher-dimensional representation also
leads to greater computational costs. To balance efficiency and performance, we set the representation
dimension to 32 and fixed α at 0.2 in all subsequent experiments.

All models under different settings were trained for 300 epochs with a batch size of 4096 and a fixed
random seed on a server with a single NVIDIA L40s GPU and CUDA 12.4. A local evaluation server
with a single NVIDIA RTX 5080 GPU and CUDA 12.8 is used to perform all experiments.

A.4 Ablation Study

To investigate why the DAE enhances model performance during inference and to gain insights into
its underlying mechanism, we randomly selected 500 spike samples per unit from each test dataset
and the IBL training dataset. For each test dataset, the same set of samples was processed using two
different methods: one with the DAE and one without. Principal Component Analysis (PCA) was
then applied to reduce the dimensionality of the spike data to two dimensions. We computed the
Euclidean distance between the centroid of the test samples and that of the IBL training samples in
the reduced feature space. Furthermore, we applied HuiduRep followed by GMM to both groups and
calculated the silhouette scores along with ARI of the resulting clusters. Since each recording in the
Paired MEA64C yger dataset contains only one ground truth unit, the ARI becomes inapplicable.
Each experiment was repeated 20 times, and the mean and standard deviation (STD) were reported.

As shown in Table 6 and Figure 2, applying the DAE to spike waveforms from out-of-distribution
(OOD) datasets (Paired MEA64C Yger and Hybrid Janelia) significantly reduces their Euclidean
distance to the IBL training set in the reduced feature space. This indicates that the DAE has
learned to capture the feature distribution of the original training data. By aligning OOD data closer
to the training data, the DAE effectively performs domain alignment, improving the overall ARI.
Consequently, as shown in Table 7, applying the DAE before the contrastive learning encoder enables
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Table 7: Euclidean distances between the IBL training dataset and other datasets, along with silhouette
score and ARI of each dataset with and without the DAE.

Dataset without DAE with DAE
Distance Silhouette Score ARI Distance Silhouette Score ARI

IBL Test Dataset 0.46± 0.23 0.240± 0.010 0.72± 0.03 8.64± 0.24 0.087± 0.008 0.44± 0.03
Paired MEA64C 1 23.43± 0.07 0.176± 0.009 N/A 7.77± 0.01 0.133± 0.011 N/A
Paired MEA64C 2 24.72± 0.08 0.157± 0.006 N/A 7.53± 0.02 0.120± 0.008 N/A
Hybrid Janelia 1 16.00± 0.14 0.195± 0.011 0.60± 0.03 7.02± 0.03 0.150± 0.005 0.64± 0.03
Hybrid Janelia 2 14.53± 0.10 0.127± 0.005 0.57± 0.02 6.50± 0.02 0.103± 0.005 0.58± 0.01
Hybrid Janelia 3 12.47± 0.09 0.159± 0.005 0.55± 0.02 6.41± 0.02 0.131± 0.009 0.56± 0.03

Figure 2: Reduced feature space of IBL training dataset and other datasets. The centroid of each
dataset is marked with a black X. The features of each dataset are reduced to 2 dimensions using
PCA.

HuiduRep to better handle distribution shifts, resulting in improved accuracy and recall scores,
especially on noisy and drifting recordings.

However, this benefit comes with a potential trade-off: the DAE may compress spike waveforms into
a more compact space, reducing inter-class variability and thereby making them less distinguishable
and slightly reducing precision scores in the subsequent spike sorting task. This effect is reflected
in the decreased silhouette scores observed after applying DAE. Moreover, for in-distribution (ID)
test datasets such as the IBL test dataset, the use of DAE may distort the original data distribution,
resulting in increased distance to the IBL training dataset along with lower ARI.

This suggests that while DAE effectively aligns OOD data, it may negatively impact performance
when applied to data already well-aligned with the training distribution. Therefore, when processing
a new dataset, one may first examine the data distribution with and without the DAE to assess its
impact on the alignment of the data.

11


	Introduction
	Method
	Architecture of HuiduRep
	Spike Sorting Pipeline

	Datasets
	International Brain Laboratory (IBL) Dataset
	Hybrid Janelia Dataset
	Paired MEA64C Yger Dataset

	Experiments
	Conclusion
	Technical Appendices and Supplementary Material
	View Generation Methods
	Preprocessing Steps
	Implementation Details
	Ablation Study


