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ABSTRACT

Recently introduced deep generative priors (e.g., PriorVAE, πVAE, and PriorC-
VAE) have emerged as powerful tools for scalable Bayesian inference by emulat-
ing complex stochastic processes like Gaussian processes (GPs). However, these
methods remain largely a proof-of-concept and inaccessible to practitioners. We
propose DeepRV, a lightweight, decoder-only approach that reduces the number
of parameters by 66%, accelerates training, and enhances real-world applicability
in comparison to current VAE-based approaches. Leveraging probabilistic pro-
gramming frameworks (e.g., NumPyro), DeepRV achieves an order-of-magnitude
speedup while maintaining robust performance. We showcase its effectiveness in
GP emulation and spatial analysis of the UK using simulated data and cancer mor-
tality rates (Work in progress). To bridge the gap between theory and practice, we
provide a user-friendly API, enabling scalable and efficient Bayesian inference.

1 INTRODUCTION

Bayesian modeling serves as a fundamental framework analyzing spatial data, particularly in dis-
ease mapping, where Gaussian processes (GPs) (Williams & Rasmussen, 2006) and its close rel-
atives, such as the conditional auto-regressive (CAR, Besag (1974)), the Intrinsic Conditional
Auto-Regressive (ICAR, Besag & Kooperberg (1995)), and Besag-Yorg-Mollie (BYM, Besag et al.
(1991)) models are frequently employed to capture spatial dependencies. However, sampling from
these models incurs a computational complexity of O(n3), as inverting the covariance matrix is re-
quired, posing scalability challenges for large datasets. Recent advances in deep generative models
(DGMs) have introduced the concept of pre-training priors for Bayesian inference, offering a po-
tential solution to these bottlenecks. Frameworks such as PriorVAE (Semenova et al., 2022), πVAE
(Mishra et al., 2022), PriorCVAE (Semenova et al., 2023b), and aggVAE (Semenova et al., 2023a)
have demonstrated the feasibility of encoding complex priors using DGMs, enabling faster inference
by decoupling the computational burden of prior construction from the inference stage.

However, these methods remain largely a proof-of-concept and inaccessible to practitioners. They
often require substantial expertise in deep learning model implementation, and their computational
efficiency gains are offset by the complexity of training variational autoencoders (VAEs) (Kingma,
2013). Further, VAEs are prone to posterior collapse, a phenomenon where the generative model ef-
fectively disregards a subset of the latent variables, thereby failing to capture meaningful variations
in the data (Lucas et al., 2019; Wang et al., 2021). Additionally, they can suffer from oversmoothing
induced by the latent bottleneck, where the reconstructed outputs lack sharpness and fine-details
(Takida et al., 2022). Moreover, we show in this paper that when emulating GPs, the most com-
monly used spatial priors, the encoder-decoder architecture introduces unnecessary overhead for
applications focused solely on inference. Consequently, their adoption in applied fields like disease
mapping remains limited, where ease of use, efficiency, and reliability are crucial.

In practice, disease mapping workflows often rely either on fast, black-box tools such as R-INLA
(Lindgren & Rue, 2015), or slow, bespoke models using Probabilistic Programming Languages
(PPLs) (Carpenter et al., 2017; Abril-Pla et al., 2023; Phan et al., 2019; Bingham et al., 2019; de
Valpine et al., 2017). While PPLs offer flexibility and robust inference via Markov Chain Monte
Carlo (MCMC), their performance and computational demands suffer when modeling large spa-
tial datasets, particularly when using Gaussian processes. This trade-off between computational
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Figure 1: (a) Data generation process; (b) PriorCVAE architecture: both the encoder and decoder get
the label c as input. Here we interpret c as a hyperparameter of the prior; (c) deepRV architecture.

efficiency and model flexibility creates a need for novel solutions that integrate the benefits of pre-
trained priors with practical usability for spatial modeling.

To address these challenges, we introduce DeepRV, a novel training procedure and architecture that
simplifies spatial modeling. Rather than using realizations of the stochastic process as training data
for pre-trained priors, our approach utilizes the latent space as training input, enabling DeepRV to
directly map the latent variables to the prior space. This eliminates the need for an encoder, reducing
oversmoothing, lowering the parameter count, simplifying training, and accelerating inference while
preserving prior richness. Our contributions are threefold:

• The novel DeepRV architecture and training process: A decoder-only generative model
that improves reconstruction and accelerates training compared to VAE-based methods.

• UK case-studies: we demonstrate the efficacy of DeepRV on both simulated data for UK
Lower Tier Local Authorities (LTLA) and real-world 2023 cancer mortality data for UK
Local Administrative Districts (LADs) (Work in progress), showing substantial speedups
and robust inference performance as compared to directly sampling GPs in Numpyro.

• API for practical usability: we provide code for generating pre-trained priors, bridging the
gap between methodological advances in Bayesian modeling and their practical application
in disease mapping.

Our results show that inference with DeepRV in Numpyro, as opposed to directly sampling GPs,
is an order of magnitude faster, making it a scalable tool for disease mapping. By addressing key
computational and usability challenges, DeepRV lays the foundation for broader adoption of pre-
trained priors in Bayesian inference workflows.

2 VAE-BASED ENCODING PRIORS

PriorVAE (Semenova et al., 2022) and πVAE (Mishra et al., 2022) are two related VAE-based meth-
ods, with PriorVAE encoding finite realizations of stochastic processes and πVAE capturing their
continuous representations. They use a two-stage approach where a VAE decoder, pre-trained to ap-
proximate complex priors, is used for sampling within Bayesian inference with MCMC – preserving
MCMC rigor while enhancing scalability. πVAE learns low-dimensional embeddings of function
classes inspired by the Karhunen–Loéve expansion, where basis functions are learned via a neural
network, and random coefficients are encoded with a VAE. PriorVAE, in contrast, follows a standard
VAE framework to encode finite realizations of a stochastic prior in question, such as GPs realiza-
tions, commonly used in spatial statistics. A key limitation of π- and PriorVAE is their inability to
encode and infer hyperparameters of the stochastic process. PriorCVAE (Semenova et al., 2023b)
addresses this by introducing a conditional VAE (CVAE) architecture (Sohn et al., 2015), allow-
ing priors to be conditioned on parameters of interest by incorporating them into both encoder and
decoder inputs. This enhances prior flexibility and enables parameter inference. The PriorCVAE
workflow is presented in the Appendix, Algorithm 2. However, PriorCVAE still suffers from VAE
limitations such as posterior collapse and oversmoothing, limiting practical usability. In this work,
we build on PriorCVAE to develop a simplified approach for conditioning and sampling pre-trained
stochastic process priors.
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3 THE PROPOSED METHOD: DEEPRV

In this section, we introduce DeepRV, a decoder-only deep generative model designed for efficiently
approximate priors for inference. Unlike VAEs, which map inputs to a latent space and reconstruct
samples via a learned decoder, DeepRV directly maps a fixed latent distribution to realizations of
stochastic processes. The design of PriorCVAE and DeepRV are illustrated in Figure 1, highlighting
their shared data generation process (Figure 1, a), and their structural differences (Figure 1, b-c).

3.1 TRAINING AND INFERENCE WORKFLOW

The first step of the DeepRV workflow approximates realizations of the stochastic process Fc(·),
conditioned on hyperparameters c ∼ pC(·), at a fixed set of n locations x = (x1, . . . , xn)

⊤ within
the index set. By fc = Fc(x), we denote the vector of realizations of the process at the fixed
locations, which forms a random variable – hence the “RV” abbreviation in the method’s name. To
model these realizations, a latent space Z ⊆ Rn is introduced, along with a probability distribution
DZ(·) over this space and a deterministic mapping Tc. The map Tc is such that, when applied
to latent samples z ∼ DZ(·), it produces outputs distributed as the stochastic process realizations
fc. We train a deep neural network – hence the “Deep” abbreviation in the method’s name – to
approximate Tc by minimizing the reconstruction loss between the true process realization fc and
the model-generated output f̂c:

c ∼ pC(·), z ∼ DZ(·),

fc = Tc(z), f̂c = DeepRV(z, c),

LDeepRV = MSE(fc, f̂c).

After training, the inference process involves replacing the realizations of the stochastic process Fc,
fc, by sampling from the latent distribution DZ(·), the hyperparameter priors pC(·), and feeding
them into the trained DeepRV network to generate posterior samples:

c ∼ pC(·), z ∼ DZ(·), fc ≈ f̂c = DeepRV(z, c).

DeepRV is not restricted to any specific architecture—any network that accepts a latent variable and
conditional variables, and outputs a matching stochastic process can serve as the decoder.

Algorithm 1 DeepRV GP workflow example

Fix the spatial structure of interest x = (x1, . . . , xn), e.g. centroids of administrative units
Fix the GP of interest, i.e. a kernel kc(·, ·)
Train DeepRV prior:

- Sample hyperparameters: c ∼ pC(·)
- Sample GP realizations:

- Generate Kc = kc(x,x) over the spatial structure x
- Compute the Cholesky factor Lc = Cholesky(Kc)
- Sample z ∼ N (0, I), and set fc = Lcz

- Forward pass: f̂c = DeepRV(z, c)

- Back propagate the loss: LDeepRV = MSE(fc, f̂c)

Perform Bayesian inference with MCMC of the overarching model, including latent variables
and hyperparameters c in a drop-in manner using the trained network:

fc ∼ GP(·, · c) ≈ f̂c = DeepRV(z, c), z ∼ N (0, I)

3.2 SUPPORTED PRIORS

The training procedure relies relies on prior knowledge of a mapping function Tc that directly links
the latent space to process realizations. While this design imposes more constraints than standard
VAEs, it still enables DeepRV to encode complex priors. The most natural application of DeepRV
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is GPs, a broad class of highly expressive and popular stochastic processes. To adapt a GP with
a kernel Kc to DeepRV’s training framework, we set the latent space Z = Rn, DZ = N (0, I),
and define Tc(z) = Lcz, where Lc = Cholesky(Kc). The distribution of Lcz when sampling
z ∼ N (0, I) is equivalent toMVN (0,Kc), ensuring the correct mapping from the latent space to
the GP realizations. A complete, generalized GP workflow example is provided in Algorithm 1.

Beyond GPs, DeepRV can also be applied to other spatial models, such as CAR, ICAR, and BYM,
in a similar fashion. Eventually, we plan to expand this to any process that can be represented
functionally as: (z, c) → fc. This would enable modeling not just GPs, but whole hierarchical
models or even black box simulators, although this is beyond the scope of the current study and
left for future research. An example DeepRV workflow with a hierarchical model is provided in
Appendix B.

4 EXPERIMENTS

This section presents the experiments conducted on simulated datasets. These involve pretraining
DeepRV priors across multiple GP kernels, evaluating the resulting models using Empirical Bayes,
and performing inference. DeepRV’s codebase is available in the following anonymous repository1.
The API is designed to accept a GeoPandas (Jordahl et al., 2023)-compatible map, and the maps
used in these experiments can be accessed via the map download link2.

4.1 ARCHITECTURE

In this paper, we implement DeepRV using a simple 2-layer MLP without dimensionality reduction.
This choice maintains consistency with previous models for straightforward comparison and high-
lights that our primary contribution lies in the novel training process and decoder-only architecture.
Despite its simplicity, our results show that even a basic DeepRV outperforms existing approaches
and enables robust, accelerated inference.

4.2 SIMULATION STUDY: UK LTLAS

4.2.1 DATA

The geographical structure consists of 363 Lower Tier Local Authorities (LTLAs) from the UK,
with data simulated using the centroids of each LTLA. We simulate data over this map because the
number of locations (n = 363) is small enough to enable benchmarking against MCMC with GP
sampling, while still representing a standard structure used in disease mapping. This allows us to
evaluate whether our method is applicable to real-world data. The coordinates of the centroids are
normalized to a [0,1] range and serve as spatial structure for DeepRV’s GP workflow (see Algorithm
1). We also experimented with the CAR prior, which relies on an underlying graph structure of the
data. An adjacency matrix is constructed by connecting neighboring LTLAs, ensuring that islands
are linked to the nearest LTLA to maintain a fully connected graph.

4.2.2 PRIOR PRE-TRAINING

We trained the DeepRV and PriorCVAE models to emulate GP priors across four distinct kernels:
RBF, Matérn-3/2, Matérn-1/2, Matérn-5/2, and the CAR model. For the RBF and Matérn kernels,
we defined hyperparameter priors with constant variance and lengthscales uniformly distributed
between 0.1 and 0.6 for RBF, and between 0.1 and 0.7 for the Matérn kernels. The lengthscale
ranges for the RBF and Matérn kernels were chosen to produce comparable mean smoothness across
the priors, with the RBF kernel being inherently smoother than the Matérn kernels. For the CAR
kernel, we set τ to a constant value of 1 and α is sampled from Beta(4, 1), where

fCAR,τ,α ∼MVN (0,R−), R = τ (D− αA) . (1)

1https://anonymous.4open.science/r/DeepRV-F9CF/
2https://drive.google.com/file/d/1-3OCLlQgQxuM_B-pUid89eLsu9k8UWGY/

view?usp=drive_link
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Table 1: Test MSE(f , f̂)

Model Parameters CAR Matérn-1/2 Matérn-3/2 Matérn-5/2 RBF

PriorCVAE 794K 0.374 ± 0.001 0.177 ± 0.002 0.072 ± 0.004 0.056 ± 0.003 0.042 ± 0.003
DeepRV 265K 0.023 ± 0.001 0.016 ± 0.000 0.011 ± 0.000 0.012 ± 0.000 0.020 ± 0.000

Table 2: Empirical Bayes: MSE of ground truth vs. inferred conditional variable

CAR Matérn-1/2 Matérn-3/2 Matérn-5/2 RBF
Model (α - Eq 1) (length scale) (length scale) (length scale) (length scale)

PriorCVAE 0.000 ± 0.000 0.036 ± 0.015 0.025 ± 0.013 0.015 ± 0.002 0.005 ± 0.003
DeepRV 0.000 ± 0.000 0.009 ± 0.007 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Here, D represents the degree matrix of the adjacency matrix A. We compared PriorCVAE and
DeepRV by computing the MSE between the process realization f , and the reconstructed realization
f̂ . We trained the models over 5 seeds with a batch size of 16, over 100,000 batches. Results of
reconstruction MSE, and standard deviation are summarized in Table 1. Additionally, we provide
input reconstruction examples in Appendix C.

To evaluate the pre-trained priors we employ an Empirical Bayes (EB) approach. Specifically, we
generate samples from either the surrogate model or a reference GP model using predefined hyper-
parameters. These samples serve as pseudo-observations, and we subsequently optimize the hyper-
parameters to maximize the marginal likelihood (Williams & Rasmussen, 2006). The full procedure
for sampling from DeepRV and estimating GP hyperparameters with kernel K is as follows:

c ∼ pc(·), z ∼ N (0, I), σ ∼ N (0, σI), fc ∼ DeepRV(c, z) + σ,

ĉ, σ̂ = argmaxĉ,σ̂

(
−1

2
f⊤c K̃−1

ĉ fc −
1

2
log |K̃ĉ| −

n

2
log 2π

)
, K̃ĉ = Kĉ +Diag(σ̂)

This process allows us to assess how closely the priors, learned via the surrogate models, emulate the
behavior of true GP priors. We generated 100 samples for each of 5 random seeds and computed the
mean squared error (MSE) between the true conditional variable (lengthscale or α) and the estimated
value obtained via EB. The results are presented in Table 2 and in Appendix D.

4.2.3 INFERENCE

After training the priors, we assessed their ability to emulate a GP within a Numpyro model for
inference. We simulated data across UK’s LTLAs using the following Poisson model, which was
also employed as our inference model:

c ∼ pC(·),

fc ∼ GPc(·) (2)

β ∼ N (0, 1)

λ = exp(β + fc)

yc ∼ Poisson(λ)

During inference, the pre-trained prior was used as a substitute for Eq. 2, replacing the compu-
tationally intensive GP sampling during MCMC. We employed the No-U-Turn Sampler (NUTS)
(Hoffman & Gelman, 2014) algorithm for MCMC implemented in Numpyro, running 4 chains with
4,000 warmup iterations and collecting 10,000 posterior samples per chain. We set the prior dis-
tributions of the length scale to be Beta(3, 7) for all distance-based GP kernels, and α prior to be
Beta(4, 1) for CAR prior. The results are presented in Table 3, and Figure 2.
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Table 3: Simulated data inference results from a single run. The inferred variables closest to the true
values and the lowest inference times are bolded.

CAR Matérn-1/2 Matérn-3/2 Matérn-5/2 RBF
(α - Eq 1) (length scale) (length scale) (length scale) (length scale)

True Value 0.95 0.2 0.2 0.2 0.2

G
P

Inferred Value 0.807 0.346 0.270 0.239 0.196
ESS Inferred Variable 3,876 1,055 342 307 194
r̂ Inferred Variable 1.001 1.013 1.015 1.010 1.022
MSE(y, ȳpred) 0.280 0.297 0.526 0.601 0.581
Mean ESS f̂ 28,528 2,163 213 27 17
Runtime (s) 889 4,284 35,526 37,299 34,750

Pr
io

rC
VA

E ESS Inferred Variable 79,405 71,594 67,875 83,284 52,136
r̂ Inferred Variable 1.000 1.000 1.000 1.000 1.000
MSE(y, ȳpred) 0.375 0.334 0.542 0.625 0.595
Mean ESS f̂ 29,003 27,434 30,578 47,627 22,227
Runtime (s) 236 387 515 559 430

D
ee

pR
V

Inferred Value 0.799 0.267 0.241 0.208 0.166
ESS Inferred Variable 78,595 43,873 20,420 21,105 17,609
r̂ Inferred Variable 1.000 1.000 1.000 1.000 1.000
MSE(y, ȳpred) 0.280 0.298 0.529 0.603 0.588
Mean ESS f̂ 95,714 33,091 27,009 27,400 20,483
Runtime (s) 233 349 445 498 369

Figure 2: Simulated data posterior predictive λ means for the Matérn-1/2 kernel

5 DISCUSSION AND FUTURE WORK

The pre-training results summarized in Table 1, demonstrate that DeepRV surpasses PriorCVAE
in reconstructing GP realizations. Table 2 further confirms that DeepRV’s pre-trained prior more
closely aligns with the emulated GP, a pattern that continues through inference (Table 3). We
attribute this improvement to DeepRV’s focused training objective—optimizing input reconstruc-
tion—rather than balancing reconstruction with encoder KL loss minimization. Moreover, inference
on the simulated data (Table 3, Figure 2) shows that DeepRV produces posterior estimates closely
matching GP sampling. In some cases, DeepRV even infers values closer to the true data-generating
process, and achieves up to 30× speedups. This behavior is consistent across all tested kernels, as
demonstrated in Appendix E.
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We report the execution times using an NVIDIA RTX 5000 Ada Generation GPU (32GB RAM)
to accelerate GP-based MCMC. Notably, DeepRV-based MCMC runs demonstrate significant
speedups on CPUs, enabling parallelization for efficient local testing. However, full GP-based
MCMC could not be benchmarked under the same conditions, as the sampling GPs proved too
intensive to parallelize, preventing direct comparisons in the experiments section.

In the short term, we intend to implement DeepRV on 2023 UK cancer data, to validate its real-life
applicability. Subsequently, we will characterize more precisely which priors DeepRV can encode
to fully capture the potential of this framework. Further, we will explore DeepRv’s ability to model
full hierarchical structures, as demonstrated in Appendix 3, and evaluate its scalability to finer ad-
ministrative divisions, such as UK Middle Layer Super Output Areas (MSOA) (Rashid et al., 2021).
Long term, we plan to expand our library of pretrained priors to cover various administrative levels
within the UK (e.g., LTLA, LAD, MSOA, postcode-level) and extend support to other regions.

This study faces some limitations. DeepRV improves efficiency but still relies on costly sampling
methods to generate training data, particularly the cubic complexity of GP kernel computations,
which can lead to out-of-memory (OOM) issues and hinder scalability when training with many
locations. Like VAEs, it requires a predefined spatial structure, which can be restrictive in certain
applications. However, unlike VAEs, DeepRV cannot encode arbitrary processes; instead, it relies
on prior knowledge of a mapping function that directly links the latent space to process realizations.
Attempts to benchmark against Laplace approximation and ADVI proved challenging due to their
sensitivity to tuning, leading to unreliable inferences. Future work should explore these alternatives
and Simulation-Based Inference for improved evaluation.

DeepRV represents a step toward more efficient and scalable probabilistic modeling by leveraging
pre-trained priors without the need for full GP sampling. Its ability to accelerate inference while
closely approximating the GPs rigor, and integrate seamlessly with PPLs highlights its potential for
broader adoption. Future research will focus on refining its applicability across domains, improving
its scalability, and benchmarking it against alternative inference strategies.
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Julian Besag, Jeremy York, and Annie Mollié. Bayesian image restoration, with two applications in
spatial statistics. Annals of the institute of statistical mathematics, 43:1–20, 1991.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep
universal probabilistic programming. J. Mach. Learn. Res., 20:28:1–28:6, 2019. URL http:
//jmlr.org/papers/v20/18-403.html.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Be-
tancourt, Marcus A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic
programming language. Journal of statistical software, 76, 2017.

Perry de Valpine, Daniel Turek, Christopher Paciorek, Cliff Anderson-Bergman, Duncan Temple
Lang, and Ras Bodik. Programming with models: writing statistical algorithms for general model
structures with NIMBLE. Journal of Computational and Graphical Statistics, 26:403–413, 2017.
doi: 10.1080/10618600.2016.1172487.

Matthew D Hoffman and Andrew Gelman. The no-u-turn sampler: Adaptively setting path lengths
in hamiltonian monte carlo. Journal of Machine Learning Research, 15(1):1593–1623, 2014.

7

http://jmlr.org/papers/v20/18-403.html
http://jmlr.org/papers/v20/18-403.html


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

K. Jordahl, J. Van den Bossche, M. Fleischmann, B. McBride, J. Wasserman, T. Toledo, M. Perry,
C. Farmer, G.A. Hjelle, and J. Gerard. Geopandas: Python tools for geographic data. https:
//geopandas.org, 2023.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
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A PRIORCVAE WORKFLOW

Algorithm 2 PriorCVAE (Semenova et al., 2023b) workflow

Fix the spatial structure of interest x = (x1, . . . , xn), e.g. centroids of administrative units
Fix the latent dimension size d ≤ n for the decoder Dψ : Rd × C → Rn, and the encoder
Eγ : Rn × C → Rd.

Train PriorCVAE prior:
- Sample hyperparameters: c ∼ pC(·).
- Sample GP realizations: fc ∼ GPc(·), over the spatial structure x

- Encode ẑµ, ẑσ = Eγ(fc, c), sample ẑ ∼ N (ẑµ, ẑσ), and decode f̂c = Dψ(ẑ, c).
- Back propagate the loss:LCVAE = 1

σ2
vae

MSE(fc, f̂c) + KL [N (ẑµ, ẑσ)||N (0,1)]

Perform Bayesian inference with MCMC of the overarching model, including latent variables
and hyperparameters c, by approximating fc with f̂c in a drop-in manner using the trained de-
coder:

fc ≈ f̂c = Dψ(z, c), z ∼ N (0, Id)

B DEEPRV HIERARCHICAL MODEL TRAINING EXAMPLE

In this section, we describe how DeepRV can be used to emulate hierarchical model directly, for
example consider the following Poisson model:

c ∼ pC(·),

fc ∼ GPc(·)
β ∼ Uniform(−3, 3)
λ = exp(β + fc)

yc ∼ Poisson(λ)

Where fc is drawn from a Gaussian process with kernel Kc. Algorithm 3, demonstrates how
DeepRV can be used to directly encode the entire model, which can further accelarate inference.

Algorithm 3 Batch train step for an hierarchical Poisson model, based on a GP with kernel kc(·, ·)
1: Input: locations x, pC(·), N
2: {(ci, zi, βi)}Ni=1 ← sample N triplets from (pC(·),N (0,1n),Uniform(−3,3))
3: Li = Cholesky(kci

(x,x))
4: f ∼ Poisson(exp(Lizi + βi))

5: f̂i ← DeepRV(concat( zi, βi), ci)

6: L ← 1
N

∑N
i=1 MSE(fi, f̂i)

7: BackProp(L)
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C INPUT RECONSTRUCTION FIGURES

Figure 3: Input reconstruction examples Matérn 1/2 kernel GP. 3 examples ordered by the true data
f and the reconstructed data f̂ .

Figure 4: Input reconstruction examples RBF kernel GP. 3 examples ordered by the true data f and
the reconstructed data f̂ .
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Figure 5: Input reconstruction examples CAR kernel GP. 3 examples ordered by the true data f and
the reconstructed data f̂ .
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D EMPIRICAL BAYES

Figure 6: Empirical Bayes estimated vs. true length scales for RBF kernel GP.

Figure 7: Empirical Bayes estimated vs. true length scales for Matérn 1/2 kernel GP.

Figure 8: Empirical Bayes estimated vs. true length scales for Matérn 3/2 kernel GP.
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Figure 9: Empirical Bayes estimated vs. true length scales for Matérn 1/2 kernel GP.

Figure 10: Empirical Bayes estimated vs. true length scales for CAR kernel.
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E INFERENCE - SIMULATED DATA

Figure 11: Simulated data posterior predictive λ means for the RBF kernel

Figure 12: Simulated data posterior predictive λ means for the Mat́ern 3/2 kernel
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Figure 13: Simulated data posterior predictive λ means for the Mat́ern 5/2 kernel

Figure 14: Simulated data posterior predictive λ means for the CAR model kernel
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