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Abstract
Feature evolvable learning studies the scenario
where old features will vanish and new features
will emerge when learning with data streams, and
various methods have been developed by utilizing
some useful relationships from old features to new
features, rather than re-training from scratch. In
this work, we focus on two fundamental problems:
How to characterize the relationships between two
different feature spaces, and how to exploit those
relationships for feature evolvable learning. We
introduce the Kernel Ortho-Mapping (KOM) dis-
crepancy to characterize relationships between
two different feature spaces via kernel functions,
and correlate with the optimal classifiers learned
from different feature spaces. Based on this dis-
crepancy, we develop the one-pass algorithm for
feature evolvable learning, which requires going
through all instances only once without storing
the entire or partial training data. Our basic idea
is to take online kernel learning with the random
Fourier features and incorporate some feature and
label relationships via the KOM discrepancy for
feature evolvable learning. We finally validate
the effectiveness of our proposed method both
theoretically and empirically.

1. Introduction
Conventional machine learning generally works with the
assumption that the data comes from a fixed feature space
(Valiant, 1984; Shalev-Shwartz & Ben-David, 2014; Good-
fellow et al., 2016; Mohri et al., 2018; Alpaydin, 2021). In
some real-world applications, however, we may face more
open scenarios; for example, we deploy sensors to collect
data in an environmental monitoring task, and each sensor
corresponds to a feature. Due to finite lifespan of sensors,
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we need to deploy new sensors since old sensors will wear
out, i.e., features corresponding to old sensors vanish but
features corresponding to new sensors emerge.

Feature evolvable learning has been proposed to study the
scenarios, where old features will vanish and new features
will emerge when learning with streaming data. Recent
years have witnessed increasing attention on this direction
(Zhang et al., 2016; Hou et al., 2019; Beyazit et al., 2019;
Gu et al., 2022; Hou et al., 2023; Schreckenberger et al.,
2023; Chen & Liu, 2024). For feature evolvable learning, it
is crucial to update model adaptively to accommodate new
feature space but retain information of old feature space.

Various methods have been developed for feature evolvable
learning by utilizing useful relationships from old features
to new features, rather than re-training from scratch (Hou
& Zhou, 2018; Zhang et al., 2020; Dong et al., 2022; Hou
et al., 2022; Lian et al., 2023; Sajedi & Razzazi, 2024). This
is helpful to prevent unnecessary wastes of computational
resources and useful information from previous models over
old features, and sometimes we may not collect sufficient
training data to learn a stable model over new feature space.

Despite successes on the designs of practical algorithms,
there are still some fundamental problems unsolved for
feature evolvable learning. For example, how to present a
formalization on the relationship characterization between
different feature spaces, as well as correlations with model
performance. Another problem is how to utilize useful
relationships and information to improve the performance
for feature evolvable learning from a theoretical view.

This work focuses on the one-pass algorithm for feature
evolvable learning with theoretical guarantees, and the main
contributions can be summarized as follows:

• We introduce the Kernel Ortho-Mapping (KOM) dis-
crepancy to characterize the relationships between two
different feature spaces via kernel functions, which
essentially reflects kernels’ gap under the rotational
invariance. We compare our KOM discrepancy with
prior characterizations such as kernel alignment and `2
distance (Cristianini et al., 2001; Romero et al., 2015).

• Based on the KOM discrepancy, we develop the one-
pass algorithm for feature evolvable data streams,
which requires going through all instances only once
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without storing the entire or partial training data. Our
basic idea is to take online kernel learning with the
random Fourier features and incorporate feature and
label relationships via the KOM discrepancy1.

• Theoretically, we establish the intrinsic relationship
between the KOM discrepancy and optimal classifiers
learned from different feature spaces, and present the
convergence analysis to show better regret bounds via
some good model initializations and relationships from
old feature space and models.

• We finally conduct extensive experiments to validate
the effectiveness of our OPFES method in comparison
with the state-of-the-art methods on feature evolvable
learning, i.e., our method achieves better performance
and the fastest convergence simultaneously.

The rest of this work is constructed as follows: Section 2
presents some preliminaries. Section 3 characterizes the
relationship between two different feature spaces. Section 4
develops the OPFES method. Section 5 conducts extensive
experiments. Section 6 concludes with future work.

2. Preliminaries
Feature evolvable learning studies evolvable feature
spaces over time, where old features will vanish and new
features will emerge. Let X [1] ⊆ Rd[1] and X [2] ⊆ Rd[2]

be the old and new feature spaces, respectively. Feature
evolvable learning includes three stages as follows:

• Previous stage: receive instances x[1]
t from the old

space X [1] for t = 1, · · · , T1;

• Evolving stage: receive instances x[1]
t and x[2]

t from
the old space X [1] and new space X [2], respectively,
for t = T1 + 1, · · · , T1 + Te with small positive Te;

• Current stage: receive instances from the new space
X [2] for t = T1 + Te + 1, · · · , T1 + Te + T2.

Figure 1 presents an illustration of single feature evolvable
learning (Hou et al., 2017; 2022; Lian et al., 2023), and we
could make a similar analysis for multiple cases.

Let K(·, ·) be a positive-definite and symmetric kernel with
a mapping ϕ : X → H from a feature space X to an
RKHS H. This work focuses on the shift-invariant kernels
K(x1,x2) = κ(x1 − x2), such as Gaussian kernel and
Laplacian kernel (Schölkopf & Smola, 2002).

Online kernel learning trains classifiers h1, · · · , hT ∈ H
from a streaming sample ST = {(x1, y1), · · · , (xT , yT )}

1The code is available at github.com/WeltXing/opfes
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Figure 1. An illustration of feature evolvable stream.

with yi ∈ {−1,+1}, by minimizing the following loss

ht ∈ arg min
h∈H

{
1

t

t∑
i=1

`(h, (xi, yi)) +
λ

2
‖h‖2H

}
,

where `(ht, (x, y)) = max{0, 1 − yht(x)}. Based on the
representer theorem (Schölkopf & Smola, 2002), we have

ht(x) =

t∑
i=1

αiK(x,xi) and ‖ht‖2H =

t∑
i,j=1

αiαjK(xi,xj).

This shows that online kernel learning requires storing the
entire training sample ST , which makes it difficult for the
large-scale datasets (Shen et al., 2019; Hong & Chae, 2021).

Online kernel learning with random Fourier features
has been an efficient way for large-scale online kernel learn-
ing (Rahimi & Recht, 2007; Lu et al., 2016), which approxi-
mates high (or infinite) dimensional mapping ϕ(·) with the
finite-dimensional random Fourier features. Specifically, we
approximate the kernel function of K as

K(xi,xj) = 〈ϕ(xi),ϕ(xj)〉

≈
d∑
k=1

p(uk)φ(xi,uk, bk)φ(xj ,uk, bk) , (1)

where φ(x,u, b) =
√

2 cos(〈x,u〉 + b), and p(·) is the
spectral density function of K. Here, random vectors uk are
sampled i.i.d. from standard normal distribution N (0, Id),
and bk are randomly selected independently and uniformly
over [0, 2π]. For shift-invariant kernel K(x1,x2),we have

p(u) =

∫
Rd

κ(x) exp(−i〈x,u〉)
/

(2π)ddx ,

where i is the imaginary unit. By random Fourier features,
we can approximate a kernel classifier

h(x) = 〈w̃,ϕ(x)〉 ≈ 〈w, z(x)〉 ,

where the finite-dimensional approximated vector

z(x) =
(√

p(u1)φ(x,u1, b1), · · · ,
√
p(ud)φ(x,ud, bd)

)
.

We update the classifier according to Fourier online gradient
descent (Lu et al., 2016) as follows:

wt = wt−1 − τt∇`t(wt−1) , (2)

2
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where τt is the stepsize and loss function

`t(wt−1) = ` (wt−1, (z(xt), yt)) +
λ

2

∥∥wt−1

∥∥2

2
.

This work focuses on random Fourier feature technique
over shift-invariant kernels, and it is natural to make similar
approximation and online algorithm for other kernels such
as polynomial kernel (Pennington et al., 2015) and linear
kernel (Wacker et al., 2024).

We introduce some notations throughout this work. Bold
uppercase and lowercase letters denote matrices and vectors,
respectively. We denote by ‖ · ‖p the `p-norm of a vector,
and ‖ · ‖F and ‖ · ‖∗ denote the Frobenius norm and nuclear
norm of a matrix, respectively. Denote by ‖ ·‖HS the Hilbert-
Schmidt norm of an operator, which is an extension of the
Frobenius norm in Hilbert space. Let (vi)

n
i=1 be the d× n

concatenation matrix of vectors v1, · · · ,vn ∈ Rd.

Let Id be an d×d identity matrix, and diag(v) is a diagonal
matrix with diagonal elements v. Denote by 1d and 0d
d-dimensional vectors with all-one and all-zero elements,
respectively. Let N (µ,Σ) be a Gaussian distribution with
parameters µ and Σ. Let Ud = {U ∈ Rd×d : UU> = Id}
be the set of d×d orthogonal matrices, and

√
A is the square

root of positive-semidefinite matrix A, i.e.,
√

A
√

A = A.

3. On the Exploration of Feature Relationship
In this section, we introduce a general framework on the
characterization of relationship between different feature
spaces based on kernel functions, while previous studies can
be viewed as some special selections of different kernels
(Hou et al., 2017; 2021; Zhou et al., 2024). We further
correlate it with the distance between classifiers trained
from different feature spaces and then develop the one-pass
learning algorithm for optimization.

3.1. Charactering Relationship between Feature Spaces

Our basic idea is to map the original raw feature spaces into
Reproducing Kernel Hilbert Spaces (RKHSs) with kernel
functions, which could provide plentiful and implicit non-
linear representations for original feature spaces.

We focus on positive-definite kernel functions K[1] and K[2]

over old feature space X [1] and new feature space X [2],
respectively. For Sn = {(x[1]

1 ,x
[2]
1 ), · · · , (x[1]

n ,x
[2]
n )} with

x
[1]
i ∈ X [1] and x[2]

i ∈ X [2], we define their Gram matrices

K[k] =
[
K[k]

(
x

[k]
i ,x

[k]
j

)]
n×n

for k = 1, 2 .

For K[1] and K[2], we introduce a new distance to measure
the difference between two feature spaces as follows.

Definition 3.1. We define Kernel Ortho-Mapping (KOM)
discrepancy between K[1] and K[2] over sample Sn as

Ê(Sn,K[1],K[2]) = min
U∈Un

{∥∥U√K[1] −
√

K[2]
∥∥
F

/√
n
}
.

In this definition, the empirical kernel mapping is introduced
to deal with different dimensionalities of kernel mappings as
done by Schölkopf & Smola (2002) and Marukatat (2016),
and the minimum is taken for the uniqueness of kernel
mapping from rotational invariance.

Lemma 3.2. We have the closed-form solution for the KOM
discrepancy (in Definition 3.1) as

Ê
(
Sn,K[1],K[2]

)
=
(

Tr(K[1] + K[2])
/
n− 2‖

√
K[1]

√
K[2]‖∗

/
n
)1/2

.

The detailed proof is given in Appendix A.1, and the basic
idea is to take the polar decomposition and upper bound the
trace of an orthogonal matrix over Un.

For loss function `(h, (x, y)) = max{0, 1 − yht(x)}, we
define the optimal kernel classifiers over sample Sn in the
old and new feature spaces as follows:

h
[k]
∗ ∈ arg min

h[k]∈H[k]

n∑
i=1

`(h[k], (x
[k]
i , yi))

n
+
λ

2

∥∥h[k]
∥∥2

H[k] , (3)

where k = 1 and k = 2 correspond to the old and new fea-
ture spaces, respectively. We measure the gap between two
optimal classifiers h[1]

∗ and h[2]
∗ over sample Sn as follows:

ρ̂Sn
(h

[1]
∗ , h

[2]
∗ ) =

1

n

n∑
i=1

∣∣∣h[1]
∗ (x

[1]
i )− h[2]

∗ (x
[2]
i )
∣∣∣ . (4)

We now present the first main result to correlate our KOM
discrepancy with two optimal classifiers as follows:

Theorem 3.3. Given sample Sn, we have

ρ̂Sn
(h

[1]
∗ , h

[2]
∗ ) ≤ r

λ
Ê(Sn,K[1],K[2])+

r

λ

(
2rÊ(Sn,K[1],K[2])

) 1
2

for two kernels K[1] and K[2] bounded by r2, where λ is the
regularization parameter in Eqn. (3).

In this theorem, we upper bound the distance between two
optimal classifiers with our KOM discrepancy, and this
may shed some new insights to develop feature evolvable
learning algorithms based on our KOM discrepancy, which
essentially measures the relationships between two different
feature spaces. The detailed proof of Theorem 3.3 is given
in Appendix A.2, which linearizes the kernel classifiers via
empirical kernel mapping and constructs KOM discrepancy.
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Figure 2. Illustrations of the relationship between Ê and ρ̂Sn .

Theorem 3.3 is limited to binary classification, while it is
easy to make a similar analysis for multi-class learning
(Crammer & Singer, 2002) and regression (Murphy, 2012).

Figure 2 presents an intuitive illustration on the relationship
between KOM discrepancy Ê(Sn,K[1],K[2]) and classifiers’
difference ρ̂Sn(h

[1]
∗ , h

[2]
∗ ) via Gaussian kernels over datasets

pol and reuters. As we can see, ρ̂Sn
(h

[1]
∗ , h

[2]
∗ ) is positively

relevant to KOM discrepancy Ê(Sn,K[1],K[2]), i.e., the
bigger the KOM discrepancy Ê(Sn,K[1],K[2]), the larger
the distance ρ̂Sn(h

[1]
∗ , h

[2]
∗ ). This is nicely in accordance

with our Theorem 3.3 empirically.

Our KOM discrepancy is defined over the sample Sn in
Definition 3.1. We can also define the KOM discrepancy
w.r.t. distribution D over X [1] ×X [2] as follows

E(D,K[1],K[2])

= min
U∈U

{√
ED
[
‖Uϕ[1](x[1])−ϕ[2](x[2])‖2HS

]}
,

where U is a unitary operator set on a real Hilbert space. We
present the following convergence analysis.
Theorem 3.4. Let K[1] and K[2] be two kernels bounded by
r2. For δ ∈ (0, 1) and for some constant c1 > 0, we have,
with probability at least 1− δ over sample Sn∣∣∣Ê(Sn,K[1],K[2])− E(D,K[1],K[2])

∣∣∣ ≤ c1r√ 1

n
ln

2

δ
.

The detailed proof is presented in Appendix A.3, in which
the main techniques include McDiarmid’s inequality (Mc-
Diarmid et al., 1989) and operator Khintchine’s inequality
in non-commutative probability (Vershynin, 2018).

Relevant to previous relationship characterizations

Kernel alignment has been used to characterize relationship
between two kernels (Cristianini et al., 2001; Cortes et al.,
2012; Zhou et al., 2024), which essentially calculates the
cosine similarity between two Gram matrices K[1] and K[2]

Â(K[1],K[2]) =
Tr(K[1]K[2])

‖K[1]‖F ‖K[2]‖F
.

We could present the following relationship between our
KOM discrepancy and kernel alignment, and the detailed
proof is given in Appendix A.4.
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Figure 3. An illustration of the difference between two optimal
classifiers on two feature spaces, by optimizing KOM discrepancy
and previous kernel alignment and `2 distance, respectively.

Lemma 3.5. For two normalized kernel matrices K[1] and
K[2] with ‖K[1]‖F = ‖K[2]‖F ≤ r2, we have

Ê(Sn,K[1],K[2]) ≤ r 4

√
2(1− Â(K[1],K[2])) .

The `2 distance has also been used to align the features of
two kernel mappings (Romero et al., 2015; Heo et al., 2019),
which solves a finite-dimensional kernel mapping ϕ̂[2] from
the following optimization problem:

ϕ̂[2] ∈ arg min
ϕ[2]∈F

{
1

n

n∑
i=1

∥∥ϕ[1](x
[1]
i )−ϕ[2](x

[2]
i )
∥∥2

2

}
.

Here, function space F ⊆ {ϕ[2] : Rd[2] → Rdim(ϕ[1])}, and
ϕ[1] is the finite-dimensional mapping of kernel K[1].

The `2 distance has been successfully applied for feature
evolvable learning. For example, Hou et al. (2017; 2022)
selected linear kernels K[1] and K[2], while Chen & Liu
(2024) considered Gaussian kernel K[1] and Mahalanobis
kernel K[2]. We can also present the following relationship
between the KOM discrepancy and `2 distance, and the
detailed proof is given in Appendix A.5.

Lemma 3.6. For kernel K[1] with mapping ϕ[1], we have(
Ê(Sn,K[1], K̂[2])

)2

≤ 1

n

n∑
i=1

∥∥∥ϕ[1](x
[1]
i )− ϕ̂[2](x

[2]
i )
∥∥∥2

2
,

where kernel K̂[2](x[2],x[2]′) = 〈ϕ̂[2](x[2]), ϕ̂[2](x[2]′)〉.

Figure 3 presents an illustration of the difference between
two optimal classifiers over two feature spaces by optimiz-
ing our KOM discrepancy, previous `2 distance and kernel
alignment, respectively. Here, we focus on simple linear
mapping spaces on two datasets splice and german, and
the trends are similar for other datasets.

From Figure 3, it is observable that we could get a smaller
difference between two optimal classifiers by optimizing
the KOM discrepancy, rather than kernel alignment and `2
distance. Therefore, our KOM discrepancy presents a better
characterization of relationships between different feature
spaces via kernel functions, and this is partially consistent
with Lemma 3.5 and Lemma 3.6.
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Algorithm 1 One-pass optimization of Eqn. (6)

Input: Streaming sample S[e]
Te

, number of iterations TM ,
and stepsize ηM
Output: Spectral density p(TM )

1: Initialize M(T1) = 0, v(T1) = 0 and p(0) = 1/d2

2: for t = T1 + 1, · · · , T1 + Te do
3: Update M(t) and v(t) according to Eqns. (7)-(8)
4: end for
5: for i = 1, · · · , TM do
6: Calculate q = p(i−1) exp(−ηM∇f(p(i−1)))
7: Update p(i) = q/‖q‖1
8: end for
9: return: Spectral density p(TM )

3.2. One-Pass Optimization for our KOM discrepancy

During the evolving stage, we reach a streaming sample
S

[e]
Te

= {(x[1]
T1+1,x

[2]
T1+1), · · · , (x[1]

T1+Te
,x

[2]
T1+Te

)}, and get
the kernel K[1] learned from the previous stage. Motivated
by Theorem 3.3, we learn the kernel K[2] by minimizing the
KOM discrepancy as follows

min
K[2]

{
Ê(S

[e]
Te
,K[1],K[2])

}
. (5)

For steaming sample S[e]
Te

, it is not allowed to store kernel
Gram matrices in memory, and we can not directly optimize
the above optimization as in (Cortes et al., 2012; Liu, 2024).

We present one-pass optimization for Eqn. (5) via random
Fourier features. The basic idea is to transform the original
optimization into a convex problem on a simplex, and then
solve it w.r.t. streaming data S[e]

Te
. For the spectral density

p = (p[2](u
[2]
1 ), · · · , p[2](u

[2]
d2

)) of K[2], we approximate
the KOM discrepancy by random Fourier features as

Ê(S
[e]
Te
,K[1],K[2])

≈
√

(Tr(K[1]) + 〈p,v〉 − 2‖Mdiag(
√
p)‖∗)/Te ,

where M = [mkl]d1×d2 and v = (v1, v2 · · · , vd2) with

mkl =

T1+Te∑
i=T1+1

p[1](u
[1]
k )Φ

[1]
ikΦ

[2]
il and vk =

T1+Te∑
i=T1+1

(Φ
[2]
ik )2 .

Here, Φ
[1]
ij = φ(x

[1]
i ,u

[1]
j , b

[1]
j ), Φ

[2]
ij = φ(x

[2]
i ,u

[2]
j , b

[2]
j ),

and d1 and d2 are the numbers of random Fourier features
of kernelsK[1] andK[2], respectively. From random features
approximation, Eqn. (5) is essentially equivalent to

min
p∈∆

{
f(p) =

1

2
〈p,v〉 − ‖Mdiag (

√
p)‖∗

}
, (6)

where ∆ = {p : p ≥ 0, ‖p‖1 = 1}. For Eqn. (6), we
initialize M(T1) = [0]d1×d2 and v(T1) = 0d2 , and in the

t-th round (t ≥ T1 + 1), we update M(t) and v(t) w.r.t.
instances x[1]

t and x[2]
t , respectively, as

m
(t)
kl = m

(t−1)
kl + p[1](u

[1]
k )Φ

[1]
tkΦ

[2]
tl (7)

v
(t)
k = v

(t−1)
k + (Φ

[2]
tk )2 , (8)

with Φ
[1]
ij = φ(x

[1]
i ,u

[1]
j , b

[1]
j ) and Φ

[2]
ij = φ(x

[2]
i ,u

[2]
j , b

[2]
j ).

We finally take the mirror descent method (Bubeck, 2015;
Hazan et al., 2016) to solve Eqn. (6).

Algorithm 1 presents the details of our proposed method,
and we have the convergence analysis as follows.

Theorem 3.7. For Algorithm 1, we have

1

TM

TM∑
t=1

f(p(t))− f(p∗) ≤ O
( 1√

TM

)
,

by setting stepsize ηM = Θ(
√

ln d2/TM ), where f(·) is
defined by Eqn. (6) and p∗ ∈ arg minp∈∆ f(p).

The detailed proof is given in Appendix B, which presents
an operation to preserve convexity and then derives the
convergence analysis of mirror descent on a simplex.

4. The OPFES Approach
This section presents the one-pass optimization for feature
evolvable learning in the current stage as shown in Figure 1.
Our idea is to incorporate feature and label information from
previous relationships and stages, and reuse prior models,
rather than re-training a new model from scratch.

i) Incorporation of feature information via kernel K[2]

Notice that the kernel K[2] is learned by minimizing the
KOM discrepancy in Section 3. We could train an online
kernel model based on K[2], which incorporate implicitly
some information from old feature space.

Specifically, we reach an example (x
[2]
t , yt) in the t-th round

for T1 + Te + 1 ≤ t ≤ T1 + Te + T2, and learn an online
model h[2]

t (x[2]) based on kernel K[2] as follows

h
[2]
t (x[2]) ≈ 〈w[2]

t , z
[2](x[2])〉 ,

where z[2](x[2]) = ((p[2](u
[2]
k ))1/2φ(x[2],u

[2]
k , b

[2]
k ))d2k=1.

Here, we take the representer theorem (Schölkopf & Smola,
2002) and random features approximation from Eqn. (1).
We take online gradient descent with stepsize τ [2]

t as

w
[2]
t = w

[2]
t−1 − τ

[2]
t ∇`

[2]
t (w

[2]
t−1) , (9)

where the loss function `[2]
t (w

[2]
t−1) is given by

max
{

0, 1− yt〈w[2]
t−1, z

[2](x
[2]
t )〉

}
+
λ

2

∥∥w[2]
t−1

∥∥2

2
.
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ii) Incorporation of label information via ideal kernel

For label information, we exploit the ideal kernel from
kernel selections (Cristianini et al., 2001; Kwok et al., 2003).
Essentially, the ideal kernel is helpful to learn models with
correct predictions for training data (Cristianini et al., 2001).
We define the ideal kernel K∗ over feature space X [2] as

K∗(x[2]
i ,x

[2]
j ) = yiyj for i, j ∈ {T1 + 1, · · · , T1 + Te} .

We can not obtain the ideal kernel matrix owing to streaming
data. Our idea is to learn a new kernel Kl aligning with the
ideal kernel K∗ to incorporate label information, i.e.,

Kl = arg min
Kl

{
Ê
(
S

[e]
Te
,K∗,Kl

)}
.

In the t-th round, we learn a new online model by representer
theorem and random features approximation again, i.e.,

hlt(x
[2]) ≈

〈
wl
t, z

l(x[2])
〉
,

where zl(x[2]) = ((pl(ulk))1/2φ(x[2],ulk, b
l
k))d2k=1 with the

density pl of kernel Kl. Given stepsize τ lt , we update

wl
t = wl

t−1 − τ lt∇`lt(wl
t−1) , (10)

where the loss function `lt(w
l
t−1) is given by

max
{

0, 1− yt〈wl
t−1, z

l(x
[2]
t )〉

}
+
λ

2

∥∥wl
t−1

∥∥2

2
.

iii) Previous model reuse

We exploit some good model initializations in the current
stage, rather than re-training from scratch. Our basic idea is
to obtain a new model on the space spanned by z[2](x[2]),
which takes similar predictions with the previous model.

Specifically, we consider the model for the new feature
space via an orthogonal transformation

w
[2]
T1+Te

= U>∗ w
[1]
T1
, (11)

where U∗ is in the set of

arg min
U∈Ud1

{∥∥∥U(z[1](x
[1]
T1+i)

)Te

i=1
−
(
z[2](x

[2]
T1+i)

)Te

i=1

∥∥∥
F

}
.

In the following, we present an effective solution for U∗,
and the detailed proof is given in Appendix C.1.

Proposition 4.1. We have U∗ = VW> for the optimal
solution in Eqn. (11), where V and W are left and right sin-
gular vectors of M(T1+Te)diag(

√
p(TM )) in Algorithm 1.

Based on previous analysis, we should learn and update two
online kernel models w[2]

t and wl
t from Eqns. (9) and (10)

Algorithm 2 The OPFES method
Input: Feature evolvable stream sample ST1+Te+T2

, kernel
K[1], stepsize τ [1]

t , τ
[2]
t and τ lt , sensitivity parameter γ

Initialize: w[1]
0 = 0

Output: classifier hT1+Te+T2

1: Obtain random Fourier features (u
[1]
k , b

[1]
k )d1k=1 and

(u
[2]
k , b

[2]
k ,u

l
k, b

l
k)d2k=1 via Eqn. (1)

2: for t = 1, · · · , T1 do
3: Update w[1]

t by online gradient descent in Eqn. (2)
4: end for
5: Obtain p[2] and pl from Algorithm 1
6: Compute w[2]

T1+Te
by Eqn. (11)

7: for t = T1 + Te + 1, · · · , T1 + Te + T2 do
8: Update w[2]

t and wl
t by Eqns. (9)-(10), respectively

9: Update the combined classifier ht by Eqn. (12)
10: end for
11: return: classifier hT1+Te+T2

in the current stage, respectively. From (Hou et al., 2021),
we combine two models, for t ≥ T1 + Te + 1,

ht(x
[2]
t ) = ωt〈w[2]

t , z
[2](x

[2]
t )〉

+ (1− ωt)〈wl
t, z

l(x
[2]
t )〉 , (12)

where ωt is relevant to a sensitivity parameter γ > 0, i.e.,

ωt =
ωt−1e

−γ`[2]t (w
[2]
t−1)

ωt−1e
−γ`[2]t (w

[2]
t−1) + (1− ωt−1)e−γ`

l
t(w

l
t−1)

.

Algorithm 2 presents the detailed description of our OPFES
approach, which goes through all instances only once with-
out storing the entire or partial training data, while previous
methods require storing the entire dataset or partial dataset
(Orabona et al., 2008; Jin et al., 2010; Hou et al., 2021;
2022; He et al., 2021a; Wu et al., 2023).

Theoretical guarantee

We begin with the upper bounds for prediction difference
between w[1]

T1
and w[2]

T1+Te
via our KOM discrepancy, and

the detailed proof is presented in Appendix C.2.

Lemma 4.2. For bounded kernels, we have, for previous
model w[1]

T1
and reused model w[2]

T1+Te
from Eqn. (11),

1

Te

T1+Te∑
t=T1+1

∣∣∣〈w[1]
T1
, z[1](x

[1]
t )〉 − 〈w[2]

T1+Te
, z[2](x

[2]
t )〉

∣∣∣
≤
√

2Ê
(
S

[e]
Te
,K[1],K[2]

)/
λ ,

where λ is the regularization parameter in Eqn. (3).
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Table 1. Details of datasets
Dataset # Inst. # Feat. Dataset # Inst. # Feat. Dataset # Inst. # Feat. Dataset # Inst. # Feat. Dataset # Inst. # Feat.
jungle 2351 87 svmguide1 7089 4 elevators 16599 18 nomao 34465 118 higgs 98049 28
splice 3175 60 usps 9298 25 magic 19020 10 adult 48842 108 miniboone 130064 50

bioresponse 3751 1776 aileron 13750 40 letter 20000 16 acoustic 78823 50 ijcnn1 141691 22
christine 5418 1636 pol 15000 44 house 22784 16 runwalk 88588 6 covtype 581012 54

Denote by the optimal model in the current stage

w
[2]
∗ ∈ arg min

w

{
L[2]
T2

(w) =
1

T2

T1+Te+T2∑
t=T1+Te+1

`
[2]
t (w)

}
,

and the cumulative loss

L̂[2]
T2

=
1

T2

T1+Te+T2∑
t=T1+Te+1

`
[2]
t (w

[2]
t ) ,

with `[2]
t (w) = max{0, 1− yt〈w, z[2](x

[2]
t )〉}+λ‖w‖22/2.

Let ST2 = {(x[2]
i , yi)}

T1+Te+T2

i=T1+Te+1 be a streaming sample
drawn i.i.d. from a distribution. For Algorithm 2, we have
Theorem 4.3. For kernelsK[1] andK[2] with bound r2, and
for δ ∈ (0, 1), the following holds with probability at least
1− δ over sample ST2

L̂[2]
T2
− L[2]

T2
(w

[2]
∗ ) ≤ 4r2

λ
√
T2

(
E
r

+

√
E
r

)1/2

+
c2r

2

λ
√
T2

[(
1√
T1

+
1√
Te

+
1

4
√
T2

)√
ln

6

δ

]1/2

,

where E = E(D,K[1],K[2]) and c2 > 0 is some constant.

Theorem 4.3 gives the convergence analysis for Algorithm 2.
We obtain tighter bound as for smaller KOM discrepancy,
i.e., a closer relationship between old and new feature spaces.
It is also useful to exploit information and model from old
feature space theoretically, because of tighter bounds as
for larger T1 and Te. The detailed proof is given in Ap-
pendix C.3, which is motivated from regret analysis (Hazan
et al., 2016), generalization bounds via Rademacher com-
plexity (Bartlett & Mendelson, 2002), some online-to-batch
conversion techniques (Cesa-Bianchi et al., 2004).

Denote by the cumulative loss for wl

L̂lT2
=

1

T2

∑T1+Te+T2

t=T1+Te+1
`lt(w

l
t) ,

with `lt(w) = max{0, 1− yt〈w, zl(xlt)〉}+λ‖w‖22/2. We
also analyze the cumulative error rate for Algorithm 2.
Theorem 4.4. For kernels K[2] and Kl with bound r2 and
for parameter γ =

√
ln 2/((1 + 3r2/2λ)T2), we have

T1+Te+T2∑
t=T1+Te+1

I[ytht(x[2]
t ) ≤ 0]

T2
≤ min

{
L̂[2]
T2
, L̂lT2

}
+

√
2 ln 2

T2

where I[·] is the indicator function, which returns 1 if the
argument is true, and 0 otherwise.

Theorem 4.4 shows that the cumulative error rate of our
OPFES method converges to the minimum of the cumulative
loss of two classifiers. The detailed proof is presented in
Appendix C.4, and the basic idea is to construct a potential
function and apply Hoeffding’s lemma (Hoeffding, 1963).

5. Empirical Study
We conduct experiments on 20 datasets2, and the details
are summarized in Table 1. Most of the datasets have been
well-studied for previous feature evolvable learning, and all
features have been scaled to [0, 1]. We compare our OPFES
with state-of-the-art methods on feature evolvable learning.

• align-FESL: Feature evolvable method of random features
and kernel alignment for feature and label relationships
(Sinha & Duchi, 2016).

• rff-ROGD: Feature evolvable method of random features
and `2 distance for feature relationships (Lu et al., 2016);

• rff-FESL: Online ensemble of rff-ROGD and random
feature models learned from scratch (Hou et al., 2021);

• ker-ROGD: Feature evolvable method with kernel model
and `2 distance for feature relationships (Hou et al., 2021);

• ker-FESL: Online ensemble of ker-NOGD and kernel
models learned from scratch (Hou et al., 2021);

• lin-ROGD: Feature evolvable method with linear models
and `2 distance for feature relationships (Hou et al., 2017);

• lin-FESL: Online ensemble of lin-ROGD and a linear
model learned from scratch (Hou et al., 2017);

• OCDS: Capricious streaming method with a linear model
via generative graphical model (He et al., 2021b).

For each dataset, we randomly split the feature space into
old feature space X [1] and new feature space X [2] with
almost equal number of features, following (Gu et al., 2022;
Ni et al., 2024). We set Te = 1000 for datasets with a size
larger than 10000; otherwise, set Te as 10% of the dataset’s
size. We also set T1 and T2 as half of the amount of dataset

2Downloaded from OpenML and UCI datasets repository
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Table 2. Cumulative error rate (CER) evaluation of our OPFES and compared methods (mean±std). •/◦ indicates that our OPFES is
significantly better/worse than the corresponding algorithms (pairwise t-tests at 95% significance level).

Dataset Our OPFES align-FESL rff-FESL rff-ROGD ker-FESL ker-ROGD lin-FESL lin-ROGD OCDS

jungle .0097± .0047 .0099± .0028 .0161± .0035• .0246± .0069• .0276± .0055• .0329± .0061• .1084± .0152• .1471± .0144• .1106± .0138•
splice .3070± .0079 .3126± .0136 .3234± .0087• .3662± .0215• .4192± .0160• .4240± .0188• .3447± .0097• .4307± .0213• .3547± .0156•

bioresponse .2763± .0117 .2921± .0106• .3051± .0137• .4285± .0192• .3690± .0095• .4454± .0116• .2938± .0093• .3684± .0102• .2951± .0112•
christine .3192± .0095 .3205± .0090 .3316± .0108• .3503± .0092• .3858± .0096• .4506± .0117• .3443± .0098• .3439± .0098• .3663± .0116•

svmguide1 .1614± .0052 .1617± .0056 .1632± .0054• .2295± .0107• .1900± .0061• .2316± .0050• .2399± .0062• .2451± .0102• .2442± .0070•
usps .1684± .0044 .1875± .0073• .1658± .0051 .2184± .0061• .2267± .0084• .2857± .0063• .2654± .0081• .2839± .0073• .2746± .0085•

aileron .1963± .0034 .2144± .0081• .2139± .0059• .2344± .0098• .2531± .0076• .2523± .0076• .2466± .0066• .2465± .0066• .3026± .0047•
pol .0654± .0036 .0692± .0044• .0686± .0023• .0807± .0028• .0865± .0023• .0956± .0034• .1484± .0035• .1655± .0041• .1515± .0038•

elevators .2422± .0039 .2419± .0038 .2467± .0037• .2619± .0045• .2963± .0042• .3003± .0051• .3073± .0043• .3045± .0040• .3073± .0042•
magic .2154± .0039 .2206± .0039• .2121± .0046 .2434± .0057• .2656± .0033• .3119± .0074• .2535± .0040• .2988± .0073• .2554± .0045•
letter .1354± .0043 .1568± .0086• .1557± .0037• .2311± .0067• .3139± .0060• .3373± .0076• .3380± .0038• .3565± .0071• .3390± .0034•
house .1849± .0040 .1927± .0030• .1894± .0043• .2001± .0093• .2598± .0112• .2597± .0113• .2623± .0084• .2658± .0120• .2853± .0037•
nomao .0646± .0026 .0680± .0024• .0778± .0017• .0845± .0041• .1302± .0034• .1355± .0032• .0860± .0019• .1107± .0039• .0882± .0023•
adult .1875± .0023 .1942± .0027• .1906± .0021• .1932± .0029• .2277± .0019• .2218± .0031• .2050± .0033• .2036± .0042• .2303± .0026•

acoustic .3074± .0024 .3227± .0036• .2967± .0045◦ .2977± .0043◦ .4168± .0073• .4107± .0072• .4321± .0079• .4317± .0075• .4668± .0022•
runwalk .2602± .0033 .2890± .0055• .2578± .0016◦ .3496± .0130• .3558± .0021• .4355± .0061• .4945± .0021• .4963± .0033• .4972± .0027•
higgs .3946± .0045 .4135± .0061• .3803± .0074◦ .3807± .0080◦ .4577± .0054• .4570± .0055• .4309± .0028• .4481± .0139• .4366± .0021•

miniboone .1602± .0036 .2804± .0011• .1729± .0029• .1603± .0029 .2488± .0047• .2484± .0047• .2384± .0039• .2384± .0039• .2803± .0011•
ijcnn1 .0616± .0115 .0746± .0038• .0673± .0028• .0747± .0083• .0957± .0009• .0957± .0009• .0951± .0007• .0957± .0009• .0957± .0009•

covtype .3782± .0008 .3813± .0025• .3783± .0009 .3795± .0012• .4095± .0025• .4093± .0025• .3790± .0007• .3920± .0034• .3792± .0007•
Win/Tie/Loss 15/5/0 14/3/3 17/1/2 20/0/0 20/0/0 20/0/0 20/0/0 20/0/0

size subtracting Te. For ker-ROGD and ker-FESL, we set
the buffer size to 10% of dataset size and consider reservoir
sampling as done by Hou et al. (2021).

For rff-ROGD, rff-FESL, align-FESL and our OPFES, we
fix the dimensionality of random Fourier feature as 1000. In
the previous stage, we employ Gaussian kernels with widths
in 2[−6:6] for all methods. For OPFES, we set TM = 1000
of the optimal stepsize from Theorem 3.7. The stepsize τt
is constrained within 10[−4:2]/

√
t, and the regularization

parameter λ is selected from 10[−10:1]. For OCDS, α and β
are chosen form 10[−5:0] by cross validations.

The performance of the compared methods is evaluated by
50 times on each dataset with random partitions and random
ordering in the previous, evolving and current stages, where
the cumulative error rate (CER) is obtained by averaging
over these 50 runs, as summarized in Table 2.

It is observable that, from Table 2, our OPFES method takes
significantly better performance than three linear methods
lin-ROGD, lin-FESL, and OCDS, since these methods rely
on simple linear classifiers and `2 distance to characterize
feature relationships. Our OPFES outperforms ker-ROGD,
ker-FESL, rff-ROGD most times because of exploration on
feature relationships via our KOM discrepancy, while other
methods fix Gaussian or Mahalanobis kernels.

Our OPFES is also better than align-FESL, since the KOM
discrepancy is more effective in capturing some feature
relationships than kernel alignment, as shown in Lemma 3.5.

Table 3. Ablation studies for our OPFES method (mean±std):
(i) OPFES without KOM discrepancy; (ii) OPFES without ideal
kernel; (iii) OPFES without initialization from previous model.

Datasets OPFES (i) (ii) (iii)

Pol .0654± .0036 .1290± .0044• .0674± .0059 .1418± .0072•
House .1849± .0033 .1976± .0032• .1957± .0034• .2350± .0033•
Nomao .0646± .0026 .0933± .0028• .0750± .0047• .1875± .0056•
Adult .1875± .0023 .2013± .0035• .1988± .0043• .2133± .0064•

Our OPFES achieves better and comparable performance in
contrast to rff-FESL, except for datasets acoustic, runwalk,
and higgs. This is partially because of the class-imbalance
problem on the three datasets, which results in the hardness
of learning ideal kernel Kl for label information and the
degrade of learning performance of base learners wl.

Table 3 presents the ablation study of OPFES to verify
the effectiveness of KOM discrepancy, ideal kernel and
initializations from previous models. Due to pages limit,
we consider four datasets Pol, House, Nomao and Adult,
while the trends are similar for other datasets. It is clear
that the performance of our OPFES will decrease drastically
without the consideration of KOM discrepancy and good
initializations. Ideal kernel takes limited improvement from
label correlation, in particularly for dataset Pol, where K[2]

possibly takes comparable performance to Kl.

Figure 4 presents the convergence analysis of cumulative
error rate for our OPFES. It is evident that our OPFES takes
faster convergence than other methods in the current stage,
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Our OPFES align-FESL rff-ROGD rff-FESL ker-ROGD ker-FESL lin-ROGD lin-FESL OCDS
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Figure 4. Cumulative error rate (CER) versus the number of instances in the current stage for our OPFES and compared methods. The
lower the curve, the faster the convergence.
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Figure 5. Cumulative error rate (CER) versus the length of evolv-
ing stage for our OPFES.

partially because our OPFES can exploit feature relation-
ships between two feature spaces and label information. It is
observable that our method obtains lower cumulative error
rates in the beginning of the current stage, indicating the
importance of good model initializations from the evolving
stage, which is consistent with Theorem 4.3.

Figure 5 empirically illustrates the influences of the evolving
stage length Te in Algorithm 2. It is evident that larger Te
could yield better performance, because of more available
instances in training to capture feature relationships and
label information, which is consistent with our theoretical
analysis in Theorem 4.3. We finally present the influence of
dimensionality of random Fourier features for our OPFES
on 4 datasets in Figure 6, and trends are similar on other
datasets. It is clear that our OPFES obtains stable perfor-
mance if we set the dimensionality d larger than 1000, while
smaller dimensionality could yield heavy information loss.

6. Conclusion
This work focuses on two fundamental problems on feature
evolvable learning. We propose the Kernel Ortho-Mapping
(KOM) discrepancy to characterize intrinsic relationships

0 .5k 1k 1.5k 2k
Random feature dimensionality

0.05

0.10

0.15

C
ER

jungle
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Random feature dimensionality
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0.33

0.35

C
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Figure 6. Cumulative error rate (CER) versus the dimensionality
of random Fourier features for our OPFES.

between two feature spaces via kernel functions, and then
theoretically correlate it with optimal classifiers learned
from different feature spaces. Based on this discrepancy, we
develop one-pass algorithm for feature evolvable learning
without storing the entire or partial training data. We verify
the effectiveness of our porposed OPFES both theoretically
and empirically. An interesting future work is to apply our
KOM discrepancy to deep learning via neural tangent kernel,
and exploit more effective tools to characterize the feature
relationships for feature evolvable learning.
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A. Proofs for Kernel Ortho-Mapping Discrepancy
A.1. Proof of Lemma 3.2

For Frobenius norm and orthogonal matrix U ∈ Un, we have∥∥∥√K[1]U−
√

K[2]
∥∥∥2

F
= Tr

(√
K[1]U−

√
K[2]

)(√
K[1]U−

√
K[2]

)>
= Tr(K[1]) + Tr(K[2])− 2 Tr

(
U>
√

K[2]
√

K[1]
)
. (13)

The minimization of Kernel Ortho-Mapping (KOM) (in Definition 3.1) is equivalent to the following optimization:

max
U∈Un

{
Tr
(
U>
√

K[2]
√

K[1]
)}

. (14)

Denote by X =
√

K[2]
√

K[1] and |X| =
√

X>X =
√√

K[1]K[2]
√

K[1]. There exists V ∈ Un such that X = V|X|,
which is a polar decomposition of X. We then have

Tr
(
U>
√

K[2]
√

K[1]
)

= Tr
(
U>X

)
= Tr

(
U>V|X|

)
.

Denote by W = U>V. We take the eigen-decomposition |X| = PDP> for orthogonal P and diagonal matrix D with
non-negative elements from the semi-positive definiteness of |X|. From the cyclic invariance of matrix trace, we have

Tr
(
U>
√

K[2]
√

K[1]
)

= Tr
(
WPDP>

)
= Tr

(
DP>WP

)
,

Denote by Ŵ = P>WP another unitary matrix in Un. The optimization problem in Eqn. (14) can solved by

max
Ŵ∈Un

{
Tr
(
DŴ

)}
= max

Ŵ∈Un

{
n∑
i=1

DiiŴii

}
= Tr(D) ,

where the last equality holds from Ŵ = In. From nuclear norm and matrix trace of positive semi-definite matrix, we have

Tr(D) = Tr

(√√
K[1]K[2]

√
K[1]

)
=

n∑
i=1

√
σi

(√
K[1]K[2]

√
K[1]

)
=

n∑
i=1

σi(
√

K[1]
√

K[2]) =
∥∥∥√K[1]

√
K[2]

∥∥∥
∗
,

which completes the proof by combining with Eqn. (13).

A.2. Proof for Theorem 3.3.

We begin with the empirical feature mapping as follows:
Lemma A.1. Let K be the Gram matrix w.r.t. kernel K and sample S = {x1, · · · ,xn}, and consider eigen decomposition
K = SDS>. For kernel classifier h(x) =

∑n
j=1 αiK(xj ,x), we have

h(xi) =
〈
w,S
√

DS>ei

〉
with w = S

√
DS>

n∑
j=1

αjei ,

where ei denotes a unit vector of the i-th element being 1.

Proof. From eigen decomposition K = SDS>, we have

K(xi,xj) = Kij =
(
SDS>

)
ij

=
〈
S
√

DS>ei,S
√

DS>ej

〉
,

and this gives one data-dependent feature mapping of K as ϕ̂ : xi 7→ S
√

DS>ei (Schölkopf & Smola, 2002). For kernel
classifier h(x) =

∑n
j=1 α1,jK(xj ,x), we have

h(xi) =

n∑
j=1

α1,jK(xi,xj) =

n∑
j=1

α1,j〈ϕ̂(xj), ϕ̂(xi)〉 =
〈
S
√

DS>
n∑
j=1

α1,jej ,S
√

DS>ei

〉
= 〈w,S

√
DS>ei〉,

which completes the proof.
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Proof of Theorem 3.3. From Lemma A.1, the kernel learning problem in Eqn. (3) can be equivalently linearized as

w
[k]
∗ ∈ arg min

w[k]∈Rn

{
R̂[k](w[k]) +

λ

2

∥∥w[k]
∥∥2

2

}
, for k = 1, 2 , (15)

where

R̂[k](w[k]) =
1

n

n∑
i=1

max
{

0, 1− yi
〈
w[k], ϕ̂[k](x

[k]
i )
〉}

,

and ϕ̂[k] are the empirical kernel mappings of K[k]. For two classifiers and from strong convexity of Eqn. (15), we have

λ

2

∥∥∥w[1]
∗

∥∥∥2

2
+ R̂[1](w

[1]
∗ ) +

λ

2

∥∥∥w[1]
∗ −w[2]

∗

∥∥∥2

2
≤ R̂[1](w

[2]
∗ ) +

λ

2

∥∥∥w[2]
∗

∥∥∥2

2
,

λ

2

∥∥∥w[2]
∗

∥∥∥2

2
+ R̂[2](w

[2]
∗ ) +

λ

2

∥∥∥w[1]
∗ −w[2]

∗

∥∥∥2

2
≤ R̂[2](w

[1]
∗ ) +

λ

2

∥∥∥w[1]
∗

∥∥∥2

2
.

This holds that, from 1-Lipschitz continuous hinge loss and Cauchy-Schwarz inequality,

∥∥∥w[1]
∗ −w[2]

∗

∥∥∥2

2
≤ 1

λ

((
R̂[1](w

[2]
∗ )− R̂[2](w

[2]
∗ )
)

+
(
R̂[2](w

[1]
∗ )− R̂[1](w

[1]
∗ )
))

=
1

nλ

n∑
i=1

(
`
(〈
w

[2]
∗ , ϕ̂

[1](x
[1]
i )
〉
, yi

)
− `
(〈
w

[2]
∗ , ϕ̂2(x

[2]
i )
〉
, yi

))
+

1

nλ

n∑
i=1

(
`
(〈
w

[1]
∗ , ϕ̂

[2](x
[2]
i )
〉
, yi

)
− `

(〈
w

[1]
∗ , ϕ̂

[1](x
[1]
i )
〉
, yi

))
≤ 1

nλ

(∥∥∥w[1]
∗

∥∥∥
2

+
∥∥∥w[2]
∗

∥∥∥
2

) n∑
i=1

∥∥∥ϕ̂[1](x
[1]
i )− ϕ̂[2](x

[2]
i )
∥∥∥

2
. (16)

For ‖w[1]
∗ ‖2 + ‖w[2]

∗ ‖2, we have the following constraints on w[k]
∗ from the KKT condition of Eqn. (15)

w
[k]
∗ ∈

{
− 1

nλ

n∑
i=1

gi : gi ∈ ∂max
{

0, 1− yi
〈
w

[k]
∗ , ϕ̂

[k](x
[k]
i )
〉}

, i ∈ [n]

}
for k = 1, 2 ,

where ∂(·) is the sub-gradient operator. We can upper bound ‖w[1]∗‖2 + ‖w[2]∗‖2 ≤ 2r/λ from

∥∥∥w[k]
∗

∥∥∥
2
≤ max

{∥∥∥∥−∑n
i=1 gi
nλ

∥∥∥∥
2

: gi ∈ ∂max
{

0, 1− yi
〈
w∗k, ϕ̂k(x

[k]
i )
〉}}

≤ 1

nλ

n∑
i=1

∥∥∥yiϕ̂[k](x
[k]
i )
∥∥∥

2
≤ r

λ
.

It remains to bound
∑n
i=1 ‖ϕ̂[1](x

[1]
i )− ϕ̂[2](x

[2]
i )‖2. We observe that the empirical kernel mapping is unitarily invariant

in Lemma A.1, i.e., we have ϕ̂(xi)
>ϕ̂(xj) = (Uϕ̂(xi))

>(Uϕ̂(xj)) for U ∈ Un and i, j ∈ [n], and the i-th column of
U
√

K is also a legal empirical kernel mapping of each xi. This follows that, for KOM discrepancy,

n∑
i=1

∥∥∥ϕ̂[1](x
[1]
i )− ϕ̂[2](x

[2]
i )
∥∥∥

2
≤
√
n min

U1,U2∈Un

{∥∥∥√K[1]U1 −
√

K[2]U2

∥∥∥
F

}
=
√
nÊ(Sn,K[1],K[2]) ,

from the unitary invariance of Frobenius norm. From Eqn. (16), we have

∥∥∥w[1]
∗ −w[2]

∗

∥∥∥2

2
≤ 2rÊ(Sn,K[1],K[2])

λ2
,

13



One-Pass Feature Evolvable Learning with Theoretical Guarantees

and we bound the difference between two optimal classifiers∣∣∣h[1]
∗ (x

[1]
i )− h[2]

∗ (x
[2]
i )
∣∣∣

=
∣∣∣〈w[1]

∗ , ϕ̂
[1](x

[1]
i )
〉
−
〈
w

[2]
∗ , ϕ̂

[2](x
[2]
i )
〉∣∣∣

≤
∣∣∣〈w[1]

∗ , ϕ̂
[1](x

[1]
i )
〉
−
〈
w

[2]
∗ , ϕ̂

[1](x
[1]
i )
〉∣∣∣+

∣∣∣〈w[2]
∗ , ϕ̂

[1](x
[1]
i )
〉
−
〈
w

[2]
∗ , ϕ̂

[2](x
[2]
i )
〉∣∣∣

≤
∥∥∥ϕ̂[1](x

[1]
i )
∥∥∥

2
·
∥∥∥w[1]
∗ −w[2]

∗

∥∥∥
2

+
∥∥∥w[2]
∗

∥∥∥
2
·
∥∥∥ϕ̂[1](x

[1]
i )− ϕ̂[2](x

[2]
i )
∥∥∥

2

≤ r

λ

√
2rÊ(Sn,K[1],K[2]) +

r

λ

∥∥∥ϕ̂[1](x
[1]
i )− ϕ̂[2](x

[2]
i )
∥∥∥

2
,

from equivalent linearization of kernel classifier and bounded norm for optimal classifier. We finally have

ρ̂Sn
(h

[1]
∗ , h

[2]
∗ ) ≤ r

λ

√
2rÊ(Sn,K[1],K[2]) +

r

nλ

n∑
i=1

∥∥∥ϕ̂[1]
(
x

[1]
i

)
− ϕ̂[2]

(
x

[2]
i

)∥∥∥
2

≤ r

λ

(
Ê(Sn,K[1],K[2]) +

√
2rÊ(Sn,K[1],K[2])

)
,

which completes the proof.

A.3. Proof of Theorem 3.4

We begin with some useful lemmas as follows:

Lemma A.2. For a distribution D ∼ X [1] ×X [2], we have

E(D,K[1],K[2]) = min
U∈U

{√
ED
[
‖Uϕ[1](x[1])−ϕ[2](x[2])‖2HS

]}
=

(
ED
[
K[1](x[1],x[1]) +K[2](x[2],x[2])

]
− 2

∥∥∥ED [ϕ[1](x[1])ϕ[2](x[2])>
]∥∥∥
∗

)1/2

.

Proof. For Hilbert-Schmidt norm, we have

ED
[∥∥∥Uϕ[1](x[1])−ϕ[2](x[2])

∥∥∥2

HS

]
= ED

[
K[1](x[1],x[1]) +K[2](x[2],x[2])

]
− 2ED

[
ϕ[2](x[2])>Uϕ[1]

]
= ED

[
K[1](x[1],x[1]) +K[2](x[2],x[2])

]
− 2ED

[
Tr
(
ϕ[2](x[2])>Uϕ[1]

)]
= ED

[
K[1](x[1],x[1]) +K[2](x[2],x[2])

]
− 2 Tr

(
UED

[
ϕ[1](x[1])ϕ[2](x[2])>

])
,

where the last inequality holds from the linearity of operator trace w.r.t expectation, and independence between U and D.
We complete the proof from the similar derivations as in the proof of Lemma 3.2.

Lemma A.3 (Perturbation bound for singular values (Bhatia, 2013)). For n× n real matrices A and B, we have

n∑
i=1

|σi(A)− σi(B)| ≤ ‖A−B‖∗ ,

where σi(A) and σi(B) are their respective i-th singular values, i.e., σ1(A) ≥ · · · ≥ σn(A) and σ1(B) ≥ · · · ≥ σn(B).

Lemma A.4 (McDiarmid’s inequality (McDiarmid et al., 1989)). Let X1, X2, · · · , Xn be independent random variables
taking values in a set A, and f : An → R satisfies

sup
X1,X2,··· ,Xn,X′i∈A

|f(X1, X2, · · · , Xn)− f(X1, X2, · · · , Xi−1, X
′
i, Xi+1, Xn)| ≤ ci
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for every i ∈ [n]. Then, for t > 0, we have

Pr [f(X1, · · ·Xi, · · · , Xn)− E[f(X1, · · · , X ′i, · · · , Xn)] ≥ t] ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

Lemma A.5. Let K[1] and K[2] be two kernels bounded by r2. For samples Sn = {(x[1]
1 ,x

[2]
1 ), · · · , (x[1]

n ,x
[2]
n )} and

S′n = Sn\{(x[1]
k ,x

[2]
k )} ∪ {(x[1]′

k ,x
[2]′
k )} (k ∈ [n]), we have∣∣∣∥∥∥√K[1]

√
K[2]

∥∥∥
∗
−
∥∥∥√K[1]′

√
K[2]′

∥∥∥
∗

∣∣∣ ≤ 2r2 ,

where K[1] and K[1]′ are Gram matrices w.r.t kernel K[1] over Sn and S′n, respectively, and define K[2] and K[2]′ similarly.

Proof. From Lemma A.3, we have∣∣∣∥∥∥√K[1]
√

K[2]
∥∥∥
∗
−
∥∥∥√K[1]′

√
K[2]′

∥∥∥
∗

∣∣∣
≤

∣∣∣∥∥∥√K[1]
√

K[2]
∥∥∥
∗
−
∥∥∥√K[1]′

√
K[2]

∥∥∥
∗

∣∣∣+
∣∣∣∥∥∥√K[1]′

√
K[2]

∥∥∥
∗
−
∥∥∥√K[1]′

√
K[2]′

∥∥∥
∗

∣∣∣
=

∣∣∣∣∣
n∑
i=1

∣∣∣σi(√K[1]
√

K[2])
∣∣∣− ∣∣∣σi(√K[1]′

√
K[2])

∣∣∣∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

∣∣∣σi(√K[1]′
√

K[2])
∣∣∣− ∣∣∣σi(√K[1]′

√
K[2]′)

∣∣∣∣∣∣∣∣
≤ min

U,V∈Un

{
n∑
i=1

∣∣∣σi(√K[1]
√

K[2])− σi(U
√

K[1]′
√

K[2])
∣∣∣+
∣∣∣σi(√K[1]′

√
K[2])− σi(V

√
K[1]′

√
K[2]′)

∣∣∣}
≤ min

U∈Un

{∥∥∥(√K[1] −U
√

K[1]′
)√

K[2]
∥∥∥
∗

}
+ min

V∈Un

{∥∥∥(√K[2] −V
√

K[2]′
)√

K[1]′
∥∥∥
∗

}
. (17)

We now prove that there is an Û ∈ Un such that the difference between
√

K[1] and Û
√

K[1]′ lies only in the k-th column.
Denote by v =

[
Û
√

K[1]′
]
k
, i.e., the k-th column of Û

√
K[1]′. The existence of Û ∈ Un is equivalent to solving the

following underdetermined system of n− 1 equations with n variables

〈
v,
(√

K[1]
)
i

〉
=

K[1]
(
x

[1]
i ,x

[1]′
k

)(
K[1]

(
x

[1]′
k ,x

[1]′
k

))1/2
for i ∈ [n]\{k} . (18)

From the full-rank Gram matrix K[1], there exists a solution v0 for the system in Eqn. (18) because of n− 1 equations with
n variables. By setting v = v0, we have an Û ∈ Un such that the difference between

√
K[1] and Û

√
K[1]′ lies only in the

k-th column. This follows that, from the nuclear norm of the rank-1 matrix,

min
U∈Un

{∥∥∥(√K[1] −U
√

K[1]′
)√

K[2]
∥∥∥
∗

}
≤
∥∥∥([√K[1]]k − [Û

√
K[1]′]k

) [√
K[2]

]>
k

∥∥∥
∗
≤ 2r2 .

This completes the proof from Eqn. (17) and similar analysis for minV∈Un
{∥∥(√K[2] −V

√
K[2]′

)√
K[1]′

∥∥
∗

}
.

Lemma A.6 (Non-commutative Khintchine inequality, (Vershynin, 2018)). For independent Rademacher random variables
ε1, · · · , εn and for real matrices X1, · · · ,Xn of the same size, we have

E

[∥∥∥∥∥
n∑
i=1

εiXi

∥∥∥∥∥
∗

]
≤ C max


∥∥∥∥∥∥
√√√√ n∑

i=1

XiX>i

∥∥∥∥∥∥
∗

,

∥∥∥∥∥∥
√√√√ n∑

i=1

X>i Xi

∥∥∥∥∥∥
∗

 for some positive constant C.

Lemma A.7. For independent Rademacher random variables ε1, · · · , εn and for real matrices X1, · · · ,Xn of the same
size with E[‖Xi‖∗] <∞, we have

E

[∥∥∥∥∥
n∑
i=1

(Xi − E[Xi])

∥∥∥∥∥
∗

]
≤ 2E

[∥∥∥∥∥
n∑
i=1

εiXi

∥∥∥∥∥
∗

]
.
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Proof. Let {X′1, · · · ,X′n} denote an independent copy of the sequence {X1, · · · ,Xn}. From i.i.d. assumption and Jensen’s
inequality, we have

E
X1,··· ,Xn

[∥∥∥∥∥
n∑
i=1

(Xi − E
X1,··· ,Xn

[Xi])

∥∥∥∥∥
∗

]
= E

X1,··· ,Xn

[∥∥∥∥∥
n∑
i=1

(Xi − E
X1,··· ,Xn

[Xi])− E′
[
X′i − E

X1,··· ,Xn

[Xi]

]∥∥∥∥∥
∗

]

≤ E
X1,··· ,Xn

[
E

X′1,··· ,X′n

[∥∥∥∥∥
n∑
i=1

(Xi − E[Xi])− (X′i − E[Xi])

∥∥∥∥∥
∗

]]
= E

X1,··· ,Xn,X′1,··· ,X′n

[∥∥∥∥∥
n∑
i=1

(Xi −X′i)

∥∥∥∥∥
∗

]
.

We also have, from the triangle inequality of nuclear norm and symmetry of Rademacher random variables,

E
X1,··· ,Xn,X′1,··· ,X′n

[∥∥∥∥∥
n∑
i=1

(Xi −X′i)

∥∥∥∥∥
∗

]
= E

X1,··· ,Xn,X′1,··· ,X′n

[∥∥∥∥∥
n∑
i=1

εi(Xi −X′i)

∥∥∥∥∥
∗

]

≤ E
X1,··· ,Xn

[∥∥∥∥∥
n∑
i=1

εiXi

∥∥∥∥∥
∗

]
+ E

X′1,··· ,X′n

[∥∥∥∥∥
n∑
i=1

−εiX′i

∥∥∥∥∥
∗

]
= 2 E

X1,··· ,Xn

[∥∥∥∥∥
n∑
i=1

εiXi

∥∥∥∥∥
∗

]
,

which completes the proof.

Proof of Theorem 3.4. By triangle inequality, we have∣∣∣Ê(Sn,K[1],K[2])− E(D,K[1],K[2])
∣∣∣

≤
∣∣∣Ê(Sn,K[1],K[2])− ESn

[
Ê(Sn,K1,K2)

]∣∣∣︸ ︷︷ ︸
Concentration analysis

+
∣∣∣ESn

[
Ê(Sn,K1,K2)

]
− E(D,K[1],K[2])

∣∣∣︸ ︷︷ ︸
Random matrix analysis

. (19)

For sample S′n with the k-th instance replaced by (x
[1]′
k ,x

[2]′
k ) from Sn, we have

n

∣∣∣∣(Ê(Sn,K[1],K[2])
)2

−
(
Ê(S′n,K[1],K[2])

)2
∣∣∣∣

≤
∣∣∣∆(∥∥∥√K[1]

√
K[2]

∥∥∥
∗

)∣∣∣+
∣∣∣K[1](x

[1]
k ,x

[1]
k )−K[1]′(x

[1]′
k ,x

[1]′
k )
∣∣∣+
∣∣∣K[2](x

[2]
k ,x

[2]
k )−K[2](x

[2]′
k ,x

[2]′
k )
∣∣∣ ≤ 6r2 ,

from bounded kernel and Lemma A.5. Based on the McDiarmid’s inequality (Lemma A.4), the following holds with
probability at least 1− δ,

∣∣∣Ê(Sn,K[1],K[2])− ESn

[
Ê(Sn,K[1],K[2])

]∣∣∣ ≤ 3r

√
2

n
ln

2

δ
. (20)

For the second term in Eqn. (19), we consider the random matrix analysis with nuclear norm (Vershynin, 2018). Denote by
Φ = ED[ϕ[1](x[1])ϕ[2](x[2])>] and operator Xi = (ϕ[1](x

[1]
i )ϕ[2](x

[2]
i )> −Φ)/n, and we have

ESn

[
1

n
Tr(K[k])

]
= ED[K[k](x[k],x[k])] for k ∈ [2] .

This follows that, from the linearity of expectation and Lemma A.3,

∣∣∣∣(E(D,K[1],K[2])
)2

− ESn

[(
Ê(Sn,K[1],K[2])

)2
]∣∣∣∣ = 2

∣∣∣∣∣ESn

[∥∥∥∥∥ 1

n

n∑
i=1

ϕ[1](x
[1]
i )ϕ[2](x

[2]
i )>

∥∥∥∥∥− ‖Φ‖∗
]∣∣∣∣∣

≤ 2ESn

[∥∥∥∥∥ 1

n

n∑
i=1

ϕ[1](x
[1]
i )ϕ[2](x

[2]
i )> −Φ

∥∥∥∥∥
∗

]
≤ 4E

[∥∥∥∥∥
n∑
i=1

εiXi

∥∥∥∥∥
∗

]
,
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where ε1, · · · , εn are independent Rademacher random variables. From Xi = (ϕ[1](x
[1]
i )ϕ[2](x

[2]
i )> −Φ)/n, we have

XiX
>
i =

K[1](x
[1]
i ,x

[1]
i ) ·ϕ[2](x

[2]
i )ϕ[2](x

[2]
i )> −ϕ[1](x

[1]
i )ϕ[2](x

[2]
i )>Φ> −Φϕ[2](x

[2]
i )ϕ[1](x

[1]
i )> + ΦΦ>

n2
.

This follows that, by the sub-additivity of square root w.r.t nuclear norm and some algebraic calculations,

∥∥∥∥∥∥
√√√√ n∑

i=1

XiX>i

∥∥∥∥∥∥
∗

≤ 1

n

∥∥∥∥∥∥
√√√√ n∑

i=1

K[1](x
[1]
i ,x

[1]
i ) ·ϕ[2](x

[2]
i )ϕ[2](x

[2]
i )>

∥∥∥∥∥∥
∗

+

√
2

n

∥∥∥∥∥∥
√√√√ n∑

i=1

Φϕ[2](x
[2]
i )ϕ[1](x

[1]
i )>

∥∥∥∥∥∥
∗

+
1

n

∥∥∥√ΦΦ>
∥∥∥
∗
≤

(
1 +
√

2√
n

+
1

n

)
r2 ,

where we use

‖
√

ΦΦ>‖∗ = ‖Φ‖∗ =
∥∥∥ED [ϕ[1](x[1])ϕ[2](x[2])>

]∥∥∥
∗
≤ ED

[∥∥∥ϕ[1](x[1])ϕ[2](x[2])>
∥∥∥
∗

]
≤ r2 ;

and∥∥∥∥∥∥
√√√√ n∑

i=1

Φϕ[2](x
[2]
i )ϕ[1](x

[1]
i )>

∥∥∥∥∥∥
∗

≤ r

∥∥∥∥∥∥
√√√√ n∑

i=1

ϕ[1](x
[1]
i )ED

[
ϕ[1](x[1])

]>∥∥∥∥∥∥
∗

≤
√
nr

3
2

∥∥∥∥√ED[ϕ[1](x[1])]

∥∥∥∥
∗
≤
√
nr2 ;

and, from linearity of expectation and relationship between nuclear norm and operator norm for rank-1 operator,∥∥∥∥∥∥
√√√√ n∑

i=1

K[1](x
[1]
i ,x

[1]
i ) ·ϕ[2](x

[2]
i )ϕ[2](x

[2]
i )>

∥∥∥∥∥∥
∗

≤ r

∥∥∥∥∥∥
√√√√ n∑

i=1

ϕ[2](x
[2]
i )ϕ[2](x

[2]
i )>

∥∥∥∥∥∥
∗

≤
√
nr2.

Similarly, we can present the same upper bounds for
∑n
i=1 X>i Xi. This follows that, from Lemmas A.6 and A.7,

∣∣∣E(D,K[1],K[2])− ESn

[
Ê(Sn,K1,K2)

]∣∣∣ ≤ C (1 +
√

2√
n

+
1

n

)
r . (21)

We complete the proof from Eqns. (20) and (21), and triangle inequality.

A.4. Proof of Lemma 3.5

From (Bhatia, 2013), we have ‖
√

A−
√

B‖F ≤
√
‖A−B‖∗, and this follows that, for KOM discrepancy,

Ê(Sn,K[1],K[2]) ≤ 1√
n

∥∥∥√K[1] −
√

K[2]
∥∥∥
F
≤
√

1

n

∥∥K[1] −K[2]
∥∥
∗ .

We further have, for normalized kernel matrices,√
1

n

∥∥K[1] −K[2]
∥∥
∗ ≤

√
1√
n

∥∥K[1] −K[2]
∥∥
F

= 4

√
‖K[1]‖F ‖K[2]‖F

n

(
‖K[1]‖F
‖K[2]‖F

+
‖K[2]‖F
‖K[1]‖F

− 2 Tr(K[1]K[2])

‖K[1]‖F ‖K[2]‖F

)
≤ r 4

√
2(1− Â(K[1],K[2])) ,

which completes the proof.
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A.5. Proof of Lemma 3.6

Denote by d = dim(ϕ[1]) for simplicity. For sample Sn = {x1, · · · ,xn}, we write

P[1] =
(
ϕ[1](x

[1]
i )
)n
i=1

and P̂[2] =
(
ϕ̂[2](x

[1]
i )
)n
i=1

,

and we also have their respective Gram matrices K[1] = P[1]>P[1] and K̂[2] = P̂[2]>P̂[2]. It remains to prove

min
U∈Un

{∥∥∥√K[1]U−
√

K̂[2]
∥∥∥
F

}
≤
∥∥∥P[1] − P̂[2]

∥∥∥
F
.

If n ≤ d, then there exists a matrix V ∈ Un, from Lemma A.1 and the unitary invariance of Frobenius norm, such that∥∥∥P[1] − P̂[2]
∥∥∥
F

=
∥∥∥P[1]V − P̂[2]V

∥∥∥
F

=
∥∥∥P[1]>V −

√
K̂[2]

∥∥∥
F
,

We also have ∥∥∥P[1] − P̂[2]
∥∥∥
F
≥ min

W∈Un

{∥∥∥√K[1]W −
√

K̂[2]
∥∥∥
F

}
,

for some W ∈ Un with
√

K[1]W = P[1]>V.

If n > d, then we have, similarly to the proof of Theorem A.2,∥∥∥P[1] − P̂[2]
∥∥∥
F
≥ min

W∈Ud

{∥∥∥P[1]>W − P̂[2]>
∥∥∥
F

}
=

√
Tr(K[1]) + Tr(K̂[2])− 2

∥∥∥P[1]P̂[2]>
∥∥∥
∗
,

and this follows that, from the unitary invariance of the nuclear norm,∥∥∥P[1]P̂[2]>
∥∥∥
∗

=

∥∥∥∥[ P[1]

0(n−d)×n

] [
P̂[2]> 0n×(n−d)

]∥∥∥∥
∗

=
∥∥∥√K[1]

√
K̂[2]

∥∥∥
∗
.

We finally have, from Lemma 3.2,

min
W∈Ud

{∥∥∥P[1]>W − P̂[2]>
∥∥∥2

F

}
=
(
Ê(Sn,K[1],K[2])

)2

≤ 1

n

n∑
i=1

∥∥∥ϕ[1](x
[1]
i )− ϕ̂[2](x

[2]
i )
∥∥∥2

2
,

which completes the proof.

B. Proof of Theorem 3.7
We begin with two useful lemmas as follows:

Lemma B.1. The sub-gradient of f(p) in Eqn. (6) is given by

v − diag(M>UV>)/
√
p ∈ ∂f(p) ,

where U and V are left and right singular vectors matrices of Mdiag(
√
p).

Proof. We set X = M
√
p with the singular value decomposition X = UΣV>. Following (Watson, 1992), the sub-gradient

of ‖X‖∗ is given by

∂‖X‖∗ =
{

UV> + W|W ∈ Rd1×d2 ,U>W = 0,WV = 0, ‖W‖2 ≤ 1
}
.

Obviously, UV> is a sub-gradient by taking W = 0, and we have

∂‖X‖∗
∂p

=
∂‖X‖∗
∂X

∂X

∂diag(
√

p)

∂diag(
√
p)

∂p
= diag(M>UV>)/

√
p ,

which completes the proof.
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This proposition shows that a singular value decomposition is required to compute the sub-gradient of f(p) in each
iteration, which is computationally expensive. However, Mdiag(

√
p) has a low rank structure with the rank no more than

min{Te, d1, d2} because evolving stage Te is usually small compared to d1 and d2 in our setting. This could drastically
reduce the computational cost on singular value decomposition.

Proof of Theorem 3.7. From Eqn. (6), we have

f(p) = min
W∈UTe

{g(p,W)} with g(p,W) =
1

2

∥∥∥∥√K̃[1] −
√

Φ[2]diag(p)Φ[2]>
∥∥∥∥2

F

− 1

2
Tr
(
K̃[1]

)
,

where K̃[1] =
[∑d1

k=1 Φ
[1]
i,kΦ

[1]
j,k/d1

]
Te×Te

and Φ[2] = [Φ
[2]
i,j ]Te×d2 . Hence, f(p) is a convex function w.r.t. p from the

convexity of minW∈UTe
g(p,W) in (Boyd & Vandenberghe, 2004).

In Algorithm 1, we select

h(p) =

d2∑
i=1

pi(ln pi − 1) ,

and we have the corresponding Bregman divergence

Dh(p‖q) = h(p)− h(q)− 〈∇h(q),p− q〉 for p, q ∈ ∆ .

From the Fenchel conjugate, we also have

h∗(θ) = sup
p∈Rd2

{
θ>p− h(p)

}
and ∇h∗(θ) = arg max

p∈Rd2

{
θ>p− h(p)

}
,

and define Dh∗(p‖q) = h∗(p)−h∗(q)−〈∇h∗(q),p− q〉 similarly. In Algorithm 1, we rewrite mirror descent iteration as

p(t) = ∇h∗
(
∇h(p(t−1))− τk−1g

(t−1)
)

with g(t−1) ∈ ∂f(p(t−1)) .

Let p∗ ∈ arg minp∈∆ f(p) and θ∗ = ∇h(p∗). For Bregman divergence (Banerjee et al., 2005), we have

Dh∗(θ
(t)‖θ∗) = Dh∗(θ

(t−1)‖θ∗) +
(
θ(t) − θ(t−1)

)> (
∇h∗(θ(t−1) −∇h∗(θ∗))

)
+Dh∗(θ

(t)‖θ(t−1)) ,

and (
θ(t) − θ(t−1)

)> (
∇h∗(θ(t−1) −∇h∗(θ∗))

)
= −τt−1g

(t−1)>
(
p(t−1) − p∗

)
.

For convex f and g(t−1) ∈ ∂f(p(t−1)), we have f(x(t))− f(x∗) ≤ g(t)>(p(t) − p∗), and

τt−1

[
f(p(t−1) − f(p∗))

]
≤ Dh∗(θ

(t−1)‖θ∗)−Dh∗(θ
(t)‖θ∗) +Dh∗(θ

(t−1)‖θ(t)) .

Summing from t = 0 to Tm, we have

Tm∑
t=1

τt

[
f(p(t))− f(p∗)

]
≤ Dh∗(θ

(1)‖θ∗) +
1

2

Tm∑
t=1

τ2
t

∥∥∥g(t)
∥∥∥2

?
≤ ln d2 +

1

2

Tm∑
t=1

τ2
t

∥∥∥g(t)
∥∥∥2

?
, (22)

where the norm ‖ · ‖? is defined on h∗ and Dh∗(θ
(1)‖θ∗) = Dh(p(1)‖p∗).

For each t ∈ [Tm], we project pt onto P = {p ∈ ∆: ‖p‖∞ ≥ ε} for a small ε > 0. We consider the singular value
decomposition Mdiag(

√
p(t)) = UtΣtV

>
t , and denote by ut = diag(M>UtV

>
t ). This follows that

‖ut‖∞ = max
i∈[d2]

{
(MUtV

>
t )i,i

}
≤ max
i∈[d2]

{‖Mi‖2} ≤ Te
√
d2 ,

from Lemma B.1 and orthogonality of UtV
>
t . Hence, we have, from the conjugation between `1 and `∞ norm,∥∥∥g(t)

∥∥∥
∗
≤ ‖v‖∞ +

‖ut‖∞
ε

≤ Te
(

1 +

√
d2

ε

)
, (23)
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and this follows that, from Eqns. (22)-(23) and by selecting stepsize τt = τ ,

1

Tm

Tm∑
t=1

f(p(t))− f(p∗) ≤ ln d2

τTm
+
τTe
2

(
1 +

√
d2

ε

)
.

This completes the proof by setting τ =
√

2 ln d2

/ (
TmTe(1 +

√
d2/ε)

)
.

C. Analysis for OPFES
C.1. Proof of Proposition 4.1

Let d1 and d2 be the dimensionalities of random features of K1 and K2, respectively. Denote by

Z[1] =
(
z

[k]
T1+t

)Te

t=1
∈ Rdk×Te and Z[1] =

(
z

[k]
T1+t

)Te

t=1
∈ Rdk×Te .

For d1 ≥ d2, we can rewrite the optimization for Eqn. (11) as

U∗ ∈ arg min
U∈Ud2×d1

{∥∥∥UZ[1] − Z[2]
∥∥∥
F

}
,

where Ud2×d1 = {U ∈ Rd2×d1 : UU> = Id2} is the set of semi-orthogonal matrices. From the proof of Lemma 3.2, we
have an equivalent optimization as

max
U∈Ud2×d1

{
Tr
(
UM(T1+Te)diag(

√
p(TM ))

)}
.

Let M(T1+Te)diag(
√
p(TM )) = VΣW> be the singular value decomposition with left and right singular vector matrices

V> ∈ Ud2×d1 and W ∈ Ud2 , respectively. Denote by S = W>UV, and we have, from cyclic invariance of matrix trace,

max
U∈Ud2×d1

{
Tr
(
UVΣW>

)}
= max

S∈Ud2

{
Tr (SΣ)

}
.

We get the maximum when S = Id2 and the optimal solution set for U is given by

U∗ ∈
{

WV> + Q(I−VV>) : Q ∈ Rd1×d2
}
. (24)

For d1 < d2, we have the equivalent optimization of Eqn. (11) as

U∗ ∈ arg min
U>∈Ud1×d2

{∥∥∥UZ[1] − Z[2]
∥∥∥
F

}
.

We also take the singular value decomposition of M(T1+Te)diag(
√
p(TM )) with V ∈ Ud1 and W> ∈ Ud1×d2 , respectively.

For S = W>UV ∈ Rd1×d1 , we similarly have the optimal solution set for U as

U∗ ∈
{

WV> + (I−WW>)Q : Q ∈ Rd2×d1
}
. (25)

From Eqns. (24) and (25), U = WV> is always an optimal solution for Eqn. (11) by setting Q = 0.

C.2. Proof of Lemma 4.2

For t ∈ [T1 + 1, T1 + Te], we have, by simple calculations and Cauchy-Schwarz inequality,∣∣∣〈w[1]
T1
, z[1](x

[1]
t )〉 − 〈w[2]

T1+Te
, z[2](x

[2]
t )〉

∣∣∣ =
∣∣∣〈w[1]

T1
, z[1](x

[1]
t )
〉
−
〈
U>∗ w

[1]
T1
, z[2](x

[2]
t )
〉∣∣∣

≤
∣∣∣〈w[1]

T1
, z[1](x

[1]
t )−U∗z

[2](x
[2]
t )
〉∣∣∣ ≤ ∥∥∥w[1]

T1

∥∥∥
2

∥∥∥z[1](x
[1]
t )−U∗z

[2](x
[2]
t )
∥∥∥

2
.
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This follows that, by summing t from T1 + 1 to T1 + Te,

1

Te

∣∣∣〈w[1]
T1
, z[1](x

[1]
i )〉 − 〈w[2]

T1+Te
, z[2](x

[2]
i )〉

∣∣∣ ≤
∥∥∥w[1]

T1

∥∥∥
2

Te

T1+Te∑
i=T1+1

∥∥∥U∗z[1](x
[1]
i )− z[2](x

[2]
i )
∥∥∥

2

≤
√

2

λ
√
Te

min
U∈Ud2×d1

{∥∥∥∥U∗ (z[1](x
[1]
t )
)T1+Te

t=T1+1
−
(
z[2](x

[2]
t )
)T1+Te

t=T1+1

∥∥∥∥
F

}
=
√

2Ê(S
[e]
Te
,K[1],K[2])

/
λ ,

where the second inequality holds from Lemma C.5 and Cauchy-Schwarz inequality, and the equality holds from the unitary
invariance of Frobenius norm.

C.3. Proof of Theorem 4.3

We first introduce some useful lemmas.

Lemma C.1 (Hoeffding’s bounds (Hoeffding, 1963)). Let X1, X2, · · · , Xn be independent random variables in [a, b], and
X̄ =

∑n
i=1Xi/n. For t > 0, we have

Pr
[
X̄ − E[X̄] ≥ t

]
≤ exp

(
− 2nt2

(b− a)2

)
.

Lemma C.2 (Generalization bound of kernel methods (Mohri et al., 2018)). Given S = {(x1, y1), · · · , (xn, yn)} drawn
i.i.d from the distribution D. Let K : X × X → R be a kernel bounded by r2, and ϕ(·) is the feature mapping of K and let
H = {x→ 〈w,ϕ(x)〉 : ‖w‖HK ≤ Λ} for some Λ ≥ 0. For loss function |`(w, (x, y))| ≤M and δ ∈ (0, 1), the following
holds with probability at least 1− δ for h ∈ H,

R(h) ≤ R̂S(h) + 2rΛ

√
1

n
+M

√
1

2n
ln

1

δ
,

where R(h) = E(x,y)∼D[`(w, (x, y))] and R̂S(h) =
∑n
i=1 `(w, (xi, yi))/n.

Lemma C.3 (Online to batch conversion (Cesa-Bianchi et al., 2004)). Let ST = {(x1, y1), · · · , (xT , yT )} be a sample
drawn i.i.d. from D, ` a loss bounded by M and h1, · · · , hT the sequence of hypotheses generated by an online algorithm.
For δ ∈ (0, 1), the following holds with a probability at least 1− δ,

E(x,y)∼D

[
`

(
1

T

T∑
t=1

ht(xt), yt

)]
≤ 1

T

T∑
i=1

`(ht(xt), yt) +M

√
2 ln (1/δ)

T
.

Lemma C.4. Let ST = {(x1, y1), · · · , (xT , yT )} be a sample and B be a closed convex set with projection ΠB(w) =
arg minw′∈B ‖w−w′‖. For a strongly convex loss function ` with bounded gradient w.r.t. w, i.e., ‖∇w`(w, (xt, yt))‖ ≤ G
for w ∈ B and t ∈ [T ]. For the update rule wt = ΠB(wt−1 −∇`(wt, (xt, yt))/λt) with w0,w ∈ B, we have

1

T

T∑
t=1

`(wt, (xt, yt))−
1

T

T∑
t=1

`(w, (xt, yt)) ≤
G2(1 + lnT )

2λT
.

Proof. Denote by∇t = ∇w`(wt, (xt, yt)) for simplicity. For λ-strongly convex functions, we have

‖wt+1 −w‖2 ≤ ‖wt −w‖2 − 2τt〈∇t,wt −w〉+ τ2
t ‖∇t‖2

≤ ‖wt −w‖2 − 2τt

(
`(wt, (xt, yt))− `(w, (xt, yt)) +

λ

2
‖wt −w‖2

)
+ τ2

t ‖∇t‖2

≤ (1− λτt)‖wt −w‖2 − 2τt (`(wt, (xt, yt))− `(w, (xt, yt))) + τ2
t ‖∇t‖2 .

This follows that

`(wt, (xt, yt))− `(w, (xt, yt)) ≤
τ−1
t − λ

2
‖wt −w‖2 −

1

2τt
‖wt+1 −w‖2 +

τtG
2

2
.
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We have, by summing t = 1 to T , and setting τt = 1/(λt) with 1/τ0 = 0,

2

T∑
t=1

(`(wt, (xt, yt))− `(w, (xt, yt))) ≤
T∑
t=1

‖wt−w‖2
(

1

τt
− 1

τt−1
− λ
)

+G2
T∑
t=1

τt = G2
T∑
t=1

1

λt
≤ G2

λ
(1 + lnT ) ,

which completes the proof.

Lemma C.5. Let ST = {(x1, y1), · · · , (xT , yT )} be a sample. For kernel function K(x,x) ≤ r2. we have T classifiers
h1, · · · , hT generated by online kernel learning with `t(h) = max{1− yih(xi), 0}+ λ‖h‖2H/2. We have

1

T

T∑
t=1

`t(ht)−
1

T

T∑
t=1

`t(h∗) ≤
4r2(1 + lnT )

λT
,

where h∗ = arg minh∈H{
∑T
t=1 `t(h)/T}.

Proof. By setting τt = 1/(λt) and h0 = 0, we rewrite the update rule as

ht =

(
1− 1

t

)
ht−1 −

1

λt
gt with gt = I[yth(xt) < 1]ytϕ(xt) , (26)

where ϕ(xt) is the feature mapping of K. Hence, we have

ht =
1

λt

t∑
i=1

gi and ‖ht‖H ≤
r

λ
,

from
∏t
j=i+1(1− 1/j) = i/t for i ≤ t− 1. We complete the proof from Eqn. (26) and Lemma C.4.

From Lemma C.5, we have the following corollary.

Corollary C.6. For online kernel learning in the previous stage (Figure 1), we have∥∥∥w[1]
T1

∥∥∥
2
≤ r

λ
and

∥∥∥∥∥ 1

T1

T1∑
t=1

w
[1]
t

∥∥∥∥∥
2

≤ r

λ
.

Lemma C.7. Given Sn = {(x1, y1), · · · , (xT , yT )}, and for a kernel K bounded by r2 and a classifier h0 ∈ H, let
h1, · · · , hT be classifiers generated by online kernel learning with `(h, (x, y)) = max{1 − yh(x), 0} + λ‖h‖2H/2 and
λ > 0. For h∗ = arg minh∈H

∑T
t=1 `t(h), we have

1

T

T∑
t=1

`t(ht)−
1

T

T∑
t=1

`t(h∗) ≤
2r ‖h0 − h∗‖H√

T
.

Proof. For the norm in RKHS, we have

‖ht+1 − h∗‖2H = ‖ht − η∇`t(ht)− h∗‖2H = ‖ht − h∗‖2H + η2 ‖∇`t(ht)‖2H − 2η∇`t(ht)>(ht − h∗) ,

and this follows that, from convex loss function `t(ht)− `t(h∗) ≤ ∇`t(ht)>(ht − h∗),

`t(ht)− `t(h∗) ≤
‖ht − h∗‖2H − ‖ht+1 − h∗‖2H

2η
+
η

2
‖∇`t(ht)‖2 .

We have, by summing from t = 0 to T − 1,

T∑
t=1

(`t(ht)− `t(h∗)) ≤
‖h0 − h∗‖2H

2η
+ 2ηr2T ,

which completes the proof by setting ηt = ‖h0 − h∗‖H /(r
√
T ).
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Lemma C.8. Given samples S1 = {(xi, yi)}n1
i=1 and S2 = {(xi, yi)}n1+n2

i=n1+1 with ‖x‖2 ≤ r, denote by

w∗1 ∈ arg min
w∈Rd

{
R̂1(w) =

1

n1

n1∑
i=1

`(w, (xi, yi)) +
λ

2
‖w‖22

}
,

w∗2 ∈ arg min
w∈Rd

{
R̂2(w) =

1

n2

n1+n2∑
i=n1+1

`(w, (xi, yi)) +
λ

2
‖w‖22

}
.

For δ ∈ (0, 1), the following holds with probability at least 1− δ,

R̂1(w∗1)− R̂2(w∗2) ≤ r2

λ

√(
1

n1
+

1

n2

)
ln

(
1

δ

)
.

Proof. We introduce a new function
f(S1, S2) = R̂1(w∗1)− R̂2(w∗2) ,

and consider the sample S′1 = S1\{(xk, yk)} ∪ {x′k, y′k} for k ∈ [n1]. From Cauchy-Schwarz inequality and 1-Lipschitz
hinge loss, we have

|f(S′1, S2)− f(S1, S2)| =
∣∣∣R̂1(w∗1)− R̂′1(w′∗1 )

∣∣∣ ≤ r ‖w∗1 −w′∗1 ‖2+
λ

2
‖w∗1 −w′∗1 ‖2·‖w

∗
1+w∗′1 ‖2 ≤ 2r ‖w∗1 −w∗′1 ‖2 ,

where the norm of optimal classifiers satisfy

‖w∗1‖2 ≤
r

λ
, ‖w′∗1 ‖2 ≤

r

λ
and ‖w∗1 +w′∗1 ‖2 ≤

2r

λ
,

from the KKT condition as in the proof of Theorem 3.3. From strong convexity, we have

R̂1(w′∗1 ) ≥ R̂1(w∗1) +
λ

2
‖w∗1 −w′∗1 ‖

2
2 and R̂′1(w∗1) ≥ R̂′1(w′∗1 ) +

λ

2
‖w∗1 −w′∗1 ‖

2
2 , (27)

and this follows that,

‖w∗1 −w′∗1 ‖
2
2 ≤

1

λ

(
R̂1(w′∗1 )− R̂1(w∗1)− R̂′1(w∗1) + R̂′1(w′∗1 )

)
=

1

λn1

(
`(w′∗1 , (xk, yk))− `(w∗1 , (xk, yk)) + `(w∗1 , (x

′
k, y
′
k))− `(w′∗1 , (x′k, y′k))

)
≤ r

λn1
‖w∗1 −w′∗1 ‖2 .

Hence, we have, from Eqn. (27),

|f(S1, S2)− f(S′1, S2)| ≤ 2r2

λn1
.

We could make a similar analysis for S2. This completes the proof from Lemma A.4.

Proof of Theorem 4.3. For k = 1 and k = 2, we introduce some notations as follows:

R̂T1(w[k]) =
1

T1

T1∑
t=1

`(w[k], (x
[k]
t , yt)) +

λ

2

∥∥∥w[k]
∥∥∥2

2
,

R̂Te
(w[k]) =

1

Te

T1+Te∑
t=T1+1

`(w[k], (x
[k]
t , yt)) +

λ

2

∥∥∥w[k]
∥∥∥2

2
,

R̂T2
(w[k]) =

1

T2

T1+Te+T2∑
t=T1+Te+1

`(w[k], (x
[k]
t , yt)) +

λ

2

∥∥∥w[k]
∥∥∥2

2
.

Denote by `t(w[k]) = `(w[k], (x
[k]
t , yt)) + λ‖w[k]‖22. From the i.i.d assumption, it is natural to consider samples on new

feature space X [2] in the previous stage and on old feature space X [1] in the current stages respectively.
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We have, from Lemma C.5 and strong convexity,

L̂[2]
T2
− L[2]

T2
(w

[2]
∗ ) ≤ 2r

√
2

λT2

(
R̂

[2]
T2

(w
[2]
T1+Te

)− R̂[2]
T2

(w
[2]
∗ )
)
, (28)

and we also have R̂T2
(w

[2]
T1+Te

)− R̂T2
(w

[2]
T2∗) = Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7, where

Z1 = R̂T2
(w

[2]
T1+Te

)− R̂Te
(w

[2]
T1+Te

), Z2 = R̂Te
(w

[2]
T1+Te

)− R̂Te
(w

[1]
T1

), Z3 = R̂Te
(w

[1]
T1

)−RT1
(w

[1]
T1

) ,

Z4 = RT1
(w

[1]
T1

)− 1

T1

T1∑
t=1

`t(w
[1]
t ), Z5 =

1

T1

T1∑
t=1

`t(w
[1]
t )− R̂T1

(w
[1]
T1∗), Z6 = R̂T1

(w
[1]
T1∗)− R̂T2

(w
[1]
T2∗) ,

Z7 = R̂T2
(w

[1]
T2∗)− R̂T2

(w
[2]
T2∗).

From the i.i.d assumption for evolving and current stage, the following holds with probability at least 1− δ/6,

Z1 ≤ E[Z1] + max
(x[2],y)∈X [2]×Y

{
`
(
w

[2]
T1+Te

, (x[2], y)
)}√( 1

2Te
+

1

2T2

)
ln

6

δ

=

(
r2

λ
+ 1

)√(
1

2Te
+

1

2T2

)
ln

6

δ
, (29)

from Lemma C.1 and Corollary C.6. Similarly, the following holds with the probability as least 1− δ/6,

Z3 ≤ E[Z3] + max
(x[2],y)∈X [2]×Y

{
`
(
w

[2]
T1+Te

, (x[2], y)
)}√ ln(1/δ2)

2Te
=

(
r2

λ
+ 1

)√
ln(1/δ2)

2Te
. (30)

From Lemma 4.2 and Theorem 3.4, the following holds with the probability at least 1− δ/6,

Z2 =
1

Te

T1+Te∑
t=T1+1

(
`
(
w

[1]
T1
, (x

[1]
t , yt)

)
− `
(
w

[2]
T1+Te

, (x
[2]
t , yt)

))

≤ 1

Te

T1+Te∑
t=T1+1

∣∣∣〈w[1]
T1
, z[1](x

[1]
i )〉 − 〈w[2]

T1+Te
, z[2](x

[2]
i )〉

∣∣∣
≤

rÊ
(
S

[e]
Te
,K[1],K[2]

)
λ

≤ r

λ

(
E(D,K[1],K[2]) + c1r

√
1

Te
ln

6

δ

)
. (31)

From Lemma C.3 , the following holds with the probability at least 1− δ/6,

Z4 ≤
(
r2

λ
+ 1

)√
ln(6/δ)

2T1
, (32)

and we have, from Lemma C.5,

Z5 ≤
4r2 ln(1 + T1)

λT1
≤ 4r2

λ
√
T1

. (33)

From Lemma C.8, the following holds with a probability at least 1− δ/6,

Z6 ≤
r2

λ

√(
1

T1
+

1

T2

)
ln

6

δ
. (34)
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From Theorem 3.3 and Theorem 3.4, the following holds with a probability at least 1− δ/6,

Z7 ≤ 1

T2

T1+Te+T2∑
t=T1+Te+1

∣∣∣〈w[2]
T2∗,x

[2]
t 〉 − 〈w
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[1]
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λ

2
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2

∥∥∥w[1]
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≤ r

λ
Ê(S
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T2
,K[1],K[2]) +

r

λ

√
2rÊ(S
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2

≤ r

λ
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λ

√
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[2]
T2
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≤ r

λ

(
E
(
D,K[1],K[2]

)
+ 2
√

2rE
(
D,K[1],K[2]

))
+O

 4

√
ln(6/δ)

T2

 . (35)

From Eqns. (29)-(35) and union bounds, the following holds with probability at least 1− δ,

R̂T2
(w

[2]
T1+Te

)− R̂T2
(w

[2]
T2∗) ≤

r2

λ

[
c

(
1√
T1

+
1√
Te

+
1

4
√
T2

)
ln

(
6

δ

)
+
E
r

+

√
2E
r

]
, (36)

for some constant c > 0 with (1− δ/6)6 ≥ 1− δ. We complete the proof by combining Eqn. (28) and Eqn. (36).

C.4. Proof of Theorem 4.4

For simplicity, we reindex the time-step of samples in the current stage as t = 1, · · · , T2. Denote by `t,i the loss for the i-th
base learner at the t-th iteration with i ∈ [2], and Lt,i is the corresponding cumulative loss. We define the potential function

Φt =
1

γ
ln

(
2∑
i=1

exp(−γLt,i)

)
,

and this follows that, from e−x ≤ 1− x+ x2 and ln(1 + x) ≤ x,

Φt − Φt−1 =
1

γ

(
exp(−γLt,i)∑2

i=1 exp(−γLt−1,i)

)
=

1

γ

(
2∑
i=1

ωt,i exp(−γ`t,i)

)

≤ 1

γ

(
2∑
i=1

ωt,i(1− γ`t,i + γ2`2t,i)

)
=

1

γ
ln

(
1− γ〈ωt, `t〉+ γ2

2∑
i=1

ωt,i`
2
t,i

)
≤ 〈ωt, `t〉+ γ2

2∑
i=1

ωt,i`
2
t,i ,

where ωt = (ωt,1, ωt,2), `t = (`t,1, `t,2), and the last equality holds from Eqn. (12). We have, by summing over t ∈ [T2],

T2∑
t=1

〈ωt, `t〉 ≤ Φ0 − ΦT2 + γ

T2∑
t=1

2∑
i=1

ωt,i`
2
t,i

≤ ln 2

γ
− 1

γ
ln (exp(−γLT2,i∗)) + γ

T2∑
t=1

2∑
i=1

ωt,i`
2
t,i ≤

ln 2

γ
+ LT2,i + γ

T2∑
t=1

2∑
i=1

ωt,i`
2
t,i ,

where LT2,i∗ = mini∈{1,2} LT2,i. We have, by rearranging and from Theorem 4.3,

T2∑
t=1

〈ωt, `t〉 − min
i=1,2

LT2,i ≤
ln 2

γ
+ γ

T2∑
t=1

2∑
i=1

ωt,i`
2
t,i ≤

ln 2

γ
+ γT2

(
1 +

3r2

2λ

)
,

which completes the proof by setting γ =
√

ln 2/((1 + 3r2/2λ)T2).
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