
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Many-Shot In-Context Learning
in Multimodal Foundation Models

Anonymous Authors1

Abstract
Large language models are well-known to be
effective at few-shot in-context learning (ICL).
Recent advancements in multimodal foundation
models have enabled unprecedentedly long con-
text windows, presenting an opportunity to ex-
plore their capability to perform ICL with many
more demonstrating examples. In this work, we
evaluate the performance of multimodal founda-
tion models scaling from few-shot to many-shot
ICL. We benchmark GPT-4o and Gemini 1.5 Pro
across 10 datasets spanning multiple domains (nat-
ural imagery, medical imagery, remote sensing,
and molecular imagery) and tasks (multi-class,
multi-label, and fine-grained classification). We
observe that many-shot ICL, including up to al-
most 2,000 multimodal demonstrating examples,
leads to substantial improvements compared to
few-shot (<100 examples) ICL across all of the
datasets. Further, Gemini 1.5 Pro performance
continues to improve log-linearly up to the maxi-
mum number of tested examples on many datasets.
Given the high inference costs associated with the
long prompts required for many-shot ICL, we also
explore the impact of batching multiple queries
in a single API call. We show that batching up
to 50 queries can lead to performance improve-
ments under zero-shot and many–shot ICL, with
substantial gains in the zero-shot setting on multi-
ple datasets, while drastically reducing per-query
cost and latency. Finally, we measure ICL data
efficiency of the models, or the rate at which the
models learn from more demonstrating examples.
We find that while GPT-4o and Gemini 1.5 Pro
achieve similar zero-shot performance across the
datasets, Gemini 1.5 Pro exhibits higher ICL data
efficiency than GPT-4o on most datasets. Our

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the 1st In-context Learning
Workshop at the International Conference on Machine Learning
(ICML). Do not distribute.

results suggest that many-shot ICL could enable
users to efficiently adapt multimodal foundation
models to new applications and domains.

1. Introduction
Large language models (LLMs) have been shown to sub-
stantially benefit from the inclusion of a few demonstrat-
ing examples (shots) in the LLM context before the test
query (Brown et al., 2020; Parnami & Lee, 2022; Wang
et al., 2020). This phenomenon, commonly referred to
as in-context learning (ICL), enables LLMs to learn from
few shots without any updates to model parameters, and
therefore improves specialization to new tasks without any
further model training. More recently, large multimodal
models (LMMs) have also demonstrated the capability of
learning from in-context examples (Achiam et al., 2023;
Han et al., 2023; Zhang et al., 2024). Han et al. (2023) and
Zhang et al. (2024) both show that few-shot multimodal
ICL specifically helps to improve LMM performance on
out-domain or out-of-distribution tasks.

While few-shot ICL has enabled promising performance
improvements for both LLMs and LMMs, limited model
context windows have constrained research on the impact
of increasing the number of demonstrating examples on
performance. This is especially true for LMMs as most
use a large number of visual tokens to represent images.
However, due to recent advancements enabling substantially
longer context windows – for example, 128,000 tokens for
GPT-4o and up to one million tokens for Gemini 1.5 Pro – it
is now possible to explore the effect of drastically increasing
the number of demonstrating examples.

To investigate the capability of state-of-the-art multimodal
foundation models to perform many-shot ICL, we conduct
a large suite of experiments benchmarking model perfor-
mance on 10 datasets spanning several domains and image
classification tasks after scaling up the number of demon-
strating examples by multiple orders of magnitude. Specifi-
cally, our contributions are as follows:

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Figure 1. Many-shot multimodal in-context learning compared to zero-shot and few-shot multimodal ICL. In zero-shot and few-shot
settings, respectively, no demonstrating examples or only a small number of demonstrating examples are provided in the context before
the test query. In a many-shot ICL setting, we include a large number of demonstrating examples in the prompt, whereas in batched
many-shot ICL, we perform multiple queries at once using query references.

1. We show that providing multimodal foundation models
with many demonstrating examples leads to substan-
tial performance improvements compared to provid-
ing only a few demonstrating examples. We observe
that the performance of Gemini 1.5 Pro generally im-
proves log-linearly as the number of demonstrating ex-
amples increases, whereas GPT-4o exhibits less stable
improvements as the number of in-context examples
increases.

2. We measure the data efficiency of the models under ICL
as the number of demonstrating examples is increased,
and find that Gemini 1.5 Pro exhibits higher ICL data
efficiency than GPT-4o on most datasets.

3. We demonstrate that batching multiple queries into
a single request can achieve similar or better perfor-
mance than single query requests in a many-shot set-
ting, while enabling substantially lower per-example
latency and much cheaper per-example inference cost.

4. We find that batching multiple questions can lead to
substantial performance improvements in a zero-shot
setting. We design experiments to explain this phe-
nomenon, and find that the improvements are due to a
combination of domain calibration, class calibration,
and self-generated demonstrating examples due to au-
toregressive decoding.

2. Related Work
Scaling ICL. The seminal work of Brown et al. (2020)
discovered performance improvements for LLMs from in-
creasing the number of in-context examples, but the tested
number of demonstrating examples was low (10 to 100),
likely due to the restrictive context size (2048 tokens for
GPT3). Increasing the number of in-context examples has
only been explored recently by a few works (Li et al., 2023;
Agarwal et al., 2024; Bertsch et al., 2024). Both Li et al.
(2023) and Agarwal et al. (2024) explore scaling in-context
learning to more than 1,000 demonstrating examples and
find performance improvements across multiple tasks. How-
ever, their experiments are limited to text-only benchmarks
and do not compare performance across different models.

Multimodal ICL. Due to the recent emergence of LMMs,
research on multimodal ICL is still nascent. One prior
work developed a new model to leverage complex prompts
composed of multimodal inputs in order to allow models
to compare images (Zhao et al., 2023), while other recent
works explored the generalizability of GPT-4V and Gem-
ini to multimodal out-domain and out-of-distribution tasks,
and found that ICL leads to performance benefits for both
models across many tasks (Zhang et al., 2024; Han et al.,
2023). However, none of these works have leveraged the
new largely expanded context windows to investigate the
effects of increasing the number of demonstrating examples.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Figure 2. Gemini 1.5 Pro and GPT-4o performance from zero-shot to many-shot ICL. X-axis is in log scale. For Gemini 1.5 Pro, we
observe log-linear improvement on 9 out of the 10 datasets and for GPT-4o we observe improvement from more demonstrating examples
on most datasets, albeit substantially less stable than Gemini 1.5 Pro.

Batch Querying. Multiple prior works have explored batch-
ing queries (also commonly referred to as batch prompting)
for more efficient and cheaper inference. Batch prompting
was first introduced in Cheng et al. (2023), leading to com-
parable or better performance than single prompting, while
achieving substantially reduced inference token cost and
latency. Lin et al. (2023) observe performance degradation
with batched prompts in longer contexts, and propose a va-
riety of techniques to mitigate the performance loss. More
recently, additional variations of batch prompting have been
proposed, including grouping similar questions together
(Liu et al., 2024), batching prompts of different tasks (Son
et al., 2024), and concatenating multiple images into a single
image collage (Xu et al., 2024). We again note that batch
prompting with high numbers of demonstrating examples
and high numbers of queries has only become feasible due
to larger context windows of recent models.

3. Methods
We conduct several experiments to test the effect of increas-
ing the number of demonstrating examples on the perfor-
mance of two state-of-the-art multimodal foundation mod-
els: GPT-4o and Gemini 1.5 Pro (Section 3.1). We bench-
mark their performance using standard performance metrics
as well as an ICL data efficiency metric (Section 3.3) on 10
datasets spanning several vision domains and image classifi-
cation tasks (Section 3.2). We conduct ablation studies to
test the impact of batching queries on model performance

and explain the substantial improvement in zero-shot set-
tings (Section 4.2). We refer to the many-shot in-context
learning framework as many-shot ICL. Figure 1 provides an
illustrative summary of many-shot ICL and batched many-
shot ICL compared to zero-shot and few-shot ICL.

3.1. Models

We use three state-of-the-art multimodal foundation models
with public API access, namely GPT-4o, GPT4(V)-Turbo
(Achiam et al., 2023), and Gemini 1.5 Pro (Reid et al.,
2024). Because GPT-4o performs substantially better than
GPT4(V)-Turbo, we focus on the results of GPT-4o and
Gemini 1.5 Pro in the main text, and include GPT4(V)-
Turbo results in the Appendix. We do not utilize Claude3-
Opus in our experiments, as it only accepts up to 20 images
in one request at the time of writing. The specific end-
point for for GPT-4o is “gpt-4o-2024-05-13”, for GPT-4(V)-
Turbo is “gpt-4-turbo-2024-04-09”, and for Gemini 1.5 Pro
is “gemini-1.5-pro-preview-0409”. We use the API service
provided by OpenAI for GPT-4o and GPT-4(V)-Turbo, and
the API service provided by Google Cloud on Vertex AI
for Gemini 1.5 Pro. We set the temperature to zero for all
models and a random seed for GPT-4(V)-Turbo and GPT-4o
to obtain more deterministic responses. To prevent models
from abstaining (which happens rarely), we rerun the query
until an answer is provided.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Table 1. Summary of benchmark datasets. We use 10 datasets spanning multiple domains (natural imagery, medical imagery, remote
sensing, molecular imagery) and tasks (multi-class, multi-label, and fine-grained classification).

Dataset Task and image type # Classes Demo / test set size Example image

HAM10000(Tschandl et al.,
2018)

Skin disease classification
on clinical photos 7 805 / 210

FIVES (Jin et al., 2022) Eye disease classification
on fundus images 4 400 / 120

CheXpert (Irvin et al., 2019) Multi-label lung disease
detection on chest X-rays 5 200 / 150

Camelyon17 (Bandi et al., 2018) Tumor detection on
pathology images 2 2000 / 100

TerraIncognita (Beery et al.,
2018)

Animal species recogni-
tion on camera images 9 1035 / 270

UCMerced(Yang & Newsam,
2010)

Land use classification on
satellite images 21 1470 / 420

EuroSAT (Helber et al., 2019)
Land use / land cover clas-
sification on satellite im-
ages

10 1000 / 300

Oxford Pets (Parkhi et al., 2012) Pet classification on cam-
era images 35 1750 / 700

DTD (Cimpoi et al., 2014) Texture classification on
synthetic images 47 2350 / 940

DrugOOD Assay (Ji et al., 2022) Drug binding prediction
on molecular images 2 1600 / 200

3.2. Datasets

We benchmark the model performance on 10 datasets span-
ning multiple domains (natural imagery, medical imagery,

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Table 2. Many-shot ICL performance and efficiency comparison. We report the performance under a zero-shot regime and performance
at the optimal demo set size as well as the many-shot ICL data efficiency of GPT-4o and Gemini 1.5 Pro. We measure performance using
accuracy on all datasets except CheXpert, for which we use macro-average F1. We bold the highest ICL data efficiency between the two
models on each dataset.

Dataset GPT-4o Gemini 1.5 Pro

Zero-shot Best Efficiency Zero-shot Best Efficiency

HAM10000 34.93 53.59 (+18.66) 5.91 33.33 56.46 (+23.13) 6.94
FIVES 31.67 37.50 (+5.83) 0.30 25.83 55.00 (+29.17) 7.56

CheXpert 28.47 42.54 (+14.08) 3.70 22.16 42.23 (+20.08) 9.06
Camelyon17 77.00 90.00 (+13.00) 1.00 71.00 83.00 (+12.00) 3.00

TerraIncognita 29.26 59.26 (+30.00) 20.50 59.63 66.67 (+7.04) 3.50
UCMerced 90.95 98.57 (+7.62) 1.20 91.19 98.57 (+7.38) 4.36
EuroSAT 55.37 84.23 (+28.86) 19.40 36.24 74.16 (+37.92) 20.61

Oxford Pets 83.14 94.14 (+11.00) -3.72 85.29 97.43 (+12.14) 4.26
DTD 39.26 74.47 (+35.21) 4.48 69.89 83.19 (+13.30) 3.89

DrugOOD Assay 50.00 55.00 (+5.00) 2.02 48.00 55.50 (+7.50) 2.03

remote sensing, and molecular imagery) and tasks (multi-
class, multi-label, and fine-grained classification). We
choose to focus on image classification tasks as other tasks
such as region captioning would require substantially more
tokens thereby limiting the total number of demonstrating
examples, and most LMMs are not yet capable of accurately
producing localizations required for other tasks like bound-
ing boxes and segmentation masks (Wu et al., 2024; Zang
et al., 2023). Table 1 provides a summary of the datasets
used in this study.

For all datasets, we construct a set of demonstration (demo)
examples from the original training and validation splits
used for in-context learning and a test set from the original
test split (if one exists) to evaluate the performance of the
models. We randomly sample the demo and test sets from
the original dataset without replacement. For the multi-
class and fine-grained classification datasets, we perform
a class-stratified sampling, ensuring an equal number of
examples per class in both the demo and test sets. For the
multi-label classification dataset (CheXpert), we sample an
equal number of positive and negative samples per class in
both the demo and test sets. We note that, since the task is
multi-label, this sampling procedure does not result in an
exactly equal number of examples per class. The per-dataset
sizes of the full demo and test sets are shown in Table 1, and
we increase the number of demonstration examples up to
the numbers shown in the table while ensuring class balance
for the scaling experiments.

3.3. Evaluation Metrics

We use standard metrics to evaluate model performance on
each dataset. Specifically, we measure performance using
accuracy for all multi-class classification datasets as they

are sampled to have a balanced class distribution. For multi-
label classification on CheXpert, we use the macro-averaged
F1 metric. In the rare case of parsing errors, we consider the
response as incorrect. To estimate the variability around the
evaluation metrics, we compute standard deviation using
bootstrapping with 1,000 bootstrap replicates.

In addition to standard performance metrics, we measure the
data efficiency of each model. Specifically, we compute a
linear regression between log10(N+1) (with N the number
of examples) and model performance, enforcing that the line
passes through the zero-shot performance point. This value
approximates the amount of performance improvement from
zero-shot expected from including an order of magnitude
more demonstrating examples.

4. Results
We present many-shot ICL performance using batched
queries in Section 4.1, investigate the impact of batch-
ing queries on performance in Section 4.2, and provide
an analysis on cost and latency in Section 4.3. Results using
GPT4(V)-Turbo are in Appendix C.

4.1. Increasing number of demonstrating examples

Main Results. Gemini 1.5 Pro exhibits consistent and sub-
stantial improvements as the number of demonstrating exam-
ples increases across all datasets except for DrugOOD Assay
(Figure 2). Gemini 1.5 Pro shows particularly large improve-
ments from many-shot ICL on HAM10000 (+23% accuracy
compared to zero-shot, +16% compared to 7 examples),
FIVES (+29% compared to zero-shot, +27% compared to
20 examples), and EuroSAT (+38% compared to zero-shot,
+31% compared to 10 examples). Notably, for 5 out of the

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Figure 3. Gemini 1.5 Pro performance under many-shot and zero-shot ICL when varying the amount of queries included in every
request. We show performance per batch size with the optimal number of demo examples (many-shot) and no demo examples (zero-shot).
The x-axis is in log scale. Under the many-shot regime, batching queries leads to no substantial drop in performance compared to
individual queries when we choose a suitable batch size. For zero-shot, including only one query is suboptimal for many datasets.

10 datasets (FIVES, UCMerced, EuroSAT, Oxford Pets, and
DTD), Gemini 1.5 Pro performance continues to improve
up to the highest number of demonstrating examples consid-
ered (˜1,000 examples). On the other 5 datasets, the optimal
performance occurs prior to the highest number of demo
examples, with the maximum number of demo examples
leading to similar or slightly worse performance than the
optimal demo set size. On the other hand, Gemini 1.5 Pro
performance on DrugOOD Assay does not substantially ben-
efit from many-shot ICL, with high variance in performance
across demo sizes and the peak performance at 40 demo
examples.

Similarly, GPT-4o shows substantial performance improve-
ments on all datasets except FIVES and DrugOOD Assay
using many-shot ICL, but the improvement is not consistent.
For many datasets, performance drops sharply at first and
then improves significantly as the number of demonstrating
examples increases further, resulting in V-shaped scaling
curves (Figure 2). We also note that we were unable to
increase the number of demo examples to the same level as
considered for Gemini 1.5 Pro because GPT-4o has a shorter
context window and is more prone to timeout errors with
longer inputs. GPT-4o performance on DrugOOD Assay
shows high variance, similar to Gemini 1.5 Pro, with the
peak performance observed at 50 demo examples.

Sensitivity to prompt selection. We also explore a different
set of prompts to test the robustness of many-shot ICL to dif-

ferences in prompt wording on two datasets. While there is
a small deviation in performance between different prompts,
the overall log-linear improvement trend is consistent across
the prompts. Details can be found in Appendix B.

ICL data efficiency. We find Gemini 1.5 Pro demonstrates
higher ICL data efficiency than GPT-4o across all datasets
except TerraIncognita and DTD (Table 2). Gemini 1.5 Pro
ICL efficiency is especially high on EuroSAT, with 20.61%
improvement in accuracy for every 10x more demo exam-
ples, and lowest on DrugOOD Assay (2.03), Camelyon17
(3.00), and TerraIncognita (3.50). GPT-4o ICL data effi-
ciency is especially high on TerraIncognita (20.50%) and
EuroSat (19.40). Gemini 1.5 Pro has a positive efficiency
on all datasets and GPT-4o has a positive data efficiency on
9 of the 10 datasets (excluding Oxford Pets). Importantly,
both models benefit substantially from many-shot ICL at
the optimal demo set size, with an average improvement of
+17% for both Gemini 1.5 Pro and GPT-4o.

4.2. Impact of batching queries

As including a large set of demo examples in the prompt
leads to much longer sequence lengths and therefore higher
inference time and cost, we consider batching queries in a
single prompt to reduce per-query cost, and examine the
impact of different batch sizes on model performance. Due
to its superior performance and free preview access, we use
Gemini 1.5 Pro for these experiments.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Figure 4. Ablation study to investigate why batching queries leads to performance improvements when using Gemini 1.5 Pro
in a zero-shot setting. The first bar shows performance when including a single query, the second adds 49 unlabeled images from
a single class, the third adds 49 unlabeled images in total from all classes, the fourth adds model responses to include self-generated
demonstrations, and the last includes 50 queries in one request.

Main Results. We find minimal performance degradations,
and sometimes performance improvements, as we increase
the number of queries included in each batch across under
both zero-shot and many-shot (at the optimal demo set size)
regimes (Figure 3). Notably, using a single query each
time with many-shot ICL is suboptimal across many of the
datasets. We find that the optimal batch size is among the
three largest sizes on every dataset except CheXpert and
EuroSAT, which both see optimal performance with a single
query at a time.

We additionally observe that including a single query at a
time is suboptimal on most datasets in the zero-shot regime.
Surprisingly, performance with the highest batch size is sub-
stantially higher across three datasets under the zero-shot
regime, with a consistent performance improvement as the
batch size is increased on both UCMerced and Terraincog-
nita.

Zero-shot performance improvements from batching
queries. We conduct several additional experiments to in-
vestigate why batch querying can lead to large performance
improvements under the zero-shot regime on TerraIncognita
and UCMerced. We hypothesize that this improvement may
be due to three potential benefits from ICL: (1) domain cali-
bration, where the model benefits from seeing more images
in the domain in order to adapt to it, (2) class calibration,
where seeing images of different classes enables the model
to better calibrate its outputs, and (3) self-ICL (shown to be
effective in prior work (Chen et al., 2023)), where the model
can learn from self-generated demonstrations due to autore-
gressive decoding. We design experiments to isolate the
potential benefits from each of these types of ICL between

asking a single query to batching 50 queries together.

First, to measure potential improvement from domain cal-
ibration, we include 49 images from the same class in
the prompt without including any label. We find a 3.0%
improvement on TerraIncognita and 2.6% degradation on
UCMerced, suggesting domain calibration is helpful for the
former but not the latter. Second, to capture performance
gains from class calibration, we include a random sample of
49 images in the prompt, again without including the label.
We see a further 3.5% improvement on TerraIncognita (6.5%
improvement from a single query) and a 4.5% improvement
from a single query on UCMerced, suggesting including the
context of class-balanced images is helpful even without
labels. Third, to capture additional performance improve-
ments from the self-generated labels, we obtain predicted
labels from the zero-shot model using a single query for
each of the 49 randomly sampled images and add them to
the prompt. We observe further performance increase on
both datasets, with 5.5% on TerraIncognita and 2.7% on
UCMerced. The final total accuracy is similar to asking the
50 questions each round, which suggests these three com-
ponents mostly explain the reason for improved zero-shot
performance under a larger query batch size.

4.3. Cost and latency analysis

Many-shot ICL incurs zero additional training cost, but per-
query inference can be costly and slow due to long input
contexts. To quantitatively measure this, we compute the
latency and cost associated with the zero-shot and many-
shot requests with and without batching when using Gemini
1.5 Pro on HAM10000 and TerraIncognita. We calculate

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Table 3. Inference latency and cost using Gemini 1.5 Pro with and without query batching. We use 50 queries per batch. In the
zero-shot setting, we can achieve lower per-example latency with batching, but the per-example cost remains identical. In the many-shot
setting, the per-example cost and per-example latency both drop substantially with query batching.

Dataset

No Query Batching Query Batching

Per-batch
latency

Per-
example
latency

Per-
example
cost

Per-batch
latency

Per-
example
latency

Per-
example
cost

HAM10000 (zero-shot) 2.2s 2.2s $0.0038 11.4s 0.23s $0.0038
TerraIncognita (zero-shot) 2.0s 2.0s $0.0037 51.6s 1.0s $0.0038

HAM10000 (350-shot) 17.3s 17.3s $0.8420 26.9s 0.54s $0.0877
TerraIncognita (810-shot) 34.9s 34.9s $1.8420 85.9s 1.7s $0.0406

the costs using the Gemini 1.5 Pro preview pricing ($7 per
1 million input tokens and $21 per 1 million output tokens).
We run the query three times under each setting and report
the average.

In the zero-shot regime, we see substantial per-example
latency reductions due to query batching, close to a 10x
reduction on HAM10000 and 2x on TerraIncognita (Ta-
ble 3). The per-example cost is similar between the two as
there is no additional context needed for including demon-
strating examples. In the many-shot regime, we observe
substantial reductions in both per-example latency and cost.
Specifically, for HAM10000, we find a near 35x reduction
in latency and 10x reduction in cost, and 20x reduction in
latency and 45x reduction in cost for TerraIncognita.

5. Discussion
In this study, we evaluate many-shot ICL of state-of-the-
art multimodal foundation models across 10 datasets and
find consistent performance improvements across most of
the datasets. Batching queries with many-shot ICL further
exhibits substantially reduced per-example latency and in-
ference costs without compromising performance.

Our findings suggest that these multimodal foundation mod-
els have the capability of performing ICL with large num-
bers of demonstrating examples, which may have significant
implications on their practical use. For example, it was pre-
viously impossible to adapt these large, private models to
new tasks and domains, but many-shot ICL would enable
users to leverage demonstrating examples to adapt the mod-
els. One significant advantage of many-shot ICL is its ability
to get quick results even on the same day of model release,
and that’s why we can finish our evaluation using GPT-4o
within days. Furthermore, fine-tuning open-source models
is the standard practice when practitioners have access to
moderately sized datasets, but many-shot ICL may remove
the need for fine-tuning, making it much easier to develop

customized approaches. We note that it remains to be seen
how traditional fine-tuning of these models compares to
many-shot ICL with foundation models in terms of absolute
performance and data efficiency, so future work should ex-
plore this. In addition, it is important to study general issues
which plague those foundation models, such as hallucina-
tions and biases, under the context of many-shot ICL and
batching queries. For example, it would be interesting to
explore if carefully curated and large sets of demonstrating
examples can reduce biases across different sub-groups. We
leave this to future work.

Our study has limitations. First, we only explore perfor-
mance under many-shot ICL on image classification tasks
and with private foundation models. We believe these are the
most practically relevant and common multimodal settings,
but it is worthwhile for future work to explore potential ben-
efits from many-shot ICL on other tasks and with upcoming
open-source multimodal foundation models like LLaMA-3
(lla). Second, even after recent developments to increase
context size, the size prohibits many-shot ICL from being
used on datasets with a large number (several hundred or
more) of classes. We anticipate that context window sizes
will continue to increase in size over time which will miti-
gate this issue. Third, the datasets which were used to train
these private models have not been disclosed, so it is difficult
to tell whether the models have been trained on the datasets
we selected. We argue that zero-shot performance across
the datasets is far from perfect which provides evidence that
the datasets have not been used for training, but we cannot
determine that with certainty.

6. Conclusion
In summary, we show that multimodal foundation models
are capable of many-shot ICL. We believe that these results
pave a promising path forward to improve the adaptability
and accessibility of large multimodal foundation models.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

References
Introducing meta llama 3: The most capable openly avail-

able llm to date. URL https://ai.meta.com/
blog/meta-llama-3/.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Agarwal, R., Singh, A., Zhang, L. M., Bohnet, B., Chan, S.,
Anand, A., Abbas, Z., Nova, A., Co-Reyes, J. D., Chu,
E., et al. Many-shot in-context learning. arXiv preprint
arXiv:2404.11018, 2024.

Bandi, P., Geessink, O., Manson, Q., Van Dijk, M., Balken-
hol, M., Hermsen, M., Bejnordi, B. E., Lee, B., Paeng, K.,
Zhong, A., et al. From detection of individual metastases
to classification of lymph node status at the patient level:
the camelyon17 challenge. IEEE transactions on medical
imaging, 38(2):550–560, 2018.

Beery, S., Van Horn, G., and Perona, P. Recognition in terra
incognita. In Proceedings of the European conference on
computer vision (ECCV), pp. 456–473, 2018.

Bertsch, A., Ivgi, M., Alon, U., Berant, J., Gormley,
M. R., and Neubig, G. In-context learning with long-
context models: An in-depth exploration. arXiv preprint
arXiv:2405.00200, 2024.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners, 2020.

Chen, W.-L., Wu, C.-K., and Chen, H.-H. Self-icl: Zero-shot
in-context learning with self-generated demonstrations.
arXiv preprint arXiv:2305.15035, 2023.

Cheng, Z., Kasai, J., and Yu, T. Batch prompting: Efficient
inference with large language model apis. arXiv preprint
arXiv:2301.08721, 2023.

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and
Vedaldi, A. Describing textures in the wild. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3606–3613, 2014.

Han, Z., Zhou, G., He, R., Wang, J., Xie, X., Wu, T., Yin,
Y., Khan, S., Yao, L., Liu, T., et al. How well does
gpt-4v (ision) adapt to distribution shifts? a preliminary
investigation. arXiv preprint arXiv:2312.07424, 2023.

Helber, P., Bischke, B., Dengel, A., and Borth, D. Eurosat:
A novel dataset and deep learning benchmark for land
use and land cover classification. IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote
Sensing, 12(7):2217–2226, 2019.

Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S.,
Chute, C., Marklund, H., Haghgoo, B., Ball, R., Shpan-
skaya, K., et al. Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 33, pp. 590–597, 2019.

Ji, Y., Zhang, L., Wu, J., Wu, B., Huang, L.-K., Xu, T.,
Rong, Y., Li, L., Ren, J., Xue, D., et al. Drugood:
Out-of-distribution (ood) dataset curator and benchmark
for ai-aided drug discovery–a focus on affinity predic-
tion problems with noise annotations. arXiv preprint
arXiv:2201.09637, 2022.

Jin, K., Huang, X., Zhou, J., Li, Y., Yan, Y., Sun, Y., Zhang,
Q., Wang, Y., and Ye, J. Fives: A fundus image dataset
for artificial intelligence based vessel segmentation. Sci-
entific Data, 9(1):475, 2022.

Li, M., Gong, S., Feng, J., Xu, Y., Zhang, J., Wu, Z., and
Kong, L. In-context learning with many demonstration
examples. arXiv preprint arXiv:2302.04931, 2023.

Lin, J., Diesendruck, M., Du, L., and Abraham, R. Batch-
prompt: Accomplish more with less. arXiv preprint
arXiv:2309.00384, 2023.

Liu, J., Yang, T., and Neville, J. Cliqueparcel: An approach
for batching llm prompts that jointly optimizes efficiency
and faithfulness. arXiv preprint arXiv:2402.14833, 2024.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C.
Cats and dogs. In 2012 IEEE conference on computer
vision and pattern recognition, pp. 3498–3505. IEEE,
2012.

Parnami, A. and Lee, M. Learning from few examples:
A summary of approaches to few-shot learning. arXiv
preprint arXiv:2203.04291, 2022.

Reid, M., Savinov, N., Teplyashin, D., Lepikhin, D., Lilli-
crap, T., Alayrac, J.-b., Soricut, R., Lazaridou, A., Firat,
O., Schrittwieser, J., et al. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530, 2024.

Son, G., Baek, S., Nam, S., Jeong, I., and Kim, S. Multi-task
inference: Can large language models follow multiple
instructions at once? arXiv preprint arXiv:2402.11597,
2024.

9

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Tschandl, P., Rosendahl, C., and Kittler, H. The ham10000
dataset, a large collection of multi-source dermatoscopic
images of common pigmented skin lesions. Scientific
data, 5(1):1–9, 2018.

Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. Generalizing
from a few examples: A survey on few-shot learning.
ACM computing surveys (csur), 53(3):1–34, 2020.

Wu, Y., Wang, Y., Tang, S., Wu, W., He, T., Ouyang, W.,
Wu, J., and Torr, P. Dettoolchain: A new prompting
paradigm to unleash detection ability of mllm. arXiv
preprint arXiv:2403.12488, 2024.

Xu, S., Wang, Y., Liu, D., and Xu, C. Collage prompting:
Budget-friendly visual recognition with gpt-4v. arXiv
preprint arXiv:2403.11468, 2024.

Yang, Y. and Newsam, S. Bag-of-visual-words and spatial
extensions for land-use classification. In Proceedings
of the 18th SIGSPATIAL international conference on ad-
vances in geographic information systems, pp. 270–279,
2010.

Zang, Y., Li, W., Han, J., Zhou, K., and Loy, C. C. Con-
textual object detection with multimodal large language
models. arXiv preprint arXiv:2305.18279, 2023.

Zhang, X., Li, J., Chu, W., Hai, J., Xu, R., Yang, Y., Guan,
S., Xu, J., and Cui, P. On the out-of-distribution gener-
alization of multimodal large language models. arXiv
preprint arXiv:2402.06599, 2024.

Zhao, H., Cai, Z., Si, S., Ma, X., An, K., Chen, L., Liu, Z.,
Wang, S., Han, W., and Chang, B. Mmicl: Empower-
ing vision-language model with multi-modal in-context
learning. arXiv preprint arXiv:2309.07915, 2023.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

A. Prompts used for ICL experiments
A.1. Prompt used for image classification experiments

prompt = ""
for demo in demo_examples:

prompt += f"""<>Given the image above, answer the following question-
using the specified format.
Question: What is in the image above?
Choices: {str(class_desp)}
Answer Choice: {demo.answer}
"""

prompt += f"""<>Given the image above, answer the following question-
using the specified format.
Question: What is in the image above?
Choices: {str(class_desp)}

Please respond with the following format:
---BEGIN FORMAT TEMPLATE---
Answer Choice: [Your Answer Choice Here]
Confidence Score: [Your Numerical Prediction Confidence Score Here From 0 To 1]
---END FORMAT TEMPLATE---

Do not deviate from the above format. Repeat the format template for the answer."""

A.2. Prompts used for image classification experiments with batching

prompt = ""
for demo in demo_examples:

prompt += f"""<>Given the image above, answer the following question-
using the specified format.
Question: What is in the image above?
Choices: {str(class_desp)}
Answer Choice: {demo[1]}
"""

for idx, i in enumerate(test_df.iloc[start_idx:end_idx].itertuples()):
prompt += f"""<>Given the image above, answer the following question-

using the specified format.
Question {qn_idx}: What is in the image above?
Choices {qn_idx}: {str(class_desp)}

"""

for i in range(start_idx, end_idx):
qn_idx = i-start_idx+1
prompt += f"""

Please respond with the following format for each question:
---BEGIN FORMAT TEMPLATE FOR QUESTION {qn_idx}---
Answer Choice {qn_idx}: [Your Answer Choice Here for Question {qn_idx}]
Confidence Score {qn_idx}: [Your Numerical Prediction Confidence Score Here-
From 0 To 1 for Question {qn_idx}]
---END FORMAT TEMPLATE FOR QUESTION {qn_idx}---

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Do not deviate from the above format. Repeat the format template for the answer."""

A.3. Prompts used for batching ablation experiments

A.3.1. PREFIXING IMAGES

prompt = ""
for demo in prefix_image_paths:

prompt += f"""<>

"""
prompt += "Above are some images from the same dataset. "
qns_idx = []
for idx, i in enumerate(test_df.iloc[start_idx:end_idx].itertuples()):

qn_idx = idx+1
prompt += f"""<> Given the image above, answer the following question-

using the specified format.
Question {qn_idx}: What is in the image above?
Choices {qn_idx}: {str(class_desp)}

"""
for i in range(start_idx, end_idx):

qn_idx = i-start_idx+1
prompt += f"""

Please respond with the following format for each question:
---BEGIN FORMAT TEMPLATE FOR QUESTION {qn_idx}---
Answer Choice {qn_idx}: [Your Answer Choice Here for Question {qn_idx}]
Confidence Score {qn_idx}: [Your Numerical Prediction Confidence Score Here-
From 0 To 1 for Question {qn_idx}]
---END FORMAT TEMPLATE FOR QUESTION {qn_idx}---

Do not deviate from the above format. Repeat the format template for the answer."""

B. Prompt selection
We utilize a different set of prompts to test the robustness of ManyICL to differences in prompt wording. We randomly
sample two datasets (HAM10000 and EuroSAT) for this experiment due to budget limit.

B.1. Prompts used for prompt selection experiments

Note that only the question section is shown here, and prompt 1 is used for all other image classification experiments.

B.1.1. PROMPT 1

<>Given the image above, answer the following question using the specified format.
Question {qn_idx}: What is in the image above?
Choices {qn_idx}: {str(class_desp)}

B.1.2. PROMPT 2

<>Given the image above, answer the following question using the specified format.
Question {qn_idx}: Which class does this image belong to?
Choices {qn_idx}: {str(class_desp)}

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Figure 5. Sensitivity analysis of many-shot ICL. These plots show the change in task performance on two datasets as the number of
demonstrating examples increases, using three different prompts. For all experiments on sensitivity analysis, the Gemini 1.5 Pro model is
used. The x-axis is in the logarithmic scale, representing the number of demonstrating examples plus one. The log-linear improvement
until the optimal performance is consistent across all prompts selected.

B.1.3. PROMPT 3

Question {qn_idx}: <>Classify the image above, choose from {str(class_desp)}

B.2. Prompt selection results

Figure 5 shows the sensitivity of performance to prompt selection on two datasets with three prompts. While there exists a
small deviation in performance, but the overall log-linear improvement trend is consistent.

C. GPT4(V)-Turbo performance under many-shot ICL
GPT4(V)-Turbo shows mixed results for many-shot ICL, with substantial performance improvements on HAM1000,
UCMerced, EuroSAT, and DTD, but minimal improvements or no improvement across the other six datasets (Figure 6).
However, we note that we were unable to increase the number of demo examples to the same level as Gemini 1.5 Pro
because GPT4(V)-Turbo has a shorter context window and is more prone to timeout errors when scaling. Additionally,
GPT4(V)-Turbo seems to generally underperform Gemini 1.5 Pro across the datasets excluding FIVES and EuroSAT for
which it seems to mostly match the Gemini 1.5 Pro performance. GPT4(V)-Turbo performance on DrugOOD Assay shows
high variance, resembling that of Gemini 1.5 Pro with the peak performance at 40 demo examples.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Figure 6. GPT4(V)-Turbo and GPT-4o performance from zero-shot to many-shot ICL. X-axis is in log scale.

D. Performance of many-shot ICL on medical QA tasks
D.1. Prompt used for medical QA experiments (MedQA, MedMCQA)

prompt = "You are an expert in answering medical exam questions. "
for demo in demo_examples:

prompt += f"""Question: {demo.question}
Choices: {demo.options}
Answer: {demo.answer}
"""

prompt += f"""Question: {actual.question}
Choices: {actual.options}

Please respond with the following format:
---BEGIN FORMAT TEMPLATE---
Answer: [Your Answer Choice Here]
Confidence Score: [Your Numerical Prediction Confidence Score Here From 0 To 1]
---END FORMAT TEMPLATE---

Do not deviate from the above format. Repeat the format template for the answer."""

D.2. Results

Figure 7 shows the results on medical QA tasks.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Figure 7. Many-shot ICL performances of medical QA tasks.

15

