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Abstract

Among the hardest tasks for humans are those
found in competitive programming where prob-
lems require sophisticated algorithmic thinking,
puzzle solving, and the creation of effective
code. As a domain to assess language mod-
els (LMs), it has not received enough atten-
tion, though. This study presents the ICPC
benchmark, which consists of 1220 interna-
tional collegiate programming contest (ICPC)
tasks. Each problem includes official analysis,
reference code, and sample and high-quality
unit and hidden tests. We are able to develop
and evaluate a variety of LM inference tech-
niques for competitive programming with these
resources. With zero-shot chain-of-thought
prompting, we find that ol only achieves a
19.1% pass@1 solve rate. With our best infer-
ence technique, which combines muti-turn self-
judge with reflection and retrieval over episodic
information, raises this to 42.2%. Furthermore,
we conduct a new human-in-the-loop investiga-
tion to gain a deeper understanding of the re-
maining difficulties. Surprisingly, we discover
that ol can solve 17 out of 18 problems that
were previously unsolvable by any model or
technique with just a few specific instructions.
A footstep toward LMs with grounded, imag-
inative, and algorithmic thinking is provided
by our quantitative findings and qualitative re-
search.

1 Introduction

A crucial area for assessing and implementing lan-
guage models (LMs) is code generation. However,
several well-known coding benchmarks, including
HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), have become saturated with solve
rates above 90% due to the scaling of LMs and the
development of new inference techniques (Chen
et al., 2023; Shinn et al., 2024; Wei et al., 2022;
Zhou et al., 2022). We require more difficult bench-
marks that highlight the shortcomings of current

models, inference techniques and offer practical
instincts for enhancing LM’s algorithmic reason-
ing in order to spur additional advancement. Since
competitive programming where problems are in-
tended to rigorously assess human reasoning skills
in difficult circumstances and the development of
innovative algorithms, it is a perfect fit for this
endeavor. To thoroughly assess algorithmic reason-
ing, prior investigations of competitive program-
ming, however, have either lacked full unit test
suites, problem analysis, or sufficient problem va-
riety (Jain et al., 2024; Li et al., 2022; Hendrycks
et al., 2021).

With 1220 difficult competitive programming
tasks from previous ICPC (including regional, con-
tinental, world final, etc.) contests, we provide
a meticulously designed coding benchmark. As
well as some sample tuples of inputs, outputs, and
explanations, each challenge outlines a job to be
completed in a made-up situation. Solving these
problems require for both innovative and grounded
thinking in addition to a broad variety of mathemat-
ical, computational, and common sense expertise.
With using zero-shot chain-of-thought prompting,
even the best ol only achieves a 19.1% pass@1
solution rate. Apart from that, in order to investi-
gate more sophisticated inference-time techniques
for competitive programming, our benchmark also
gathers official analysis, reference code solutions,
and excellent unit and hidden tests for every prob-
lem, as well as the relevant teaching materials in
the form of competition programming textbooks.
Using these resources, we develop a variety of
baseline techniques based on take-a-deep-breath
prompt (Yang et al., 2024), brainstorm then se-
lect (Summers-Stay et al., 2023), zero-shot-CoT
(Kojima et al., 2022), LLM Stimuli (Li et al.,
2023a), self-reflection (Shinn et al., 2024), few-
shot prompting (Brown et al., 2020) and retrieval
augmented generation- semantic and episodic re-
trieval (Su et al., 2024; Gao et al., 2023; Shypula



et al., 2023), and their combinations.

We discover that multi-turn self-judge single
agent LMs with retrieval over comparable prob-
lems and solutions together with self-reflection in-
creases performance by 120.94% with respective to
01’s zero-shot solve rate. Moreover, we conduct a
unique human investigation to better understand the
limitations and promise of LM reasoning toward
competitive programming. In this study, humans
engage with LMs in a conversational "tutoring"
setup by pointing out errors and providing only
a few tips. Interestingly, when we use a human-
in-the-loop configuration, ol solves 17 out of 18
tasks that can ever answer using any inference tech-
niques. This suggests that stronger LMs may even-
tually be able to include high-quality input, that
new techniques for producing such human-level
corrective feedback must be developed, and the ap-
propriate criterion for assessing model capabilities
beyond the too stringent execution success should
be reconsidered.

We require just black-box access to language
model generations; no model-internal information,
like as likelihoods or gradients, is required. We
employ the same technique and prompt templates
for all of our tasks. This makes it possible to ap-
ply our approach with popular public models that
provide interfaces. Additionally, further model
generation enhancements like prompt engineering,
self-reflection, or retrieval, are orthogonal to the
approach.

In summary, the contributions of our work are
provided in the following. At first, the benchmark
based on contest programming that includes excel-
lent unit and hidden test cases, problem analysis,
and supplementary materials is the ICPC bench-
mark, which we propose. After that, we develop
and evaluate several LM inference techniques for
contest programming. Later, we provide a unique
method that uses a multi-turn self-judge single
agent LMs with retrieval process to increase the rea-
soning of modern language models. Our findings
show that multi-turn self-judge single agent LMs
with retrieval and self-reflection together can signif-
icantly improve performance. Finally, we combine
automated tests based on execution success with
a new human-in-the-loop research to describe the
strengths and weaknesses of LMs for contest pro-
gramming. Latent differences across models are
revealed when we discover that only some models
are able to correctly integrate feedback.

2 Related Work

2.1 Problem solving coding benchmarks

Numerous studies have examined language model
performance on basic program synthesis (Zan et al.,
2022; Austin et al., 2021; Chen et al., 2021; Yu
et al., 2018) and HumanEval—the industry stan-
dard for evaluating new models on code synthesis.
But with the help of inference techniques, exist-
ing models can tackle HumanEval problems with a
94% success rate (Zhou et al., 2023). This suggests
that more challenging, intricate and self-contained
coding challenges are required to test the limits
of code reasoning. Thus, competitive program-
ming questions have been suggested as a more chal-
lenging assessment metric. The majority of these
tasks originate from online resources like Topcoder,
LeetCode, Codeforces, Atcoder and others (Jain
et al., 2024; Huang et al., 2023; Li et al., 2023c,
2022; Hendrycks et al., 2021). Still, a consider-
able number of these challenges are only described
symbolically and lack thorough test cases that de-
fine correctness and quality problem evaluations.
The model’s capacity to use creative reasoning in
grounded tasks environments—a critical skill of
well-rounded reasoners—is thus only marginally
assessed.

2.2 Inference time techniques

According to (Chen et al., 2023; Gao et al., 2023;
Madaan et al., 2024; Shinn et al., 2024; Zhou
et al., 2023; Le et al., 2022; Yao et al., 2022;
Zelikman et al., 2023; Zhou et al., 2023), infer-
ence time methods have demonstrated notable suc-
cess in enhancing reasoning abilities by condition-
ing generations on environment feedback, task-
specific knowledge, natural language reflections
and planned summaries. Nevertheless, only ba-
sic program synthesis tasks like HumanEval and
MBPP have utilized their usefulness on code do-
mains thus far (Austin et al., 2021; Chen et al.,
2021). In this study, we also discuss how well they
perform in a far more challenging domain: com-
petitive programming. We also draw inspiration
for our retrieval augmented generation implementa-
tion from classical case-based reasoning literature
(Aamodt and Plaza, 1994; Schank, 1983) and cog-
nitive architectures for human reasoning (Sumers
et al., 2023), which reflect the kinds of information
that people find helpful in solving problems.



2.3 Human Agent Interaction (HAI)

Agent learning via human-provided feedback under
synthetic tasks is examined by (Sumers et al., 2022).
The purpose of (Macina et al., 2023) is to offer a
set of tutoring guidelines for successfully including
LMs in conversation problem solving. In order to
assess the models’ capacity to react to feedback,
we use a set of interaction rulesets from (Shi et al.,
2024).

3 Setup

3.1 Benchmarks: ICPC problems

Table 1: Problem judges, type, collection, and selection
for testing.

input and output comprise each problem. Synthe-
sized tests were produced from problem constraints
with potential edge cases discussed in the official
editorials and validated against official solutions
to ensure correctness. This approach is standard
in competitive programming research, mitigating
reliance on public test cases (Schifer et al., 2023).
A model is provided with the problem description,
time and memory constraints and any samples and
synthesized tests as unit tests that are available.
After that, the model retrieves related reference
documents and using that as episodic knowledge
(see in Section 3.2) the model must provide a code
solution that the same model judge (self-judge)
judges and accepts if it enforces correctness and
the intended asymptotic efficiency by yielding the

predicted results on all unit tests (in this part, we

Problem platform Problem Problem
collected selected
North Central North America (NCNA) 58 46
Pacific Northwest (PacNW) 54 45
East Central (ECNA) 58 47
Northeastern (NENA) 50 42
Rocky Mountain (RM) 51 44
Mid-Central (MCUSA) 45 39
Greater New York (GNY) 53 45
Southern California (Scal) 52 44
South Central (SCUSA) 55 46
Southeast USA (SEUSA) 56 47
Mid-Atlantic (MAUSA) 48 41
Southwestern Europe Regional Contest 59 49
(SWERC)
Northwestern Europe Regional Contest 51 43
(NWERC)
Central Europe Regional Contest (CERC) 50 42
Southeastern Europe Regional Contest 48 41
(SEERC)
Northeastern Europe Regional Contest 65 55
(NEERC)
Asia East Continent Contests 67 56
Asia West Continent Contests 58 47
Asia Central Continent Contests 44 38
Africa and Arabia Regional Contest 45 39
(AARPC)
South Africa Regional Contest (SAfrica) 49 43
Mexico and Central America Regional 50 44
Contest (CAmerica)
Caribbean Regional Contest 50 44
Brazil Regional Contest 53 47
South America North Regional Contest 54 48
South America South Regional Contest 56 49
South Pacific Regional Contest (SPacific) 56 49

selected the synthesized tests which don’t exist in
the hidden test cases) within the specified bounds
and the process will terminate. In case the code
fails on the unit tests, the whole process will repeat
again until convergence or reach into the specified
iteration (we found tha ¢+ = 2 is ideal for o1 in this
scenario—shown in Table 6). After that the solution
will execute against the hidden tests to get the final
pass/fail results. A custom HTMLS5 parser is used
to gather 1435 tasks' that explain contest materials.
Regular expressions are then used to extract time
and memory limits from problem descriptions. We
choose 1220 of the 1435 competitive programming
tasks with complete problem analyses to aid in the
creation of rich inference-time techniques and as-
sessments. We parse a ground truth standalone C++
code snippet and an English-only analysis devoid
of code for the episodic knowledge retrieval. We
ask GPT-4 to convert the code to C++ for tasks
when C++ code is not accessible and we confirm

From previous ICPC coding competitions of
1435 problems, because of lacking strong co-
relation with reasoning problem standards (extreme
simple problems) we filtered out some problems
and finally 1220 expert-written, superior competi-
tive programming tasks make up the ICPC bench-
mark, presented in Table 1. An official human-
written problem analysis stating the solution in
detail with corresponding C++ code, some unit
tests (sample and some synthesized tests) and hid-
den tests (synthesized tests) confirming solution
correctness, time and memory limits confirming so-
lution complexity and a problem description with
instructions for reading and writing from standard

that all code solutions pass hidden tests on the spec-
ified restrictions.

3.2 Baselines

We test a number of prompting and inference
time strategies, including the take-a-deep-breath
prompt (Yang et al., 2024), brainstorm then se-
lect (Summers-Stay et al., 2023), zero-shot-CoT
(Kojima et al., 2022), LLM Stimuli (Li et al.,
2023a), self-reflection (Shinn et al., 2024), few-
shot prompting (Brown et al., 2020) and retrieval
augmented generation- semantic” and episodic re-

"https://icpc.global/
%As our resource, we utilize the Algorithms for Competi-
tive Programming textbook, which includes chapters on algo-


https://icpc.global/

trieval (Su et al., 2024; Gao et al., 2023; Shypula
et al., 2023). As no single prompt performs better
than the others (Table 3), we choose the episodic
retrieval with reflection prompt in our single agent
LMs framework. Furthermore, to fully explore the
potential of retrieval on the comparatively small
dataset, we simulate a setup in which the model
has seen every other problem in the ICPC set aside
from the one it is currently solving. This is done
by simulating a n-fold evaluation that presents one
problem at a time. Although we get comparable
results with a more traditional train-test split, as
detailed in Section 4.2. Concatenating the problem
description, solution and C++ solution code for
each seen problem creates documents that may be
retrieved. After adjusting for the number of prob-
lems to retrieve, p, we determine that p = 2 is ideal
for ol. As pass@]1 performance was declining, we
decided not to try resampling for larger amounts of
p in order to save budget. As a result, we publish
these values (Table 5).

3.3 Maetric

We use every method that has a Pass@ 1 evaluation
and the methods from (Shi et al., 2024) for self-
reflection and episodic retrieval, and we only give
the models the execution outcomes of the exposed
unit test cases. Fundamental studies were done us-
ing GPT-4, GPT-40 and ol with some open source
models tested in zero-shot setting only.

4 Results

4.1 Performance baselines

Table 2: Pass@1 performances of various models for
zero-shot problem-solving configuration.

(gemini-exp-1206), Athene-V2-Chat (athene-v2-
chat-72b), DeepSeek-V3-Chat, and Qwen2.5-
Coder (gqwen2.5-coder-32b-instruct) (Achiam
et al., 2023; Team et al., 2024; Liu et al., 2024a;
Hui et al., 2024). Table 2 provides an overview of
this. If not otherwise noted, models were given
chain-of-thought prompts (Wei et al., 2022); the
complete prompts are shown in Appendix A. In
accordance with earlier studies on competitive
programming (Li et al., 2022; Hendrycks et al.,
2021), we mainly use the unbiased pass@n metric
as specified in (Chen et al., 2021). For that,
we discover that compilation errors are not the
primary cause of any model defects. This at
least demonstrates that models are successful in
producing syntactically sound code and points to
more complex problems in generations, including
miscommunications. We conduct a quick qualita-
tive study and list a few examples of problems and
related errors in Appendix B.

4.2 Performance benchmarks

Table 3: Pass@1 performances for various problem-
solving configurations.

gpt-4  gpt-4o ol

zero_shot 7.3 14.2 19.1
brainstorm_then_select 8.6 16.9 21.7
few_shot 10.1 19.4 24.2
self_reflection 11.3 20.6 25.4
semantic_retrieval 12.4 22.1 273
semantic_retrieval + self_reflection 12.8 22.5 28.1
episodic_retrieval 13.2 233 29.0
semantic_retrieval + episodic_retrieval 14.5 24.4 29.8

semantic_retrieval ~ +
self_reflection

episodic_retrieval ~ + 16.4 27.1 332

episodic_retrieval + self_reflection 243 384 42.2

Table 4: Pass@1 performances when compared to
our leave-one-out episodic retrieval situation, the out-
comes of a normal train-test split are comparable across

Model Pass@1 inference-time approaches.

apt-4 7.3

claude-3.5-sonnet 14.1 ept-4 ept-do ol
gP‘“‘; - ijé episodic_retrieval 10.9 18.6 22.7
le::e';/_;?h: i 6. 7 self_reflection 1.1 204 %)
TeepSeekv3-chat 76 p ic_retrieval + self_reflection 21.3 338 354
gemini-exp 18.3

ol 19.1

As a starting point, we assess the zero-shot
performance of models that represent the
state-of-the-art coding performance, such as
GPT-4 (gpt-4-0613), GPT-40 (gpt-40-2024-11-
20), ol (01-2024-12-17), Claude-3.5-Sonnet
(claude-3.5-sonnet-20240620), Gemini-Exp

rithmic principles written by humans.
https://cp-algorithms.com/

Table 5: ol hyperparameter tuning on the number of
problems to retrieve for episodic retrieval.

Problems Pass@1
p=1 28.1
p=2 29.0
p=3 28.4

Aligning with (Shi et al., 2024; Shinn et al.,
2024; Chen et al., 2023), we discover that stronger
models have the emergent quality of being able
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Table 6: ol iteration tuning on the number of iterations
for self-reflection. Without any reflection, the solve rate
is 2 = 0. We see that after 2 repetitions, solve rates nearly
stay the same.

Iterations Pass@1
=0 21.3
i=1 23.8
=2 25.6
=3 254

to self-reflect successfully. Nevertheless, both
episodic and semantic retrieval remain efficient;
in fact, episodic retrieval even makes GPT-40 come
close to o1’s zero-shot performance (Table 3). This
is probably due to the fact that self-reflection de-
pends on the internal model’s capacity to interpret
binary, sparse reward signals. Conversely, retrieval
enables models to make use of pre-existing logic
and code fragments, necessitating less inherent
model capabilities. Thus, our results support (Li
et al., 2023b), which found that LMs are able to
comprehend competitive programming solutions
that are far more sophisticated than they are able
to generate. Furthermore, combining episodic re-
trieval with reflection allows it to reach new heights,
but not with semantic retrieval. The additional
knowledge offered by our implementation of se-
mantic retrieval trades off against its extended con-
texts, which existing LLMs are known to struggle
with (Liu et al., 2024b; Shi et al., 2024). This offers
one explanation for why combining the two might
result in decreased performance.

Furthermore, instead of the model crucially inter-
acting with the retrieved information itself, the op-
posing theory for retrieval success holds that adding
obtained answers enhances memorizing effects for
the problem under evaluation. To check for this,
we eliminate crucial portions of the recovered solu-
tions and see notable performance decreases. The
created and officially published answers also do
not significantly overlap, according to qualitative
examination. Section 4.4 contains the experiment
specifics.

Additionally, for maximizing the impact of re-
trieval on the comparatively short dataset at hand,
our episodic retrieval assessment setup entails pre-
senting one problem at a time that is retrieves from
the solutions of all other test problems, as explained
in Section ??. Given how independent problems
are and how little solution logic even problems
with the same method type share, we anticipate
that this will not result in any notable dataset leak-
ing across evaluations. We did, however, rerun

most of the inference-time methods against a more
conventional train-test split arrangement. The con-
ventional split, train size = 1000, test size = 220
produces comparable results with somewhat lower
retrieval efficacy, as seen in Table 4. This is due to
the fact that fewer problems are retrieved overall,
which results in a generally lower level of problem
similarity between the problems that are recovered
and the ones that are being addressed at the mo-
ment. Moreover, we recover the same optimal val-
ues as the leave-one-out configuration by re-tuning
the number of recovered passages solely on this
train set.

4.3 Performance HAI

Table 7: Feedback is integrated into o1’s HAI interactive
setting.

Model Percentile
gpt-4 0

gpt-4o 0

ol 0

ol + interact 94.4

We discovered a broad range of model error dis-
tributions in benchmark assessments, ranging from
minor off-by-one implementation problems to se-
vere misconceptions. We conduct a human research
using an interactive tutoring to further investigate
how close a model is to resolving a particular task.
Remarkably, we discover that the human-in-the-
loop approach improves ol performance from 0%
to 94.4% (Table 7), 17 problems solved on a small
set of 18 problems on which GPT-4, GPT-40 and ol
reach zero pass rate using all of the aforementioned
inference-time methods, but does not improve GPT-
4 and GPT-40 performance from 0%. When two
models fail on a particular problem, one may be
one adjustment away from a completely perfect
solution, while the other may have a basic misun-
derstanding of the problem scenario. These human-
in-the-loop results demonstrate that the solve rate
may not fully represent the capabilities of models.
This encourages improved measures for assessment
that go beyond execution success, pass@n. As an
alternative interpretation of our findings, it is pos-
sible that human-level corrective feedback might
open more thinking abilities in o1, underscoring
the need for improved techniques to produce such
feedback. Appendix C contains a scenario of inter-
action pathway.



Table 8: Performance on various retrieval query abla-
tions.

Query Pass@1
problem_description 28.5
problem_description + proposed_code_solution 29.0
problem_description + proposed_solution + code_solution 29.8

Table 9: Performance on various episodic retrieval abla-
tions.

Retrieval of max performance
problem_description + code + solution 100.0
problem_description 2.3

4.4 Ablation test

For the ICPC problemset, we do ablation test on
various prompts in order to establish the parameters
for the primary experiments.

Apart that, in the investigation on how the
prompts impact problem-solving in a conversa-
tion, we create a variety of specific prompts for
our suggested self-feedback single agent with re-
trieval framework. Appendix A incorporates the
prompt designs and report the findings, identify-
ing the prompt as the primary prompt for more
research.

According to ablations on retrieval queries, the
best retrieval queries make use of both the current
problem description and a first solution attempt that
includes code and an explanation. This makes it
possible to accurately obtain pertinent algorithm
descriptions from the underlying retrieval corpus,
as retrieval over algorithmic keywords is not pos-
sible when only the issue descriptions are used.
Since our local judge has not seen this first genera-
tion, we do not consider it an effort. For that, we
found in Table 8, the majority of retrieval queries,
in general, are rather effective; nevertheless, the
best results are obtained by combining code pro-
poses and proposed solutions, as this enables the
greatest possible matching of pertinent keywords
across the compared documents. Applying abla-
tions to the corpora in Table 9, we tackle memo-
rizing. If retrieving problem solutions was causing
people to recite previously learned answers to the
present problem, then eliminating important com-
ponents of the obtained solutions would not lessen
this impact. But we discover that it does: using
only the problem description preserves just 2.3%
of the performance, indicating that models are actu-
ally using the context-provided reasoning of related
problems to guide their generations.

5 Results Analysis

Hungarian Algorithm (a.k.a. Kuhn-Munkres) for MIN-COST matching on an n x m matri:
This version can handle the case n <= m by padding if necessary.
Complexity ~ 0(n"2 * m).

VWe'll write a function hungarianMinCost(cost, n, m) that returns the minimal cost
f a perfect matching (matching each of the n rows exactly once with some colum)

For maximum-sum matching, we do cost'[r][c] = K - originalWeight, etc.

static const int INF = 1000000000

vector
for (in
plo] - i
int 10 = 0. ent co
vector<int> minv(m + 1, INF
vector<bool> used(m + 1, false

used[§0] = true.
int 10 = p(j), j1 =0
int delta = INF

(a) zero_shot: WA

int naxScore (vecto
int n = grid.s
int m = grid(0].si:

vector<bool> usedio

3 L
vector<bool> ¢

answer = 0

pick from largest to sma
for (auto &cell : cells
int val = cotlra

(b) semantic retrieval + self_reflection: WA

vector<int ask(k, 0
For eac , we gather it
vector= unordered_set<int> > rowsets (n
for(int r=0; ren; re+
or(int c=0; c<m; c
ouSets [r]. insert(grid[r] fc

(c) episodic retrieval + self_reflection:

Figure 1: Pathway of solving problems of self-
feedback single agent with retrieval (3276_se-
lect_cells_in_grid_with_maximum_score).

We see in  Figure 1-  "3276_se-
lect_cells_in_grid_with_maximum_score"
that, within some trials of incorrect solution, with
retrieval + reflection state the reasoning about
related problem settings could be inherited by
single agent LMs. That is why, the retrieved
solution and code gives it access to sample



est_d best_doun2 track the two largest dp[child] among children
long long best_downl = o, best_down2 = 0;

/1 best path that “passes th v plus up to two children
long long local_path - w[v] + best_downl + best_down2;
global_best - max(global_best, local_path);

rough v" might use

episodic retrieval + self_reflection:

Figure 2: Pathway of solving problems of self-feedback
single agent with retrieval (2050g_tree_destruction).

reasoning over this complex and error-prone
problem context, enabling single agent LMs to
produce code that is more correct.

A textbook chapter on route-removal and tree
splitting strategies, which are indirectly related
to the problem of eliminating the vertices on a
path between two selected nodes, was retrieved
by the single agent LMs, shown in Figure 2-
"2050g_tree_destruction". Interestingly, the offi-
cial editorial’s brief reference chapter on the spe-
cific tree technique was not retrieved. After closer
examination, the chapter’s retrieval score was lower
since it was noticeably lacking in specifics. This
demonstrates how the retrieval engine may be used
to filter out less-than-ideal documents and choose
more pertinent sources, especially those that deal
with increasing the number of connected elements
by deliberately deleting a path from a tree. For that,
algorithmic notions and textual reasoning can be
employed by single agent LMs.

For HAI, while GPT-4’s reprises frequently
prove ineffective. While GPT-40 was receptive
but could not able to reach into the solution state,
we discovered that ol was more receptive to gen-
eral input that its algorithm or comprehension of an
environment notion was flawed and more able to
arrive at the right approach on its iterative try. For
instance, in the problem “2052f_fix_flooded_floor,”
ol demonstrated superior problem-solving through
iterative feedback. Initially, when prompted to pro-
vide a solution, ol submitted an incorrect code.
After receiving feedback highlighting several bugs
and requesting a verification of its understanding,
ol engaged in a constructive dialogue. It analyzed
a sample case together with the user, identified the

impossibility of tiling in the given scenario, and cor-
rectly concluded that the output should be "None".
When prompted to implement the corrected logic
based on this understanding, ol successfully de-
livered an accurate and accepted solution. In con-
trast, GPT-4 and GPT-4o fails to make meaningful
progress despite similar interaction, highlighting
01’s enhanced ability to comprehend and act upon
detailed instructions and iterative guidance. Ap-
pendix C contains a scenario of iterative interaction
pathway.

6 Discussion and Conclusion

At the end, the benchmark of competitive program-
ming problems—complete with official analysis,
reference code, and rigorous unit tests—offers a
robust platform for evaluating and advancing lan-
guage models in competitive programming set-
tings. By introducing the self-feedback single agent
with retrieval framework, we demonstrate how self-
reflection and retrieval of episodic information can
substantially improve solve rates. Moreover, the
human-in-the-loop study underscores the transfor-
mative potential of targeted guidance, enabling so-
lutions to nearly all previously unsolvable prob-
lems. Collectively, these findings mark a signifi-
cant step toward language models that can engage
in grounded, imaginative, and algorithmic thinking.
We hope this work will illuminate the challenges
that lie ahead and provide a strong foundation and
a promising roadmap for future research at the in-
tersection of natural language processing and ad-
vanced problem solving.
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A Prompt

# zero_shot

Please reply with a C++ solution to the below problem. Make sure to wrap your code in ’“‘C++’
and ’ “‘’ Markdown delimiters, and include exactly one block of code with the entire solution (in
the final code step).

Reason through the problem and think step by step. Specifically:

1. Restate the problem in plain English.

2. Conceptualize a solution first in plain English.

3. Write a pseudocode solution.

4. Output the final C++ solution with your solution steps in comments.

[BEGIN PROBLEM]
{INSERT PROBLEM HERE}
LEND PROBLEM]

| r

# self reflection

You were previously solving a coding problem. Here is the problem that you were solving:
{problem_dict[query[’problem_id’]]

[’description’]}

And here are all your past attempts, as well as how your code fared on the unit tests for the
problem:

{query[’reflection_buffer’]}

Think carefully about where you went wrong in your latest solution, first outputting why you think
you went wrong. Then, given your insights, try to fix the solution, outputting a block of correct
C++ code to be executed and evaluated again. Make sure to wrap your code in *“‘C++’ and *“*’
Markdown delimiters.

# episodic_retrieval

| r

Please reply with a C++ solution to the below problem. Make sure to wrap your code in ’ “ ‘C++’
and ’ “‘’ Markdown delimiters, and include exactly one block of code with the entire solution (in
the final code step). You will also be given multiple somewhat similar problems, as well as the
solution to those similar problems. Feel free to use those problems to aid your problem-solving
process.

1. Restate the problem in plain English.

2. Conceptualize a solution first in plain English.

3. Write a pseudocode solution.

4. Output the final C++ solution with your solution steps in comments.

[BEGIN SIMILAR PROBLEMS]

{query[’retrieval_text’]} (Similar problem problem + solution goes here)
[END SIMILAR PROBLEMS]

Now it’s your turn. Here is the problem you are to solve:

[BEGIN PROBLEM]

{problem_dict[query[’problem_id’]]

[’description’]} (Description of problem goes here)

[END PROBLEM]

10



# episodic_retrieval + self_reflection

You were previously solving a coding problem. Here is the problem that you were solving:
{problem_dict[query[’problem_id’]]
[’description’]}

You were also given a couple of similar problems to the problem above along with their solutions
to aid you in solving the problem at hand. Here are the similar problems you were given:
{query[’retrieval_text’]}

And here was your original response:
{query[’original_response’]}

Here was the execution result of the above solution:
{query[’execution_response’]}

Think carefully about where you went wrong. Then, try to fix the solution, outputting a block of
correct C++ code to be executed and evaluated again. Make sure to wrap your code in ’“‘C++’
and ’“‘’ Markdown delimiters.

# interaction

You are to interact with a given model to try to solve a given coding question. A problem-solving
session ends whenever the model has generated code 3 times. Between code generations, you
may speak to the model in conversation as many times as you would like. However, the way you
interact with the model must be very specific: your goal is to act akin to a tutor and guide the
model towards the right answer, without giving away any underlying details about the true solution
of the problems.

You MAY NOT provide the models with:

1. The correct algorithm to fix their initial solution.

2. Exact lines of code where they went wrong.

3. Explanations of the problem or explanations of misunderstandings.

You MAY provide the models with:

1. General concepts/data structures that may be useful for solving the problem.

2. Walking through a sample input-output of the problem to better verify problem understanding.
3. Short concise general directions on where the code went wrong.

Here are examples of correct pathway:
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B Errors

Table 10: A scenario of errors on problems with various specifications.

Problem Summary Error
3180_maximum_total_reward
_using_operations_i Figure out the highest possible total reward by sequentially selecting ~ Wrong approach
and marking array elements that exceed the current total reward, starting
from zero.
3351_sum_of
_good_subsequences Figure out the total sum of all subsequences in the array where each pair ~ Problem level understanding

of consecutive elements differs by exactly one.

3376_minimum_time
_to_break_locks_i Figure out the minimum number of minutes Bob needs to sequentially ~ Wrong approach
break all dungeon locks by optimally managing his sword’s energy
growth and factor increments.
2052m_managing_cluster Figure out the optimal assignment of service replicas on a tree-connected ~ Problem level understanding
cluster by performing at most one swap per machine to maximize the
number of services whose two replicas are placed on directly connected
machines.

205311 _affectionate_arrays
(easy_version) Figure out the minimal length of an array that includes a given sub- Problem level understanding
sequence, has the same total sum, and achieves the smallest possible
maximum subarray sum.
2052f_fix_flooded_floor Figure out whether a damaged 2xn parquet floor can be tiled in exactly =~ Wrong approach
one, multiple, or no distinct ways using non-overlapping 1x2 tiles placed
horizontally or vertically.

C Human Agent Interaction

# feedback_phase_1

Please reply with a C++ solution to the below problem. Make sure to wrap your code in ’C++’ and
> *Markdown delimiters, and include exactly one block of code with the entire solution. Feel free
to either return just the one code block with your solution or the one code block with explanatory
text before and/or after — however, you will only be evaluated on the correctness of your code.
[BEGIN PROBLEM] Archimedes conducted his famous experiments on buoyancy. But not everyone
knows that while he was taking a bath, he was too focused and didn’t notice the moment when the
water overflowed over the edge of the bath and flooded the floor near the wall. His expensive
parquet was irreversibly damaged!

Archimedes noticed that not all was lost, and there were still several undamaged parquet pieces.
The parquet near the wall had the shape of a long narrow stripe of 2xn cells. Archimedes had an
unlimited supply of 1x2 parquet pieces that could be placed parallel or perpendicular to the wall.
Archimedes didn’t want to cut the parquet pieces. As a great scientist, he figured out that there
was exactly one way to restore the parquet by filling the damaged area of the parquet with the
non-overlapping 1x2 cell shaped pieces.

Help historians to check Archimedes’ calculations. For the given configuration of the 2xn parquet
floor, determine whether there is exactly one way to fill the damaged parquet cells with the 1x2
cell parquet pieces. If Archimedes was wrong, find out whether there are multiple ways to restore
the parquet, or there are no ways at all.
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#include <bits/stdc++.h>
using namespace std;

typedef long long 11;

int main(){
ios::isync_with stdio(false);
cin.tie(0);
int T;
IR0
while(T--){
int n;
cin >> n;
string rowe, rowl;
cin >> row@ >> rowl;
// Initialize DP
// dp_prev[mask] where mask is ©,1,2,3
// Initialize all to @
int dp_prev[4] = {0,0,0,0};
dp_prev[e] = 1;
for(int i=@;i<n;i++){
int dp_next[4] = {0,0,0,0};
for(int mask=0; mask<4; mask++){
if(dp_prev[mask]==6) continue;
// check consistency
bool invalid = false;
if( (mask & 1) && rowe[i]
if( (mask & 2) &% rowl[i]
if(invalid) continue;
// Compute coverage needs
bool top covered = (mask & 1) != @;
bool bottom_covered = (mask & 2) =
bool ce = (ltop_covered && rowd[i] =
bool c1 = (!bottom_covered && rowl[i
if(ce && c1){

B T e

true;

‘#") invalid
S true;

) invalid

)

9;
1==".")

response_phase_1: WA

Figure 3: Pathway of solving problems of single agent with interaction (2052f_fix_flooded_floor).

# feedback_phase_2

This code is not correct. There are several bugs in your code, but I think it’s important to verify
your understanding of the problem. Let’s converse and make sure you understand the problem
correctly. Let’s go through the sample case together:

# response_phase_2

We have a 2x7 grid where certain cells are undamaged (#). After analyzing, it’s clear that placing
1x2 tiles without overlapping or covering the undamaged cells is impossible. The undamaged
cells at positions (1,2) and (1,4) block potential vertical and horizontal placements, leaving some
damaged cells uncovered regardless of the tiling strategy. Therefore, the correct output for this
case is indeed "None," confirming that there’s no valid way to restore the parquet under the given
constraints. This aligns with Archimedes’ observation that sometimes restoration isn’t feasible.

# feedback_phase_3

Alright. You are right this time! So to verify you understand, can you implement it with your
previous response?
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#include <bits/stdc++.h>
using namespace std;

typedef long long 11;

int main(){
ios::sync_with_stdio(false);
cin.tie(@);
int T;
cin »> T;
while(T--){
int n;
cim >> nj
string rowe, rowl;
cin >> row@ >> rowl;

// DP arrays: dp_prev and dp_next, each with 4 masks
// Initialize dp_prev to @ and set dp_prev[e] = 1
int dp_prev[4] = {0, 0, @, 0};

dp_prev[e] = 1;

for(int i=0; i<n; i++){
int dp_next[4] = {e, @6, @, 08};
for(int mask=0; mask<4; mask++){
if(dp_prev[mask] == @) continue;

// validate the current mask against the grid
bool invalid = false;
// check top cell
if( (mask & 1) ){
if(rowe[i] != ".") invalid = true;

¥
// Check bottom cell
if( (mask & 2) ){
if(rowl[i] != ".") invalid = true;
!

response_phase_3: AC

Figure 4: Pathway of solving problems of single agent with interaction (2052f_fix_flooded_{floor).
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