
Byte-level Tokenizers Unavoidably Enable LLMs to Generate
Ill-formed UTF-8

Preston Firestone, Shubham Ugare, Gagandeep Singh, Sasa Misailovic
University of Illinois Urbana-Champaign
{pf8, sugare2, ggnds, misailo}@illinois.edu

Abstract

Subword tokenization segments input text according to a pre-defined vocabu-
lary to feed it into a language model; the language model, in turn, generates a
sequence made from this same vocabulary. The members of the vocabulary can
be built of code points or bytes. Using code points means that all members of
the vocabulary are valid UTF-8 characters. However, it also requires thousands
of initial members to achieve acceptable coverage of inputs and more than a mil-
lion to entirely avoid out-of-vocabulary errors. Beginning with bytes, on the
contrary, avoids out-of-vocabulary errors with only 256 initial members of the
vocabulary, but the members of the vocabulary and sequences of them are not
guaranteed to be valid UTF-8. Sequences that are not valid UTF-8 break code
that assumes its input to be valid UTF-8. Applications of language models that
operate under this assumptionmust account for the breakage thereby introduced.
In this paper, we formalize tokenization using monoid theory and prove that
byte-level tokenizers with vocabularies smaller than the full Unicode space
inevitably face either out-of-vocabulary issues or generate invalid UTF-8 se-
quences. We demonstrate formally that attempting to incrementally convert to-
kens back to a string and interpret the results as UTF-8 gives different results than
converting the whole sequence of tokens at once. This formal result causes real-
world bugs; in some cases we discover bugs whose existence was predicted by
the theoretical result. We evaluatemitigations for the problem identified and pro-
vide case studies of major foundation models, serving engines, and constrained
generation systems.

1 Introduction

Systems for processing natural language usually begin by cutting their input, a long series of sym-
bols, into snippets. Traditionally, cutting has been done along boundaries from prior knowledge
of the language, such as words, morphemes, or phonemes. In the last ten years, natural language
processing has moved to using “subword” tokenization, where the cutting is derived directly from
the corpus rather than programmed manually (Mielke et al., 2021). These approaches begin with a
maximally (minimally) cut training corpus and remove (add) cuts until some stopping condition is
reached. The set of snippets in the resultant cutting of the training corpus contains the vocabulary
that will be used to segment future inputs.
When beginning this process, one generally has two choices of granularity: character-based, as in-
troduced by Sennrich et al. (2016); Kudo & Richardson (2018), or byte-based, as introduced by Rad-
ford et al. (2019); Wang et al. (2020). The character-based approach begins with a vocabulary made
up of characters and cuts inputs into snippets of characters. The byte-based approach cuts the
input into snippets of bytes. The character-based approach always generates valid characters, but
will encounter characters that are out of its vocabulary unless the vocabulary includes all Unicode
code points, each representing a numerical value that maps to a specific Unicode character.
Detokenization should be a morphism: combining two token sequences and detokenizing them
should yield the same result as detokenizing each sequence separately and combining the results.
This property is crucial for reliable constrained generation and token-by-token streaming inter-
faces, where incremental processing must align with final outputs. We show that byte-level deto-
kenizers are not in general morphisms because of the post-processing that converts the bytes into

1

Table 1: Unicode code points and bytes representing the first word of the Rigveda, अग्निमीळ,े
transliterated agnim īḻe and meaning “I praise Agni [fire]”. The top row contains the Unicode code
points making up the sequence. Note that several of the characters are broken down into seperate
base and combining code points (Unicode Technical Commitee, 2025, §2.11). The bottom row is the
UTF-8 bytes encoding the top row. The squiggles ≀ indicate the tokenization of this word according
to cl100k_base, GPT-4’s tokenizer’s vocabulary.

अ ग ् न ि म ी ळ े
≀E0A4 ≀ 85≀ ≀E0A4 ≀ 97≀ ≀E0A58D E0A4 ≀A8≀ ≀E0A4BF E0A4 ≀AE≀ ≀E0A580≀ ≀E0A4 ≀ B3≀ ≀E0A587≀

characters for manipulation by further processes. Table 1 shows the tokenization of a string by a
byte-level tokenizer and illustrates the problem. If we were detokenizing incrementally, the first
token would be the bytes ’E0 A4’, then ’85’, then ’E0 A4’, and so on. Any token that begins or ends
in the middle of a character encoding, which in the bottom row of Example 1 is any token whose
beginning or end is not aligned with the vertical lines separating characters, cannot be decoded as
valid UTF-8, and attempting to do so will lead to an error. Then detokenizing the two tokens E0
A4 and 85 separately will give two errors, but detokenizing the two tokens together will give the
character अ.
Contributions: The main contributions of our paper are:

? We introduce a new formalism for tokenization, based on cutting sequences into snippets based
on a vocabulary, based on the segmentations of Berglund & van der Merwe (2023) and the
monoids and stochastic maps of Gastaldi et al. (2024).

? Using our new formalism, we prove an impossibility result limiting vocabularies made up of
byte-level tokens: if not all UTF-8 encoded characters are present in the vocabulary, it will
either be able to generate sequences that are ill-formed UTF-8 or encounter UTF-8 encoding
forms that are not in its vocabulary.

? We show that decoding a sequence of tokens as UTF-8 can violate formal assumptions about the
properties of tokenizers, such as their being lossless or homomorphisms.

? We categorize families of foundation language models according to whether they use a
character-level or byte-level tokenizer, study the impact that our theoretical results have had
on serving engines and constrained generation systems, and find and fix bugs in existing tools.

2 Background

Tokenization is a preprocessing step of almost all language models (LMs). Most existing tokenizers
work by breaking an input text into discrete segments of a vocabulary. Deciding what the members
of the vocabulary should be and determining which of the many possible segmentations to return
are major distinctions among existing tokenization algorithms (see Schmidt et al., 2024).

2.1 Representing formal languages by monoids

Following Gastaldi et al. (2024), Sakarovitch (2009) and Lothaire (1997), we treat languages as
monoids (algebraic structures). We develop the formalism here in sketch to suit our needs and
refer the reader to these references for detail.
Definition 1 (Monoid). A monoid is a triple composed of a set of elements, a binary operation
on members of that set that is associative but not commutative, and an identity element such that
applying the binary operation to the identity element and any other member of the monoid results
in that member. Monoids’ binary operation is associative for all of its members:

(s1 ·Σ s2) ·Σ s3 = s1 ·Σ (s2 ·Σ s3) (1)
The identity element results in no change when paired with any member of the monoid.

s ·Σ ϵΣ = ϵΣ ·Σ s = s (2)
Set theoretical operations (⊂,⊆,=, . . .) are defined between monoids by comparing their sets.

2

We refer to monoids by Greek capital letters, their members by subscripted lowercase Latin let-
ters, the binary operation is a subscripted dot, and the empty string is a subscripted epsilon. A
sequence of members of a monoid is referred to by a lowercase Greek letter. Subscripts and binary
operations are left out when context makes the meaning clear. We refer to the binary operation as
concatenation, and when multiple members of Σ have been concatenated, as in Equation (1), we
refer to the result as a sequence.
Definition 2 (Free monoid). The free monoid generated by a set Σ, denoted Σ∗, is the set of all
finite sequences (strings) of elements from Σ, including the empty string (when n = 0):

Σ∗ = {s1s2 . . . sn | n ≥ 0, si ∈ Σ for all i} (3)

2.2 Relationship between finite set and free monoid

Here we establish a relationship between a vocabulary and the set of all the sequences it can gen-
erate. The vocabulary is of finite size (|Σ| ∈ N) and the set of all sequences is the free monoid
over that vocabulary (Σ∗). In particular, we need to be able to compare the free monoids of two
potentially disjoint vocabularies in order to make claims about what sequences can and can’t be
generated by those vocabularies. We state here two lemmas and corollary that will be useful in the
next sections.
Lemma 1. If all the members of a vocabulary Σ are in the vocabulary ∆, then all the sequences that
can be made of members of Σ can be made of members of ∆:

Σ ⊆ ∆→ Σ∗ ⊆ ∆∗.

Corollary 1. If there is some free monoid Σ∗ that contains a member not in some other free monoid
∆∗, then the monoid Σ also contains a member not in ∆:

Σ∗ * ∆∗ → Σ * ∆.

The converse of this corollary can be true or false. A counter example is where Σ contains all of
∆ and some members of ∆∗: clearly Σ∗ is equal to ∆∗, so the implication cannot hold in all cases.
We can recuperate the converse of Corollary 1 in a weak form as Lemma 2.
Lemma 2. If some monoid Σ contains a member not in some free monoid ∆∗, the the free monoid Σ∗
of the first monoid Σ also contains a members not in the free monoid ∆∗:

Σ * ∆∗ → Σ∗ * ∆∗.

2.3 Mappings and homomorphism

We shall map sequences back and forth between differentmonoids in order to describe tokenization
and detokenization of inputs.
Definition 3 (Stochastic map). A stochastic map κ from a monoid Σ to a monoid ∆ is a function
from Σ to the set of probability distributions on ∆ (Gastaldi et al., 2024).

We do not work explicitly with probability distributions in this paper, so our notation will act as if
maps between monoids are functions. We do not introduce the assumption that a mapping always
returns the same value. The deterministic case can be represented in a stochastic framework by
assigning a probability of one to the expected tokenization and zero to all others, so we retain the
generality of not including this assumption.
Finally we introduce the concept of a morphism.
Definition 4 (Morphism). A map κ from a monoid Σ to ∆ is a morphism if and only if, for all
σ, σ′ in Σ,

κ(σ ·Σ σ′) = κ(σ) ·∆ κ(σ′) and κ(ϵσ) = ϵδ. (4)

3 Tokenization and Monoids: UTF-8 Breaks Homomorphism

In Subsection 3.1, we introduce a novel formalization of tokenization in terms of cutting the input
into snippets found in a pre-established vocabulary, building toTheorem 1, showing that tokeniza-
tion is only a morphism in one direction. In Subsection 3.2, we provide an impossibility result,

3

Proposition 1, showing that a byte-level vocabulary, unless it contains at least all the encoding
forms of UTF-8, will either encounter inputs that are not in its vocabulary or be able to generate
sequences that are not well-formed UTF-8. Finally, in Subsection 3.3, we show that decoding the
bytes a model generates as UTF-8 is not a morphism.

3.1 Binding and cutting monoids

Definition 5 (Bound monoid). A bound monoid of a given monoid is a finite subset of that
monoid and is represented by a superscripted circle.

(Σ◦ ⊂ Σ) ∧ (|Σ◦| ≤ n, n ∈ N) (5)

We also need a way of keeping track of the smaller sequences out of which larger sequences are
constructed by introducing separated markers between.
Definition 6 (Cut monoid). The cut monoid of a given monoid is that monoid, to whose set
of members the new symbol ≀ has been added, and whose members have been prepended and
postpended by it. It is indicated by a superscripted squiggle

Σ≀ = {≀σ ≀ |σ ∈ Σ} (6)

When discussing a member of a cut monoid, we refer to each of the subsequences between the ≀
signs as snippets of the longer sequence. We collapse adjacent squiggles for legibility: ≀≀ → ≀.

Our formalism of cutting is most similar to the treatment of Berglund & van der Merwe (2023),
though unlike them we describe the cutting process in terms of monoids and do not refer to partic-
ular tokenization algorithms. When applying the freeing operation (see Definition 2), the bounding
operation, and the cutting operation to monoids built from the same original “alphabet”, the binary
operation and identity element remain the same by the natural insertion of all these monoids into
their common basis. This will be necessary for our definition of a tokenizer.
Definition 7 (Tokenizer). We call a tokenizer any pair of mappings (τ, κ) between some monoids
Σ∗ and Σ∗≀◦∗ such that:

τ : Σ∗ → Σ∗≀◦∗ κ : Σ∗≀◦∗ → Σ∗ ∀σ ∈ Σ∗ κτσ = σ. (7)

In the semantics introduced in this section, τ cuts its argument such that each snippet of the cut
sequence is a member of some finite set of snippets defined in advance, the vocabulary Σ∗≀◦. Each
given tokenizer τ is parameterized by the vocabulary Σ∗≀◦ it is defined over, but we omit this
detail in the notation because it is not relevant to our needs. τ is a stochastic map in the sense
of Definition 3: it returns a probability distribution over Σ∗≀◦∗ (Gastaldi et al., 2024; Ahia et al.,
2023). κ joins the cut sequence by removing all the cut operators.1 The definition of tokenization
and homomorphisms imply the following important theorem:

Theorem 1. κ is a morphism, but τ is not.

Proof. Joining is homomorphic: The result of concatenating two cut sequences and removing the
cut marks is always identical to removing the cut marks and concatenating them: the cut symbols
are removed and the resultant string is identical to its uncut version.
Cutting is not homomorphic: Take some s0 · · · sn ∈ Σ∗ and cut it into some ≀s0 · · · sm−1 ≀ sm · sm+1 ≀
sm+2 · · · sn≀. It is impossible to cut s0 · · · sm and sm+1 · · · sn such that there is not a cut after sm
and before sm+1, so the concatenation of any separate cutting of the two sequences must include
the subsequence sm ≀ sm+1, even though this was not necessary when cutting the entire sequence
s0 · · · sn.

We shall make extensive use of this theorem in what follows.
1Mnemonically, τ stands for τέμνω, to cut, and κ stands for κολλάω, to glue.

4

3.2 The UTF-8 Encoding Scheme

Humans interact with text in the form of characters, but computers interact with numbers. To
that end, the Unicode Standard maps each graphical character of each human writing system to
a unique natural number (Unicode Technical Commitee, 2025). In the standard, each cell depicts
a character (“Abstract character” in Unicode jargon) and an associated number (“Code point” in
Unicode jargon.)
Definition 8 (Code point). TheUnicode code points are the values in the range 0 through 1,114,111;
we refer to the monoid of the code points as Γ = {γ|γ ∈ [0, 1114111]} (Unicode Technical
Commitee, 2025, D9).

Each code point is associated with a character with an appearance, properties, and so on. To store
them in a computer, we must encode the members of Γ as members of B, stored as a sequence of
bytes in memory. UTF-8 is the dominant encoding scheme (Unicode Technical Commitee, 2025).
Definition 9 (UTF-8). The UTF-8 encoding forms are a finite number sequences β of B∗, each one
to four bytes long. We refer to the monoid of UTF-8 forms as Υ, which is some B∗◦. We say that
|Υ| = |Γ|, so there exists a one-to-one (or bijective) mapping between Γ and Υ, allowing us to put
each member of Γ into the machine as a unique member of Υ. The sequences of B∗ that are not in
Υ∗ are ill-formed; the members of B∗ that are in Υ∗ are well-formed.2

Proposition 1. Any vocabulary B∗≀◦ that contains a member β that is ill-formed UTF-8 (σ /∈ Υ∗)
will be able to generate ill-formed sequences:

B∗≀◦ * Υ∗ → B∗≀◦∗ * Υ∗. (8a)

Any vocabulary that does not contain at least all well-formed UTF-8 character encodings will not be
able to generate all well-formed UTF-8 sequences:

Υ * B∗≀◦∗ → Υ∗ * B∗≀◦∗. (8b)

Proof. Lemma 2 says that if a monoid (B∗≀◦ in Equation (8a) and Υ in Equation (8b)) that contains
members not in the free monoid of some other monoid (Υ∗ in Equation (8a) and B∗≀◦∗ in Equa-
tion (8b)), then the free monoid of that monoid (B∗≀◦∗ in Equation (8a) and Υ∗ in Equation (8b))
contains members not in the free monoid of the other monoid. We simply substitute B∗≀◦ and Υ
for the Σ and ∆ of Lemma 2.

Proposition 1 establishes that byte-level tokenizers face an unavoidable issue: they must either
include invalid UTF-8 sequences in their vocabulary or be unable to represent all possible Unicode
text. This fundamental limitation creates a trade-off between vocabulary size, coverage, and UTF-8
validity that affects all byte-level tokenizers.

3.3 Enforcing UTF-8 breaks homomorphism

Definition 10 (Decoding). The process of cutting a sequence β in B∗ into some β≀ in B∗≀ such
that the number of snippets of β≀ that are members of Υ is maximized is called decoding.3 UTF-8
guarantees that there is exactly one way of decoding each β in B∗. Decoding can be understood
tokenizing an input β using some deterministic τ whose vocabulary is Υ≀.
Definition 11 (Encoding). The opposite direction, going from a sequence of Υ∗ to a sequence of
B∗, is called encoding.4 This can be understood as detokenizing using some κ on a member of
Υ≀∗ to produce the corresponding member of B∗ by Υ≀∗’s natural insertion into B∗ (recall, Υ≀∗ is
syntactic sugar for a particular B∗◦≀∗).

2See Appendix B for more detail.
3The direction from B∗ to Υ∗ is “decoding” because our ultimate goal is to recover the abstract characters

in Γ encoded by the members of Υ that we recover from β.
4Thedirection from Υ∗ to B∗ is called “encoding” because we produce the bytes β that encode the sequence

of Γ∗ represented by this particular sequence of Υ∗.

5

Algorithm 1 Buffer bytes that are not yet valid encoding forms until they are completed by
subsequent tokens; emit characters as and when they can be successfully decoded.
Require: buffer← a queue for tokens.
1: function incRementalDetoKenization(token)
2: eneue(buffer, token)
3: if isWellFoRmedUTF8(buffer) then
4: decoded← decodeUTF8(buffer)
5: cleaR(buffer)
6: return decoded
7: else
8: return ϵ

Our definition of encoding and decoding differs from that of the Unicode Standard, because we are
eliding, on purpose, the difference between Γ and Υ. Because of a one-to-one map between Γ and
Υ, we can safely ignore the difference between them: converting from one to the other is trivial.

Theorem 2. UTF-8 decoding is not a morphism, but UTF-8 encoding is.

Proof. Theorem 2 follows fromTheorem 1 and Definition 10. Decoding is understood as tokenizing
a sequence of bytes using a vocabulary made up of all and only the valid UTF-8 forms (the members
of Υ). The cutting function τ is known not to be homomorphic. UTF-8 encoding, on the other hand,
is simply the natural insertion of the members of Υ into a byte sequence in B∗ (Unicode Technical
Commitee, 2025, §3.10, D95)

4 Sealing the Leaks in UTF-8 Decoding

Theorem 2 says that decoding UTF-8 is not a morphism. Since the final step of byte-level detok-
enizers is to decode the concatenated tokens as if they were UTF-8, and since UTF-8 decoding is not
morphism, this causes detokenization as awhole to not be amorphism. We saw an example of deto-
kenizing that was not a morphism in Section 1. In Subsection 4.1 we present Algorithm 1, which
patches over this problem, and in Subsection 4.2 we study cases of foundation models, serving en-
gines, and constrained generation systems implementing Algorithm 1 and affected by Theorem 2

4.1 General solution to incrementally detokenizing byte-level vocabularies encoded
using UTF-8.

In order to avoid the breakage caused by erroneously attempting to decode ill-formed bytes, we in-
troduce Algorithm 1, which incrementally detokenizes tokens (proceeding in one direction, always
appending tokens). When a token or tokens are ill-formed UTF-8, it caches them until subsequent
tokens arrive that make the previous ones well-formed. Algorithm 1 can be understood as a trans-
ducer in the sense of Cognetta & Okazaki (2024), where the input alphabet is sequences of bytes
and the output alphabet is sequences of code points.
Algorithm 1 is not a full solution, but it restores enough functionality to solve major issues, dis-
cussed in Subsection 4.2. The time cost of Algorithm 1 is trivial compared the time it takes for
the neural network to generate a token and for that token to be copied from the GPU to the CPU
for further processing. However, as shown in Appendix B, it is easy to create sequences of bytes
that never contain any well-formed subsequences; the memory cost of Algorithm 1 is therefore
unlimited (see Section 6).
Table 2 provides an example. Algorithm 1 consumes the tokens in the bottom row one at a time
from left to right, emitting characters as and when it can. The caching behavior is shown beginning
at the token ≀EA≀, after which the Algorithm consumes two more tokens, ≀99≀ and ≀AE≀, before
emitting the character ꙮ that the three bytes taken together encode. With out Algorithm 1, one
would not be able to generate ꙮ, the multiocular O.

6

Table 2: The result of applyingAlgorithm 1 to the Old Church Slavonic wordмногоꙮчитїй, translit-
erated mnogoočitii and meaning “many-eyed”. The top row is the characters in Γ, and the bot-
tom row the sequence of Υ∗ that encodes them. The squiggles ≀ indicate the tokenization of
cl100k_base.

м ного ꙮ чит ї й
≀D0BC≀ ≀D0BDD0BED0B3D0BE≀ ≀EA≀ ≀99≀ ≀AE≀ ≀D187D0B8D182≀ ≀D1≀ ≀97≀ ≀D0B9≀

4.2 Case studies

Tokenization strategies of foundation models We begin by categorizing existing models ac-
cording to whether their tokenizers are character-level or byte-level; that is, whether their vocab-
ulary is some Υ∗≀◦ or some B∗≀◦. Papers do not consistently report the tokenization style they use:
it very often is passed over; generally, series of models (e.g. Llamas, Gemmas…) reuse the same to-
kenization style of their predecessor. Ablations are seldom performed 5, and usually only a single
vocabulary is prepared. The information in Table 3, when not described in the paper introducing
the model, has been determined from publicly available code or by reference to earlier papers in
the series. All the tokenizers we studied use byte-pair encoding (Gage, 1994) to train their vocab-
ularies, suggesting the potential for experimentation with varying approaches. It would be too
expensive to train each of these series of models, which already exist in several sizes and variants,
using multiple different tokenization strategies; the power of BPE has attained the status of a folk
theorem and is taken for granted.
A middle way exists between byte-level and character-level tokenization, introduced by Senten-
cePiece (Kudo, 2024, v0.1.9). This is referred to as a byte-fallback approach, and the release notes
for version 0.1.9 cite Wang et al. (2020), though the byte-fallback approach is distinct from that
used by Wang et al. (2020): rather than beginning with a vocabulary of 256 bytes, the Sentence-
Piece byte-fallback concept begins with a set of code points and learns the vocabulary from them
as usual. During inference, when the trained tokenizer encounters a stretch of bytes for which
it has no token, it replaces those bytes with strings that represent their value (e.g. “<0x89>” for
(8916) and so on). This retains the property of character-level vocabularies that they only generate
well-formed UTF-8 and lets the model recover some information about the unknown characters.
This approach is not exempt from Theorem 2: consider that a tokenizer without ї in its vocabulary
would tokenize that character as “<0xD1><0x97>”. This violates Equation 7, which says that tok-
enizing and detokenizing an input should return exactly that input. Tokenizers that do not satisfy
this property have their own problems that are outside of the scope of this paper.

Table 3: Foundation models and the tokenizers they use.

Model Tokenizer Type
OpenAI since GPT-2 (Radford et al., 2019; Brown et al., 2020; OpenAI et al., 2024) Byte-level Byte-Pair Encoding
Qwen, Qwen2.5, Qwen3 (Bai et al., 2023; Yang et al., 2025b;a) Byte-level Byte-Pair Encoding 6

Llama 1, 2 (Touvron et al., 2023a;b) Character-level with Byte Fallback 7 8

Llama 3 (Grattafiori et al., 2024) Byte-level Byte-Pair Encoding
Mistral, Mixtral (Jiang et al., 2023; 2024) Character-level with Byte Fallback 9

Gemma 1, 2, 3 (Mesnard et al., 2024; Team et al., 2024; 2025) Character-level with Byte Fallback 10

OLMO, OLMo 2 (Groeneveld et al., 2024; OLMo et al., 2025) Byte-level Byte-Pair Encoding 11

Phi-4 (Microsoft et al., 2025) Byte-level Byte-Pair Encoding

Existing constrained generation systems and non-homomorphic tokenizers Constrained
generation techniques (Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Ugare et al.,
2024; 2025; Banerjee et al., 2025; Loula et al., 2025) are used to restrict language model outputs to
adhere to specified rules.
We examined various grammar-constrained generation systems and tested them to discover their
behavior during partial generation decoding. Among popular grammar-constrained generation

5With the notable exception of OLMo2 (OLMo et al., 2025), which ablates on the size of the tokenizer’s
vocabulary, but not on byte- versus character-level tokenization.

7

tools, we found that Synchromesh Poesia et al. (2022) and SynCode Ugare et al. (2024) encountered
issues when grammars included non-ASCII characters such as emojis or mathematical symbols
such as ‘∀’. Both tools use character-based parsers rather than byte-based ones, which created this
vulnerability. We reported these issues to the SynCode authors and worked with them to fix these
problems in accordance to the Algorithm 1.
To evaluate SynCode’s ability to handle non-ASCII Unicode characters, we conducted an experi-
ment using emoji generation task. We selected a subset of the TweetEval emoji dataset Barbieri
et al. (2020), filtering for three common emoji classes. The task required the model to generate
exactly one emoji character in response to a given tweet, adhering to a constrained grammar spec-
ification. This evaluation directly tested SynCode’s handling of multi-byte UTF-8 sequences, which
was a limitation in earlier versions. The prompt template instructed the model to analyze tweets
and respond with exactly one emoji from the allowed set (Listing 2 in Appendix D). We evaluated
this task across 100 examples from the TweetEval test set on two versions of SynCode: v0.2.0 which
used a character-level finite state machine (FSM), and the current version which implements our
proposed fix in accordance to Algorithm 1.

Table 4: Performance comparison between SynCode ver-
sions on emoji generation task

Metric SynCode v0.2.0 Current Version
Accuracy 0% 62%
Crash Rate 100% 0%

Table 4 presents the results of our
evaluation. SynCode v0.2.0 with its
character-level FSM failed on all 100
examples, resulting in a 100% crash
rate and 0% accuracy. In comparison,
the current implementation after the
fix processed all examples without
crashes, achieving 62% accuracy in
emoji prediction.

Serving Engines Algorithm 1 is a way to correctly incrementally detokenize and is the standard
approach serving engines use to do so. A version of Algorithm 1 first appeared in basaran hyper-
onym (2023). It was introduced to Huggingface TGI by a user’s issue (Hugging Face, 2025; 0x1997,
2023). It percolated thence to vLLM (Kwon et al., 2023; Yard1, 2023), OpenLLM (bentoml, 2025;
jeffwang0516, 2023), and SGLang (Zheng et al., 2024; hnyls2002, 2024). The code deployed to these
engines was produced ad hoc to solve the issue presented without any analysis of its impacts or of
the broader implications brought out in Section 3. Our Algorithm 1 is a simplification of the proce-
dures used in these engines, and we provide a theoretical framework for motivating the algorithm
and examining its deficiencies.

5 Related Work

UTF-8 Challenges in Tokenization. Rahman et al. (2024, §II.D) discuss the challenges of UTF-
8, both because it encodes characters as sequences of varying length, and many characters are en-
coded bymore than one byte. The latter challenge cannot be avoided unless onewants to limit one’s
character space to 256 unique characters, but the former issue is unique to UTF-8 and distinguishes
it from other encoding schemes, UTF-16 and UTF-32, which encode all code points in two and four
bytes respectively. (Petrov et al., 2023; Ahia et al., 2023) show that byte-level and character-level
tokenization introduce severe discrepancies among languages, due both to the varying lengths of
bytes or code points used to represent text in various languages, and because of the number of
tokens popular tokenizers need to tokenize input text.

Tokenization Notation and Terminology. The process we call “cutting” is a standard step
in tokenization but is represented variously in the literature. Sennrich et al. (2016) use (|) or a
space; Gastaldi et al. (2024) use (p); Schmidt et al. (2024) and Bostrom & Durrett (2020) use a space;
Koo et al. (2024) use (); Kudo (2018) uses (/); Kudo & Richardson (2018) wrap tokens with square
brackets; Cognetta &Okazaki (2024) use ␣; andGeng et al. (2024) use color to distinguish tokens. We
follow Berglund & van der Merwe (2023) in using (≀), though we extend their notation by requiring
that cut sequences begin and end with (≀).
We do not require that τ always return the same cutting for a given input: pace Gastaldi et al.
(2024), we do not assume that our tokenizer is deterministic. This assumption is not necessary to

8

the results of this paper, and leaving it out makes them apply to the stochastic tokenizers Gastaldi
et al. (2024) describe, of which deterministic tokenizers are merely a special case.

Morphisms in Tokenization. The term homomorphism is used by Geng et al. (2024) for what
we call a morphism; they leave out the requirement that the empty string map to the empty string.
For Sakarovitch (2009), a homomorphism is a bijective morphism, which Theorem 1 shows tok-
enizers are not. Gastaldi et al. (2024) callmultiplicativewhat we refer to as a morphism; with the
following additional constraint that it map non-empty sequences to non-empty sequences, it also
has a trivial kernel: δ ̸= ϵ∆ → κ(δ) ̸= ϵΣ. Lothaire (1997) and Sakarovitch (2009) call a mapping
that respects Equation (4) a morphism and include the additional requirement that it map the
identity member to the identity member, κ(ϵ∆) = ϵΣ.

Properties of Tokenizers. The property of Equation 7 is optional in some tokenizer defini-
tions. Gastaldi et al. (2024) call such a tokenizer exact. Rajaraman et al. (2024) call such a mapping
consistent and only concern themselves with such tokenizers. For Kudo & Richardson (2018) such
a tokenizer is lossless. We define our tokenizer as linked to a single vocabulary and say that it
returns a probability distribution over the tokenizations that are possible using that vocabulary.
In terms of Gastaldi et al. (2024), such a tokenizer is a stochastic map such that the probability of
any tokenization that contains a token that is not in the tokenizer’s vocabulary is zero.

Subword Tokenization Methods. A cutting tokenizer like ours is a generalization of a sub-
word tokenizer (Sennrich et al., 2016; Kudo, 2018; Kudo & Richardson, 2018). The performance of
subword tokenizers is contested. The reader is directed inter alia/ to (Gallé, 2019; Zouhar et al.,
2023) for a favorable impression and to (Bostrom & Durrett, 2020; Schmidt et al., 2024; Chai et al.,
2024a) for a negative one. The best representatives of the negative camp are tokenizer-free models
that work either directly on input characters (e.g. Tay et al., 2022; Clark et al., 2022) or bytes (e.g.
Xue et al., 2022; Pagnoni et al., 2024), or on images of input text (e.g. Salesky et al., 2021; Rust
et al., 2023; Chai et al., 2024b). Limisiewicz et al. (2024); Hofmann et al. (2022) examine adapting
subword tokenization to respect morphological boundaries in language to improve performance in
non-European languages. Though we must ask why or whether cutting the input in necessary, we
do not discuss it here and direct the reader to the copious literature on the subject (e.g. Gastaldi,
2021; Mielke et al., 2021; Rajaraman et al., 2024). We show the prevalence of cutting tokenizers in
Section 4.2 and consider this to justify our focusing only on this type of tokenizer.

Byte-level and Character-level Approaches. Byte-pair encoding has been studied exten-
sively: Bostrom&Durrett (2020) argue that Unigram is superior to BPE. Gallé (2019) argue that BPE
performs highly because it compresses the input, but Schmidt et al. (2024) perform experiments that
suggest that compression is not necessary or sufficient for performance in a tokenizer. Zouhar et al.
(2023) propose an information theoretic standard, Rényi entropy, for why certain tokenizers per-
form better than others; Cognetta et al. (2024) supply counter examples to the argument of Zouhar
et al. (2023). Libovický et al. (2022) examine the efficacy of tokenizationless character-level ma-
chine translation compared to character-level BPE and find that the former performs only at best
as well as the latter.

6 Conclusions and Future Work

The primary theme of this paper: the law of leaky abstractions (Spolsky, 2002; Kiczales et al., 1992;
Kiczales, 1991) is ineluctable, and attempts to overcome it end in tragedy (Kott, 1964). Rather than
burying the issue, practitioners should accustom themselves to not expecting the inputs or outputs
of their system to be valid UTF-8. Implementers of systems and applications for language models
should test their implementations on non-ASCII characters and ensure that they behave properly
when an input or generated sequence is ill-formed UTF-8. Authors should be more precise when
specifying the tokenization scheme their model uses when describing its architecture. This can be
communicated concisely using the terminology advanced in this paper.
Ultimately the goal of the abstractions we present in this paper is to facilitate the untangling of
the chains of bytes that encode text in our computers. All humans have the right to interact with
computers in their own language and to be able to use computers to manipulate their language,

9

with equal regard to all languages. This paper makes a small step toward that goal by addressing
a leak in one of the abstractions in LLMs.

Ethics Statement

Davis & Suignard (2014) describes security issues that face systems that interact with Unicode as
closely as language model applications and infrastructure must. They describe non-visual exploits
such as buffer overflows during encoding or decoding, text comparison, ill-formed input bytes,
including several exploits that are particular to UTF-8. Davis & Suignard (2014)’s visual exploits
are based on visual spoofs, visually confusable strings: these are two or more different sequences
of code points that appear the same to the user (see Unicode Technical Commitee (2025, §3.11)
and Davis et al. (2024)). These would be tokenized differently by all tokenizers, because they are
not the same byte or code point sequence and so cannot be represented by the same tokens.
Visual spoofs be used for attacks similar to those recently studied by Geh et al. (2025), where mod-
els generated radically different responses to varying tokenizations of the same prompt; in some
cases Geh et al. (2025) broke safety and alignment restrictions trained into models. A visual spoof
would circumvent a mitigation Geh et al. (2025) suggest for their attack: providers of language
models as a service could prohibit users from tokenizing their own texts and require them to sub-
mit well-formed UTF-8 in order to avoid adversarial tokenizations. Visual spoofs could produce
the same effect of adversarial tokenization without the user needing to have direct control over
the tokenization process.
When discussing how to decode UTF-8 sequences, the Unicode standard offers the following for-
boding words: “[s]ilently ignoring ill-formed sequences is strongly discouraged because joining
text from before and after the ill-formed sequence can cause the resulting text to take a new mean-
ing. This result would be especially dangerous in the context of textual formats that carry embed-
ded program code” (Unicode Technical Commitee, 2025, C10).
As discussed in Subsection 4.1, Algorithm 1 is vulnerable to memory leaks caused by pathologically
ill-formed inputs. Any byte-level vocabulary will be able to produce these types of inputs, as
shown in Appendix B. In future work we shall experimentally attack the systems we studied in
Subsection 4.2.

10

References

0x1997. Missing and garbled characters when streaming unicode text. GitHub Issue, 2023.
URL https://github.com/huggingface/text-generation-inference/
issues/333. pages

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo Kasai, David Mortensen, Noah Smith, and
Yulia Tsvetkov. Do all languages cost the same? tokenization in the era of commercial language
models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 9904–9923, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.614. URL
https://aclanthology.org/2023.emnlp-main.614/. pages

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan,
Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou,
Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023. URL https:
//arxiv.org/abs/2309.16609. pages

Debangshu Banerjee, Tarun Suresh, Shubham Ugare, Sasa Misailovic, and Gagandeep Singh.
Crane: Reasoning with constrained llm generation, 2025. URL https://arxiv.org/
abs/2502.09061. pages

Francesco Barbieri, Jose Camacho-Collados, Leonardo Neves, and Luis Espinosa-Anke. Tweeteval:
Unified benchmark and comparative evaluation for tweet classification, 2020. URL https:
//arxiv.org/abs/2010.12421. pages

bentoml. OpenLLM. GitHub Repository, 2025. URL https://github.com/bentoml/
OpenLLM. pages

Martin Berglund and Brink van der Merwe. Formalizing bpe tokenization. Electronic Proceedings
in Theoretical Computer Science, 388:16–27, September 2023. ISSN 2075-2180. doi: 10.4204/eptcs.
388.4. URL http://dx.doi.org/10.4204/EPTCS.388.4. pages

Kaj Bostrom and Greg Durrett. Byte pair encoding is suboptimal for language model pretraining.
In Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2020, pp. 4617–4624, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.414. URL https://aclanthology.
org/2020.findings-emnlp.414/. pages

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165. pages

Yekun Chai, Yewei Fang, Qiwei Peng, and Xuhong Li. Tokenization falling short: On sub-
word robustness in large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
1582–1599, Miami, Florida, USA, November 2024a. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.86. URL https://aclanthology.org/2024.
findings-emnlp.86/. pages

Yekun Chai, Qingyi Liu, Jingwu Xiao, Shuohuan Wang, Yu Sun, and Hua Wu. Autoregressive
pre-training on pixels and texts. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen

11

https://github.com/huggingface/text-generation-inference/issues/333
https://github.com/huggingface/text-generation-inference/issues/333
https://aclanthology.org/2023.emnlp-main.614/
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2502.09061
https://arxiv.org/abs/2502.09061
https://arxiv.org/abs/2010.12421
https://arxiv.org/abs/2010.12421
https://github.com/bentoml/OpenLLM
https://github.com/bentoml/OpenLLM
http://dx.doi.org/10.4204/EPTCS.388.4
https://aclanthology.org/2020.findings-emnlp.414/
https://aclanthology.org/2020.findings-emnlp.414/
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2024.findings-emnlp.86/
https://aclanthology.org/2024.findings-emnlp.86/

(eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language Process-
ing, pp. 3106–3125, Miami, Florida, USA, November 2024b. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.emnlp-main.182. URL https://aclanthology.org/
2024.emnlp-main.182/. pages

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John Wieting. Canine: Pre-training an efficient
tokenization-free encoder for language representation. Transactions of the Association for Com-
putational Linguistics, 10:73–91, 01 2022. ISSN 2307-387X. doi: 10.1162/tacl_a_00448. URL
https://doi.org/10.1162/tacl_a_00448. pages

Marco Cognetta and Naoaki Okazaki. Tokenization as finite-state transduction, 2024. URL
https://arxiv.org/abs/2410.15696. pages

Marco Cognetta, Vilém Zouhar, Sangwhan Moon, and Naoaki Okazaki. Two counterexamples to
tokenization and the noiseless channel. In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste,
Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint Inter-
national Conference on Computational Linguistics, Language Resources and Evaluation (LREC-
COLING 2024), pp. 16897–16906, Torino, Italia, May 2024. ELRA and ICCL. URL https:
//aclanthology.org/2024.lrec-main.1469/. pages

Mark Davis and Michel Suignard. Unicode security considerations. Unicode Technical Report 36,
Unicode Consortium, 2014. URL https://www.unicode.org/reports/tr36/.
pages

Mark Davis, Martin Dürst, and Ken Whistler. Unicode normalization forms. Unicode Standard
Annex 15, Unicode Consortium, 2024. URL https://www.unicode.org/reports/
tr15/. pages

Philip Gage. A new algorithm for data compression, 1994. URL https://jacobfilipp.
com/DrDobbs/articles/CUJ/1994/9402/gage/gage.htm. pages

Matthias Gallé. Investigating the effectiveness of BPE: The power of shorter sequences. In
Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP), pp. 1375–1381, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1141. URL
https://aclanthology.org/D19-1141/. pages

Juan Luis Gastaldi. Why can computers understand natural language?: The structuralist image of
language behind word embeddings. Philosophy & Technology, 34(1):149–214, march 2021. ISSN
2210-5441. doi: 10.1007/s13347-020-00393-9. URL http://dx.doi.org/10.1007/
s13347-020-00393-9. pages

Juan Luis Gastaldi, John Terilla, Luca Malagutti, Brian DuSell, Tim Vieira, and Ryan Cotterell.
The foundations of tokenization: Statistical and computational concerns, 2024. URL https:
//arxiv.org/abs/2407.11606. pages

Renato Lui Geh, Zilei Shao, andGuyVan den Broeck. Adversarial tokenization, 2025. URLhttps:
//arxiv.org/abs/2503.02174. pages

Saibo Geng, Sankalp Gambhir, ChrisWendler, and RobertWest. Byte bpe tokenization as an inverse
string homomorphism, 2024. URL https://arxiv.org/abs/2412.03160. pages

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models, 2024. URL https://arxiv.org/abs/2407.21783. pages

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkin-
son, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar,
Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander,

12

https://aclanthology.org/2024.emnlp-main.182/
https://aclanthology.org/2024.emnlp-main.182/
https://doi.org/10.1162/tacl_a_00448
https://arxiv.org/abs/2410.15696
https://aclanthology.org/2024.lrec-main.1469/
https://aclanthology.org/2024.lrec-main.1469/
https://www.unicode.org/reports/tr36/
https://www.unicode.org/reports/tr15/
https://www.unicode.org/reports/tr15/
https://jacobfilipp.com/DrDobbs/articles/CUJ/1994/9402/gage/gage.htm
https://jacobfilipp.com/DrDobbs/articles/CUJ/1994/9402/gage/gage.htm
https://aclanthology.org/D19-1141/
http://dx.doi.org/10.1007/s13347-020-00393-9
http://dx.doi.org/10.1007/s13347-020-00393-9
https://arxiv.org/abs/2407.11606
https://arxiv.org/abs/2407.11606
https://arxiv.org/abs/2503.02174
https://arxiv.org/abs/2503.02174
https://arxiv.org/abs/2412.03160
https://arxiv.org/abs/2407.21783

Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Worts-
man, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle
Lo, Luca Soldaini, Noah A. Smith, and Hannaneh Hajishirzi. Olmo: Accelerating the science of
language models, 2024. URL https://arxiv.org/abs/2402.00838. pages

hnyls2002. Decode incrementally. GitHub Pull Request, 2024. URL https://github.com/
sgl-project/sglang/pull/517. pages

Valentin Hofmann, Hinrich Schuetze, and Janet Pierrehumbert. An embarrassingly simple method
to mitigate undesirable properties of pretrained language model tokenizers. In Smaranda Mure-
san, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 385–393, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.43. URL
https://aclanthology.org/2022.acl-short.43/. pages

Hugging Face. Text generation inference, 2025. URL https://github.com/
huggingface/text-generation-inference. pages

Huggingface. tokenizers. GitHub Repository, 2025. URL https://github.com/
huggingface/tokenizers. pages

hyperonym. basaran. GitHub Repository, 2023. URL https://github.com/hyperonym/
basaran. pages

jeffwang0516. bug: Output text from completionchunk is different with tokenizer.decode. Github
Issue, 2023. URL https://github.com/bentoml/OpenLLM/issues/809. pages

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825. pages

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088. pages

G. Kiczales. Towards a new model of abstraction in software engineering . In Proceedings 1991
InternationalWorkshop onObject Orientation in Operating Systems, pp. 127,128, Los Alamitos, CA,
USA, October 1991. IEEE Computer Society. doi: 10.1109/IWOOOS.1991.183036. URL https:
//doi.ieeecomputersociety.org/10.1109/IWOOOS.1991.183036. pages

G. Kiczales, M. Theimer, and B. Welch. A new model of abstraction for operating system design.
In [1992] Proceedings of the Second International Workshop on Object Orientation in Operating
Systems, pp. 346–349, 1992. doi: 10.1109/IWOOOS.1992.252962. pages

Terry Koo, Frederick Liu, and Luheng He. Automata-based constraints for language model decod-
ing, 2024. URL https://arxiv.org/abs/2407.08103. pages

Jan Kott. King lear or endgame. In Shakespeare Our Contemporary, New York, 1964. Norton. pages

Taku Kudo. Subword regularization: Improving neural network translation models with mul-
tiple subword candidates. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 66–75, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1007. URL https://aclanthology.org/P18-1007/. pages

Taku Kudo. Sentencepiece. GitHub Repository, 2024. URL https://github.com/
google/sentencepiece. pages

13

https://arxiv.org/abs/2402.00838
https://github.com/sgl-project/sglang/pull/517
https://github.com/sgl-project/sglang/pull/517
https://aclanthology.org/2022.acl-short.43/
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
https://github.com/hyperonym/basaran
https://github.com/hyperonym/basaran
https://github.com/bentoml/OpenLLM/issues/809
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2401.04088
https://doi.ieeecomputersociety.org/10.1109/IWOOOS.1991.183036
https://doi.ieeecomputersociety.org/10.1109/IWOOOS.1991.183036
https://arxiv.org/abs/2407.08103
https://aclanthology.org/P18-1007/
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In Eduardo Blanco andWei Lu (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, pp. 66–71, Brussels, Belgium, November 2018. Association for Computational Linguis-
tics. doi: 10.18653/v1/D18-2012. URL https://aclanthology.org/D18-2012/.
pages

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023. pages

Jindřich Libovický, Helmut Schmid, and Alexander Fraser. Why don‘t people use character-level
machine translation? In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Find-
ings of the Association for Computational Linguistics: ACL 2022, pp. 2470–2485, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.194.
URL https://aclanthology.org/2022.findings-acl.194/. pages

Tomasz Limisiewicz, Terra Blevins, Hila Gonen, Orevaoghene Ahia, and Luke Zettlemoyer. MYTE:
Morphology-driven byte encoding for better and fairer multilingual language modeling. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15059–15076,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.acl-long.804. URL https://aclanthology.org/2024.acl-long.804/.
pages

M. Lothaire (ed.). Combinatorics on Words. Cambridge University Press, 1997. ISBN
9780511566097. doi: 10.1017/cbo9780511566097. URL http://dx.doi.org/10.1017/
CBO9780511566097. pages

João Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu Liu, Yahya
Emara, Marjorie Freedman, Jason Eisner, Ryan Cotterell, Vikash Mansinghka, Alexander K. Lew,
Tim Vieira, and Timothy J. O’Donnell. Syntactic and semantic control of large language models
via sequential monte carlo. In The Thirteenth International Conference on Learning Representa-
tions, 2025. URL https://openreview.net/forum?id=xoXn62FzD0. pages

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, et al. Gemma: Openmodels
based on gemini research and technology, 2024. URL https://arxiv.org/abs/2403.
08295. pages

Microsoft, :, Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen
Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, et al. Phi-4-mini technical
report: Compact yet powerful multimodal language models via mixture-of-loras, 2025. URL
https://arxiv.org/abs/2503.01743. pages

Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias Gallé, Arun
Raja, Chenglei Si, Wilson Y. Lee, Benoît Sagot, and Samson Tan. Between words and characters:
A brief history of open-vocabulary modeling and tokenization in nlp, 2021. URL https://
arxiv.org/abs/2112.10508. pages

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,
Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord,
Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha
Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William
Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Py-
atkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, DavidWadden, ChristopherWilhelm,
MichaelWilson, Luke Zettlemoyer, Ali Farhadi, NoahA. Smith, andHannanehHajishirzi. 2 olmo
2 furious, 2025. URL https://arxiv.org/abs/2501.00656. pages

OpanAI. gpt-2. GitHub Repository, 2019. URL https://github.com/openai/gpt-2/.
pages

14

https://aclanthology.org/D18-2012/
https://aclanthology.org/2022.findings-acl.194/
https://aclanthology.org/2024.acl-long.804/
http://dx.doi.org/10.1017/CBO9780511566097
http://dx.doi.org/10.1017/CBO9780511566097
https://openreview.net/forum?id=xoXn62FzD0
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2503.01743
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2501.00656
https://github.com/openai/gpt-2/

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 tech-
nical report, 2024. URL https://arxiv.org/abs/2303.08774. pages

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li,
Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtz-
man, and Srinivasan Iyer. Byte latent transformer: Patches scale better than tokens, 2024. URL
https://arxiv.org/abs/2412.09871. pages

Aleksandar Petrov, Emanuele La Malfa, Philip Torr, and Adel Bibi. Language model to-
kenizers introduce unfairness between languages. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 36963–36990. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
74bb24dca8334adce292883b4b651eda-Paper-Conference.pdf. pages

Rob Pike and Ken Thompson. Hello world, or Καλημέρα κόσμε, orこんにちは世界. Technical
report, Bell Labs, 1993. URL https://9p.io/sys/doc/utf.pdf. pages

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation frompre-trained languagemodels, 2022.
URL https://arxiv.org/abs/2201.11227. pages

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. Technical report, OpenAI, 2019.
URL https://cdn.openai.com/better-language-models/language_
models_are_unsupervised_multitask_learners.pdf. pages

Abrar Rahman, Garry Bowlin, Binit Mohanty, and Sean McGunigal. Towards linguistically-aware
and language-independent tokenization for large language models (llms), 2024. URL https:
//arxiv.org/abs/2410.03568. pages

Nived Rajaraman, Jiantao Jiao, and Kannan Ramchandran. Toward a theory of tokenization in llms,
2024. URL https://arxiv.org/abs/2404.08335. pages

Phillip Rust, Jonas F. Lotz, Emanuele Bugliarello, Elizabeth Salesky, Miryam de Lhoneux, and
Desmond Elliott. Language modelling with pixels. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
FkSp8VW8RjH. pages

Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, October 2009.
ISBN 9781139195218. doi: 10.1017/cbo9781139195218. URL http://dx.doi.org/10.
1017/CBO9781139195218. pages

Elizabeth Salesky, David Etter, and Matt Post. Robust open-vocabulary translation from visual text
representations. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 7235–7252, Online and Punta Cana, Dominican Republic, November 2021. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.576. URL https:
//aclanthology.org/2021.emnlp-main.576/. pages

Craig W Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pin-
ter, and Chris Tanner. Tokenization is more than compression. In Yaser Al-Onaizan, Mo-
hit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 678–702, Miami, Florida, USA, November 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.40. URL https:
//aclanthology.org/2024.emnlp-main.40/. pages

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. Picard: Parsing incrementally for
constrained auto-regressive decoding from language models, 2021. URL https://arxiv.
org/abs/2109.05093. pages

15

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2412.09871
https://proceedings.neurips.cc/paper_files/paper/2023/file/74bb24dca8334adce292883b4b651eda-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/74bb24dca8334adce292883b4b651eda-Paper-Conference.pdf
https://9p.io/sys/doc/utf.pdf
https://arxiv.org/abs/2201.11227
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2410.03568
https://arxiv.org/abs/2410.03568
https://arxiv.org/abs/2404.08335
https://openreview.net/forum?id=FkSp8VW8RjH
https://openreview.net/forum?id=FkSp8VW8RjH
http://dx.doi.org/10.1017/CBO9781139195218
http://dx.doi.org/10.1017/CBO9781139195218
https://aclanthology.org/2021.emnlp-main.576/
https://aclanthology.org/2021.emnlp-main.576/
https://aclanthology.org/2024.emnlp-main.40/
https://aclanthology.org/2024.emnlp-main.40/
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162.
URL https://aclanthology.org/P16-1162/. pages

Joel Spolsky. The law of leaky abstractions. Joel on Software,
2002. URL https://www.joelonsoftware.com/2002/11/11/
the-law-of-leaky-abstractions/. pages

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta, Hyung Won Chung, Dara Bahri, Zhen Qin, Si-
mon Baumgartner, Cong Yu, and Donald Metzler. Charformer: Fast character transformers
via gradient-based subword tokenization, 2022. URL https://arxiv.org/abs/2106.
12672. pages

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size, 2024. URL https://arxiv.org/
abs/2408.00118. pages

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, TatianaMatejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report, 2025. URL https://arxiv.org/abs/2503.19786. pages

The Rust Foundation. The rust standard library. GitHub Repository, 2025. URL https://
github.com/rust-lang/rust. pages

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, NamanGoyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023a. URL https://arxiv.org/abs/2302.13971. pages

Hugo Touvron, LouisMartin, Kevin Stone, Peter Albert, AmjadAlmahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, AdinaWilliams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b. URL https://arxiv.org/abs/2307.09288. pages

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Syncode:
Llm generation with grammar augmentation, 2024. URL https://arxiv.org/abs/
2403.01632. pages

Shubham Ugare, Rohan Gumaste, Tarun Suresh, Gagandeep Singh, and Sasa Misailovic. Itergen:
Iterative semantic-aware structured llm generation with backtracking, 2025. URL https://
arxiv.org/abs/2410.07295. pages

Unicode Technical Commitee. Unicode standard. Standard, Unicode, Inc., 2025. URL https:
//www.unicode.org/versions/latest/. pages

Anne van Kesteren. Encoding. Standard,WHATWG, 2024. URLhttps://encoding.spec.
whatwg.org. pages

W3Techs. Usage statistics of character encodings for websites. Q-Success, 02 2025. URL https:
//w3techs.com/technologies/overview/character_encoding. pages

16

https://aclanthology.org/P16-1162/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://arxiv.org/abs/2106.12672
https://arxiv.org/abs/2106.12672
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2503.19786
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2410.07295
https://arxiv.org/abs/2410.07295
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/
https://encoding.spec.whatwg.org
https://encoding.spec.whatwg.org
https://w3techs.com/technologies/overview/character_encoding
https://w3techs.com/technologies/overview/character_encoding

ChanghanWang, Kyunghyun Cho, and Jiatao Gu. Neural machine translation with byte-level sub-
words. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):9154–9160, Apr. 2020.
doi: 10.1609/aaai.v34i05.6451. URL https://ojs.aaai.org/index.php/AAAI/
article/view/6451. pages

Brandon T. Willard and Rémi Louf. Efficient guided generation for large language models, 2023.
URL https://arxiv.org/abs/2307.09702. pages

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art nat-
ural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Associa-
tion for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6. pages

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte mod-
els. Transactions of the Association for Computational Linguistics, 10:291–306, 03 2022. ISSN 2307-
387X. doi: 10.1162/tacl_a_00461. URL https://doi.org/10.1162/tacl_a_00461.
pages

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang,
Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388. pages

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Day-
iheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, YuWan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025b. URL
https://arxiv.org/abs/2412.15115. pages

Yard1. Use tgi-like incremental detokenization. GitHub Pull Request, 2023. URL https://
github.com/vllm-project/vllm/pull/984. pages

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang: Effi-
cient execution of structured language model programs, 2024. URL https://arxiv.org/
abs/2312.07104. pages

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, Mrinmaya Sachan, and Ryan Cotterell. Tok-
enization and the noiseless channel. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 5184–5207, Toronto, Canada, July 2023. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2023.acl-long.284. URL https://aclanthology.
org/2023.acl-long.284/. pages

17

https://ojs.aaai.org/index.php/AAAI/article/view/6451
https://ojs.aaai.org/index.php/AAAI/article/view/6451
https://arxiv.org/abs/2307.09702
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1162/tacl_a_00461
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2412.15115
https://github.com/vllm-project/vllm/pull/984
https://github.com/vllm-project/vllm/pull/984
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://aclanthology.org/2023.acl-long.284/
https://aclanthology.org/2023.acl-long.284/

A Mapping bytes to unicode and back

Huggingface distributes tokenizer vocabularies as UTF-8-encoded files. 12 Since programmers tend
to work with UTF-8-encoded strings rather than directly with byte sequences, it is convenient to be
able to represent arbitrary byte sequences, such as those produced by arbitrarily clumping bytes,
as UTF-8 sequences. 13

The solution to handling non-UTF-8 tokens with software that expects UTF-8 the community has
adopted since GPT-2 (Radford et al., 2019) is to map each byte value onto a Unicode Code Point.
Most of the Code Points between 0016 and FF16 are printable characters, so though the result will be
an ugly mix of semantically insignificant characters, the result will be made up entirely of printable
characters. The transition between the middle and bottom rows of Example 5 exemplifies these
transformations. The problem is that not all of the Code Points between 0 and FF are printable:
many are control or whitespace characters. As these are encountered they are replaced by the
next available Code Point starting at U+0100. Luckily the entire block U+0100–U+17F0 is printable
characters. See the attached file for the relevant code blocks from Unicode Technical Commitee
(2025).
Tokenizers built using a converted version of the initial vocabulary of bytes are not generally ho-
momorphic due to this pre- and post-processing. The components of the Huggingface transform-
ers and tokenizer libraries implement this behavior through most of their models. In the Python
(slow) implementations of tokenizers for Huggingace models, the function implementing this be-
haviod appears in 24 files (Wolf et al., 2020). In the Rust (fast) implementation in the tokenizers
library, the enbyting and debyting process is implemented in the ByteLevel pretokenizer and de-
coder (Huggingface, 2025, pre_tokenizers/byte_level.rs#L14). The call to the Rust
standard library’s String function from_UTF8_lossy (The Rust Foundation, 2025) when en-
byting debyted tokens(Huggingface, 2025, pre_tokenizers/byte_level.rs#L174) is
the source of the U+FFFD � REPLACEMENT CHARACTER in detokenization and the ultimate
breaker of the homorphism in Huggingface’s tokenizers.

Table 5: The first two words of The Building of Skadar (Serbian: Зидање Скадра), ”Град градила”,
transliterated “Grad gradila” (“The city was built”). The top row is the sequence of code points
representing this word and the bottom row is the sequence of bytes that are the UTF-8 encoding of
this sequence of code points. In the terms of Section 3, the top row is a member of Γ∗, the middle
row is a member of Υ∗, and the bottom row is the debyted version of the middle row. The squiggles
≀ in the bottom two rows indicate the cutting that turn a member of Υ∗ into a member of B∗≀◦∗.
The B∗≀◦ in question is Qwen2.5’s vocabulary.

Г р а д г р а д и л а
≀D093≀ ≀D180 D0B0 D0B4≀ ≀20 D0B3≀ ≀D180 D0B0 D0B4≀ ≀D0B8≀ ≀D0BB D0B0≀
≀ Ðĵ ≀ ≀ ÑĢ Ð° Ð´ ≀ ≀ Ġ Ð³ ≀ ≀ ÑĢ Ð° Ð´ ≀ ≀ Ð ≀̧ ≀ Ð» Ð° ≀

Comment from the paper:

Despite its name, reference [Byte Pair Encoding] implementations often op-
erate on Unicode code points and not byte sequences. These implementations
would require including the full space of Unicode symbols in order to model all
Unicode strings. This would result in a base vocabulary of over 130,000 before
any multi-symbol tokens are added. This is prohibitively large compared to the
32,000 to 64,000 token vocabularies often used with BPE. In contrast, a byte-level
version of BPE only requires a base vocabulary of size 256. (Radford et al., 2019,
§ 2.2)

Docstring of the function.

12In HTTP-speak: content-type: text/plain; charset=UTF-8
13A notable exception is OpenAI, who after GPT-2 have worked directly with byte sequences that are not

guaranteed to be valid UTF-8.

18

The Unicode Standard, Version 16.0, Copyright © 1991­2024 Unicode, Inc. All rights reserved.2

007FC0 Controls and Basic Latin 0000

000 001 002 003 004 005 006 007

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

000B

000C

000D

000E

000F

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

001A

001B

001C

001D

001E

001F

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

002A

002B

002C

002D

002E

002F

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

003A

003B

003C

003D

003E

003F

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

004A

004B

004C

004D

004E

004F

0050

0051

0052

0053

0054

0055

0056

0057

0058

0059

005A

005B

005C

005D

005E

005F

0060

0061

0062

0063

0064

0065

0066

0067

0068

0069

006A

006B

006C

006D

006E

006F

0070

0071

0072

0073

0074

0075

0076

0077

0078

0079

007A

007B

007C

007D

007E

007F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

The Unicode Standard, Version 16.0, Copyright © 1991­2024 Unicode, Inc. All rights reserved.8

00FFC1 Controls and Latin­1 Supplement 0080

008 009 00A 00B 00C 00D 00E 00F

¡

¢

£

¤

¥

¦

§

¨

©

ª

«

¬

®

¯

°

±

²

³

´

¶

·

¸

¹

º

»

¼

½

¾

¿

À

Á

Â

Ã

Ä

Å

Æ

Ç

È

É

Ê

Ë

Ì

Í

Î

Ï

Ð

Ñ

Ò

Ó

Ô

Õ

Ö

×

Ø

Ù

Ú

Û

Ü

Ý

Þ

ß

à

á

â

ã

ä

å

æ

ç

è

é

ê

ë

ì

í

î

ï

ð

ñ

ò

ó

ô

õ

ö

÷

ø

ù

ú

û

ü

ý

þ

ÿ

0080

0081

0082

0083

0084

0085

0086

0087

0088

0089

008A

008B

008C

008D

008E

008F

0090

0091

0092

0093

0094

0095

0096

0097

0098

0099

009A

009B

009C

009D

009E

009F

00A0

00A1

00A2

00A3

00A4

00A5

00A6

00A7

00A8

00A9

00AA

00AB

00AC

00AD

00AE

00AF

00B0

00B1

00B2

00B3

00B4

00B5

00B6

00B7

00B8

00B9

00BA

00BB

00BC

00BD

00BE

00BF

00C0

00C1

00C2

00C3

00C4

00C5

00C6

00C7

00C8

00C9

00CA

00CB

00CC

00CD

00CE

00CF

00D0

00D1

00D2

00D3

00D4

00D5

00D6

00D7

00D8

00D9

00DA

00DB

00DC

00DD

00DE

00DF

00E0

00E1

00E2

00E3

00E4

00E5

00E6

00E7

00E8

00E9

00EA

00EB

00EC

00ED

00EE

00EF

00F0

00F1

00F2

00F3

00F4

00F5

00F6

00F7

00F8

00F9

00FA

00FB

00FC

00FD

00FE

00FF

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

The Unicode Standard, Version 16.0, Copyright © 1991­2024 Unicode, Inc. All rights reserved. 13

017FLatin Extended­A0100

010 011 012 013 014 015 016 017



Œ

œ

Š

š

Ÿ

Ž

ž

0100

0101

0102

0103

0104

0105

0106

0107

0108

0109

010A

010B

010C

010D

010E

010F

0110

0111

0112

0113

0114

0115

0116

0117

0118

0119

011A

011B

011C

011D

011E

011F

0120

0121

0122

0123

0124

0125

0126

0127

0128

0129

012A

012B

012C

012D

012E

012F

0130

0131

0132

0133

0134

0135

0136

0137

0138

0139

013A

013B

013C

013D

013E

013F

0140

0141

0142

0143

0144

0145

0146

0147

0148

0149

014A

014B

014C

014D

014E

014F

0150

0151

0152

0153

0154

0155

0156

0157

0158

0159

015A

015B

015C

015D

015E

015F

0160

0161

0162

0163

0164

0165

0166

0167

0168

0169

016A

016B

016C

016D

016E

016F

0170

0171

0172

0173

0174

0175

0176

0177

0178

0179

017A

017B

017C

017D

017E

017F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Algorithm 2 Code from GPT-2. Defines an injective but not surjective mapping between
the set of natural numbers from 0 to 255 and the set of natural numbers. The numbers
2116, . . . 7E16, A116, . . . AC16, AE16, . . . , FF16 are mapped to themselves. The remaining numbers
are mapped in order to 10016 through 14316.

def bytes_to_unicode():
bs = (

list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))

)
cs = bs[:]
n = 0
for b in range(2**8):

if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1

cs = [chr(n) for n in cs]
return dict(zip(bs, cs))

Returns list of UTF-8 byte and a corresponding list of unicode strings. The
reversible bpe codes work on unicode strings. This means you need a large # of
unicode characters in your vocab if you want to avoid UNKs. When you’re at
something like a 10B token dataset you end up needing around 5K for decent
coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To
avoid that, wewant lookup tables between UTF-8 bytes and unicode strings. And
avoids mapping to whitespace/control characters the bpe code barfs on. (OpanAI,
2019, src/encoder.py)

The API of the Huggingface library provides direct access to the underlying representa-
tions of their tokens, represented as code points via Algorithm 2, through the methods
convert_ids_to_tokens and convert_tokens_to_ids: these map between in-
dices into the vocabulary and the tokens those indices represent.
An alternative solution to the problem identified as Theorem 2 is not to require that the bytes
that go into and come out of the language model be well-formed UTF-8 sequences. Since models
interact directly with indices into their lookup table of token embeddings, and these tokens already
map on to arbitrary bytes, no change to the model would be necessary to work directly with byte
sequences: the code that dealt with the strings going in to and coming out of the model would
have to change, but the model itself would be undisturbed. This makes it difficult for human users
to interpret what the model has generated as a part of a human language.

B Details about UTF-8

The interested reader is directed to Unicode Technical Commitee (2025, §3.9.3) for details of the
scheme and Pike & Thompson (1993) for an early account of the encoding scheme. The rele-
vant Wikipedia page https://en.wikipedia.org/wiki/UTF-8 is also excellent. As
of 2025, UTF-8 is used by 98.5% of all websites (W3Techs, 2025). Tables 6 and 7, from the Unicode
standard, show how to encode code points as bits and bytes of UTF-8.
Our use of decode and encode is influenced by the Python stan-
dard library (https://docs.python.org/3/library/stdtypes.html#str.encode,
https://docs.python.org/3/library/stdtypes.html#bytes.decode), which uses the terms as we do. We
draw the usage of encode from the Unicode standard (cf. Unicode Code Spec sec. 3.9), since UTF-8
is referred to as an “character encoding scheme” and individual units of it are “character encoding
forms”. In the Standard an encoded character also refers to any character assigned to a code
point (Unicode Core Spec Definition 11, https://www.unicode.org/versions/Unicode16.0.0/core-

19

https://en.wikipedia.org/wiki/UTF-8

Table 6: UTF-8 bit distribution, showing how to convert code points, represented as binary num-
bers, into the bytes of UTF-8. (Unicode Technical Commitee, 2025, Table 3-6).

Scalar Value First Byte Second Byte Third Byte Fourth Byte
00000000 0xxxxxxx 0xxxxxxx
00000yyy yyxxxxxx 110yyyyy 10xxxxxx
zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx
000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

spec/chapter-3/#G22752. See also https://www.unicode.org/reports/tr17/). Our use of the terms is
therefore idiosyncratic but, we hope, self-consistent.
Our use of the term decode throughout the paper is intentional and should not be confused with
detokenization: decoding refers to the process of interpreting a sequence of bytes as UTF-8 and
detokenization refers to the process of turning a sequence of tokens into a sequence of bytes.
Almost all occurrences of the term “decode” we find to be consistent with our definition of the
term (Definition 10). The only ambiguous use that we find is ”we examined various grammar-
constrained generation systems and tested them to discover their behavior during partial genera-
tion decoding” from section 4.2, where both senses (decoding and detokenizing) could be intended.
We will repair this in future revision.
The difficulty is illustrated by the example in Table 1. The Devanagari script used to write Sanskrit
(and Hindi, Marathi, Pali, and many more) is an abugida, meaning that consonant letters and vowel
letters combine to form consonant-vowel units. Further, the script also allows for diacritical mark-
ings on these units. Comparing the text अग्निमीळे with the separated abstract characters (Uni-
code Code Spec Definition 7, https://www.unicode.org/versions/Unicode16.0.0/core-spec/chapter-
3/#G2230) in the table will help the reader develop an intuition for the terminological complexity
involved in Unicode. It is preferable to adhere to Unicode terminology as closely as possible (which
we have not done without error, as we point out in our response to your question 3), because that
is the most exact way to discuss the problem. On the other hand, this makes it difficult to introduce
the problem at a high level before clarifying matters with definitions. We shall continue to polish
this in future revisions and thank you for the critique.
The decision of how to handle the ill-formed parts of a byte sequence when decoding it from
UTF-8 lies, usually, with the library programmer and not with the application programmer. To be
compliant, “a UTF-8 conversion process is required to never consume well-formed subsequences
as part of its error handling for ill-formed subsequences,” meaning that the decoding process must
recover all well-formed sequences in the input. As long as the well-formed parts of the sequence
are left unchanged, a decoding process “is not otherwise constrained in how it deals with any
ill-formed subsequence itself” (Unicode Technical Commitee, 2025, §3.9.5). When encountering
ill-formed byte sequences, a proccess has three main options: fail entirely, replace the ill-formed
code unit with a marker such as �14, or silently drop the ill-formed sequences.15 The ill-formed
sequences are those cuttings of the B∗◦∗≀ that are not in Υ. This section is concerned with the
impact these problems have in practice.
Several properties of UTF-8 referenced in the main text are immediately obvious by visual inspec-
tion of Tables 6 and 7. For example, any sequence made up exclusively of bytes starting 10, that
is, in the range [80, BF], can never be well-formed UTF-8. Similarly, no sequence made up ex-
clusively of bytes beginning with 110, 1110, or 11110 can ever contain any well-formed encoded
forms. Also, the bytes C0-C1 and F5-FF never appear in UTF-8 at all, so they can also be used to
break up well-formed encoding forms.
By convention, code points are represented as hexadecimal numbers preceded by “U+”. Any given
sequence of B∗ either is or isn’t in Υ∗. Any subsequence of a single UTF-8 encoded character
that is not the entire entire encoded character is ill-formed. For any given sequence of B∗ there

14See Unicode Technical Commitee (2025, §3.9.6) and van Kesteren (2024, §4.1) for the standard algorithm
for this replacement.

15Inserting� is known as “replacement” and failure is known as “fatal” in the terms of van Kesteren (2024,
§4.1).

20

Table 7: Well-formed UTF-8 byte sequences and the range of code points they encode (Unicode
Technical Commitee, 2025, Table 3-7).

Code Points First Byte Second Byte Third Byte Fourth Byte
U+0000..U+007F 00..7F
U+0080..U+07FF C2..DF 80..BF
U+0800..U+0FFF E0 A0..BF 80..BF
U+1000..U+CFFF E1..EC 80..BF 80..BF
U+D000..U+D7FF ED 80..9F 80..BF
U+E000..U+FFFF EE..EF 80..BF 80..BF
U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

exists a unique way to recover the most possible members of Υ. The scheme defining Υ gives it the
characteristic that not all members of B are in it: in fact, only half of bytes (those beginning with
0) are valid UTF-8 sequences on their own. Eleven bytes (C0, C1, F5–FF) are not used at all and
so never appear in Υ, and the remaining 117 only appear in sequences longer than one byte. The
sequences of Υ range in length from one to four bytes, and not all sequences of one to four bytes
are in Υ. By Corollary 1, there are sequences that can be generated by a vocabulary of bytes that
are not valid UTF-8.

C Proofs

C.1 Lemma 1

If all the members of a vocabulary Σ are in the vocabulary ∆, then all the sequences that can be made
of members of Σ can be made of members of ∆:

Σ ⊆ ∆→ Σ∗ ⊆ ∆∗.

Proof. Assume the opposite to derive a contradiction:

∃Σ, ∆ Σ ⊆ ∆ ∧ Σ∗ * ∆∗.

It follows that
∃σ ∈ Σ∗ σ /∈ ∆∗.

∆∗ contains all sequences made up of members of ∆, so any sequence not in it must not be made
up of members of ∆. Then

∃s ∈ σ s /∈ ∆
Since σ is in Σ∗, all of its factors must be in Σ. There is a factor of σ not in ∆, so there must be a
member of Σ not in ∆. We assumed that Σ was a subset of ∆ and derived a contradiction, which
is what we wanted to show.

C.2 Lemma 2

Proof. By definition, Σ * ∆∗ implies that there exists some σ in Σ that is not in ∆∗. All members
of Σ are also members of Σ∗, so the σ not in ∆∗ is in Σ∗.

D Unicode Character Handling SynCode Evaluation Prompt and
Grammar

21

Listing 1 Grammar specification for emoji generation task using Unicode escape sequences. The
three emojis are ”a face with heart-shaped eyes”, ”a face with tears of joy”, and ”a winking face”,
respectively.
// Lark grammar to validate single emoji output
start: emoji

// Define the 3 emojis from the TweetEval emoji dataset
emoji: "\U0001F60D" | "\U0001F602" | "\U0001F609"

Listing 2 Prompt template for emoji generation task (emoji symbols represented as placeholders)
You are evaluating tweets to assign the most appropriate emoji.

INSTRUCTIONS:
1. Read the tweet below carefully.
2. Select the SINGLE most appropriate emoji that captures the

sentiment.↪→
3. Respond with ONLY that emoji - no words or other characters.

The emoji must be one of the 3 valid options from this set:
[heart-eyes] [laughing] [winking]

Tweet: "{tweet_text}"
Your response:

22

	Introduction
	Background
	Representing formal languages by monoids
	Relationship between finite set and free monoid
	Mappings and homomorphism

	Tokenization and Monoids: UTF-8 Breaks Homomorphism
	Binding and cutting monoids
	The UTF-8 Encoding Scheme
	Enforcing UTF-8 breaks homomorphism

	Sealing the Leaks in UTF-8 Decoding
	General solution to incrementally detokenizing byte-level vocabularies encoded using UTF-8.
	Case studies

	Related Work
	Conclusions and Future Work
	Mapping bytes to unicode and back
	Details about UTF-8
	Proofs
	Lemma 1
	Lemma 2

	Unicode Character Handling SynCode Evaluation Prompt and Grammar

