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Abstract001

Among the hardest tasks for humans are those002
found in competitive programming where prob-003
lems require sophisticated algorithmic thinking,004
puzzle solving, and the creation of effective005
code. As a domain to assess language mod-006
els (LMs), it has not received enough atten-007
tion, though. This study presents the ICPC008
benchmark, which consists of 1220 interna-009
tional collegiate programming contest (ICPC)010
tasks. Each problem includes official analysis,011
reference code, and sample and high-quality012
unit and hidden tests. We are able to develop013
and evaluate a variety of LM inference tech-014
niques for competitive programming with these015
resources. With zero-shot chain-of-thought016
prompting, we find that o1 only achieves a017
19.1% pass@1 solve rate. With our best infer-018
ence technique, which combines muti-turn self-019
judge with reflection and retrieval over episodic020
information, raises this to 42.2%. Furthermore,021
we conduct a new human-in-the-loop investiga-022
tion to gain a deeper understanding of the re-023
maining difficulties. Surprisingly, we discover024
that o1 can solve 17 out of 18 problems that025
were previously unsolvable by any model or026
technique with just a few specific instructions.027
A footstep toward LMs with grounded, imag-028
inative, and algorithmic thinking is provided029
by our quantitative findings and qualitative re-030
search.031

1 Introduction032

A crucial area for assessing and implementing lan-033

guage models (LMs) is code generation. However,034

several well-known coding benchmarks, including035

HumanEval (Chen et al., 2021) and MBPP (Austin036

et al., 2021), have become saturated with solve037

rates above 90% due to the scaling of LMs and the038

development of new inference techniques (Chen039

et al., 2023; Shinn et al., 2024; Wei et al., 2022;040

Zhou et al., 2022). We require more difficult bench-041

marks that highlight the shortcomings of current042

models, inference techniques and offer practical 043

instincts for enhancing LM’s algorithmic reason- 044

ing in order to spur additional advancement. Since 045

competitive programming where problems are in- 046

tended to rigorously assess human reasoning skills 047

in difficult circumstances and the development of 048

innovative algorithms, it is a perfect fit for this 049

endeavor. To thoroughly assess algorithmic reason- 050

ing, prior investigations of competitive program- 051

ming, however, have either lacked full unit test 052

suites, problem analysis, or sufficient problem va- 053

riety (Jain et al., 2024; Li et al., 2022; Hendrycks 054

et al., 2021). 055

With 1220 difficult competitive programming 056

tasks from previous ICPC (including regional, con- 057

tinental, world final, etc.) contests, we provide 058

a meticulously designed coding benchmark. As 059

well as some sample tuples of inputs, outputs, and 060

explanations, each challenge outlines a job to be 061

completed in a made-up situation. Solving these 062

problems require for both innovative and grounded 063

thinking in addition to a broad variety of mathemat- 064

ical, computational, and common sense expertise. 065

With using zero-shot chain-of-thought prompting, 066

even the best o1 only achieves a 19.1% pass@1 067

solution rate. Apart from that, in order to investi- 068

gate more sophisticated inference-time techniques 069

for competitive programming, our benchmark also 070

gathers official analysis, reference code solutions, 071

and excellent unit and hidden tests for every prob- 072

lem, as well as the relevant teaching materials in 073

the form of competition programming textbooks. 074

Using these resources, we develop a variety of 075

baseline techniques based on take-a-deep-breath 076

prompt (Yang et al., 2024), brainstorm then se- 077

lect (Summers-Stay et al., 2023), zero-shot-CoT 078

(Kojima et al., 2022), LLM Stimuli (Li et al., 079

2023a), self-reflection (Shinn et al., 2024), few- 080

shot prompting (Brown et al., 2020) and retrieval 081

augmented generation- semantic and episodic re- 082

trieval (Su et al., 2024; Gao et al., 2023; Shypula 083
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et al., 2023), and their combinations.084

We discover that multi-turn self-judge single085

agent LMs with retrieval over comparable prob-086

lems and solutions together with self-reflection in-087

creases performance by 120.94% with respective to088

o1’s zero-shot solve rate. Moreover, we conduct a089

unique human investigation to better understand the090

limitations and promise of LM reasoning toward091

competitive programming. In this study, humans092

engage with LMs in a conversational "tutoring"093

setup by pointing out errors and providing only094

a few tips. Interestingly, when we use a human-095

in-the-loop configuration, o1 solves 17 out of 18096

tasks that can ever answer using any inference tech-097

niques. This suggests that stronger LMs may even-098

tually be able to include high-quality input, that099

new techniques for producing such human-level100

corrective feedback must be developed, and the ap-101

propriate criterion for assessing model capabilities102

beyond the too stringent execution success should103

be reconsidered.104

We require just black-box access to language105

model generations; no model-internal information,106

like as likelihoods or gradients, is required. We107

employ the same technique and prompt templates108

for all of our tasks. This makes it possible to ap-109

ply our approach with popular public models that110

provide interfaces. Additionally, further model111

generation enhancements like prompt engineering,112

self-reflection, or retrieval, are orthogonal to the113

approach.114

In summary, the contributions of our work are115

provided in the following. At first, the benchmark116

based on contest programming that includes excel-117

lent unit and hidden test cases, problem analysis,118

and supplementary materials is the ICPC bench-119

mark, which we propose. After that, we develop120

and evaluate several LM inference techniques for121

contest programming. Later, we provide a unique122

method that uses a multi-turn self-judge single123

agent LMs with retrieval process to increase the rea-124

soning of modern language models. Our findings125

show that multi-turn self-judge single agent LMs126

with retrieval and self-reflection together can signif-127

icantly improve performance. Finally, we combine128

automated tests based on execution success with129

a new human-in-the-loop research to describe the130

strengths and weaknesses of LMs for contest pro-131

gramming. Latent differences across models are132

revealed when we discover that only some models133

are able to correctly integrate feedback.134

2 Related Work 135

2.1 Problem solving coding benchmarks 136

Numerous studies have examined language model 137

performance on basic program synthesis (Zan et al., 138

2022; Austin et al., 2021; Chen et al., 2021; Yu 139

et al., 2018) and HumanEval—the industry stan- 140

dard for evaluating new models on code synthesis. 141

But with the help of inference techniques, exist- 142

ing models can tackle HumanEval problems with a 143

94% success rate (Zhou et al., 2023). This suggests 144

that more challenging, intricate and self-contained 145

coding challenges are required to test the limits 146

of code reasoning. Thus, competitive program- 147

ming questions have been suggested as a more chal- 148

lenging assessment metric. The majority of these 149

tasks originate from online resources like Topcoder, 150

LeetCode, Codeforces, Atcoder and others (Jain 151

et al., 2024; Huang et al., 2023; Li et al., 2023c, 152

2022; Hendrycks et al., 2021). Still, a consider- 153

able number of these challenges are only described 154

symbolically and lack thorough test cases that de- 155

fine correctness and quality problem evaluations. 156

The model’s capacity to use creative reasoning in 157

grounded tasks environments—a critical skill of 158

well-rounded reasoners—is thus only marginally 159

assessed. 160

2.2 Inference time techniques 161

According to (Chen et al., 2023; Gao et al., 2023; 162

Madaan et al., 2024; Shinn et al., 2024; Zhou 163

et al., 2023; Le et al., 2022; Yao et al., 2022; 164

Zelikman et al., 2023; Zhou et al., 2023), infer- 165

ence time methods have demonstrated notable suc- 166

cess in enhancing reasoning abilities by condition- 167

ing generations on environment feedback, task- 168

specific knowledge, natural language reflections 169

and planned summaries. Nevertheless, only ba- 170

sic program synthesis tasks like HumanEval and 171

MBPP have utilized their usefulness on code do- 172

mains thus far (Austin et al., 2021; Chen et al., 173

2021). In this study, we also discuss how well they 174

perform in a far more challenging domain: com- 175

petitive programming. We also draw inspiration 176

for our retrieval augmented generation implementa- 177

tion from classical case-based reasoning literature 178

(Aamodt and Plaza, 1994; Schank, 1983) and cog- 179

nitive architectures for human reasoning (Sumers 180

et al., 2023), which reflect the kinds of information 181

that people find helpful in solving problems. 182
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2.3 Human Agent Interaction (HAI)183

Agent learning via human-provided feedback under184

synthetic tasks is examined by (Sumers et al., 2022).185

The purpose of (Macina et al., 2023) is to offer a186

set of tutoring guidelines for successfully including187

LMs in conversation problem solving. In order to188

assess the models’ capacity to react to feedback,189

we use a set of interaction rulesets from (Shi et al.,190

2024).191

3 Setup192

3.1 Benchmarks: ICPC problems193

Table 1: Problem judges, type, collection, and selection
for testing.

Problem platform Problem
collected

Problem
selected

North Central North America (NCNA) 58 46
Pacific Northwest (PacNW) 54 45
East Central (ECNA) 58 47
Northeastern (NENA) 50 42
Rocky Mountain (RM) 51 44
Mid-Central (MCUSA) 45 39
Greater New York (GNY) 53 45
Southern California (Scal) 52 44
South Central (SCUSA) 55 46
Southeast USA (SEUSA) 56 47
Mid-Atlantic (MAUSA) 48 41
Southwestern Europe Regional Contest
(SWERC)

59 49

Northwestern Europe Regional Contest
(NWERC)

51 43

Central Europe Regional Contest (CERC) 50 42
Southeastern Europe Regional Contest
(SEERC)

48 41

Northeastern Europe Regional Contest
(NEERC)

65 55

Asia East Continent Contests 67 56
Asia West Continent Contests 58 47
Asia Central Continent Contests 44 38
Africa and Arabia Regional Contest
(AARPC)

45 39

South Africa Regional Contest (SAfrica) 49 43
Mexico and Central America Regional
Contest (CAmerica)

50 44

Caribbean Regional Contest 50 44
Brazil Regional Contest 53 47
South America North Regional Contest 54 48
South America South Regional Contest 56 49
South Pacific Regional Contest (SPacific) 56 49

From previous ICPC coding competitions of194

1435 problems, because of lacking strong co-195

relation with reasoning problem standards (extreme196

simple problems) we filtered out some problems197

and finally 1220 expert-written, superior competi-198

tive programming tasks make up the ICPC bench-199

mark, presented in Table 1. An official human-200

written problem analysis stating the solution in201

detail with corresponding C++ code, some unit202

tests (sample and some synthesized tests) and hid-203

den tests (synthesized tests) confirming solution204

correctness, time and memory limits confirming so-205

lution complexity and a problem description with206

instructions for reading and writing from standard207

input and output comprise each problem. Synthe- 208

sized tests were produced from problem constraints 209

with potential edge cases discussed in the official 210

editorials and validated against official solutions 211

to ensure correctness. This approach is standard 212

in competitive programming research, mitigating 213

reliance on public test cases (Schäfer et al., 2023). 214

A model is provided with the problem description, 215

time and memory constraints and any samples and 216

synthesized tests as unit tests that are available. 217

After that, the model retrieves related reference 218

documents and using that as episodic knowledge 219

(see in Section 3.2) the model must provide a code 220

solution that the same model judge (self-judge) 221

judges and accepts if it enforces correctness and 222

the intended asymptotic efficiency by yielding the 223

predicted results on all unit tests (in this part, we 224

selected the synthesized tests which don’t exist in 225

the hidden test cases) within the specified bounds 226

and the process will terminate. In case the code 227

fails on the unit tests, the whole process will repeat 228

again until convergence or reach into the specified 229

iteration (we found tha i = 2 is ideal for o1 in this 230

scenario–shown in Table 6). After that the solution 231

will execute against the hidden tests to get the final 232

pass/fail results. A custom HTML5 parser is used 233

to gather 1435 tasks1 that explain contest materials. 234

Regular expressions are then used to extract time 235

and memory limits from problem descriptions. We 236

choose 1220 of the 1435 competitive programming 237

tasks with complete problem analyses to aid in the 238

creation of rich inference-time techniques and as- 239

sessments. We parse a ground truth standalone C++ 240

code snippet and an English-only analysis devoid 241

of code for the episodic knowledge retrieval. We 242

ask GPT-4 to convert the code to C++ for tasks 243

when C++ code is not accessible and we confirm 244

that all code solutions pass hidden tests on the spec- 245

ified restrictions. 246

3.2 Baselines 247

We test a number of prompting and inference 248

time strategies, including the take-a-deep-breath 249

prompt (Yang et al., 2024), brainstorm then se- 250

lect (Summers-Stay et al., 2023), zero-shot-CoT 251

(Kojima et al., 2022), LLM Stimuli (Li et al., 252

2023a), self-reflection (Shinn et al., 2024), few- 253

shot prompting (Brown et al., 2020) and retrieval 254

augmented generation- semantic2 and episodic re- 255

1https://icpc.global/
2As our resource, we utilize the Algorithms for Competi-

tive Programming textbook, which includes chapters on algo-
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trieval (Su et al., 2024; Gao et al., 2023; Shypula256

et al., 2023). As no single prompt performs better257

than the others (Table 3), we choose the episodic258

retrieval with reflection prompt in our single agent259

LMs framework. Furthermore, to fully explore the260

potential of retrieval on the comparatively small261

dataset, we simulate a setup in which the model262

has seen every other problem in the ICPC set aside263

from the one it is currently solving. This is done264

by simulating a n-fold evaluation that presents one265

problem at a time. Although we get comparable266

results with a more traditional train-test split, as267

detailed in Section 4.2. Concatenating the problem268

description, solution and C++ solution code for269

each seen problem creates documents that may be270

retrieved. After adjusting for the number of prob-271

lems to retrieve, p, we determine that p = 2 is ideal272

for o1. As pass@1 performance was declining, we273

decided not to try resampling for larger amounts of274

p in order to save budget. As a result, we publish275

these values (Table 5).276

3.3 Metric277

We use every method that has a Pass@1 evaluation278

and the methods from (Shi et al., 2024) for self-279

reflection and episodic retrieval, and we only give280

the models the execution outcomes of the exposed281

unit test cases. Fundamental studies were done us-282

ing GPT-4, GPT-4o and o1 with some open source283

models tested in zero-shot setting only.284

4 Results285

4.1 Performance baselines286

Table 2: Pass@1 performances of various models for
zero-shot problem-solving configuration.

Model Pass@1
gpt-4 7.3
claude-3.5-sonnet 14.1
gpt-4o 14.2
qwen2.5-coder 14.8
athene-v2-chat 16.4
deepSeek-v3-chat 17.6
gemini-exp 18.3
o1 19.1

As a starting point, we assess the zero-shot287

performance of models that represent the288

state-of-the-art coding performance, such as289

GPT-4 (gpt-4-0613), GPT-4o (gpt-4o-2024-11-290

20), o1 (o1-2024-12-17), Claude-3.5-Sonnet291

(claude-3.5-sonnet-20240620), Gemini-Exp292

rithmic principles written by humans.
https://cp-algorithms.com/

(gemini-exp-1206), Athene-V2-Chat (athene-v2- 293

chat-72b), DeepSeek-V3-Chat, and Qwen2.5- 294

Coder (qwen2.5-coder-32b-instruct) (Achiam 295

et al., 2023; Team et al., 2024; Liu et al., 2024a; 296

Hui et al., 2024). Table 2 provides an overview of 297

this. If not otherwise noted, models were given 298

chain-of-thought prompts (Wei et al., 2022); the 299

complete prompts are shown in Appendix A. In 300

accordance with earlier studies on competitive 301

programming (Li et al., 2022; Hendrycks et al., 302

2021), we mainly use the unbiased pass@n metric 303

as specified in (Chen et al., 2021). For that, 304

we discover that compilation errors are not the 305

primary cause of any model defects. This at 306

least demonstrates that models are successful in 307

producing syntactically sound code and points to 308

more complex problems in generations, including 309

miscommunications. We conduct a quick qualita- 310

tive study and list a few examples of problems and 311

related errors in Appendix B. 312

4.2 Performance benchmarks 313

Table 3: Pass@1 performances for various problem-
solving configurations.

gpt-4 gpt-4o o1
zero_shot 7.3 14.2 19.1
brainstorm_then_select 8.6 16.9 21.7
few_shot 10.1 19.4 24.2
self_reflection 11.3 20.6 25.4
semantic_retrieval 12.4 22.1 27.3
semantic_retrieval + self_reflection 12.8 22.5 28.1
episodic_retrieval 13.2 23.3 29.0
semantic_retrieval + episodic_retrieval 14.5 24.4 29.8
semantic_retrieval + episodic_retrieval +
self_reflection

16.4 27.1 33.2

episodic_retrieval + self_reflection 24.3 38.4 42.2

Table 4: Pass@1 performances when compared to
our leave-one-out episodic retrieval situation, the out-
comes of a normal train-test split are comparable across
inference-time approaches.

gpt-4 gpt-4o o1
episodic_retrieval 10.9 18.6 22.7
self_reflection 11.1 20.4 24.2
episodic_retrieval + self_reflection 21.3 33.8 35.4

Table 5: o1 hyperparameter tuning on the number of
problems to retrieve for episodic retrieval.

Problems Pass@1
p = 1 28.1
p = 2 29.0
p = 3 28.4

Aligning with (Shi et al., 2024; Shinn et al., 314

2024; Chen et al., 2023), we discover that stronger 315

models have the emergent quality of being able 316
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Table 6: o1 iteration tuning on the number of iterations
for self-reflection. Without any reflection, the solve rate
is i = 0. We see that after 2 repetitions, solve rates nearly
stay the same.

Iterations Pass@1
i = 0 21.3
i = 1 23.8
i = 2 25.6
i = 3 25.4

to self-reflect successfully. Nevertheless, both317

episodic and semantic retrieval remain efficient;318

in fact, episodic retrieval even makes GPT-4o come319

close to o1’s zero-shot performance (Table 3). This320

is probably due to the fact that self-reflection de-321

pends on the internal model’s capacity to interpret322

binary, sparse reward signals. Conversely, retrieval323

enables models to make use of pre-existing logic324

and code fragments, necessitating less inherent325

model capabilities. Thus, our results support (Li326

et al., 2023b), which found that LMs are able to327

comprehend competitive programming solutions328

that are far more sophisticated than they are able329

to generate. Furthermore, combining episodic re-330

trieval with reflection allows it to reach new heights,331

but not with semantic retrieval. The additional332

knowledge offered by our implementation of se-333

mantic retrieval trades off against its extended con-334

texts, which existing LLMs are known to struggle335

with (Liu et al., 2024b; Shi et al., 2024). This offers336

one explanation for why combining the two might337

result in decreased performance.338

Furthermore, instead of the model crucially inter-339

acting with the retrieved information itself, the op-340

posing theory for retrieval success holds that adding341

obtained answers enhances memorizing effects for342

the problem under evaluation. To check for this,343

we eliminate crucial portions of the recovered solu-344

tions and see notable performance decreases. The345

created and officially published answers also do346

not significantly overlap, according to qualitative347

examination. Section 4.4 contains the experiment348

specifics.349

Additionally, for maximizing the impact of re-350

trieval on the comparatively short dataset at hand,351

our episodic retrieval assessment setup entails pre-352

senting one problem at a time that is retrieves from353

the solutions of all other test problems, as explained354

in Section ??. Given how independent problems355

are and how little solution logic even problems356

with the same method type share, we anticipate357

that this will not result in any notable dataset leak-358

ing across evaluations. We did, however, rerun359

most of the inference-time methods against a more 360

conventional train-test split arrangement. The con- 361

ventional split, train size = 1000, test size = 220 362

produces comparable results with somewhat lower 363

retrieval efficacy, as seen in Table 4. This is due to 364

the fact that fewer problems are retrieved overall, 365

which results in a generally lower level of problem 366

similarity between the problems that are recovered 367

and the ones that are being addressed at the mo- 368

ment. Moreover, we recover the same optimal val- 369

ues as the leave-one-out configuration by re-tuning 370

the number of recovered passages solely on this 371

train set. 372

4.3 Performance HAI 373

Table 7: Feedback is integrated into o1’s HAI interactive
setting.

Model Percentile
gpt-4 0
gpt-4o 0
o1 0
o1 + interact 94.4

We discovered a broad range of model error dis- 374

tributions in benchmark assessments, ranging from 375

minor off-by-one implementation problems to se- 376

vere misconceptions. We conduct a human research 377

using an interactive tutoring to further investigate 378

how close a model is to resolving a particular task. 379

Remarkably, we discover that the human-in-the- 380

loop approach improves o1 performance from 0% 381

to 94.4% (Table 7), 17 problems solved on a small 382

set of 18 problems on which GPT-4, GPT-4o and o1 383

reach zero pass rate using all of the aforementioned 384

inference-time methods, but does not improve GPT- 385

4 and GPT-4o performance from 0%. When two 386

models fail on a particular problem, one may be 387

one adjustment away from a completely perfect 388

solution, while the other may have a basic misun- 389

derstanding of the problem scenario. These human- 390

in-the-loop results demonstrate that the solve rate 391

may not fully represent the capabilities of models. 392

This encourages improved measures for assessment 393

that go beyond execution success, pass@n. As an 394

alternative interpretation of our findings, it is pos- 395

sible that human-level corrective feedback might 396

open more thinking abilities in o1, underscoring 397

the need for improved techniques to produce such 398

feedback. Appendix C contains a scenario of inter- 399

action pathway. 400
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Table 8: Performance on various retrieval query abla-
tions.

Query Pass@1
problem_description 28.5
problem_description + proposed_code_solution 29.0
problem_description + proposed_solution + code_solution 29.8

Table 9: Performance on various episodic retrieval abla-
tions.

Retrieval of max performance
problem_description + code + solution 100.0
problem_description 2.3

4.4 Ablation test401

For the ICPC problemset, we do ablation test on402

various prompts in order to establish the parameters403

for the primary experiments.404

Apart that, in the investigation on how the405

prompts impact problem-solving in a conversa-406

tion, we create a variety of specific prompts for407

our suggested self-feedback single agent with re-408

trieval framework. Appendix A incorporates the409

prompt designs and report the findings, identify-410

ing the prompt as the primary prompt for more411

research.412

According to ablations on retrieval queries, the413

best retrieval queries make use of both the current414

problem description and a first solution attempt that415

includes code and an explanation. This makes it416

possible to accurately obtain pertinent algorithm417

descriptions from the underlying retrieval corpus,418

as retrieval over algorithmic keywords is not pos-419

sible when only the issue descriptions are used.420

Since our local judge has not seen this first genera-421

tion, we do not consider it an effort. For that, we422

found in Table 8, the majority of retrieval queries,423

in general, are rather effective; nevertheless, the424

best results are obtained by combining code pro-425

poses and proposed solutions, as this enables the426

greatest possible matching of pertinent keywords427

across the compared documents. Applying abla-428

tions to the corpora in Table 9, we tackle memo-429

rizing. If retrieving problem solutions was causing430

people to recite previously learned answers to the431

present problem, then eliminating important com-432

ponents of the obtained solutions would not lessen433

this impact. But we discover that it does: using434

only the problem description preserves just 2.3%435

of the performance, indicating that models are actu-436

ally using the context-provided reasoning of related437

problems to guide their generations.438

5 Results Analysis 439

...
(a) zero_shot: WA

...
(b) semantic retrieval + self_reflection: WA

...
(c) episodic retrieval + self_reflection: AC

Figure 1: Pathway of solving problems of self-
feedback single agent with retrieval (3276_se-
lect_cells_in_grid_with_maximum_score).

We see in Figure 1- "3276_se- 440

lect_cells_in_grid_with_maximum_score" 441

that, within some trials of incorrect solution, with 442

retrieval + reflection state the reasoning about 443

related problem settings could be inherited by 444

single agent LMs. That is why, the retrieved 445

solution and code gives it access to sample 446
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...
episodic retrieval + self_reflection: AC

Figure 2: Pathway of solving problems of self-feedback
single agent with retrieval (2050g_tree_destruction).

reasoning over this complex and error-prone447

problem context, enabling single agent LMs to448

produce code that is more correct.449

A textbook chapter on route-removal and tree450

splitting strategies, which are indirectly related451

to the problem of eliminating the vertices on a452

path between two selected nodes, was retrieved453

by the single agent LMs, shown in Figure 2-454

"2050g_tree_destruction". Interestingly, the offi-455

cial editorial’s brief reference chapter on the spe-456

cific tree technique was not retrieved. After closer457

examination, the chapter’s retrieval score was lower458

since it was noticeably lacking in specifics. This459

demonstrates how the retrieval engine may be used460

to filter out less-than-ideal documents and choose461

more pertinent sources, especially those that deal462

with increasing the number of connected elements463

by deliberately deleting a path from a tree. For that,464

algorithmic notions and textual reasoning can be465

employed by single agent LMs.466

For HAI, while GPT-4’s reprises frequently467

prove ineffective. While GPT-4o was receptive468

but could not able to reach into the solution state,469

we discovered that o1 was more receptive to gen-470

eral input that its algorithm or comprehension of an471

environment notion was flawed and more able to472

arrive at the right approach on its iterative try. For473

instance, in the problem “2052f_fix_flooded_floor,”474

o1 demonstrated superior problem-solving through475

iterative feedback. Initially, when prompted to pro-476

vide a solution, o1 submitted an incorrect code.477

After receiving feedback highlighting several bugs478

and requesting a verification of its understanding,479

o1 engaged in a constructive dialogue. It analyzed480

a sample case together with the user, identified the481

impossibility of tiling in the given scenario, and cor- 482

rectly concluded that the output should be "None". 483

When prompted to implement the corrected logic 484

based on this understanding, o1 successfully de- 485

livered an accurate and accepted solution. In con- 486

trast, GPT-4 and GPT-4o fails to make meaningful 487

progress despite similar interaction, highlighting 488

o1’s enhanced ability to comprehend and act upon 489

detailed instructions and iterative guidance. Ap- 490

pendix C contains a scenario of iterative interaction 491

pathway. 492

6 Discussion and Conclusion 493

At the end, the benchmark of competitive program- 494

ming problems—complete with official analysis, 495

reference code, and rigorous unit tests—offers a 496

robust platform for evaluating and advancing lan- 497

guage models in competitive programming set- 498

tings. By introducing the self-feedback single agent 499

with retrieval framework, we demonstrate how self- 500

reflection and retrieval of episodic information can 501

substantially improve solve rates. Moreover, the 502

human-in-the-loop study underscores the transfor- 503

mative potential of targeted guidance, enabling so- 504

lutions to nearly all previously unsolvable prob- 505

lems. Collectively, these findings mark a signifi- 506

cant step toward language models that can engage 507

in grounded, imaginative, and algorithmic thinking. 508

We hope this work will illuminate the challenges 509

that lie ahead and provide a strong foundation and 510

a promising roadmap for future research at the in- 511

tersection of natural language processing and ad- 512

vanced problem solving. 513
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A Prompt710

# zero_shot

Please reply with a C++ solution to the below problem. Make sure to wrap your code in ’“‘C++’
and ’“‘’ Markdown delimiters, and include exactly one block of code with the entire solution (in
the final code step).
Reason through the problem and think step by step. Specifically:
1. Restate the problem in plain English.
2. Conceptualize a solution first in plain English.
3. Write a pseudocode solution.
4. Output the final C++ solution with your solution steps in comments.

[BEGIN PROBLEM]
{INSERT PROBLEM HERE}
[END PROBLEM]

711

# self_reflection

You were previously solving a coding problem. Here is the problem that you were solving:
{problem_dict[query[’problem_id’]]
[’description’]}
And here are all your past attempts, as well as how your code fared on the unit tests for the
problem:
{query[’reflection_buffer’]}
Think carefully about where you went wrong in your latest solution, first outputting why you think
you went wrong. Then, given your insights, try to fix the solution, outputting a block of correct
C++ code to be executed and evaluated again. Make sure to wrap your code in ’“‘C++’ and ’“‘’
Markdown delimiters.

712

# episodic_retrieval

Please reply with a C++ solution to the below problem. Make sure to wrap your code in ’“‘C++’
and ’“‘’ Markdown delimiters, and include exactly one block of code with the entire solution (in
the final code step). You will also be given multiple somewhat similar problems, as well as the
solution to those similar problems. Feel free to use those problems to aid your problem-solving
process.
1. Restate the problem in plain English.
2. Conceptualize a solution first in plain English.
3. Write a pseudocode solution.
4. Output the final C++ solution with your solution steps in comments.

[BEGIN SIMILAR PROBLEMS]
{query[’retrieval_text’]} (Similar problem problem + solution goes here)
[END SIMILAR PROBLEMS]
Now it’s your turn. Here is the problem you are to solve:
[BEGIN PROBLEM]
{problem_dict[query[’problem_id’]]
[’description’]} (Description of problem goes here)
[END PROBLEM]

713
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# episodic_retrieval + self_reflection

You were previously solving a coding problem. Here is the problem that you were solving:
{problem_dict[query[’problem_id’]]
[’description’]}

You were also given a couple of similar problems to the problem above along with their solutions
to aid you in solving the problem at hand. Here are the similar problems you were given:
{query[’retrieval_text’]}

And here was your original response:
{query[’original_response’]}

Here was the execution result of the above solution:
{query[’execution_response’]}

Think carefully about where you went wrong. Then, try to fix the solution, outputting a block of
correct C++ code to be executed and evaluated again. Make sure to wrap your code in ’“‘C++’
and ’“‘’ Markdown delimiters.

714

# interaction

You are to interact with a given model to try to solve a given coding question. A problem-solving
session ends whenever the model has generated code 3 times. Between code generations, you
may speak to the model in conversation as many times as you would like. However, the way you
interact with the model must be very specific: your goal is to act akin to a tutor and guide the
model towards the right answer, without giving away any underlying details about the true solution
of the problems.
You MAY NOT provide the models with:
1. The correct algorithm to fix their initial solution.
2. Exact lines of code where they went wrong.
3. Explanations of the problem or explanations of misunderstandings.

You MAY provide the models with:
1. General concepts/data structures that may be useful for solving the problem.
2. Walking through a sample input-output of the problem to better verify problem understanding.
3. Short concise general directions on where the code went wrong.

Here are examples of correct pathway:

715
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B Errors716

Table 10: A scenario of errors on problems with various specifications.

Problem Summary Error
3180_maximum_total_reward
_using_operations_i Figure out the highest possible total reward by sequentially selecting

and marking array elements that exceed the current total reward, starting
from zero.

Wrong approach

3351_sum_of
_good_subsequences Figure out the total sum of all subsequences in the array where each pair

of consecutive elements differs by exactly one.
Problem level understanding

3376_minimum_time
_to_break_locks_i Figure out the minimum number of minutes Bob needs to sequentially

break all dungeon locks by optimally managing his sword’s energy
growth and factor increments.

Wrong approach

2052m_managing_cluster Figure out the optimal assignment of service replicas on a tree-connected
cluster by performing at most one swap per machine to maximize the
number of services whose two replicas are placed on directly connected
machines.

Problem level understanding

2053i1_affectionate_arrays
(easy_version) Figure out the minimal length of an array that includes a given sub-

sequence, has the same total sum, and achieves the smallest possible
maximum subarray sum.

Problem level understanding

2052f_fix_flooded_floor Figure out whether a damaged 2×n parquet floor can be tiled in exactly
one, multiple, or no distinct ways using non-overlapping 1×2 tiles placed
horizontally or vertically.

Wrong approach

C Human Agent Interaction717

# feedback_phase_1

Please reply with a C++ solution to the below problem. Make sure to wrap your code in ’C++’ and
’ ’Markdown delimiters, and include exactly one block of code with the entire solution. Feel free
to either return just the one code block with your solution or the one code block with explanatory
text before and/or after – however, you will only be evaluated on the correctness of your code.
[BEGIN PROBLEM] Archimedes conducted his famous experiments on buoyancy. But not everyone
knows that while he was taking a bath, he was too focused and didn’t notice the moment when the
water overflowed over the edge of the bath and flooded the floor near the wall. His expensive
parquet was irreversibly damaged!

Archimedes noticed that not all was lost, and there were still several undamaged parquet pieces.
The parquet near the wall had the shape of a long narrow stripe of 2×n cells. Archimedes had an
unlimited supply of 1×2 parquet pieces that could be placed parallel or perpendicular to the wall.
Archimedes didn’t want to cut the parquet pieces. As a great scientist, he figured out that there
was exactly one way to restore the parquet by filling the damaged area of the parquet with the
non-overlapping 1×2 cell shaped pieces.

Help historians to check Archimedes’ calculations. For the given configuration of the 2×n parquet
floor, determine whether there is exactly one way to fill the damaged parquet cells with the 1×2
cell parquet pieces. If Archimedes was wrong, find out whether there are multiple ways to restore
the parquet, or there are no ways at all.

718

12



...
response_phase_1: WA

Figure 3: Pathway of solving problems of single agent with interaction (2052f_fix_flooded_floor).

# feedback_phase_2

This code is not correct. There are several bugs in your code, but I think it’s important to verify
your understanding of the problem. Let’s converse and make sure you understand the problem
correctly. Let’s go through the sample case together:
1
7
.......
..#.#..

719

# response_phase_2

We have a 2×7 grid where certain cells are undamaged (#). After analyzing, it’s clear that placing
1×2 tiles without overlapping or covering the undamaged cells is impossible. The undamaged
cells at positions (1,2) and (1,4) block potential vertical and horizontal placements, leaving some
damaged cells uncovered regardless of the tiling strategy. Therefore, the correct output for this
case is indeed "None," confirming that there’s no valid way to restore the parquet under the given
constraints. This aligns with Archimedes’ observation that sometimes restoration isn’t feasible.

720

# feedback_phase_3

Alright. You are right this time! So to verify you understand, can you implement it with your
previous response?

721
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...
response_phase_3: AC

Figure 4: Pathway of solving problems of single agent with interaction (2052f_fix_flooded_floor).
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