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Abstract

Recent generative language models assume a
pre-defined monotonic left-to-right sequence
decomposition format to learn, which has been
proven very effective in current well-known
decoder-only autoregressive large language
models, but might be inefficient in learning
many specific task such as reasoning. In this
paper, we explore the potential of other feasible
decomposition formats for language models to
effectively compensate the autoregressive lan-
guage modeling paradigm. Specifically, we aim
to find the appropriate composition from mul-
tiple candidates through introducing effective
path selection in both training and decoding.
Experiments on total 11 zero-shot reasoning
tasks and 2 language generation tasks demon-
strate the effectiveness of our methods, indicat-
ing that more suitable decomposition formats
beyond a left-to-right order do exist, and su-
perior performance can be achieved by simply
selecting and optimizing the decoding paths.

1 Introduction

Most of generative language models, from ngram-
based models (Bahl et al., 1983) to neural language
models (Bengio et al., 2000), including the cur-
rent well-known decoder-only large language mod-
els (Touvron et al., 2023a,b; OpenAl, 2023), rely
on a monotonic left-to-right order to decompose
the neural language texts to learn their internal de-
pendencies during training and leverage the same
determined order in decoding. Although the above
monotonic modeling and generation paradigm has
always been the mainstream in the NLP commu-
nity in recent years, we still wonder if there exist
fungible or even superior sequence decomposing
formats for language models to learn and generate
the target sequences, especially after witnessing
the success of several non-monotonic model vari-
ants (Yang et al., 2019; Welleck et al., 2019; Shih
et al., 2022). Furthermore, efficiently selecting the

relatively suitable decomposing formats for differ-
ent training instances is a critical but challenging
aspect for the success of language models.

In this paper, we frame the problem of finding
the superior decomposing formats of language texts
as a decoding path selection process. Specifically,
with the decoding path for several different typical
language models shown in Figure 1, e.g., autorgres-
sive (Vaswani et al., 2017), non-autoregressive (Gu
et al., 2018), and BERT-family (Devlin et al., 2018),
the former two types of models have the unique
decoding path while BERT-family can allow var-
ious paths to generate target sequences. There-
fore, to best explore the impacts of different de-
composing formats of texts, we pre-train a new
BERT-family variant for generation tasks to con-
duct evaluation experiments. Specifically, we aim
to find the appropriate composition formats from
multiple candidates during inference via the path
selection method, and then further leverage the out-
puts achieved from these compositions to optimize
the language models to learn the path preference
through the path selection*® method.

To evaluate our proposed new methods, we con-
duct detailed experiments on various zero-shot rea-
soning and language generation tasks, and mainly
observe that (1) there do exist superior decoding
paths beyond monotonic left-to-right decomposi-
tion for language models to achieve better gener-
ation outputs; (2) although BERT-family models
are recognized as not proficient in these evaluation
tasks, simply selecting and optimizing the decod-
ing path enables them to perform on par with cur-
rent competitive AR models of comparable capac-
ity (model scale), demonstrating great potential.
Our observations can provide new insights into
the generative modeling and inference methods
for language models in the future, thus motivating
the researchers to seek more effective solutions in
learning the dependency of language texts and con-
ducting the generation process with more suitable
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Figure 1: The sequence decomposition for training, and composition methods (i.e., decoding path to achieve the

outputs sequence) for different language models.

decomposing formats.

2 Preliminary

2.1 Utilizing BERT-family for Language
Generation Tasks

Since the traditional BERT-family are not designed
and pre-trained for language generation tasks, sev-
eral efforts should be made in adapting them to
generating language texts. Previous works (Dong
et al., 2019; Wang and Cho, 2019) have theoreti-
cally indicated that the BERT-family can be utilized
for generating texts by predicting the masked posi-
tions in the target sequence. Despite early efforts by
researchers to leverage BERT-family for language
generation tasks (Chan and Fan, 2019; Jiang et al.,
2021; Su et al., 2021), these attempts yielded sub-
optimal results compared to the mainstream gen-
erative models. Subsequently, researchers attempt
to adapt BERT-family to NAR scenarios (Liang
et al., 2023b,a; Xiao et al., 2024) via the the Mask-
Predict decoding algorithm (Ghazvininejad et al.,
2019), which first predicts the entire masked target
sequence in the first decoding step, and then re-
fines the target sequence by replacing the unreliable
parts with masked tokens and re-generating them in
parallel in the subsequent decoding step as details
shown in the Appendix A, and receives relatively
positive feedback regarding performance. During
training, these models learn to predict the masked
parts in the target sequence, whose loss can be com-

puted as £==3, v, Tog P(yilYops, X;0),
where X denotes the source sequence, Y, and
Y.»s are the masked and unmasked parts in the
target sequence Y, respectively. In this paper,
we further delve into the essential technological
advancements of BERT-family that leverage the
Mask-Predict decoding algorithm to achieve better
performance in generation tasks.

2.2 Decoding Paths for BERT-family

Formally, we consider the process of generating
a sequence of discrete tokens Y = (y1,...,yn),
where y; € V, a finite vocabulary specific to a lan-
guage model. This generation process can be in-
terpreted as deterministically sampling a series of
successive state spaces .S, where each state s; € .S
corresponds to a sequence of tokens sampled from
V', and relies on a policy 7 to transition to the next
state. A policy 7 serves as a determinate mapping
from states to actions, outlining how the model
processes the current sequence and achieves the
subsequent sequence in the next state. We denote
this specific process to compose the target sequence
as the decoding path P of a given language model,
where each node represents the current state s; in
ith decoding step and each edge represents the pol-
icy m; indicating the actions for transitioning from
state s; tO Sj41.

As shown in Figure 1, different language models
have their specific decoding paths to compose the
target sequence. The traditional AR and NAR lan-



guage models typically have a single decoding path
for composing a specific target sequence, while
BERT-family can explore multiple optional decod-
ing paths, resulting in varied output sequences of
differing generation qualities. Selecting a specific
decoding path from the multitude of optional paths
available in BERT-family is crucial for achieving
high-quality outputs. With approximately 277 pos-
sible paths for a BERT-family model, as detailed
in the Appendix B, determining the optimal path
is essential for the success of these models. In
Ghazvininejad et al. (2019) where the Mask-Predict
decoding algorithm was first proposed, the authors
heuristically regulate the policy 7 in tth decoding
step as predicting the masked parts in current Y and
selecting the specific n; tokens which are with low-
est prediction probabilities to be re-masked, where
the number of re-masked tokens can be computed
asn; = (1 —t/T) * N, N denotes the total num-
ber of tokens in Y, ¢ and T denote the current and
total decoding step, respectively. While the Mask-
Predict algorithm provides a heuristic approach to
selecting decoding paths, it may not always yield
optimal results. There exist other decoding paths in
the candidate space leading to better composition
of target sequences (Kreutzer et al., 2020). Hence,
we aim to identify an optimal decoding path from
such multitudinous candidates by introducing path
selection method. Moreover, we further propose
path selection* which empowers the model to learn
the preference between different decoding paths.
Our methods seek to enhance the BERT-family’s
ability to navigate through the complex decoding
spaces and generate higher-quality output.

3 Methods

3.1 Path Selection

We first sample several optional decoding paths
from the candidate spaces and select the best one
with the highest total prediction probability. Specif-
ically, we follow most of the practice in the Mask-
Predict algorithm, except for the selection of the
re-masked tokens in each decoding step. As shown
in the right of Figure 2, rather than just selecting a
specific number of tokens with the lowest predic-
tion probabilities to transform to the unique next
state (i.e., the first beam), we allow total k£ can-
didate selections for re-masked tokens with the
lowest-k total prediction probabilities for each de-
coding path, where £ is the position beam number
set in advance, and total prediction probabilities

are the sum of each token’s probability in the se-
quence. Notice we always keep the number of
candidate states in each decoding step as k, which
is similar to the beam search algorithm for AR
models (Meister et al., 2020). However, the search
times to select the lowest-k candidates is quite large
especially when N is large, i.e., given the total de-
coding step 7', generated target tokens /V, and the
position beam number k, the total search times is
k Ete{l,Q,...,T} CX, where its detailed proof is in
Appendix C. Therefore, to reduce the search over-
head, we further introduce a simplified version that
transforms the search times in ¢th decoding step
from qux to k in which only one position in masked
parts can be replaced by the one in unmasked parts
to obtain the candidate decoding states, thus the
upper bound of search times can be reduced to
T * k2. For example, as shown in Figure 2, after
obtaining the first beam sequence by Mask-Predict
algorithm, we can choose one token in its masked
parts with the largest prediction probability (i.e.,
go) to replace the one in its unmasked parts with
the least prediction probability (i.e., often) to obtain
the second beam sequence in each decoding step.

3.2 Path Selection*

Motivated by the recent direct preference optimiza-
tion (DPO) algorithm (Rafailov et al., 2024) which
adopts positive-negative pair samples to train hu-
man preferences for language models, we aim to
teach BERT-family the decoding path preference
by training with positive-negative pair samples
achieved from composition methods. Specifically,
as shown in the right of Figure 2, given a specific
instance in which several tokens in the target se-
quence are replaced with masked tokens, denoted
as Y,qsk, we randomly! sample two different de-
coding paths to generate these masked tokens in
multiple steps, then achieve two different output
sequences, and the specific output tokens of Y45k
are denoted as Y., and Y2, the details of the sam-
pling methods are presented in Appendix D. Sub-
sequently, we use a score function Score(-), which
can be the exact match accuracy with ground truth
tokens or the BLEU score (Papineni et al., 2002),
to identify the specific positive and negative ones.
Once Score(Y,},) > Score(Y?2,), we adopt Y},

out o
as the positive output Y, and Y,2, as the negative

'We randomly sample the number and specific positions
of re-masked tokens to transform to the next state in each
decoding path rather than that according the rule in the Mask-
predict algorithm mentioned above.
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Figure 2: Overview of the path selection and path selection* methods. As for the path selection method during
inference, we select the positions for masked tokens with the lowest-%k prediction probabilities, while the path
selection* randomly samples the positions for masked tokens.

output Y}, and vice versa. Finally, following the
common practice in online DPO algorithm, given
the reference model m¢ and the policy model 7y,
we first use mr to sample the positive-negative pair
samples, then update 7y with the DPO loss:

7o (Yo |Yobs, X)

Trref (Y| Yobs, X)

. WH(YHYZ)wa) )]
Wret'(}/l’}/obsax) ’

Lppo (779; 7Tref) = - log G[ﬁ(

(D
where X denotes the source sequence, Yus
denotes the unmasked parts in Y, o denotes
the sigmoid function, S is the hyperparameter
controlling the DPO loss, 7p(Yi|Yops, X) =
> viev PWilYobs, X;0), etc. Besides, we add
two penalty terms to reduce the failure cases of
DPO as mentioned in (Pal et al., 2024), i.e., the
model reduces the probabilities of positive outputs
and meanwhile more significantly reduces the prob-
abilities of negative outputs, then the probability
gap between two outputs will be larger, and the
DPO loss will be smaller. However, reducing the
probabilities of positive outputs is contrary to our
expectations. The penalty terms can be computed:

Tret (Yoo | Yobss X))
79 (Yo | Yobs, X)
7Tref(le|Y;Jbsa X))
7 (Y| Yobs, X)

LpEN (T9; Tref) = max <0, log

+ max <O, log

Then, combining the above DPO loss and the
penalty terms with the traditional masked language
modeling loss in BERT-family as mentioned in Sec-

tion 2.1, which aims to predict the masked tokens:

Lyim(me) = — Y 1og Pyl Yobs, X; 6).
yieymask
3)

Our final training loss is computed as £ = Lypm +
A1 Lppo + A2 LpeN, Where A1 and \g are the hyper-
parameters to balance the different loss items.

4 Experiments

4.1 Implementation Details

Backbone Models For better evaluation of vari-
ous generation tasks, we pre-train new variants of
BERT-family with a modified masking mechanism
during training, which aims to better equip these
masked language models for tasks involving gen-
eration (Liang et al., 2023b; Xiao et al., 2024),
thus we name our model as Generative BERT
(GeBERT). Details of our pre-training task are
presented in the Appendix E. During training, we
adopt the Pile (Gao et al., 2020; Biderman et al.,
2022) dataset to pre-train our models based on an
encoder-only language model with a bi-directional
attention mechanism following the follow the most
practice in previous BERT-like models, and fur-
ther incorporate several effective techniques such
as Rotary Positional Embedding (RoPE) (Su et al.,
2024) and swiglu (Shazeer, 2020) activation func-
tion. Details of training settings are presented in
the Appendix F Based on our modified pre-training
task, we pre-train two versions of GeBERT contain-
ing 124M and 352M parameters which are similar
to the base and large versions of other previous
pre-trained language models (Devlin et al., 2018;
Lewis et al., 2019; Raffel et al., 2020), denoted as



Models LogiQA Sciq ARC-E ARC-C Wino. BoolQ PIQA SIQA Race Hella. Truth. AVG.
~ 150M parameters
OPT-125M 2793 752 4352 2278 5028 61.07 62.02 37.21 30.05 31.25 2399 4231
GPT-neo-125M 28.88 76.5 4373  23.12 5043 62.02 6246 3721 27.56 3040 25.83 42.56
Pythia-160M 2427 754 43.64 2363 5130 62.14 6197 3690 28.71 30.30 2497 42.11
RWKV-169M 2473 752 4752 2346 50.67 62.17 64.04 37.00 26.89 32.25 2225 4241
"GeBERT-124M 27.65 803 4213 2210 5075 62.17 60.66 36.49 2890 29.76 24.60 42.27
+ Path Selection 27.65 81.8 42.09 2236 51.87 62.17 59.69 36.80 29.28 31.70 25.70 42.89
+ Path Selection* 28.88 80.5 4247 22.18 5272 62.17 60.88 36.94 29.76 32.25 25.74 43.14
=~ 350M parameters
OPT-350M 28.57 7490 44.19 2398 5249 61.87 6474 3930 29.76 32.66 23.50 43.27
Pythia-410M 29.34 8130 52.10 2432 5320 61.68 67.08 3895 3091 40.52 23.50 45.72
RWKV-430M 2442 79.00 5223  25.17 5280 62.05 68.44 3884 28.71 40.78 22.28 44.98
"GeBERT-352M 28.88 8310 5143 2386 5293 62.17 6521 39.02 30.68 40.12 2435 4501
+ Path Selection 29.87 83.60 51.65 2424 5287 62.17 65.03 39.26 30.83 41.03 25.58 46.03
+ Path Selection* 30.33 8330 51.97 24.18 53.19 62.17 6578 39.51 31.00 41.30 25.80 46.21

Table 1: Results on zero-shot common sense reasoning and reading comprehension tasks. The first line of GeBERT
denotes the baseline which adopts the left-to-right composition. Bold values denote the best average result (AVG.)
through all models. underlined values denote the result of our methods outperforming the baseline GeBERT. The
abbreviations Wino., Hella., and Truth. denote the WinoGrande, Hellaswag, and Truthfulqa datasets, respectively.

GeBERT-124M and GeBERT-352M. We utilize
the Megatron-Deepspeed 2 library to train GeBERT
on 8 NVIDIA A100-PCIE-80GB GPU cards.

Fine-tuning Settings We follow the training pro-
cedure in previous works (Liang et al., 2023b; Xiao
et al., 2024) to fine-tune GeBERT on downstream
datasets for non-autoreressive sequence generation
tasks. For the fine-tuning settings, we tune the
learning rate from {le-5, 2e-5, 5e-5, le-4} for dif-
ferent downstream tasks. We train for a total of
50 epochs and validate the model after each epoch,
then obtain the final model with the best validation
performance. During the training of the path selec-
tion* method, we initialize the policy and reference
model with that after fine-tuning for downstream
sequence generation tasks. Then, we freeze the
parameters of the reference model and only update
the parameters of the policy model with the same
dataset adopted in fine-tuning. We set the learning
rate as 2e-5 and other training hyperparameters the
same in the fine-tuning stage. Then, we train the
model with 5 epochs. As for the DPO training of
the vanilla GeBERT, we initialize the policy and
reference model with the final saved checkpoint
during pre-training. We sampled a small subset
from the pile to conduct DPO training and avoid
introducing extra training data.

Datasets and Metrics We evaluate our proposed
methods on common downstream task-specific gen-

Zhttps://github.com/microsoft/Megatron-DeepSpeed

eration tasks, which have been widely used in pre-
vious pre-trained AR and NAR works, and various
zero-shot common sense reasoning and reading
comprehension tasks, which are popular to eval-
uate the vanilla version of current large language
models without fine-tuning (Zeng et al., 2022; Tou-
vron et al., 2023a,b). To the best of our knowl-
edge, we are the first to evaluate the pre-trained
NAR models for these zero-shot tasks. Specif-
ically, For downstream task-specific generation
tasks, we adopt XSUM (Narayan et al., 2018) for
the summarization task and MSQG ( MicroSoft
Question Generation) dataset for the question gen-
eration task from the GLGE benchmark (Liu et al.,
2021). For the evaluation metrics, we adopt
ROUGE F1 (ROUGE-1/2/L) (Lin and Hovy, 2002)
for XSUM, and BLEU (BLEU-4) (Papineni et al.,
2002), Rouge-L and METEOR (Lavie and Agar-
wal, 2007) for MSQG. For zero-shot common
sense reasoning and reading comprehension tasks,
we adopt ARC-easy, ARC-challenge (Clark et al.,
2018), BoolQ (Clark et al., 2019), PIQA (Bisk
et al.,, 2020), SIQA (Sap et al., 2019), Wino-
Grande (Sakaguchi et al., 2021), Race (Lai et al.,
2017), Sciq (Johannes Welbl, 2017), LogiQA (Liu
et al., 2020), Hellaswag (Zellers et al., 2019), and
Truthfulga (Lin et al., 2021), which are all widely
used for evaluating recent language models. We
adopt Language Model Evaluation (Gao et al.,
2021) framework to evaluate these datasets under a
zero-shot setting (Biderman et al., 2023). We adopt



Model XSUM MSQG Speedup
Rouge-1 Rouge-2 Rouge-L. Rouge-L. BLEU-4 METEOR
Transformer 30.66 10.80 24.24 29.43 4.61 9.86 -
Base Version (=~ 150M parameters)
BANG 32.59 8.98 27.41 - - - -
ELMER 37.30 13.17 29.92 - - - -
PreDAT 39.79 17.38 32.71 - - - -
MIST 34.63 11.29 28.70 - - - -
DEER 39.10 16.80 32.40 38.70 9.70 23.30 -
MASS-base 39.70 17.24 31.91 38.90 10.20 23.30 -
BART-base 38.79 16.16 30.61 38.20 10.20 22.90 1.0x
ProphetNet-base 39.89 17.12 32.07 37.10 9.10 22.30 -
" GeBERT-124M 4032 1690 3254 3913 966 2350  3.1x
+ Path Selection 40.52 17.11 32.71 39.06 9.52 23.51 1.2x
+ Path Optimization 40.92 17.39 33.08 39.46 9.72 23.68 1.2x
Large Version (=~ 350M parameters)
MASS-middle 39.10 16.50 31.40 38.90 9.50 23.50 -
BART-large 45.10 22.20 37.20 38.80 9.20 24.30 -
ProphetNet-large 44.40 21.30 36.40 38.30 9.60 23.30 -
" GeBERT-352M 4412 2103 3627 3932 1023 2387 -
+ Path Selection 44.33 21.23 36.40 39.38 10.21 23.90 -
+ Path Optimization 44.84 21.89 36.89 39.78 10.29 24.32 -

Table 2: Results on task-specific generation tasks. Bold denotes the best result. underlined values denote the result

of our methods outperforming the baseline GeBERT.

normalized accuracy for PIQA, ARC-challenge,
LogiQA, Hellaswag, and accuracy for other tasks
following previous works (Biderman et al., 2023).

Baseline Models For the downstream task-
specific generation tasks, we adopt the vanilla
Transformer baseline (Vaswani et al.,, 2017)
and previous pre-trained AR models including
MASS (Song et al., 2019), BART (Lewis et al.,
2019), and ProphetNet (Qi et al., 2020) which are
included in the official GLGE evaluation leader-
board as autoregressive baselines. For NAR base-
lines, we adopt the previous pre-trained NAR
models including BANG (Bang et al., 2023),
ELMER (Li et al., 2022) and PreDAT (Huang
etal., 2023). Besides, we also include MIST (Jiang
et al,, 2021) and DEER (Liang et al., 2023a)
which also fine-tune the traditional BERT-family
to complete the generation tasks. For common
sense reasoning and reading comprehension tasks,
which are only widely used after the popularity of
large language models and never been included
in the evaluation of previous NAR models, we
adopt the recent large language models which are
also trained on the Pile for around 300B tokens
and contains the comparable model parameters

with GeBERT, including OPT-125M/350M (Zhang
et al., 2022), GPT-neo-125M (Black et al., 2022),
Pythia-160M/410M (Biderman et al., 2023), and
RWKV-169M/430M (Peng et al., 2023). We re-run
all the baseline models under the same Language
Model Evaluation framework (Gao et al., 2024)
using their open-source Hugging Face models to
ensure consistent evaluation procedures.

4.2 Main Results

Zero-shot common sense reasoning and read-
ing comprehension We present the results on
various zero-shot common sense reasoning and
reading comprehension tasks in Table 1. Com-
pared with GeBERT and the previous AR mod-
els, we can find that: (1) GeBERT can also com-
plete these zero-shot tasks and achieve compara-
ble performance while adopting the same decod-
ing path during inference®. (2) Our final models
(i.e., GeBERT with path selection and path selec-
tion*) achieve the best performance through all the
previous AR models on average, outperforming

3For GeBERT, we append a masked token after the current
sequence and enable the model to predict it, thus realizing the
same decoding path as AR models that adopt the policy as
predicting the next token.



Hyber. LogiQA Sciq ARC-E ARC-C Wino. BoolQ PIQA SIQA Race Hella. Truth. AVG.
left-to-right ~ 27.65 80.3 42.13 22.10 50.75 62.17 60.66 36.49 2890 29.26 24.60 42.26
right-to-left ~ 28.57 722 30.73 2235 49.17 5887 5522 33.78 25.55 30.12 25.70 39.30
random 2581 79.6 41.71 21.67 5020 62.17 56.09 3393 28.13 29.50 24.48 41.20
easy-to-hard  29.19 804 41.96 2244 5257 62.17 59.79 36.80 29.79 31.73 25.58 42.90
hard-to-easy 26.88 804 41.50 21.16 50.04 62.17 5892 36.34 2622 31.03 2497 41.78
beam = 2 28.11 814 42.59 22.01 5201 62.17 59.69 36.54 30.05 31.98 2545 4294
beam = 3 27.65 81.8 42.09 2236  51.86 62.17 60.01 36.80 29.67 32.17 25.58 4290
beam = 4 28.26 81.8 4251 22.61 51.07 62.17 6028 3628 29.28 32.09 25.70 42091

Table 3: Results of different methods to select the decoding paths for zero-shot common sense reasoning and reading
comprehension tasks. Hyper. denotes the corresponding hyperparameter.

the previous best models (i.e., GPT-neo-125M and
Pythia-410M) by around 0.8 and 0.5 score. (4)
GeBERT is better at reading comprehension tasks
which enable the model to answer questions given
supports or evidences such as Sciq and LogiQA, we
attribute this to the bi-directional attention mecha-
nism of GeBERT. Besides, Compared with baseline
GeBERT which adopts the same decoding path
as AR models and those with our path selection
and path selection* methods, we can find that: (1)
With the path selection method, GeBERT outper-
forms the baseline GeBERT in most of the evalua-
tion tasks, leading to 0.6/1.0 performance improve-
ments on GeBERT-124M/352M. (2) Further, with
the path selection* method, GeBERT can outper-
form the baseline GeBERT in 10 of 11 evaluation
tasks and be on par in BoolQ, leading to around
1.0 performance improvements on average. (3) By
comparing GeBERT only with the path selection
method and with both proposed methods, the for-
mer can achieve performance improvements on
most tasks, indicating the effectiveness of the path
selection* method. However, the path selection*
may also result in performance declines in several
tasks, such as Sciq for GeBERT-124M and ARC-C
for GeBERT-352M.

Task-specific generation Table 2 presents the
results on task-specific generation task. We
can find that: (1) For the summarization task,
though GeBERT-352M underperforms BART-large
GeBERT-124M, it outperforms all the other base-
line models in all evaluation metrics, indicating
that GeBERT can generate more informative and
reasonable summaries. (2) For the question gen-
eration task, GeBERT-124M outperforms all the
baseline models on Rouge-L. and METEOR and
only presents performance gaps compared with the
best baseline models on BLEU-4. GeBERT-352M

achieves the best performance across various mod-
els on all evaluation metrics. (3) Compared to
the GeBERT baseline, which adopts the original
vanilla Mask-Predict algorithm to generate the out-
put sequence, the path selection and path selection*
methods can bring performance improvements on
the XSUM dataset for both GeBERT-124M/352M,
indicating that these two methods can enable the
model to achieve better performance in generating
relatively long targets. However, the path selection
method does not lead to consistent performance im-
provements on the MSQG dataset, which contains
relatively short targets. We attribute this to that
short sequences will lead to relatively small candi-
date space and redundant outputs for different de-
coding paths, thus we can not achieve better outputs
from multiple candidates. (4) We also compare the
decoding efficiency of GeBERT-124M and BART-
base, which contains around 140M parameters, and
the results demonstrate that GeBERT can achieve
3.1x speedup with the vanilla Mask-predict algo-
rithm due to the NAR attribute. Further, although
path selection and path selection® will bring the
extra search overhead for various decoding paths,
GeBERT still achieves a faster generation process,
leading to a 1.2x speedup compared to BART.

S Analysis

5.1 Discussion of Different Methods to
Determine the Composition formats

The results in Table 1 have demonstrated that our
methods outperform the traditional left-to-right
composition format, here we further compare with
several other optional formats, e.g., (1) right-to-left
order; (2) random order; (3) Instead of selecting
the token with the highest prediction probability,
which is denoted as an easy-to-hard order (Kasai
et al., 2020), we include a hard-to-easy order which



|

Rouge-1 Rouge-2 Rouge-L

Method

GeMLM 40.32 16.90 32.54
w/ Token Beam 40.17 16.88 32.50
w/ Position Beam 40.52 17.11 32.71

w/ Path Selection* 40.78 17.30 33.01
w/ Token Beam 40.58 17.19 32.90
w/ Position Beam 40.92 17.39 33.08

Table 4: Results of different beam search algorithms.

generates the token with the lowest prediction prob-
ability first; (4) path selection with different beam
number as 2/3/4. We present the corresponding re-
sults in Table 3, we can find that: (1) Based on dif-
ferent orders, the easy-to-hard order that we adopt
in the path selection method performs best (i.e.,
beam = 1), while several other orders will lead
to significant performance declines such as right-
to-left order. (2) Adopting different beams in our
path selection method performs differently for vari-
ous tasks but achieves a comparable score on aver-
age, and all outperforms the left-to-right baseline,
indicating the effectiveness of the path selection
method. Besides, the comparisons of more compo-
sition formats are presented in the Appendix G.

5.2 Comparison with Tokens-aware Beams

The path selection method sampling several posi-
tion beams to achieve multiple candidate outputs is
similar to the token-aware beam search algorithm,
which has been widely used in AR models (Meis-
ter et al., 2020). The token-aware beam search
algorithm selects more candidate tokens during in-
ference rather than always the one with the highest
prediction probability, which can significantly im-
prove the performance. We also extend this into
BERT-family to permit more optional tokens in
each decoding step. Specifically, we randomly
select one token in the unmasked parts in target
sequence and replace it with one whose prediction
probability is below the first one in the overall prob-
ability distribution. Compared with our proposed
path selection method, the position beams select
candidates with different positions based on spe-
cific tokens while the token-aware beam search
algorithm selects candidates with different predic-
tion tokens based on specific positions. We adopt
GeBERT-124M to conduct analytic experiments
on XSUM, with the results are presented in Ta-
ble 4. We find that the path selection method can
achieve consistent performance improvements, but

Hyperparameter Rouge-1 Rouge-2 Rouge-L
A1 =0.0,2=0 40.32 16.90 32.54
A =05, =0 39.85 16.88 32.52
A =05 =1 40.76 17.25 32.96
A =05, =5 40.78 17.30 33.01
A1 =05, =10 40.70 17.24 32.97
A1 =0.0,\2 = 40.22 16.90 32.52
A =01,X=5 40.74 17.20 32.92
A =05, =5 40.78 17.30 33.01
A =10,A =5 40.78 17.28 33.05

Table 5: Result of different A\ and As.

the token-aware beam search algorithm does not
work in this scenario. We attribute the failure of
token-aware beam search to the different modeling
paradigm of BERT-family compared to AR models.

5.3 Ablation Study of Path Selection*

In this section, we conduct an ablation study to
explore the effects on different A\; and Ay in our
final training loss as mentioned in Section 3.2. We
report the performance of A in {0.0,0.1,0.5,1},
A2 in {0, 1,5, 10} without adopting position beams.
Compared with the baseline model (i.e., A\; = 0.0,
A2 = 0), we can find that (1) Lppo and Lpgn
are both necessary for performance improvements.
With A\; = 0.5 and A2 = 0, the performance even
declines, indicating the failure cases as mentioned
in Section 3.2. (2) In other cases, the performances
are close to each other with only around 0.1 gaps
on all metrics, indicating that we need not spend
lots of effort to tune the A\; and Ay. Our DPO train-
ing objective is easy to achieve the corresponding
performance improvements.

6 Conclusion

In this paper, we explore the potential of other bet-
ter decomposition formats for language models to
learn internal dependency of texts and generate the
target sequences. To find better decomposition for-
mats, we propose path selection to enable models
to choose the best one from multiple candidates and
path selection* to instruct the model on learning
preference of different decoding paths. Results on
various evaluation datasets demonstrate the effec-
tiveness of our methods, with the performance of
BERT-family reaching the level even outperform-
ing the traditional autoregressive models with a
monotonic left-to-right decomposition format.



Limitations

Our work demonstrates that BERT-family can per-
form better than AR language models by adopt our
proposed path selection and path selection* meth-
ods. However, these models still require multi-step
reasoning during zero-shot tasks to bridge the gap
between inference and pre-training. This reason-
ing paradigm may affect the inference efficiency,
making BERT-family models less effective than
AR models in some contexts. Besides, the back-
bone models are relatively small (i.e., less than 1B
parameters), since the large language models have
demonstrated tremendous success in various lan-
guage generation tasks, we should further evaluate
our methods on these large language models.
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A Details of the Mask-predict algorithm

We present an example adopting the Masked-
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Prompt: What do you like to do during your free time ?

Target: We often go swimming and play table tennis together .

¢ [m] [m] [m] [m] [m] [m] [m] [m] [m] [m]
: We often often go go swim and play the table

¢ We often [m] [m] [m] [m] [m] [m] [m] [m]

: We often swim swim and play the tennis tennis .

1 We often [m] [m] and play [m)] [m] [m] .
: We often go swim and play table tennis . .

. We often go [m] and play table tennis [m] .
: We often go swimming and play table tennis together .

Figure 3: Presentation of the Masked-Predict algorithm.

in Figure 3. Specifically, given the prompt, we
first initial the input as fully masked tokens (i.e.,
Input 1) and send it into the model. After the model
predict the outputs (i.e., Output 1), we will select
specific unreliable tokens with relatively lower pre-
diction probabilities to mask again (i.e., the yellow
parts in outputs). In the subsequent decoding step,
the model will predict these masked tokens and se-
lect several unreliable tokens again. We obtain the
final target sequence until reaching the total num-
ber of decoding steps set advance. This decoding
algorithm assume that the target sequence will be
refined better through multiple decoding steps.

B Details of the decoding paths for
BERT-family

Lemma 1 Given the total length N of target se-
quence Y, the total decoding step T, the total
number of optional decoding paths is around 27N,
exactly SN _ (=1)mCNoWN=)T \ith the con-
straint that all tokens in'Y should be predicted.

Proof 1 During each decoding step, we can select
any subset of Vy, i.e., the model can generate 1 to
N different tokens at different position candidates.
There exist C{ +CN +CN +...+CY =2V
candidate position sets in each decoding step, then
the overall number of the decoding paths existing in
the total T decoding steps is (2NV)T = 27N, With
the constraint that all tokens in 'Y should be pre-
dicted, we should omit the condition that there exist
several tokens that are not be predicted during the
whole decoding process from the total condition
is 2N For the specific conditions that there are
a number of m tokens that are not be predicted,
we should select the candidate tokens in the next
N — m tokens, then the number of this condition is
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2T(N=m) " and we have CN 1o select these specific

m un-predicted tokens. We should consider the
condition for each m € {1,2, ..., N}, and different
LYi have the repeat decoding paths. Actually, we
can solve this problem with the Inclusion-Exclusion
Principle (Andreescu et al., 2004). Thus, the total
number of decoding paths is:

of N _ C{VQ(NA)T 4 CéVz(NfQ)T _ CéVQ(NfS)T

N
= (—ymeymT,

m=0

+ ...
“)

C Details for the search times of vanilla
path selection method.

Lemma 2 Given the predicted length N of tar-
get sequence Y, the total decoding step T, the
position beam number k, and the number of re-
masked tokens in tth decoding step n. the to-
tal times for vanilla path selection method are
k * Zte{l,Q,...,T} C’,]x, and the search times for the
simplified version are T * k.

Proof 2 In tth decoding step, for each beam can-
didate, we select n; tokens from total N tokens
to be re-masked, thus the number of total candi-
dates for single beam is C’fl\i, and k * C’fz\i for total
k beams. Then, we should compute the total pre-
diction probability for all k x C’,]L\i candidates and
select the highest k ones for next decoding step.
Thus the total search times for T' decoding steps
are k % Ete{l,Q,...,T} C,]x. In the simplified version,
we do not need to compute the total prediction prob-
ability for all k * C,]l\i candidates, we just replace
one token to achieve the k candidates for each sin-
gle beam, and total k? for k beams. Then we only
need to compare the total prediction probability for
these k? candidates and keep the highest k ones,
the search times are k%, and T * k? for T decoding
steps.

D Details of Generating the DPO Pairs

We present the details to generate the DPO pairs
as mentioned in section 3.2 here. Given a specific
training instance (X,Y’), where Y is further de-
composed into the mask parts Y;,,,sx and unmasked
parts Y5, the reference model m.f, we achieve the
training pairs as follows:

(1) We enable 7 to sample the outputs of
Y hask, denoted as O,,qsk, Where Oask
Tref (Ymask‘Yobs)a Trref (Ymask‘Yobs) denotes sam-
pling the tokens in Y,,,,s% based on Y, and the



sampling method is to adopt the greedy output
based on the prediction probability of 7.

(2) We randomly sample a subset of Ok,
denoted as Y, .., and and replace the tokens in
Yéws i With the masked token, where the unmasked

parts of Oyy,q is denoted as Y7, ..

(3) We sample the output of Y, . denoted as
Ofmask’ where O7lnask: = ﬂref(Yézask‘Yo/bs U YObS)'

(4) We achieve one sampled output of Y% as
Y, U0 . denoted as Y.

(5) We repeat the above operation to achieve the
other sampled output Y;2,,.

After obtaining the pair samples Y,!, and Y.2,,,
we use a score function Score(-) to identify the
positive and negative ones. Notice that we select
the tokens with the highest prediction probabilities
as the output when generating Oy, qs1, and O/, .,
which is consistent with the Mask-Predict algo-
rithm. Besides, we only sample the decoding path
with two decoding steps to reduce the overhead
during training, the different ratio to sample Y,/
from O,k has adapted the model to various mask-
ing conditions in different decoding steps during
inference. In practice, we keep the ratio to sam-
ple the Y, . the same during two sampling pro-
cesses and determine it from a uniform distribution
U(0.2,0.8). This is because once the ratio is large
(e.g., 1.0), all tokens will be re-sampled again, and
there is no difference between two sampling out-
puts, leading to meaningless pairs. Meanwhile,
once the ratio is small (e.g., 0.01), only few tokens
will be re-sampled again, there are many overlaps
between two Y, , leading the sampling outputs
O! .« lacking of diversity, which is not suitable
for the DPO training.

E Details for Pre-training Task

We denote the pre-trained task of GeBERT as gen-
erative masked language modeling, which specially
designed to fit the BERT-family to various genera-
tion tasks. This task is modified from the traditional
masked language modeling (MLM) training objec-
tive, which makes the model learn to predict the
specific masked tokens and has been widely used
in traditional BERT-family models (Devlin et al.,
2018; Liuetal., 2019). GeMLM aims to build a uni-
versal pre-trained BERT-family, which simultane-
ously possesses the ability of language understand-
ing and generation. Motivated by the previous ex-
plorations in the NAR translation task (Ghazvinine-
jad et al., 2019; Guo et al., 2020; Xiao et al., 2023)
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which extend the traditional MLM into the condi-
tional generation scenery with the encoder-decoder
model structure, and those that explore the poten-
tial in encoder-only models for language generation
tasks (Wang and Cho, 2019; Liang et al., 2023b;
Xiao et al., 2024), GeMLM first decomposes each
training instance into two parts and assigns dif-
ferent masking strategies to help the model learn
different capabilities. Besides, GeMLM further
adopts the specific attention masking mechanism
to enhance the consistency between the training
and inference process.

Specifically, as shown in figure 4, given a
specific training instance with the max context
length L: C = {c1,co,...,cr-1,cr}, GeMLM
decomposes C' into a tuple (X,Y), where
X ={c1,¢,...ci1, ¢;} denotes the prefix tokens,
and Y = {¢j41, Cit2, ...cL—1, cp } denotes the suf-
fix tokens. The prefix tokens are used to pro-
vide context information and help the model un-
derstand the whole sentence, we randomly sam-
ple a small ratio of mask tokens, which is sim-
ilar to the traditional MLM in BERT, denoted
as (Xomask, Xobs) = RANDOM_MASK (X, Bx ), where
Xinask and X ;s denote the masked and unmasked
parts in X, Bx denotes the masking ratio. The
suffix tokens tend to help the model learn the gener-
ation capability, we adopt uniform masking as men-
tioned in CMLM (Ghazvininejad et al., 2019), de-
noted as (Yinask, Yobs) = UNIFORM_MASK(Y, Sy ),
where [y is sampled from a uniform distribution
U(0,1). Then GeMLM predicts the masked tokens
based on different context.

In practice, we adopt an adaptive masking func-
tion for the masking ratio Sx as mentioned in (Xiao
etal., 2023) to replace the fixed masking ratio in the
traditional MLM, as B8x = 0.3 — By % 0.2. This
operation can achieve more diverse masking con-
ditions in X for the model to learn and is based
on the intuition that once more tokens in Y are
masked, X should provide more context informa-
tion (i.e., lower Sx). Besides, we prevent the query
of each token in X attending the tokens in Y in the
attention module as mentioned in figure 4 during
training, which keeps consistent with the inference
process since there is no target sequence in ad-
vance. Then, the final training loss of GeMLM can
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Figure 4: Presentation of generative masked language modeling.

be computed as:

> log Pat| Xobs; 0)

2t €Xmask
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Yt €Y mask
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F Details for pre-training

Details of the pre-training models and settings are
present in Table 6.

Parameters GeBERT-124M  GeBERT-352M
Num_layers 12 24
Hidden_size 768 1024
Num_attn_heads 12 16
Init_std 0.02 0.02
Seq_length 2048 2048
Batch_size 1024 1024
Train_iters 153000 153000
Learning_rate 6e-4 3e-4
Lr_decay_style cosine cosine
Clip_grad 1.0 1.0
Adam_beta (0.9,0.95) (0.9, 0.95)
Weight_decay le-2 le-2

Table 6: Details of the pre-training models and setting.

G More comparisons of composition
formats.

Except those as mentioned in Section 5.1, we can
also adopt the following composition formats: (1)
Notice in Table 1, we regulate the number of newly
generated tokens (denoted as m,ey) in each de-
coding step as nyue, = 1 to keep consistent with
AR models, i.e., we generate only one token in a
left-to-right order or with the highest-k prediction
probabilities in each decoding step, and adopt the
total decoding steps adaptive to the target length.
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Then, we can (1) set 7,0 = 2/3/4, and the corre-
sponding decoding steps as [N/2], [N/3], [N/3],
where NV denotes the total target tokens, we de-
note this method as multi-token-based, (2) set the
total decoding steps as 7" = 1/4/10, and the cor-
responding e, = [N/1],[N/4],[N/10]. We
denote this method as multi-step-based. Besides,
with n,e, = 1, there still exist different rules to
achieve the specific generated token. The corre-
sponding results are presented in Table 7, we can
find that: (1) The performance declines as the 1,,¢q
increases, indicating that setting n,.,, = 1 to keep
consistent with AR models, in which the model
predicting one token in each decoding step, is im-
portant to achieve competitive performance. (2)
With the multi-step-based method, more decoding
steps lead to better performance, which also veri-
fies the above observation, i.e., the length of targets
is less than the decoding steps in several tasks, such
as Sciq and SIQA, where the model will also pre-
dict one token in each decoding step. Conversely,
the performance on these tasks which contain the
relatively long targets such as PIQA and ARC still
falls behind the left-to-right baseline.



Hyber. LogiQA Sciq ARC-E ARC-C Wino. BoolQ PIQA SIQA Race Hella. Truth. AVG.
left-to-right  27.65 80.3 42.13 22.10 50.75 62.17 60.66 36.49 28.90 29.26 24.60 42.26

multi-step-based

T=1 2350 64.6 3649 2193 5075 62.17 54.19 3475 23.44 28.15 2142 38.30
T=4 26.73 80.4 4120 2133 5099 62.17 5724 36.64 2871 30.74 2595 42.01
T="7 2642 80.5 41.04 22.19 5241 62.17 58.16 36.54 29.67 31.11 2448 4224

multi-token-based

Npew = 1 29.19 804 41.96 2244 5257 62.17 59.79 36.80 29.79 31.73 2558 4290
Npew = 2 29.03 71.1 40.15 2244 5099 62.17 59.19 36.89 2947 31.68 25.09 41.65
Npew = 3 2796 66.8 37.79 2236  50.12 62.17 57.07 3531 27.94 30.83 2497 40.30
Npew = 4 29.65 655 38.39 22.53  49.17 62.17 55.06 3547 2737 30.40 24.24 40.00

Table 7: Results of different methods to select the decoding paths for zero-shot common sense reasoning and reading
comprehension tasks. Hyper. denotes the corresponding hyperparameter.

15



	Introduction
	Preliminary
	Utilizing BERT-family for Language Generation Tasks
	Decoding Paths for BERT-family

	Methods
	Path Selection
	Path Selection*

	Experiments
	Implementation Details
	Main Results

	Analysis
	Discussion of Different Methods to Determine the Composition formats
	Comparison with Tokens-aware Beams
	Ablation Study of Path Selection*

	Conclusion
	Details of the Mask-predict algorithm
	Details of the decoding paths for BERT-family
	Details for the search times of vanilla path selection method. 
	Details of Generating the DPO Pairs
	Details for Pre-training Task
	Details for pre-training
	More comparisons of composition formats.

