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Abstract001

Recent generative language models assume a002
pre-defined monotonic left-to-right sequence003
decomposition format to learn, which has been004
proven very effective in current well-known005
decoder-only autoregressive large language006
models, but might be inefficient in learning007
many specific task such as reasoning. In this008
paper, we explore the potential of other feasible009
decomposition formats for language models to010
effectively compensate the autoregressive lan-011
guage modeling paradigm. Specifically, we aim012
to find the appropriate composition from mul-013
tiple candidates through introducing effective014
path selection in both training and decoding.015
Experiments on total 11 zero-shot reasoning016
tasks and 2 language generation tasks demon-017
strate the effectiveness of our methods, indicat-018
ing that more suitable decomposition formats019
beyond a left-to-right order do exist, and su-020
perior performance can be achieved by simply021
selecting and optimizing the decoding paths.022

1 Introduction023

Most of generative language models, from ngram-024

based models (Bahl et al., 1983) to neural language025

models (Bengio et al., 2000), including the cur-026

rent well-known decoder-only large language mod-027

els (Touvron et al., 2023a,b; OpenAI, 2023), rely028

on a monotonic left-to-right order to decompose029

the neural language texts to learn their internal de-030

pendencies during training and leverage the same031

determined order in decoding. Although the above032

monotonic modeling and generation paradigm has033

always been the mainstream in the NLP commu-034

nity in recent years, we still wonder if there exist035

fungible or even superior sequence decomposing036

formats for language models to learn and generate037

the target sequences, especially after witnessing038

the success of several non-monotonic model vari-039

ants (Yang et al., 2019; Welleck et al., 2019; Shih040

et al., 2022). Furthermore, efficiently selecting the041

relatively suitable decomposing formats for differ- 042

ent training instances is a critical but challenging 043

aspect for the success of language models. 044

In this paper, we frame the problem of finding 045

the superior decomposing formats of language texts 046

as a decoding path selection process. Specifically, 047

with the decoding path for several different typical 048

language models shown in Figure 1, e.g., autorgres- 049

sive (Vaswani et al., 2017), non-autoregressive (Gu 050

et al., 2018), and BERT-family (Devlin et al., 2018), 051

the former two types of models have the unique 052

decoding path while BERT-family can allow var- 053

ious paths to generate target sequences. There- 054

fore, to best explore the impacts of different de- 055

composing formats of texts, we pre-train a new 056

BERT-family variant for generation tasks to con- 057

duct evaluation experiments. Specifically, we aim 058

to find the appropriate composition formats from 059

multiple candidates during inference via the path 060

selection method, and then further leverage the out- 061

puts achieved from these compositions to optimize 062

the language models to learn the path preference 063

through the path selection* method. 064

To evaluate our proposed new methods, we con- 065

duct detailed experiments on various zero-shot rea- 066

soning and language generation tasks, and mainly 067

observe that (1) there do exist superior decoding 068

paths beyond monotonic left-to-right decomposi- 069

tion for language models to achieve better gener- 070

ation outputs; (2) although BERT-family models 071

are recognized as not proficient in these evaluation 072

tasks, simply selecting and optimizing the decod- 073

ing path enables them to perform on par with cur- 074

rent competitive AR models of comparable capac- 075

ity (model scale), demonstrating great potential. 076

Our observations can provide new insights into 077

the generative modeling and inference methods 078

for language models in the future, thus motivating 079

the researchers to seek more effective solutions in 080

learning the dependency of language texts and con- 081

ducting the generation process with more suitable 082
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Figure 1: The sequence decomposition for training, and composition methods (i.e., decoding path to achieve the
outputs sequence) for different language models.

decomposing formats.083

2 Preliminary084

2.1 Utilizing BERT-family for Language085

Generation Tasks086

Since the traditional BERT-family are not designed087

and pre-trained for language generation tasks, sev-088

eral efforts should be made in adapting them to089

generating language texts. Previous works (Dong090

et al., 2019; Wang and Cho, 2019) have theoreti-091

cally indicated that the BERT-family can be utilized092

for generating texts by predicting the masked posi-093

tions in the target sequence. Despite early efforts by094

researchers to leverage BERT-family for language095

generation tasks (Chan and Fan, 2019; Jiang et al.,096

2021; Su et al., 2021), these attempts yielded sub-097

optimal results compared to the mainstream gen-098

erative models. Subsequently, researchers attempt099

to adapt BERT-family to NAR scenarios (Liang100

et al., 2023b,a; Xiao et al., 2024) via the the Mask-101

Predict decoding algorithm (Ghazvininejad et al.,102

2019), which first predicts the entire masked target103

sequence in the first decoding step, and then re-104

fines the target sequence by replacing the unreliable105

parts with masked tokens and re-generating them in106

parallel in the subsequent decoding step as details107

shown in the Appendix A, and receives relatively108

positive feedback regarding performance. During109

training, these models learn to predict the masked110

parts in the target sequence, whose loss can be com-111

puted as L = −
∑

yi∈Ymask
logP(yi|Yobs, X; θ), 112

where X denotes the source sequence, Ymask and 113

Yobs are the masked and unmasked parts in the 114

target sequence Y , respectively. In this paper, 115

we further delve into the essential technological 116

advancements of BERT-family that leverage the 117

Mask-Predict decoding algorithm to achieve better 118

performance in generation tasks. 119

2.2 Decoding Paths for BERT-family 120

Formally, we consider the process of generating 121

a sequence of discrete tokens Y = (y1, ..., yN ), 122

where yi ∈ V , a finite vocabulary specific to a lan- 123

guage model. This generation process can be in- 124

terpreted as deterministically sampling a series of 125

successive state spaces S, where each state si ∈ S 126

corresponds to a sequence of tokens sampled from 127

V , and relies on a policy π to transition to the next 128

state. A policy π serves as a determinate mapping 129

from states to actions, outlining how the model 130

processes the current sequence and achieves the 131

subsequent sequence in the next state. We denote 132

this specific process to compose the target sequence 133

as the decoding path P of a given language model, 134

where each node represents the current state si in 135

ith decoding step and each edge represents the pol- 136

icy πi indicating the actions for transitioning from 137

state si to si+1. 138

As shown in Figure 1, different language models 139

have their specific decoding paths to compose the 140

target sequence. The traditional AR and NAR lan- 141
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guage models typically have a single decoding path142

for composing a specific target sequence, while143

BERT-family can explore multiple optional decod-144

ing paths, resulting in varied output sequences of145

differing generation qualities. Selecting a specific146

decoding path from the multitude of optional paths147

available in BERT-family is crucial for achieving148

high-quality outputs. With approximately 2TN pos-149

sible paths for a BERT-family model, as detailed150

in the Appendix B, determining the optimal path151

is essential for the success of these models. In152

Ghazvininejad et al. (2019) where the Mask-Predict153

decoding algorithm was first proposed, the authors154

heuristically regulate the policy πt in tth decoding155

step as predicting the masked parts in current Y and156

selecting the specific nt tokens which are with low-157

est prediction probabilities to be re-masked, where158

the number of re-masked tokens can be computed159

as nt = (1− t/T ) ∗N , N denotes the total num-160

ber of tokens in Y , t and T denote the current and161

total decoding step, respectively. While the Mask-162

Predict algorithm provides a heuristic approach to163

selecting decoding paths, it may not always yield164

optimal results. There exist other decoding paths in165

the candidate space leading to better composition166

of target sequences (Kreutzer et al., 2020). Hence,167

we aim to identify an optimal decoding path from168

such multitudinous candidates by introducing path169

selection method. Moreover, we further propose170

path selection* which empowers the model to learn171

the preference between different decoding paths.172

Our methods seek to enhance the BERT-family’s173

ability to navigate through the complex decoding174

spaces and generate higher-quality output.175

3 Methods176

3.1 Path Selection177

We first sample several optional decoding paths178

from the candidate spaces and select the best one179

with the highest total prediction probability. Specif-180

ically, we follow most of the practice in the Mask-181

Predict algorithm, except for the selection of the182

re-masked tokens in each decoding step. As shown183

in the right of Figure 2, rather than just selecting a184

specific number of tokens with the lowest predic-185

tion probabilities to transform to the unique next186

state (i.e., the first beam), we allow total k can-187

didate selections for re-masked tokens with the188

lowest-k total prediction probabilities for each de-189

coding path, where k is the position beam number190

set in advance, and total prediction probabilities191

are the sum of each token’s probability in the se- 192

quence. Notice we always keep the number of 193

candidate states in each decoding step as k, which 194

is similar to the beam search algorithm for AR 195

models (Meister et al., 2020). However, the search 196

times to select the lowest-k candidates is quite large 197

especially when N is large, i.e., given the total de- 198

coding step T , generated target tokens N , and the 199

position beam number k, the total search times is 200

k ∗
∑

t∈{1,2,...,T}C
N
nt

, where its detailed proof is in 201

Appendix C. Therefore, to reduce the search over- 202

head, we further introduce a simplified version that 203

transforms the search times in tth decoding step 204

from CN
nt

to k in which only one position in masked 205

parts can be replaced by the one in unmasked parts 206

to obtain the candidate decoding states, thus the 207

upper bound of search times can be reduced to 208

T ∗ k2. For example, as shown in Figure 2, after 209

obtaining the first beam sequence by Mask-Predict 210

algorithm, we can choose one token in its masked 211

parts with the largest prediction probability (i.e., 212

go) to replace the one in its unmasked parts with 213

the least prediction probability (i.e., often) to obtain 214

the second beam sequence in each decoding step. 215

3.2 Path Selection* 216

Motivated by the recent direct preference optimiza- 217

tion (DPO) algorithm (Rafailov et al., 2024) which 218

adopts positive-negative pair samples to train hu- 219

man preferences for language models, we aim to 220

teach BERT-family the decoding path preference 221

by training with positive-negative pair samples 222

achieved from composition methods. Specifically, 223

as shown in the right of Figure 2, given a specific 224

instance in which several tokens in the target se- 225

quence are replaced with masked tokens, denoted 226

as Ymask, we randomly1 sample two different de- 227

coding paths to generate these masked tokens in 228

multiple steps, then achieve two different output 229

sequences, and the specific output tokens of Ymask 230

are denoted as Y 1
out and Y 2

out, the details of the sam- 231

pling methods are presented in Appendix D. Sub- 232

sequently, we use a score function Score(·), which 233

can be the exact match accuracy with ground truth 234

tokens or the BLEU score (Papineni et al., 2002), 235

to identify the specific positive and negative ones. 236

Once Score(Y 1
out) > Score(Y 2

out), we adopt Y 1
out 237

as the positive output Yw and Y 2
out as the negative 238

1We randomly sample the number and specific positions
of re-masked tokens to transform to the next state in each
decoding path rather than that according the rule in the Mask-
predict algorithm mentioned above.
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Figure 2: Overview of the path selection and path selection* methods. As for the path selection method during
inference, we select the positions for masked tokens with the lowest-k prediction probabilities, while the path
selection* randomly samples the positions for masked tokens.

output Yl, and vice versa. Finally, following the239

common practice in online DPO algorithm, given240

the reference model πref and the policy model πθ,241

we first use πref to sample the positive-negative pair242

samples, then update πθ with the DPO loss:243

LDPO(πθ;πref) =− log σ[β(
πθ(Yw|Yobs, X)

πref(Yw|Yobs, X)

− πθ(Yl|Yobs, X)

πref(Yl|Yobs, X)
)],

(1)244

where X denotes the source sequence, Yobs245

denotes the unmasked parts in Y , σ denotes246

the sigmoid function, β is the hyperparameter247

controlling the DPO loss, πθ(Yw|Yobs, X) =248 ∑
yi∈Yw

P(yi|Yobs, X; θ), etc. Besides, we add249

two penalty terms to reduce the failure cases of250

DPO as mentioned in (Pal et al., 2024), i.e., the251

model reduces the probabilities of positive outputs252

and meanwhile more significantly reduces the prob-253

abilities of negative outputs, then the probability254

gap between two outputs will be larger, and the255

DPO loss will be smaller. However, reducing the256

probabilities of positive outputs is contrary to our257

expectations. The penalty terms can be computed:258

LPEN(πθ;πref) = max

(
0, log

πref(Yw|Yobs, X)

πθ(Yw|Yobs, X)

)
+max

(
0, log

πref(Yl|Yobs, X)

πθ(Yl|Yobs, X)

)
.

(2)259

Then, combining the above DPO loss and the260

penalty terms with the traditional masked language261

modeling loss in BERT-family as mentioned in Sec-262

tion 2.1, which aims to predict the masked tokens: 263

LMLM(πθ) = −
∑

yi∈Ymask

logP(yi|Yobs, X; θ).

(3) 264

Our final training loss is computed as L = LMLM + 265

λ1LDPO + λ2LPEN, where λ1 and λ2 are the hyper- 266

parameters to balance the different loss items. 267

4 Experiments 268

4.1 Implementation Details 269

Backbone Models For better evaluation of vari- 270

ous generation tasks, we pre-train new variants of 271

BERT-family with a modified masking mechanism 272

during training, which aims to better equip these 273

masked language models for tasks involving gen- 274

eration (Liang et al., 2023b; Xiao et al., 2024), 275

thus we name our model as Generative BERT 276

(GeBERT). Details of our pre-training task are 277

presented in the Appendix E. During training, we 278

adopt the Pile (Gao et al., 2020; Biderman et al., 279

2022) dataset to pre-train our models based on an 280

encoder-only language model with a bi-directional 281

attention mechanism following the follow the most 282

practice in previous BERT-like models, and fur- 283

ther incorporate several effective techniques such 284

as Rotary Positional Embedding (RoPE) (Su et al., 285

2024) and swiglu (Shazeer, 2020) activation func- 286

tion. Details of training settings are presented in 287

the Appendix F Based on our modified pre-training 288

task, we pre-train two versions of GeBERT contain- 289

ing 124M and 352M parameters which are similar 290

to the base and large versions of other previous 291

pre-trained language models (Devlin et al., 2018; 292

Lewis et al., 2019; Raffel et al., 2020), denoted as 293
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Models LogiQA Sciq ARC-E ARC-C Wino. BoolQ PIQA SIQA Race Hella. Truth. AVG.

≈ 150M parameters
OPT-125M 27.93 75.2 43.52 22.78 50.28 61.07 62.02 37.21 30.05 31.25 23.99 42.31
GPT-neo-125M 28.88 76.5 43.73 23.12 50.43 62.02 62.46 37.21 27.56 30.40 25.83 42.56
Pythia-160M 24.27 75.4 43.64 23.63 51.30 62.14 61.97 36.90 28.71 30.30 24.97 42.11
RWKV-169M 24.73 75.2 47.52 23.46 50.67 62.17 64.04 37.00 26.89 32.25 22.25 42.41
GeBERT-124M 27.65 80.3 42.13 22.10 50.75 62.17 60.66 36.49 28.90 29.76 24.60 42.27

+ Path Selection 27.65 81.8 42.09 22.36 51.87 62.17 59.69 36.80 29.28 31.70 25.70 42.89
+ Path Selection* 28.88 80.5 42.47 22.18 52.72 62.17 60.88 36.94 29.76 32.25 25.74 43.14

≈ 350M parameters
OPT-350M 28.57 74.90 44.19 23.98 52.49 61.87 64.74 39.30 29.76 32.66 23.50 43.27
Pythia-410M 29.34 81.30 52.10 24.32 53.20 61.68 67.08 38.95 30.91 40.52 23.50 45.72
RWKV-430M 24.42 79.00 52.23 25.17 52.80 62.05 68.44 38.84 28.71 40.78 22.28 44.98
GeBERT-352M 28.88 83.10 51.43 23.86 52.93 62.17 65.21 39.02 30.68 40.12 24.35 45.01

+ Path Selection 29.87 83.60 51.65 24.24 52.87 62.17 65.03 39.26 30.83 41.03 25.58 46.03
+ Path Selection* 30.33 83.30 51.97 24.18 53.19 62.17 65.78 39.51 31.00 41.30 25.80 46.21

Table 1: Results on zero-shot common sense reasoning and reading comprehension tasks. The first line of GeBERT
denotes the baseline which adopts the left-to-right composition. Bold values denote the best average result (AVG.)
through all models. underlined values denote the result of our methods outperforming the baseline GeBERT. The
abbreviations Wino., Hella., and Truth. denote the WinoGrande, Hellaswag, and Truthfulqa datasets, respectively.

GeBERT-124M and GeBERT-352M. We utilize294

the Megatron-Deepspeed 2 library to train GeBERT295

on 8 NVIDIA A100-PCIE-80GB GPU cards.296

Fine-tuning Settings We follow the training pro-297

cedure in previous works (Liang et al., 2023b; Xiao298

et al., 2024) to fine-tune GeBERT on downstream299

datasets for non-autoreressive sequence generation300

tasks. For the fine-tuning settings, we tune the301

learning rate from {1e-5, 2e-5, 5e-5, 1e-4} for dif-302

ferent downstream tasks. We train for a total of303

50 epochs and validate the model after each epoch,304

then obtain the final model with the best validation305

performance. During the training of the path selec-306

tion* method, we initialize the policy and reference307

model with that after fine-tuning for downstream308

sequence generation tasks. Then, we freeze the309

parameters of the reference model and only update310

the parameters of the policy model with the same311

dataset adopted in fine-tuning. We set the learning312

rate as 2e-5 and other training hyperparameters the313

same in the fine-tuning stage. Then, we train the314

model with 5 epochs. As for the DPO training of315

the vanilla GeBERT, we initialize the policy and316

reference model with the final saved checkpoint317

during pre-training. We sampled a small subset318

from the pile to conduct DPO training and avoid319

introducing extra training data.320

Datasets and Metrics We evaluate our proposed321

methods on common downstream task-specific gen-322

2https://github.com/microsoft/Megatron-DeepSpeed

eration tasks, which have been widely used in pre- 323

vious pre-trained AR and NAR works, and various 324

zero-shot common sense reasoning and reading 325

comprehension tasks, which are popular to eval- 326

uate the vanilla version of current large language 327

models without fine-tuning (Zeng et al., 2022; Tou- 328

vron et al., 2023a,b). To the best of our knowl- 329

edge, we are the first to evaluate the pre-trained 330

NAR models for these zero-shot tasks. Specif- 331

ically, For downstream task-specific generation 332

tasks, we adopt XSUM (Narayan et al., 2018) for 333

the summarization task and MSQG ( MicroSoft 334

Question Generation) dataset for the question gen- 335

eration task from the GLGE benchmark (Liu et al., 336

2021). For the evaluation metrics, we adopt 337

ROUGE F1 (ROUGE-1/2/L) (Lin and Hovy, 2002) 338

for XSUM, and BLEU (BLEU-4) (Papineni et al., 339

2002), Rouge-L and METEOR (Lavie and Agar- 340

wal, 2007) for MSQG. For zero-shot common 341

sense reasoning and reading comprehension tasks, 342

we adopt ARC-easy, ARC-challenge (Clark et al., 343

2018), BoolQ (Clark et al., 2019), PIQA (Bisk 344

et al., 2020), SIQA (Sap et al., 2019), Wino- 345

Grande (Sakaguchi et al., 2021), Race (Lai et al., 346

2017), Sciq (Johannes Welbl, 2017), LogiQA (Liu 347

et al., 2020), Hellaswag (Zellers et al., 2019), and 348

Truthfulqa (Lin et al., 2021), which are all widely 349

used for evaluating recent language models. We 350

adopt Language Model Evaluation (Gao et al., 351

2021) framework to evaluate these datasets under a 352

zero-shot setting (Biderman et al., 2023). We adopt 353
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Model XSUM MSQG Speedup
Rouge-1 Rouge-2 Rouge-L Rouge-L BLEU-4 METEOR

Transformer 30.66 10.80 24.24 29.43 4.61 9.86 -
Base Version (≈ 150M parameters)
BANG 32.59 8.98 27.41 - - - -
ELMER 37.30 13.17 29.92 - - - -
PreDAT 39.79 17.38 32.71 - - - -
MIST 34.63 11.29 28.70 - - - -
DEER 39.10 16.80 32.40 38.70 9.70 23.30 -
MASS-base 39.70 17.24 31.91 38.90 10.20 23.30 -
BART-base 38.79 16.16 30.61 38.20 10.20 22.90 1.0x
ProphetNet-base 39.89 17.12 32.07 37.10 9.10 22.30 -
GeBERT-124M 40.32 16.90 32.54 39.13 9.66 23.50 3.1x

+ Path Selection 40.52 17.11 32.71 39.06 9.52 23.51 1.2x
+ Path Optimization 40.92 17.39 33.08 39.46 9.72 23.68 1.2x

Large Version (≈ 350M parameters)
MASS-middle 39.10 16.50 31.40 38.90 9.50 23.50 -
BART-large 45.10 22.20 37.20 38.80 9.20 24.30 -
ProphetNet-large 44.40 21.30 36.40 38.30 9.60 23.30 -
GeBERT-352M 44.12 21.03 36.27 39.32 10.23 23.87 -

+ Path Selection 44.33 21.23 36.40 39.38 10.21 23.90 -
+ Path Optimization 44.84 21.89 36.89 39.78 10.29 24.32 -

Table 2: Results on task-specific generation tasks. Bold denotes the best result. underlined values denote the result
of our methods outperforming the baseline GeBERT.

normalized accuracy for PIQA, ARC-challenge,354

LogiQA, Hellaswag, and accuracy for other tasks355

following previous works (Biderman et al., 2023).356

Baseline Models For the downstream task-357

specific generation tasks, we adopt the vanilla358

Transformer baseline (Vaswani et al., 2017)359

and previous pre-trained AR models including360

MASS (Song et al., 2019), BART (Lewis et al.,361

2019), and ProphetNet (Qi et al., 2020) which are362

included in the official GLGE evaluation leader-363

board as autoregressive baselines. For NAR base-364

lines, we adopt the previous pre-trained NAR365

models including BANG (Bang et al., 2023),366

ELMER (Li et al., 2022) and PreDAT (Huang367

et al., 2023). Besides, we also include MIST (Jiang368

et al., 2021) and DEER (Liang et al., 2023a)369

which also fine-tune the traditional BERT-family370

to complete the generation tasks. For common371

sense reasoning and reading comprehension tasks,372

which are only widely used after the popularity of373

large language models and never been included374

in the evaluation of previous NAR models, we375

adopt the recent large language models which are376

also trained on the Pile for around 300B tokens377

and contains the comparable model parameters378

with GeBERT, including OPT-125M/350M (Zhang 379

et al., 2022), GPT-neo-125M (Black et al., 2022), 380

Pythia-160M/410M (Biderman et al., 2023), and 381

RWKV-169M/430M (Peng et al., 2023). We re-run 382

all the baseline models under the same Language 383

Model Evaluation framework (Gao et al., 2024) 384

using their open-source Hugging Face models to 385

ensure consistent evaluation procedures. 386

4.2 Main Results 387

Zero-shot common sense reasoning and read- 388

ing comprehension We present the results on 389

various zero-shot common sense reasoning and 390

reading comprehension tasks in Table 1. Com- 391

pared with GeBERT and the previous AR mod- 392

els, we can find that: (1) GeBERT can also com- 393

plete these zero-shot tasks and achieve compara- 394

ble performance while adopting the same decod- 395

ing path during inference3. (2) Our final models 396

(i.e., GeBERT with path selection and path selec- 397

tion*) achieve the best performance through all the 398

previous AR models on average, outperforming 399

3For GeBERT, we append a masked token after the current
sequence and enable the model to predict it, thus realizing the
same decoding path as AR models that adopt the policy as
predicting the next token.
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Hyber. LogiQA Sciq ARC-E ARC-C Wino. BoolQ PIQA SIQA Race Hella. Truth. AVG.

left-to-right 27.65 80.3 42.13 22.10 50.75 62.17 60.66 36.49 28.90 29.26 24.60 42.26
right-to-left 28.57 72.2 30.73 22.35 49.17 58.87 55.22 33.78 25.55 30.12 25.70 39.30
random 25.81 79.6 41.71 21.67 50.20 62.17 56.09 33.93 28.13 29.50 24.48 41.20
easy-to-hard 29.19 80.4 41.96 22.44 52.57 62.17 59.79 36.80 29.79 31.73 25.58 42.90
hard-to-easy 26.88 80.4 41.50 21.16 50.04 62.17 58.92 36.34 26.22 31.03 24.97 41.78

beam = 2 28.11 81.4 42.59 22.01 52.01 62.17 59.69 36.54 30.05 31.98 25.45 42.94
beam = 3 27.65 81.8 42.09 22.36 51.86 62.17 60.01 36.80 29.67 32.17 25.58 42.90
beam = 4 28.26 81.8 42.51 22.61 51.07 62.17 60.28 36.28 29.28 32.09 25.70 42.91

Table 3: Results of different methods to select the decoding paths for zero-shot common sense reasoning and reading
comprehension tasks. Hyper. denotes the corresponding hyperparameter.

the previous best models (i.e., GPT-neo-125M and400

Pythia-410M) by around 0.8 and 0.5 score. (4)401

GeBERT is better at reading comprehension tasks402

which enable the model to answer questions given403

supports or evidences such as Sciq and LogiQA, we404

attribute this to the bi-directional attention mecha-405

nism of GeBERT. Besides, Compared with baseline406

GeBERT which adopts the same decoding path407

as AR models and those with our path selection408

and path selection* methods, we can find that: (1)409

With the path selection method, GeBERT outper-410

forms the baseline GeBERT in most of the evalua-411

tion tasks, leading to 0.6/1.0 performance improve-412

ments on GeBERT-124M/352M. (2) Further, with413

the path selection* method, GeBERT can outper-414

form the baseline GeBERT in 10 of 11 evaluation415

tasks and be on par in BoolQ, leading to around416

1.0 performance improvements on average. (3) By417

comparing GeBERT only with the path selection418

method and with both proposed methods, the for-419

mer can achieve performance improvements on420

most tasks, indicating the effectiveness of the path421

selection* method. However, the path selection*422

may also result in performance declines in several423

tasks, such as Sciq for GeBERT-124M and ARC-C424

for GeBERT-352M.425

Task-specific generation Table 2 presents the426

results on task-specific generation task. We427

can find that: (1) For the summarization task,428

though GeBERT-352M underperforms BART-large429

GeBERT-124M, it outperforms all the other base-430

line models in all evaluation metrics, indicating431

that GeBERT can generate more informative and432

reasonable summaries. (2) For the question gen-433

eration task, GeBERT-124M outperforms all the434

baseline models on Rouge-L and METEOR and435

only presents performance gaps compared with the436

best baseline models on BLEU-4. GeBERT-352M437

achieves the best performance across various mod- 438

els on all evaluation metrics. (3) Compared to 439

the GeBERT baseline, which adopts the original 440

vanilla Mask-Predict algorithm to generate the out- 441

put sequence, the path selection and path selection* 442

methods can bring performance improvements on 443

the XSUM dataset for both GeBERT-124M/352M, 444

indicating that these two methods can enable the 445

model to achieve better performance in generating 446

relatively long targets. However, the path selection 447

method does not lead to consistent performance im- 448

provements on the MSQG dataset, which contains 449

relatively short targets. We attribute this to that 450

short sequences will lead to relatively small candi- 451

date space and redundant outputs for different de- 452

coding paths, thus we can not achieve better outputs 453

from multiple candidates. (4) We also compare the 454

decoding efficiency of GeBERT-124M and BART- 455

base, which contains around 140M parameters, and 456

the results demonstrate that GeBERT can achieve 457

3.1x speedup with the vanilla Mask-predict algo- 458

rithm due to the NAR attribute. Further, although 459

path selection and path selection* will bring the 460

extra search overhead for various decoding paths, 461

GeBERT still achieves a faster generation process, 462

leading to a 1.2x speedup compared to BART. 463

5 Analysis 464

5.1 Discussion of Different Methods to 465

Determine the Composition formats 466

The results in Table 1 have demonstrated that our 467

methods outperform the traditional left-to-right 468

composition format, here we further compare with 469

several other optional formats, e.g., (1) right-to-left 470

order; (2) random order; (3) Instead of selecting 471

the token with the highest prediction probability, 472

which is denoted as an easy-to-hard order (Kasai 473

et al., 2020), we include a hard-to-easy order which 474

7



!
Method Rouge-1 Rouge-2 Rouge-L

GeMLM 40.32 16.90 32.54
w/ Token Beam 40.17 16.88 32.50
w/ Position Beam 40.52 17.11 32.71

w/ Path Selection* 40.78 17.30 33.01
w/ Token Beam 40.58 17.19 32.90
w/ Position Beam 40.92 17.39 33.08

Table 4: Results of different beam search algorithms.

generates the token with the lowest prediction prob-475

ability first; (4) path selection with different beam476

number as 2/3/4. We present the corresponding re-477

sults in Table 3, we can find that: (1) Based on dif-478

ferent orders, the easy-to-hard order that we adopt479

in the path selection method performs best (i.e.,480

beam = 1), while several other orders will lead481

to significant performance declines such as right-482

to-left order. (2) Adopting different beams in our483

path selection method performs differently for vari-484

ous tasks but achieves a comparable score on aver-485

age, and all outperforms the left-to-right baseline,486

indicating the effectiveness of the path selection487

method. Besides, the comparisons of more compo-488

sition formats are presented in the Appendix G.489

5.2 Comparison with Tokens-aware Beams490

The path selection method sampling several posi-491

tion beams to achieve multiple candidate outputs is492

similar to the token-aware beam search algorithm,493

which has been widely used in AR models (Meis-494

ter et al., 2020). The token-aware beam search495

algorithm selects more candidate tokens during in-496

ference rather than always the one with the highest497

prediction probability, which can significantly im-498

prove the performance. We also extend this into499

BERT-family to permit more optional tokens in500

each decoding step. Specifically, we randomly501

select one token in the unmasked parts in target502

sequence and replace it with one whose prediction503

probability is below the first one in the overall prob-504

ability distribution. Compared with our proposed505

path selection method, the position beams select506

candidates with different positions based on spe-507

cific tokens while the token-aware beam search508

algorithm selects candidates with different predic-509

tion tokens based on specific positions. We adopt510

GeBERT-124M to conduct analytic experiments511

on XSUM, with the results are presented in Ta-512

ble 4. We find that the path selection method can513

achieve consistent performance improvements, but514

Hyperparameter Rouge-1 Rouge-2 Rouge-L

λ1 = 0.0, λ2 = 0 40.32 16.90 32.54

λ1 = 0.5, λ2 = 0 39.85 16.88 32.52
λ1 = 0.5, λ2 = 1 40.76 17.25 32.96
λ1 = 0.5, λ2 = 5 40.78 17.30 33.01
λ1 = 0.5, λ2 = 10 40.70 17.24 32.97

λ1 = 0.0, λ2 = 5 40.22 16.90 32.52
λ1 = 0.1, λ2 = 5 40.74 17.20 32.92
λ1 = 0.5, λ2 = 5 40.78 17.30 33.01
λ1 = 1.0, λ2 = 5 40.78 17.28 33.05

Table 5: Result of different λ1 and λ2.

the token-aware beam search algorithm does not 515

work in this scenario. We attribute the failure of 516

token-aware beam search to the different modeling 517

paradigm of BERT-family compared to AR models. 518

5.3 Ablation Study of Path Selection* 519

In this section, we conduct an ablation study to 520

explore the effects on different λ1 and λ2 in our 521

final training loss as mentioned in Section 3.2. We 522

report the performance of λ1 in {0.0, 0.1, 0.5, 1}, 523

λ2 in {0, 1, 5, 10} without adopting position beams. 524

Compared with the baseline model (i.e., λ1 = 0.0, 525

λ2 = 0), we can find that (1) LDPO and LPEN 526

are both necessary for performance improvements. 527

With λ1 = 0.5 and λ2 = 0, the performance even 528

declines, indicating the failure cases as mentioned 529

in Section 3.2. (2) In other cases, the performances 530

are close to each other with only around 0.1 gaps 531

on all metrics, indicating that we need not spend 532

lots of effort to tune the λ1 and λ2. Our DPO train- 533

ing objective is easy to achieve the corresponding 534

performance improvements. 535

6 Conclusion 536

In this paper, we explore the potential of other bet- 537

ter decomposition formats for language models to 538

learn internal dependency of texts and generate the 539

target sequences. To find better decomposition for- 540

mats, we propose path selection to enable models 541

to choose the best one from multiple candidates and 542

path selection* to instruct the model on learning 543

preference of different decoding paths. Results on 544

various evaluation datasets demonstrate the effec- 545

tiveness of our methods, with the performance of 546

BERT-family reaching the level even outperform- 547

ing the traditional autoregressive models with a 548

monotonic left-to-right decomposition format. 549
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Limitations550

Our work demonstrates that BERT-family can per-551

form better than AR language models by adopt our552

proposed path selection and path selection* meth-553

ods. However, these models still require multi-step554

reasoning during zero-shot tasks to bridge the gap555

between inference and pre-training. This reason-556

ing paradigm may affect the inference efficiency,557

making BERT-family models less effective than558

AR models in some contexts. Besides, the back-559

bone models are relatively small (i.e., less than 1B560

parameters), since the large language models have561

demonstrated tremendous success in various lan-562

guage generation tasks, we should further evaluate563

our methods on these large language models.564
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Figure 3: Presentation of the Masked-Predict algorithm.

in Figure 3. Specifically, given the prompt, we875

first initial the input as fully masked tokens (i.e.,876

Input 1) and send it into the model. After the model877

predict the outputs (i.e., Output 1), we will select878

specific unreliable tokens with relatively lower pre-879

diction probabilities to mask again (i.e., the yellow880

parts in outputs). In the subsequent decoding step,881

the model will predict these masked tokens and se-882

lect several unreliable tokens again. We obtain the883

final target sequence until reaching the total num-884

ber of decoding steps set advance. This decoding885

algorithm assume that the target sequence will be886

refined better through multiple decoding steps.887

B Details of the decoding paths for888

BERT-family889

Lemma 1 Given the total length N of target se-890

quence Y , the total decoding step T , the total891

number of optional decoding paths is around 2TN ,892

exactly
∑N

m=0(−1)mCN
m2(N−m)T with the con-893

straint that all tokens in Y should be predicted.894

Proof 1 During each decoding step, we can select895

any subset of VY , i.e., the model can generate 1 to896

N different tokens at different position candidates.897

There exist CN
0 + CN

1 + CN
2 + ...+ CN

N = 2N898

candidate position sets in each decoding step, then899

the overall number of the decoding paths existing in900

the total T decoding steps is (2N )T = 2TN . With901

the constraint that all tokens in Y should be pre-902

dicted, we should omit the condition that there exist903

several tokens that are not be predicted during the904

whole decoding process from the total condition905

is 2TN . For the specific conditions that there are906

a number of m tokens that are not be predicted,907

we should select the candidate tokens in the next908

N −m tokens, then the number of this condition is909

2T (N−m), and we have CN
m to select these specific 910

m un-predicted tokens. We should consider the 911

condition for each m ∈ {1, 2, ..., N}, and different 912

LŶi
have the repeat decoding paths. Actually, we 913

can solve this problem with the Inclusion-Exclusion 914

Principle (Andreescu et al., 2004). Thus, the total 915

number of decoding paths is: 916

2TN − CN
1 2(N−1)T + CN

2 2(N−2)T − CN
3 2(N−3)T

+ ... =
N∑

m=0

(−1)mCN
m2(N−m)T .

(4) 917

C Details for the search times of vanilla 918

path selection method. 919

Lemma 2 Given the predicted length N of tar- 920

get sequence Y , the total decoding step T , the 921

position beam number k, and the number of re- 922

masked tokens in tth decoding step nt, the to- 923

tal times for vanilla path selection method are 924

k ∗
∑

t∈{1,2,...,T}C
N
nt

, and the search times for the 925

simplified version are T ∗ k2. 926

Proof 2 In tth decoding step, for each beam can- 927

didate, we select nt tokens from total N tokens 928

to be re-masked, thus the number of total candi- 929

dates for single beam is CN
nt

, and k ∗ CN
nt

for total 930

k beams. Then, we should compute the total pre- 931

diction probability for all k ∗ CN
nt

candidates and 932

select the highest k ones for next decoding step. 933

Thus the total search times for T decoding steps 934

are k ∗
∑

t∈{1,2,...,T}C
N
nt

. In the simplified version, 935

we do not need to compute the total prediction prob- 936

ability for all k ∗ CN
nt

candidates, we just replace 937

one token to achieve the k candidates for each sin- 938

gle beam, and total k2 for k beams. Then we only 939

need to compare the total prediction probability for 940

these k2 candidates and keep the highest k ones, 941

the search times are k2, and T ∗ k2 for T decoding 942

steps. 943

D Details of Generating the DPO Pairs 944

We present the details to generate the DPO pairs 945

as mentioned in section 3.2 here. Given a specific 946

training instance (X,Y ), where Y is further de- 947

composed into the mask parts Ymask and unmasked 948

parts Yobs, the reference model πref, we achieve the 949

training pairs as follows: 950

(1) We enable πref to sample the outputs of 951

Ymask, denoted as Omask, where Omask = 952

πref(Ymask|Yobs), πref(Ymask|Yobs) denotes sam- 953

pling the tokens in Ymask based on Yobs, and the 954
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sampling method is to adopt the greedy output955

based on the prediction probability of πref.956

(2) We randomly sample a subset of Omask,957

denoted as Y ′
mask, and and replace the tokens in958

Y ′
mask with the masked token, where the unmasked959

parts of Omask is denoted as Y ′
obs.960

(3) We sample the output of Y ′
mask, denoted as961

O′
mask, where O′

mask = πref(Y
′
mask|Y ′

obs ∪ Yobs).962

(4) We achieve one sampled output of Ymask as963

Y ′
obs ∪O′

mask, denoted as Y 1
out.964

(5) We repeat the above operation to achieve the965

other sampled output Y 2
out.966

After obtaining the pair samples Y 1
out and Y 2

out,967

we use a score function Score(·) to identify the968

positive and negative ones. Notice that we select969

the tokens with the highest prediction probabilities970

as the output when generating Omask and O′
mask,971

which is consistent with the Mask-Predict algo-972

rithm. Besides, we only sample the decoding path973

with two decoding steps to reduce the overhead974

during training, the different ratio to sample Y ′
mask975

from Omask has adapted the model to various mask-976

ing conditions in different decoding steps during977

inference. In practice, we keep the ratio to sam-978

ple the Y ′
mask the same during two sampling pro-979

cesses and determine it from a uniform distribution980

U(0.2, 0.8). This is because once the ratio is large981

(e.g., 1.0), all tokens will be re-sampled again, and982

there is no difference between two sampling out-983

puts, leading to meaningless pairs. Meanwhile,984

once the ratio is small (e.g., 0.01), only few tokens985

will be re-sampled again, there are many overlaps986

between two Y ′
obs, leading the sampling outputs987

O′
mask lacking of diversity, which is not suitable988

for the DPO training.989

E Details for Pre-training Task990

We denote the pre-trained task of GeBERT as gen-991

erative masked language modeling, which specially992

designed to fit the BERT-family to various genera-993

tion tasks. This task is modified from the traditional994

masked language modeling (MLM) training objec-995

tive, which makes the model learn to predict the996

specific masked tokens and has been widely used997

in traditional BERT-family models (Devlin et al.,998

2018; Liu et al., 2019). GeMLM aims to build a uni-999

versal pre-trained BERT-family, which simultane-1000

ously possesses the ability of language understand-1001

ing and generation. Motivated by the previous ex-1002

plorations in the NAR translation task (Ghazvinine-1003

jad et al., 2019; Guo et al., 2020; Xiao et al., 2023)1004

which extend the traditional MLM into the condi- 1005

tional generation scenery with the encoder-decoder 1006

model structure, and those that explore the poten- 1007

tial in encoder-only models for language generation 1008

tasks (Wang and Cho, 2019; Liang et al., 2023b; 1009

Xiao et al., 2024), GeMLM first decomposes each 1010

training instance into two parts and assigns dif- 1011

ferent masking strategies to help the model learn 1012

different capabilities. Besides, GeMLM further 1013

adopts the specific attention masking mechanism 1014

to enhance the consistency between the training 1015

and inference process. 1016

Specifically, as shown in figure 4, given a 1017

specific training instance with the max context 1018

length L: C = {c1, c2, ..., cL−1, cL}, GeMLM 1019

decomposes C into a tuple (X,Y ), where 1020

X = {c1, c2, ...ci−1, ci} denotes the prefix tokens, 1021

and Y = {ci+1, ci+2, ...cL−1, cL} denotes the suf- 1022

fix tokens. The prefix tokens are used to pro- 1023

vide context information and help the model un- 1024

derstand the whole sentence, we randomly sam- 1025

ple a small ratio of mask tokens, which is sim- 1026

ilar to the traditional MLM in BERT, denoted 1027

as (Xmask, Xobs) = RANDOM_MASK(X,βX), where 1028

Xmask and Xobs denote the masked and unmasked 1029

parts in X , βX denotes the masking ratio. The 1030

suffix tokens tend to help the model learn the gener- 1031

ation capability, we adopt uniform masking as men- 1032

tioned in CMLM (Ghazvininejad et al., 2019), de- 1033

noted as (Ymask, Yobs) = UNIFORM_MASK(Y, βY ), 1034

where βY is sampled from a uniform distribution 1035

U(0, 1). Then GeMLM predicts the masked tokens 1036

based on different context. 1037

In practice, we adopt an adaptive masking func- 1038

tion for the masking ratio βX as mentioned in (Xiao 1039

et al., 2023) to replace the fixed masking ratio in the 1040

traditional MLM, as βX = 0.3− βY ∗ 0.2. This 1041

operation can achieve more diverse masking con- 1042

ditions in X for the model to learn and is based 1043

on the intuition that once more tokens in Y are 1044

masked, X should provide more context informa- 1045

tion (i.e., lower βX ). Besides, we prevent the query 1046

of each token in X attending the tokens in Y in the 1047

attention module as mentioned in figure 4 during 1048

training, which keeps consistent with the inference 1049

process since there is no target sequence in ad- 1050

vance. Then, the final training loss of GeMLM can 1051
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Figure 4: Presentation of generative masked language modeling.

be computed as:1052

LGeMLM =−
∑

xt∈Xmask

logP(xt|Xobs; θ)

−
∑

yt∈Ymask

logP(yt|Xobs, Yobs; θ).

(5)1053

F Details for pre-training1054

Details of the pre-training models and settings are1055

present in Table 6.

Parameters GeBERT-124M GeBERT-352M

Num_layers 12 24
Hidden_size 768 1024
Num_attn_heads 12 16
Init_std 0.02 0.02
Seq_length 2048 2048
Batch_size 1024 1024
Train_iters 153000 153000
Learning_rate 6e-4 3e-4
Lr_decay_style cosine cosine
Clip_grad 1.0 1.0
Adam_beta (0.9,0.95) (0.9, 0.95)
Weight_decay 1e-2 1e-2

Table 6: Details of the pre-training models and setting.

1056

G More comparisons of composition1057

formats.1058

Except those as mentioned in Section 5.1, we can1059

also adopt the following composition formats: (1)1060

Notice in Table 1, we regulate the number of newly1061

generated tokens (denoted as nnew) in each de-1062

coding step as nnew = 1 to keep consistent with1063

AR models, i.e., we generate only one token in a1064

left-to-right order or with the highest-k prediction1065

probabilities in each decoding step, and adopt the1066

total decoding steps adaptive to the target length.1067

Then, we can (1) set nnew = 2/3/4, and the corre- 1068

sponding decoding steps as ⌈N/2⌉, ⌈N/3⌉, ⌈N/3⌉, 1069

where N denotes the total target tokens, we de- 1070

note this method as multi-token-based, (2) set the 1071

total decoding steps as T = 1/4/10, and the cor- 1072

responding nnew = ⌈N/1⌉, ⌈N/4⌉, ⌈N/10⌉. We 1073

denote this method as multi-step-based. Besides, 1074

with nnew = 1, there still exist different rules to 1075

achieve the specific generated token. The corre- 1076

sponding results are presented in Table 7, we can 1077

find that: (1) The performance declines as the nnew 1078

increases, indicating that setting nnew = 1 to keep 1079

consistent with AR models, in which the model 1080

predicting one token in each decoding step, is im- 1081

portant to achieve competitive performance. (2) 1082

With the multi-step-based method, more decoding 1083

steps lead to better performance, which also veri- 1084

fies the above observation, i.e., the length of targets 1085

is less than the decoding steps in several tasks, such 1086

as Sciq and SIQA, where the model will also pre- 1087

dict one token in each decoding step. Conversely, 1088

the performance on these tasks which contain the 1089

relatively long targets such as PIQA and ARC still 1090

falls behind the left-to-right baseline. 1091
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Hyber. LogiQA Sciq ARC-E ARC-C Wino. BoolQ PIQA SIQA Race Hella. Truth. AVG.

left-to-right 27.65 80.3 42.13 22.10 50.75 62.17 60.66 36.49 28.90 29.26 24.60 42.26

multi-step-based
T = 1 23.50 64.6 36.49 21.93 50.75 62.17 54.19 34.75 23.44 28.15 21.42 38.30
T = 4 26.73 80.4 41.20 21.33 50.99 62.17 57.24 36.64 28.71 30.74 25.95 42.01
T = 7 26.42 80.5 41.04 22.19 52.41 62.17 58.16 36.54 29.67 31.11 24.48 42.24

multi-token-based
nnew = 1 29.19 80.4 41.96 22.44 52.57 62.17 59.79 36.80 29.79 31.73 25.58 42.90
nnew = 2 29.03 71.1 40.15 22.44 50.99 62.17 59.19 36.89 29.47 31.68 25.09 41.65
nnew = 3 27.96 66.8 37.79 22.36 50.12 62.17 57.07 35.31 27.94 30.83 24.97 40.30
nnew = 4 29.65 65.5 38.39 22.53 49.17 62.17 55.06 35.47 27.37 30.40 24.24 40.00

Table 7: Results of different methods to select the decoding paths for zero-shot common sense reasoning and reading
comprehension tasks. Hyper. denotes the corresponding hyperparameter.

15


	Introduction
	Preliminary
	Utilizing BERT-family for Language Generation Tasks
	Decoding Paths for BERT-family

	Methods
	Path Selection
	Path Selection*

	Experiments
	Implementation Details
	Main Results

	Analysis
	Discussion of Different Methods to Determine the Composition formats
	Comparison with Tokens-aware Beams
	Ablation Study of Path Selection*

	Conclusion
	Details of the Mask-predict algorithm
	Details of the decoding paths for BERT-family
	Details for the search times of vanilla path selection method. 
	Details of Generating the DPO Pairs
	Details for Pre-training Task
	Details for pre-training
	More comparisons of composition formats.

