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ABSTRACT

We study the problem of sampling from strongly log-concave distributions over
R? using the Poisson midpoint discretization (a variant of the randomized mid-
point method) for overdamped/underdamped Langevin dynamics. We prove its
convergence in the 2-Wasserstein distance (JVs), achieving a cubic speedup in
dependence on the target accuracy (e) over the Euler-Maruyama discretization,
surpassing existing bounds for randomized midpoint methods. Notably, in the
case of underdamped Langevin dynamics, we demonstrate the complexity of W,
convergence is much smaller than the complexity lower bounds for convergence
in L? strong error established in the literature.

1 INTRODUCTION

Sampling from a density 7(x) o< exp(—f(z)) over R? is of fundamental interest in physics, eco-
nomics, and finance (Johannes & Polson, [2010; Von Toussaint, 2011} Kobyzev et al.| 2020). Appli-
cations in computer science include volume computation (Vempalal [2010) and bandit optimization
(Russo et al., 2018]).

A popular approach is Langevin Monte Carlo (LMC) which is the Euler-Maruyama discretization of
the continuous time Itd Stochastic Differential Equation (SDE) called (overdamped/underdamped)
Langevin Dynamics. The convergence of LMC has been extensively studied in the literature (Dur-
mus et al.| |2019; [Vempala & Wibisonol 2019; [Erdogdu et al.| [2022; (Cheng & Bartlett, 2018}, |Cheng
et al., 2018} Dalalyan & Riou-Durand, |2020; Altschuler et al., [2025) under various assumptions on
the target density 7, such as log-concavity and isoperimetry. The randomized midpoint discretiza-
tion for Langevin dynamics (RLMC), introduced by|Shen & Lee|(2019) and developed further by|Yu
et al.[(2024);|He et al.|(2021); |Altschuler & Chewi| (2024); |Altschuler et al.| (2025) considers a more
sophisticated alternative to LMC. This is a randomized discretization which reduces the bias in the
estimation of the Ito integral while introducing variance, leading to faster convergence bounds than
for LMC. The Poisson Midpoint Method for Langevin dynamics (PLMC) was introduced by |Kan-
dasamy & Nagaraj| (2024) as a variant of RLMC. While Kandasamy & Nagaraj| (2024) considered
the convergence of PLMC under general conditions (beyond strong log-concavity and isoperimetry)
for the total variation distance via entropic central limit theorem style arguments.

The literature has focused on understanding the sharp limits to the computational complexity of
sampling for various classes of algorithms, in terms of various problem parameters. In the case of
strongly log-concave sampling, the work of|Cao et al.| (202 1)) established lower bounds for the strong
L? error of randomized algorithms which discretize Underdamped Langevin Dynamics (ULD).
Strong L? error is the L? distance between the continuous time Ito SDE solution at time 7' and
the sampling algorithm output whenever they are driven by same Brownian motion. This demon-
strated that RLMC is an optimal discretization of ULD with respect to dimension and accuracy (up
to log factors), in terms of the strong L? error. However, sampling algorithm guarantees generally
consider ‘weak’ notions of distance such as total variation distance, Wasserstein distance, or the KL
divergence between the law of algorithm output and the target. In particular, Wasserstein-2 distance
bounds can consider the L? distance between algorithm output and the continuous time SDE driven
by different but arbitrarily coupled Brownian motions.
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In this work, we revisit the complexity of PLMC for strongly log-concave sampling in order to
obtain better insights into the fundamental computational limits of sampling algorithms. We provide
a sharp analysis via coupling arguments to obtain better convergence guarantees, which involves a
tight bound on the W, distance between a Gaussian random-variable and a perturbed Gaussian
random-variable. This is adopted from Alex Zhai’s proof of the Central Limit Theorem in W,
distance (Zhai, [2018), and leads to a substantial improvement in convergence guarantees.

1.1 OUR CONTRIBUTIONS

We consider the computational complexity of sampling from a log-concave target distribution
7(x) o< exp(—f(x)) over R%, with f well-conditioned (Assumption [1)) with condition number
and strong convexity constant a. Many classes of algorithms have been proposed and studied to this
end. We study PLMC, which is a randomized algorithm for the discretization of Langevin Dynam-
ics, with access only to V f(x) for arbitrary = € R, The computational complexity is measured in
terms of number of evaluations of V f(z) (the oracle complexity).

Limits of Sampling: Recent works have aimed to understand the best possible computational com-
plexity of sampling such that W3 (output, 7r) < ede in terms of ¢, d and «. (Cao et al.{(2021) show
that randomized algorithms which discretize ULD require an oracle complexity of (e ~2/%) to con-
verge in strong L? error; and RLMC achieves this rate up to logarithmic factors. It was thus widely

believed in the literature that the rate of (7)(6’2/ 3), achieved by RLMC, might also be the optimal
convergence rate in YW,. The main contribution of our work is that we show it is possible to obtain

O(e1/3) complexity. Specifically, we show that:

1. Overdamped PLMC has an oracle complexity of O [%} (Corollary .
_ 1ip+6 _p
2. Underdamped PLMC has an oracle complexity of (9[“72(13731 0 + SHEP% } (Corollary .

eipTs

Here p € N is arbitrary. For p > 3, this gives a complexity of @(671/ 3).

The best known convergence rate for overdamped LMC (in W) is an oracle complexity of @(6*2)
Durmus et al.| (2019). The convergence guarantee of @(6_2/ 3) for overdamped PLMC is thus a
cubic improvement in € dependence. The best known convergence rate for underdamped LMC (in
W) is an oracle complexity of O(e~1). The convergence rate of O(e~'/3) for underdamped LMC
is again a cubic improvement. A detailed comparison of results is in Tables|I{and

Concurrent work (Altschuler et al., [2025, Theorem 5.11) claims an oracle complexity of
O(K5/%d%/3 /€*/3) to achieve KL(output||r) < ¢ for RLMC. This implies a complexity of
O(K5/6d*/3 /€%/3) to achieve W3 < e%d via the 75 inequality. This improves the dependence on
x from x7/6 to k%/6 as compared to prior works, but with a worse dependence on d and the same
complexity in e.

Comparison to Strong Error Lower Bounds: The work of (Cao et al.| (2021) proves a lower
bound for the discretization error of underdamped Langevin dynamics via randomized algorithms.
In particular, given a probability space €2, f satisfying Assumption [I| and a Brownian Motion
Bi(w) : Q — R, consider the strong solution to equation[2]given by X7(w) = [Ur(w), Vo (w)] for
some 7' > 0. The algorithm A to approximate Ur(w) has oracle access to (V f(z), fot e dB;(w))

for any z € R?, ¢t € [0,7] and s € {0,2} along with independent randomness & € €. The al-
gorithm queries the oracle with (z,t) of choice multiple times to produce an estimate A(f,w,®)
for Ur(w). This includes the case of Underdamped RLMC and Underdamped LMC. Their main
result demonstrates that inf ac 4 sup; By o |Ur(w) — A(f,w,@)||? 2 C(T, L, ) 3%, where Ay
is the set of all randomized algorithms as above with N oracle queries. This error is the strong L?
error since the algorithm and the SDE are driven by the same Brownian motion. This shows that
algorithms of the class above need N = QK(@%) oracle queries to achieve strong L? error de and
Underdamped RLMC achieves this optimal bound.

However, sampling algorithm guarantees consider ‘weak errors’ which are distances between
Law (Ur(w)) and Law(A(f,w,@)). In particular, the Wasserstein-2 distance is the infimum of L?
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errors when Uy is driven by B, (w) and A(-) queries By (w) over all couplings of distinct Brownian
motions By(w) and Bj(w). Our results show Poisson ULMC queries the oracle Oy, 4( =5 ) times in

expectation to achieve W3 (Law (A(f,w,®)),m) < e%d, a quadratic improvement over RLMC.

We note that Kandasamy & Nagaraj| (2024) obtained a complexity upper bound of @dﬁ(ﬁ) for
Underdamped PLMC under LSI assumptions for achieving TV < e. The literature on sampling
algorithms compares bounds of the form W2 < % to bounds of the form TV < e (see Section D

Under this comparison our bound improves over prior art. However, we note that TV and W3
bounds cannot be directly related rigorously.

2 NOTATION AND PROBLEM SETUP

Let || - || denote the standard Euclidean norm over R? for some d and I denote the d x d identity
matrix. The notation z = O(y) and < y mean there exists a universal constant C' > 0 such
that z < Cy, and O(-) hides logarithmic factors. The notation Oy (-), Q,(-) mean the same as
O(+), Q(+) except that they hide log factors. The number of evaluations of V f by the algorithm is
referred to as ‘oracle complexity’. We call the number of arithmetic operations (such as addition
and multiplication) required on top of the oracle queries as ‘arithmetic complexity’. PLMC can be
implemented such that arithmetic complexity = O(d x oracle complexity) as shown in the sequel.
Thus, as is common in the literature, we only report the oracle complexity guarantees. Let Law (X))
denote the law of the random variable X . Given two probability measures p and v, we let Dky, (u||v)
denote the KL divergence and T'V(u, ) denote the total variation distance between them.

Given a sequence of probability measures j; over X;, for i € [n], a coupling is a probability measure
I" over the product space [ [, X; such that the marginal over X is 11;. A sequence of random variables
(X; ~ ;) are coupled if they are defined over a common probability space, since their joint law is
a coupling of (44;);e[n). The Wasserstein-2 distance between p and v is given by

WZ,::'f/ —yl|Pd¢(z, ),
5 (1, v) ceinf | |z — y[|"d¢ (@, y)

where I'(u, v) denotes the set of couplings of 1 and v. We make the following assumptions on f.

Assumption 1. The function f : RY — R is « strongly convex and L smooth for some o, L > 0.
That is, f is twice continuously differentiable over R? and for every z,y € R?, we have: f(y) —

f@) =2 (Vf(z),y —2) + §llz -yl and [V f(z) = V()| < L]z -yl
The target distribution, given by the density 7(x) o exp(—f(z)), is then called strongly log-
concave. Our goal is to sample a random variable X ~ p such that
2
d
Wi () < == )

We define the condition number x := % Our notion of complexity is the number of gradient calls
of F', in terms of the problem parameters x, d and e.

2.1 LANGEVIN MONTE CARLO

Suppose we wish to sample from 7 oc exp(— f(x)) in R%.

Overdamped LMC (OLMC) with step-size 7 is the discrete time algorithm defined by the follow-
ing iterates:

X1 = X =V f(Xe) + /2024,

where Z; € R? is an independent standard Gaussian. This is the Euler-Maruyama discretization of
Overdamped Langevin dynamics (OLD):

dX; = -V f(X;)dt + V2dB,

whose stationary distribution is 7. (Roberts & Tweediel, |1996))

1scaling g as considered in|Shen & Lee|(2019).



Under review as a conference paper at ICLR 2026

Underdamped LMC (ULMC): Let U; € R¢ denote position, and V; € R¢ denote momentum.
ULMC with step-size 7 is defined via the following recursion:

{%ﬂ } = A(n) Kﬂ —G(n) {vf (()Ut)} +T(n)Z,

where Z; € R2? is an independent standard Gaussian, and

am = 702N e = [ M

%(1 —e "My 0
Sl =277 e (1—e M1,
This is the Euler-Maruyama discretization of the underdamped Langevin dynamics:
AU, = Vidt, dVi = —V, — VF(U)dt + V2dB,. )
The stationary distribution of these dynamics is 7(U, V) o exp(—f(U) — |[V||?). (Eberle et al.,

2019; |Dalalyan & Riou-Durand, 2020)

2.2 POISSON MIDPOINT METHOD

The Poisson midpoint method is a discrete variant of the randomized midpoint method introduced
by Shen & Lee|(2019). The iterates of PLMC run in batches of size k; and can be interpreted as a
stochastic approximation of Langevin Monte-Carlo, with step-size n/k. Let t and 4 be integers, with
t>0and0<i<k-—1.

To emphasize the comparison with PLMC, we adopt the following notation for overdamped LMC:

2n

Xpip1 = Xoi — %Vf(Xt,i) + e

Xir1,0 = Xi ke
Here Y;; € R? denote independent standard Gaussians. Note that this is OLMC with step-size 1/k,

grouped into batches of size k. Now let Z; ; € R< be independent standard Gaussians, and H; ; be
independent Bernoulli random variables with parameter 1/k.

Overdamped PLMC is defined by the following recursions:
N . i L [2
X:,_i = X0 — %Vf(Xt,D) + jgo %Zt,j

. . . . . 2
Keirr = Kea = FVF(Ri0) +nHea(VF (Keo) = VAE) + ) T 20

Xt+1,0 = Xt,k
Remark 1. The iterates )N(;r , denote midpoints. They are defined the same way as in |Shen & Lee
(2019). The correction term nH; ;(Vf(X;0) — Vf(X:i)) decides whether we use the gradient
evaluated at our midpoint. In expectation over H; ;, the drift term is 7V f (f(j ;). However, we only
need to evaluate V f (X X+ ) when H,, = 1. With N; = fool H, ; we have EN; = 1. This means
we need an expected number of 2 gradient calls to f per batch including V f (Xt o). This facilitates
an efficient implementation of PLMC where X t+1,0 Can be computed directly from X +,0, With (’)( )

gradient calls and an arithmetic complexity of (9 ). This relies on the properties of jointly Gaussian
random variables, and is detailed in [Kandasam Nagaraj (2024 Section 2.2). This is explicated
to the case of overdamped PLMC in Algorithm |1}

Underdamped PLMC is defined in a similar manner, by the following recursions:
[jtt, _oa(m Ut,0 _~(n |V f(Uto) = n(E—1-7) ni _
] =) [Ba] ~e ) [F15+ Sa( =2y (3)

2The original paper contains a typo, which has been rectified in our exposition.
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Algorithm 1 Efficient Implementation of Overdamped PLMC Step.

Step 1. Generate I, = {i1,...,in, } suchthat H,; = lifand only if i € I;, and 43 < --- < ip,
Step 2. my o < 0, Z;,, ~ N(0,1) i.id. ig < 0,in,41 < k—1.Forl1 <n < N, + 1:

277(7% - in—l)

mtn — Mmt,n—-1 + k

Zt,'n»

Step 3. For 1 < n < Ny,

- i -
Xl = Koo = TV (o) +me.

Step 4.
N¢
Ay — % Z(Vf(xt,o) - Vf(len))
n=1
Step 5.

XH—LO — Xt,O — %Vf()zt,o) + Ay + MmN +1

)= ] o [P en (2 s ) [

Viit1 Vi 0
|:[:]t+1,0:| _ |:(:]t,k::|
Vit1,0 Vik
With A, G and I as defined in and Z; ; € R? being independent standard Gaussians.

Remark 2. As in the overdamped case, U,"; and V,*; denote midpoints, and the outcome of the
Bernoulli decides whether we evaluate the gfadient at'the midpoint. We note that the comments on
complexity in Remark [T] are also valid in the underdamped case. An efficient implementation of
underdamped PLMC is given in Algorithm 2]

We adopt the following notation for underdamped LMC, to emphasize the comparison to PLMC.
Utiv1| N\ |Usi| n\ |V f(Ut:) n )
{Vt,m} ’A(k) {Vt} G(k) [ 0 +F(k)Yt’“

Uerro0| _ Utk

Vit1,0 Vik|’
where Y; ; € R2? is an independent standard Gaussian. Note that this is underdamped LMC with
step-size 7/k, grouped into batches of size k.

2.3 PRIOR WORK

Recent works have focused on the rigorous theoretical analysis of classical and popular MCMC
algorithms to establish complexity bounds and theoretical limits. The prototypical case of Over-
damped LMC has been studied when the target 7 is strongly log-concave and more generally when
7 satisfies isoperimetric inequalities (Dalalyan, 2017; Durmus & Moulines, [2017; |Durmus et al.,
2019; [Vempala & Wibisono, 2019; [Erdogdu & Hosseinzadeh, 2021} Mou et al., |2022; Balasubra-
manian et al.} [2022)). Underdamped LMC has been considered as a faster alternative. This case too
has been well studied when 7 is strongly log-concave and when 7 satisfies isoperimetric inequali-
ties (Cheng et al.l 2018} Dalalyan & Riou-Durand, 2020; (Ganesh & Talwar, 2020; Ma et al.| 2021}
Zhang et al.| {2023} |Altschuler et al., [2025))

LMC is the Euler-Maruyama discretization of continuous time Langevin Dynamics, which can lead
to sub-optimal convergence due to statistical bias in the approximation. Thus, [Shen & Lee|(2019)
introduced the randomized midpoint method for LMC (RLMC) which reduces the bias in the ap-
proximation by introducing a randomized estimator at the cost of higher variance. RLMC does not
involve higher order derivatives of V f as in Runge-Kutta schemes for SDEs (Kloeden et al.l [1992)
- allowing its use for generative modeling with denoising diffusion models (Kandasamy & Nagaraj,
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Table 1: Complexity for discretized OLD. In case of LSI, x = Lx LSI constant. The scaling of W2
is different from equation |I| to compare with TV and KL bounds.

Overdamped Langevin Dynamics

| |
| Algorithm | Assumption | Metric | Oracle Complexity |
| LMC Durmus et al. |(2019) | Strongly Log-Concave | \/\/22 < % | ’:—Qd |
| RLMC Shen & Lee|(2019); Yu etal. (2024} | Strongly Log-Concave | W3 < & | =¥ 4 a2l0d2/5 |
| RLMC |Altschuler & Chewi |(2024) | Strongly Log-Concave | KL < €2 | "\E/E |
| RLMC|Altschuler & Chewi (2024 | Lsi | kKL< ez | =22va |
| PLMC (Ours) | Strongly Log-Concave | W3 < % | W |

Table 2: Complexity for discretized ULD. In case of LSI, k = Lx LSI constant. The scaling of VW32
is different from equationm to compare with TV and KL bounds, and p € N is arbitrary.

Underdamped Langevin Dynamics

| Algorithm | Assumption | Metric | Oracle Complexity ‘
‘ LMC Dalalyan & Riou-Durand |(2020) ‘ Strongly Log-Concave ‘ W22 < % ‘ % ‘
‘ RLMC|Shen & Lee|(2019};|Yu et al. (2024} ‘ Strongly Log-Concave ‘ W32 < % ‘ id;//; + % ‘
17 5
‘ PLMC |[Kandasamy & Nagaraj|(2024) ‘ LSI ‘ TV<e ‘ nl fg” ‘
11p4+6 3p+2
2 7/641/3
PLMC (Ours) Strongly Log-Concave sz < < E 2173/ + & 8p+2+d28p+6
e4p+3

2024). This leads to improvement in the convergence rates compared to LMC under log concavity
(see Tables |I| and |Z[) He et al.| (2021)); ' Yu et al.| (2024); [Altschuler & Chewi| (2024); Altschuler et al.
(2025)) extend the bounds in|Shen & Lee (2019).

Kandasamy & Nagaraj (2024)) introduced the Poisson midpoint method for LMC (PLMC), a variant
of RLMC, which converges whenever LMC converges, allowing analysis beyond log-concavity.
PLMC gives a quadratic improvement in complexity in terms of ¢ when 7 satisfies Logarithmic
Sobolev Inequalities (LSI). Our work shows a cubic improvement for PLMC under strong log-
concavity.

The literature on MCMC considers various notions of convergence including KL-divergence, TV

and Ws. In the case when 7 is strongly log-concave, the Otto-Villani Theorem (Otto & Villani,
2000) shows that Dk, (u||7) < €2 = W3(u,7) < % and the Pinsker’s inequality shows that

Dxr(p||7) < €2 = TV(u,7) < e. The condition of 7 satisfying LSI is more general than strong
log-concavity of the target. We refer to Tables [I|and [2] for a detailed comparison of the results.

3  RESULTS
We now present our main results. The following Theorem on the convergence of overdamped PLMC
is proven in Section[C]

Theorem 1. Let X. +,; denote the iterates of Overdamped PLMC, and X ; the iterates of Overdamped

LMC with stepsize 77/ k, as defined in Section [2.2] E Assume nL <1 / 8, and Assumption l Then
there exist absolute Constants c1 and c5 such that

W3 (Law(X10), Law(Xu0)) S(n°Lidk +n*L? + L) - (Ldt + LE(f(Xo,0) — (X))

T n3L4 + n*L*d* 4442 +exp(cld (02772L2k)71) . n2§2d,
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The above theorem shows that X +,0 1s close to X, o in Wasserstein-2 distance. However, running tk
iterations of PLMC requires only O(t) gradient calls, as compared to ¢tk gradient calls for LMC. In
the following corollary, we combine the Theoremmwith the convergence results for X, ; to 7 given

in|Durmus et al.|(2019) to deduce the convergence of )N(t,i. We refer to Sectionfor its proof.

Corollary 1. Let )N(to be the iterates of Overdamped PLMC as in Theorem Let x* be the unique
minimizer of f, and € > 0. Assume:

1. The conditions from Theorem [T hold.

2. X satisfies E[f(Xo,0) — f(z*)] < C}xd for some Cy > 0.

Then there exist constants C'1,Cy > 0 depending only on C, log(M) and log(1/€),
1

Ql/3e2/3  2/8

polynomially, such that if n = Cimin(“%F—, fm7), k < max(”—2 ) and N =
PEYERIVE
Cs [%]Then,

Wi (Law(Xn0),7) < €d/a
Remark 3. The complexity bound for Overdamped LMC (Durmus et al., 2019) is O(x/€2) gradient

calls, and that of Overdamped RLMC (Yu et al. [2024) is (9( ;1 & 75 ) gradient calls. To our
knowledge, our method is thus the best known discretization of overdamped Langevin dynamics,
in terms of ¢ dependence. Note that our assumption on the initialization is very mild - f can be
optimized easily using standard convex optimization algorithms.

The following Theorem, proved in Section[F] considers Underdamped Langevin Dynamics:

Theorem 2. Let Ut i denote the iterates of Underdamped PLMC, and U, ; denote the iterates of
Underdamped LMC with step-size 1/k, as defined in Sect1onn 2.2l Let p > 0 be any integer. There
exists c¢g > 0, which depends only on p such that if:

1. Assumption [ holds.

3p—14p—172p

2.y <co, E < \F,and"T<co

3.y = cwﬁ for some constant ¢, > /2.

Then, Wg(LaW(Ut,i),LaW(UM)) - O[" Lg/gdt—i— n L d? 24+ 714P+4kf’—152p+2dp+1tp+1]

+ E[By ([Vo,oll, If(\Ifo) — F()M)],

Where O hides constants depending only on cg, cy. P is a polyn0m1a1 whose coefficients are high
powers of 1 and depend on p, ¢, and ¥ is defined as ¥, := = U, 0+ V .0- The complete bound is
explicated in Section [F.3] for the sake of clarity.

The bound in Theorem 2] holds for any choice of nonnegative integer p. The presence of p is due
to the manner in which we bound a certain low probability event - see the proof of Proposition [3]
Similar to Corollary|[T] the following Corollary (proved in Section[H) establishes complexity bounds.
Corollary 2. Let Um‘ denote the iterates of Underdamped PLMC, as in Theorem [2| Let x* be the
unique minimizer of f, and p € N U {0} be fixed. Let k =< max([%}, 1), and v = ¢,VL as
in Theorem 2| Initialize the iterates with Vo ~ N (0,1,)
n = max(2,p + 1), and some constant ¢; > 0 depending only on p.

Then there exist C3, Cy, C5 > 0 depending on p and polynomially on log(%ﬁ) and log(%),

p+2 5
. . 1/3 ip+3 . _ _2p—3
such that: if 7 = Camin | 2575 =, —5~ ,0 < e < Cymin(k~ Y2, 57720 d/?)
d 1 8pF6 d1p+3 /I,
11p+6 P
7/6 71/6 8 +6 4p+3
and N = C5 [~ 6173 + &P pﬂzp |, we have
edp+3

Ws (Law(Un.0),7) < €2d/a.
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The complexity bound for Underdamped LMC is O(x3/2/¢) (Cheng et al., 2018), and that of Un-
derdamped RLMC is (’N)(% + 62%) (Shen & Leel 2019).

Remark 4. Our assumption on the initialization is standard in the literature (Vempala & Wibisono,
2019;[Shen & Lee},[2019), and satisfied (for example) by A (z*,14/L).

1. With p = 0, we get a complexity of O( "72?7;/6 + =27)-

13/10 41/5

2. With p = 3, we get a complexity of @(“T)
3. For p > 3, the second term becomes lower order in € and the oracle complexity satisfies
Ora( 5 + aromm)-
Bemark 5. The concurrent work of |Altschuler et al.| (2025) claims an oracle complexity of
O(r>/8d5/3 [€2/3) to achieve KL < ¢2. This is in the low friction regime v =< +/c, and for a

double midpoint implementation of Underdamped RLMC. This has improved dependence in « as
compared to prior works, but is worse in d and without improvement in €.

Our work improves dependence in € while being worse in d. To our knowledge, PLMC is the
best known discretization of underdamped Langevin dynamics in terms of €, and is the first known

algorithm to break the @(6_2/ 3) barrier for strongly log-concave sampling.

4 INTUITION AND PROOF IDEA

Our proof relies on the following key Lemma. This is similar to Lemma 7 of Kandasamy & Nagaraj
(2024), which was in turn adapted from Zhai| (2018)). The difference is that our result avoids higher
order moments, making it significantly easier to apply.

Lemma 1. Let V be a random vector in R satisfying the following conditions:
L ||V]| < Bas,E[V]=0,and E[VVT] = 3.
2. V lies in a one-dimensional subspace almost surely.

Let the random vector Z ~ N(0, 1), and independent of V. Let v = Tr(X), Then,

11
W3 (Law(Z), Law(Z + V)) < 71/2 + 155257 - 20

A naive bound would be W3(Law(Z), Law(Z + V)) < v, which corresponds to the Gaussians
being coupled identically. Note that v can be much smaller than v, and this leads to our sharp
result.

Interpreting overdamped PLMC as LMC with perturbed Gaussian noise. From the definition
in Section overdamped PLMC can be written as follows.

- - - om -
Xiiv1 = Xei — %Vf(Xm) + %Zt,h

where Zt,i denotes the perturbed Gaussian and is given by the following expression.

Zii = \/@(Ht,i —1/k)(Vf(Xeo) — V(X)) + \/g(w(fm) — VX)) + Zes

Conditioned on the previous iterates Xt,O,X;r , and X, ,, this is a Gaussian with mean B;; =

\/%(Vf()zm) — Vf(f(:fi» perturbed by the zero-mean random vector S;; = \/%k(Hm -
1/k)(Vf(Xt0) — Vf(X;;)). Note that Sy ; lies in a one dimensional subspace a.s., since it is
determined by the Bernoulli (H,; — 1/k).

Gradient descent is contractive. Given ) < 1, and that f is well-conditioned (Assumption [T, the
map T'(z) = x — nV f(x) is Lipschitz with parameter (1 — an).
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Constructing a coupling. As seen in Section iterates of Langevin Monte-Carlo are defined by

2
Xpip1 = Xpi — QVf(Xt,i) +4/ ;’Ym

In order to couple X i1 and X t,i+1, we firstlet X; ; and X +,; be coupled optimally. Conditioned on
X, Xt is Xt ; and Xt 0, we couple Y} ; and Zt ; optimally as per the bound established in Lemma
[1] This allows us to produce a recursion of the following form.

W3 (Law (X4,541), Law(X¢,i11)) < (1 — %)Wg(LaW(Xt,i):LaW(Xtyi)) + Eti,
where I ; is an appropriate bound on the discretization error.
Bounding the discretization error. The application of the CLT as detailed above gives us terms of
the form E|| X, ; — X, o||P and E| |Xt+l — X 0||? for some p € N. These can be bounded in terms of
E||V f(X;0)|[? and Gaussian moments. We then reduce the bounds to E||V f(X ¢)||? rather than
E||V f(X¢0)||P, and then apply the following gradient bound, which we believe is tight.
Lemma 2. Assuming nL < 1/8, the following bound is true.

ST EIVA(K0)l? S %E[f(ffo,o) — F(Xn0)] + LaN.

This is proven in Section @} It is known (Vempala & Wibisonol 2019, Lemma 11) that
Jza IV f(x)||?dr(x) < Ld under smoothness. This bound is tight when 7 is Gaussian. There-
fore, we expect that the dominant term LdN in our bound cannot be improved at stationarity.

The underdamped case. We make the following coordinate change for the iterates of underdamped

LMC/PLMC. I
T T d 0
{y} - M {y} , where M = |:Id %Id:| .

Under this transformation, and with appropriate step-size; the deterministic component of the
ULMC recursion is contractive. For a precise statement, see Lemma 16 of Zhang et al. (2023).
We denote W, ; = Uy ; + %Vm7 and X;; = [Upi, Wi i) 7.

Under our transformation M, for appropriate matrices A nq, G aq, I ¢ defined in Section[F] we have:

e a(2)[8] -0 (2) [ 2
Xiv1,0 =Xk

This allows the ULMC recursion to be interpreted as a noisy contraction similar to OLMC. Define

TR R by
r Lﬂ = Am(n) Lﬂ —Gm(n) [VJ:)(U)] '

Then T is Lipschitz with constant (1 — % + an) (Zhang et al.| 2023, Lemma 16), and is hence
contractive for small 7. Using this perspective, we are able to follow a similar proof technique as in
the overdamped case. In this case, we require bounds on the moments E||V f(Uy o)||? and E||V; o| [P
We use Theorem[d] to bound these moments.

5 CONCLUSION:

We considered the Poisson Midpoint discretization of Overdamped and Underdamped Langevin
Dynamics, and showed state of the art oracle complexity of O a( /3) for convergence in the
Wasserstein-2 distance to the strong log-concave stationary law 7. This breaks the conjectured lower
bound of Q,; 4( = /3) Our work is an effort towards understandlng the fundamental computational
complexity of samphng from strongly log-concave distributions in terms of «, € and d, and shows
an improved bound in terms of €. Concurrent work (Altschuler et al., 2025)) claims an improvement
of the state of the art dependence on x (from £7/6 — k°/6) but with a worse dependence on ¢, d.
In future, we hope to explore techniques which simultaneously improve dependence on all three
parameters. In particular, we believe our result can be improved in « if we obtain tight bounds on
the moments E||V f(Uy )||” and E||V; o||? (Remark , and this is an avenue for future research.
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A EFFICIENT IMPLEMENTATION OF UNDERDAMPED PLMC

Algorithm 2 Efficient Implementation of Underdamped PLMC Step.

Step 1. Generate I, = {i1,...,in,} suchthat H,;, = 1iff ¢ € I;, and i; < --- < i, without loss
of generality.
Step 2. Let m; o < 0, and Z;,, € R be a sequence of i.i.d. standard Gaussians. For 1 < n <

Nt + 1: ) ) ) )
Mg A(W)mm—l i F(W)an

with the convention that o = O and iy, +1 =k — 1.
Step 3. For 1 < n < Ny, compute

U, Nin\ [Ueo Min\ [V£(Uro)
[f/tj;n A Vio ~G() [0+ men
Step 4. Compute the correction term:

A kS ALy [W(Ut,o) - Vf@t-n)]

k k 0

Step 5. Compute Ut+1,0 and ‘7t+1,0 :

|:qt+1,0:| — A(n) |:qt,0:| _ G(n) |:Vf(Ut,0):| + At + M, N, +1
Vit1.0 Vio 0

B PROOF OF LEMMA [T]

By the triangle inequality for W,, we have
Wi (Law(Z), Law(Z + V)) < 2W2(Law(Z), Law(y/I4 + £2))
+ 2W;3 (Law(y/14 + £Z),Law(Z + V))

The latter term is a Wasserstein distance between Gaussians, which has the following closed form.
1
WE(VIg+EW,Z) =4+ 20— 4/1+v < 51/2.

The former term is bounded below (Lemma ), using a key result due to Alex Zhai. We check that
the proof by Zhail (2018, Lemma 1.6) does not require n to be an integer and state the following:

Lemma 3 (Lemma 1.6, [Zhai| (2018))). Let n > 0 and let Y be an R* valued random variable with
mean 0, covariance ¥/n and ||Y|| < % almost surely. For ¢ > 0, let Z; denote a Gaussian of mean
0 and covariance ¢ independent of Y. Let o2, denote the smallest eigenvalue of X. Then, for any
n=

32_2,wehave
5VEf
Z,Zq_ Y) < .
Wa(Z1, 211 +Y) < o/

We note that the following Lemma is similar in form and proof to Lemma 7 of [Kandasamy &
Nagaraj| (2024)).

Lemma 4. Let V be a random vector in R satisfying the following conditions:
1. |V||<Bas.,E[V]=0,and E[VVT] = 3.

2. V lies in a one-dimensional subspace almost surely.

12
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Suppose the random vector Z is distributed as N'(0,1;), and independent of V. Let v = Tr(X),
Then,

W3 (Law (/I + $Z),Law(Z + V)) < 502 + 155251 - 20.

Proof. These distributions are the same along all directions perpendicular to V. We couple those
directions identically. Let V'’ denote the projection of V' onto the direction spanned by itself, and Z’
denote a one-dimensional Gaussian. We get

Wa(Law (/14 + XZ),Law(Z + V) < Wa(Law(V1 + vZ'),Law(Z' + V"))
= VI+ oW, (Law(Z'), Law( A= + X)),

Nowsetk=1,n=1+ %, and 3 — B+/n. Here opin = 1, which means 532 < 1 is sufficient to
apply Lemma 3]
2,2
M < B2
14+v

When 532 > 1, we couple Law(y/1 + vZ’) and Law(Z’ + V') to have the same Gaussian noise
Z', with V' sampled independently of Z’. A simple computation yields

15ﬁ2§1 . WQQ(LEIW(\/ Id + EZ),LEIW(Z -+ V)) S 15/32§1 .

15251 - Wa(Law(V1+vZ'),Law(Z' + V') < 1552+, - 2.

C PROOF FOR OVERDAMPED PLMC

Recall from Section [2;2] that X, ; denote the iterates of overdamped Langevin Monte Carlo with
step-size ;1. Similarly X ; denote the iterates of Poisson overdamped Langevin Monte Carlo with
n

step size 1, and le denote midpoints.

2
Xiiv1 =X — %vf(Xt,i) +4/ %Ytz
Xpiv1=Xpi— va(Xt,O) +nHi(V(Xeo) = VAXS) +

) i
- - e - 2n
XQLZ =Xi0— va(Xt,o) +1/ - ; Zy j

The sequences Z; ; and Y; ; are i.i.d. standard Gaussians, and H, ; are independent Bernoullis with
parameter 1/k. All random variables above live on the same probability space, with a coupling we
will specify. To interpret PLMC as LMC with a perturbed noise, we write

2n
=z,
k"

- - - M ~
Xiit1 = Xei — %vf(Xt,i) +1/ %Zt,h
where Zt,i denotes the perturbed Gaussian and is given by the following expression.

Zyi = %(Hm —1/k)(Vf(Xi0) = VFAX)) + \/Z(Vf(fft,i) — VX)) + Zea

Let By = /55 (Vf(Xy:) — VA(X[)), and Sy ; = @(Hm — 1/k)(Vf(Xi0) = VX))

We refer to these as the bias and variance terms respectively.

Define the event: B - -
g = {Xt,[) = y07Xt,i = vat—i—z = y+7Xt,i = I}’

with z,y,y" and yo being arbitrary points in R?. For any valid coupling of X, 41 and Xt,i+1
conditioned on G, the following holds.

13
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Proposition 1. Let Assumption hold and let % < 1. Then we have,

an 9InL? 2n
WHQ—ZJJFHZ‘F ?E[Hzt,i‘f‘sm —Y,.4l1%(9].

E[||Xt,i+1— Xp,i41]1G6] < (1— o

)|l —yl*+

The proof of this Proposition is in Section[D.T] The first term arises from the contractivity of gradient
descent, while the second term comes from the bias. We apply Lemma [I|to bound the final term.

Corollary 3. Let v = Tr(S;,;5¢;|G), and 52 = %LQHyO —yt||%. Let € € U(Xw,f(t’i,f(;;,Xt’i)
be an event. Conditioned on G, there exists a coupling of Y; ;, H; ; and Z; ; such that under Assump-

tion [T}
11
E[HZt,Z + St,i — }/t’71||2|g] S (15 + 15ﬁ2>1) . 2V + 15@ . ?V2.

Proof. Under the event £, we couple the Gaussians Y; ; and Z; ; identically (i.e, Y; ; = Z; ;). This
gives E[|| Z;.; + St.i — Yi.4||2|G] = E[||S¢.i||?|G] = v. Under £¢, couple them as in the Lemma O

Remark 6. Note that E(H,; — 1/k)? < 1/k, sov < n?L?|| X, — X;Hz The above Corollary
is a slight technical modification of Lemma [I} We later choose £ so that we may neglect terms
proportional to ||V f(X; 0)||*, arising from our bounds on »2. This is detailed in Lemma

With the above results, we produce an explicit coupling of X; ;11 and )N(murl to bound the Wasser-
stein distance between their distributions. This involves coupling X, ; optimally with X, ;, and

bounding movement terms of the form E|| X, ; — X, o||” and E||X;"; — X; o||P. These moments can
be reduced to gradient and Gaussian terms, using the following Lemma.

Lemma 5 (Lemma 12, |Kandasamy & Nagaraj| (2024)). Let M; = supg<; || ZLO \/%Zmﬂ,
and p € N. Let N; := Zi:ol H, ;. Then the following bounds are true.

sup  ||1X;5; = Xeoll < nllVF(Xeo)ll + M
0<i<k—1

sup || X[ — Xeall < nLNy sup [|X[} — Xooll.
0<i<k—1 i<k—1

E[Mtp,k] < (Ud)p/2-

The following Lemma is proven in Section[D.2]

Lemma 6. Assume nL/k < 1, and Assumption [I} Then there exist absolute constants ¢1,cy > 0
such that

~ [e% ~
W2(Law(X,141), Law (X, i41)) < (1 — 2TZ)wg(szv(Xt,,r), Law(X,,)) + Ey.;, where

4L2 5L4 -
<, 674 n n 2
Eui S(nPLid+ T+ D BV (X |
A7Ag  pPLAGR B 3L2d
+nozk + — +texp(crd = (cnLk) b2 ko

Finishing the proof. Open the recursion in Lemma 6] summing the constant terms as a geometric
series.

t—1
~ ~ 4 ~
W3(X1.0, Xe0) S exp(—ant) W3 (Xo,0, Xo.0) + (n°Lkd + 5 L? + L) > EVF(Xeo)ll?
s=0

?73L4d 1’}4L4d2

2124
+ 12 1
[0

+exp(erd — (e’ L) 1) - ———.

Note that Xgo = Xp,0, 50 W3(Xo,0, X0,0) = 0. The gradient term Eivzf)lIEHVf(f(t,o)HQ is
bounded in the following Lemma 2] proven in Section
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D DEFERRED PROOFS FOR OVERDAMPED PLMC

D.1 PROOF OF PROPOSITION[I]

Let T(x) = « — £V f(x). Under the assumption an/k < 1, it follows from the strong convexity
and smoothness of f that 7" is a contraction with Lipschitz constant (1 — ). By definition, we have

2 . . 2n -
X = T(Xes) + \/gm, and X, 41 = T(X,,) + \/?"Zm.

Under the event G, we have:

. M _
[ Xt,i41 — Xeisal” = [T (z) = T(w)|I* + ?HYM — Zeil)?

. z\/%:" (Yii = Zots T(x) - T(y)

Conditioned on G, (H;,; — 1/k) has zero mean, and Y, ;, Z, ; are standard Gaussians. This leads to

E[l[ Xtis1 = Xeiea]*1G) = 1T (x) = T(y)]|* ~ 2%Wf(y) = V"), T(x) - T(y)

2 -
+ ZLE(1Yei — Zual?l0]
an 2nL an
< (1= Pyl + 220 - Sy =yl e -yl

2 ~
+ ZTE[Ysi - Zual1)

The second term is bounded using the AM-GM inequality. For any arbitrary v > 0,

2L N 4 L? 2. 2
- ly—y ||‘||$—y||§77 ly =717 + 5 lle = yll*.
In particular, with v = ank/2,
Qan o 2, 2nL an +
1— 22 — D21 = Dy =y - e —
A=)l =yl + == = =lly =yl - l= — y]
an an 5 an, 8nL? 2
<(1-a - Yy - 1— T,
<=2 g2 4 1= S Iy
Qan o 2 877L2 +112
<(1- 22, - =1y — |12
< (- 20— g2 Sy )
By definition of Zt,i,

Zoi = Yoi = \| 5 (VIW) = VW) + Zes 4 St = Vi

Square both sides, noting that E[Z; ; + S; ; — Y;,|G] = 0, and ||V f(y) =V f(yT)||? < L2|ly—yT|]?
under assumption[I] This gives

2n ~ n2L2 2n
2BV, — Zal?10) = Ty — 1 + L[ 20 + Sui — Vil 0]
nL?

ak

IN

2n
ly —y** + — EllZei + St — Yiall?19).

D.2 PROOF OF LEMMA [6]

Proof. Recall the definition G := {)N(m = yo,f(t,i = y,f(t’;» = y*,Xt,,» = z}. Conditioned on G,
we have:
2
Xijit1 =2 — %Vf(x) + %YH

15



Under review as a conference paper at ICLR 2026

Xeiv1 =y +nHi(V(yo) — VIyh)) - gvf(yo) + \/?Zt,z*

Conditioned on G, we couple (Z;;,H;;) and Y;; as in Corollary This allows us
to define (X¢;4+1,X¢i+1) using the equations above and gives a conditional coupling of
(Yeyis Heiy Ziis Xejigr, Xejiv1)-

We produce an unconditional coupling as follows: Couple X, ; and Xt i optlmally w.rt. to Wa,
then sample X , and Xt o jointly conditioned on Xt ;. Conditioned on (Xt T Xt 0y Xt,i, X, 4) (e,
(Xt 0 Xt i Xt 5> X1.:)), we then sample (Z;, i Yii Hiso Xiig1, X, l+1) from the conditional cou-

pling described above. Taking the expectation in Proposmonm and using the bounds in Corollary 3]
we get:

Wi (Xiv1, Xeiv1)? < (1— 2k

2 ~ ~
R X — X2+ JE[(Le + 1sges1) - 20 + Lee - Ho?] and € €

(Xt 0, Xt i Xt i Xt i) 1s any event. We choose a particular event £ and bound the latter term
in Lemmam The former term is bounded below, using items 1 and 2 of Lemmal[5]

) Wz (X, th 7.) + B4,

where E; ;

~

L2 ~ ~ 3L4
o Bl = X7 S T0E N sup (X0 - X5

ak

Note that N, is independent of 3o and y T, and E[N?] < 1. Along with item 2 of Lemma this
gives

nL? % 2 n°L 2, n*L* 2
—E|| X:; — < E V(X E[M
LB % — X7 VI (o)l + LB,
5 4
77L 5 o  ntLid
< E||Vf(X, —_—
S LRIV (o)l + T

D.3 PROOF OF LEMMA[Z]
Proof. Since f is smooth, we have (Lemma 3.4, Bubeck et al.| (2015))
f(Xt-H,O) - f(Xuo) < <Vf()~(t,o), Xt+1,o - Xt,0> + %HXHLO - Xt,0||2~
By definition, Xi110 — Xeo = —nVf(Xeo) + Sig nHei(VF(Xeo) — VX)) +
S o227, ;. Since E[H, ;] = 1/k and E[Z, ;] = 0,

E(Vf(X10), Xer1,0 — Xe0) < —nE[|Vf(Xe0)||”
k—1

3 TEIVI(Xeo) |- V£ (Reo) = VIER)

=0

k—1
< —JE|Vf(Xro) ||2+Z SE[Vf(Xe0) = VAL

IN

“IRIVHE )P+ 2 sup E|VS(XKio) = VAX)I
2 2 p<i<k—1

IN

7’] ~ ~
—SEIVAX0)l? +n° L2V (Xe0)|I” +n°Ld.
Where in the second and final steps we used ab < % and Lemmarespectively. Now we use
la+b]1% < 2(all + [Bl[?) and B[l S5, 1/ 32 Ze,il|* = 2nd to get
k—1

*HXf+1 0= Xioll> <LV F(Xeo)ll® + LI Y His(VF(Xi0) = VAEI))? + 2nLd,
=0
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Let N, = Zf;ol H, ;. Note that E[N?] < 2, and N, is independent of )N(m. Triangle inequality and
[ give
k—1 ) .
WPLE| Y Hio(Vf(Xio) = VAXII® < n*LE[N;
i=0

sup  E[Vf(Xp0) — VX
0<i<k—1

< 40 L°E||V f(Xo.0)| + 40 Ld.
Under our assumption 7L < 1/8, the terms 1 L?(|V f(X1.0)||2, n* L*E||V f (X;.0)||?, n*L?d and
n3 L3d are negligible in order. Collecting the dominant terms, we get
ME|Vf(Xe0)|” S [f (Xr0) = F(Xi1,0)] + nLd.
This telescopes, leading to the result. O

D.4 PROOF OF COROLLARY ]

Proof. By triangle inequality on W,
W3 (Law(Xn ), ™) S Wi (Law(Xn,0), Law(Xn,0)) + W3 (Law(Xn,0), 7).

We show under the conditions of our Corollary that each of these terms is O(e?d /). To deal with
the second term, recall the following Theorem for the convergence of Langevin Monte-Carlo.

Theorem 3 (Corollary 10, Durmus et al.[(2019)). Suppose Assumption|I]is true. Let X, denote the
iterates of Langevin Monte-Carlo with step-size 7.. Then, with

€2 2W3 (X, m)a
_ £ > 2\ Xo, -1 -1
te= 2 ne Nlog PR, 1y

2
we have W3 (X, ,m) < %.

. 2 . .
By our choice of k, we have { < <. Note that the above Theorem goes through with an in-

k ~
so we have W3(Xn,m) < E%d for N = log(m)(an)’l. Let

62
4L ) e2d
Ly = 2max(CYy, log(W)). Now apply Theoremwith

equality n <

2/3 1/2 2/3 2/3 1/2

€

Li/gL’ /{1/4[/1/4[/’ dl/GLi/GLv w1/3L di/AL’

€ € € €

( Ca€? )1/3 ) l)

nxmm( c1d — log €2 L

and N as above, to see W3 (Law(Xn o), Law(Xn.0)) < e%d. O

E TECHNICAL RESULTS FOR OLMC

Lemma 7. Let § and v be defined as in Lemma Define the event £ € U(f(m, XM-, X;;., Xi)
4752 ~ Tr4 ~

by € = {1V f(Xp0)[I? < TV £(Xi0)[|I*}- Then

7]5 L4d2
k

4L2 ~
TRI(1Le + 1pasn) v+ Lee -22] S (P LA+ BV (Ko +
n3L3d

+exp(erd — (con®L2k) ™) .

where the expectation is taken over the distribution defined in the proof of [f]

Proof. Since H, ; is a Bernoulli random variable with parameter 1/k, we have E[(H;; — 1/k)?] <
1/k. This gives us an upper bound on v, since v = E[2*(H,; — 1/k)?||V f(yo) — Vf(y1)|?] <
#Hyo — y*||? under Assumption This gives
272 374
n n°L n°L
2l(Le +15p251) v+ Lee - V] S (L + 1sg2s1) - 5 llvo— yrIPP + e o — I

17
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Now we apply item 1 of Lemma [3]to obtain the following.

2L 7] n?L?
o — 312 5 IV AR o)+ T M2,
3L4 ,,7 3L4
o= v*1" S LEN s+ L,

Using (155251 + 1¢) < 1and 10 15 ||Vf(5(t,o)u4 < L2V £(X,0)||2, we obtain

4L2 ~
(e + Tsgesn) v+ Lee -] S [ VF(Reo) 2+

k t,k

>33

212

n
+(1e + 15ﬁ2>1)TMt,k'

The expectations of the second term and final terms are bounded in Lemmas [5] and [§] respectively.

Lemma 8. Let 5 and £ be as in Lemma There exists an absolute constants ¢, and ¢, such that

n3L%d

2L2 B
E[(15p251 + 1) - TMtz,k] < nPLAE(|V f(Xe0)|? + exp(crd — (can®L*k) ™) -

Proof. Note that & is independent of M; ;,, and by its definition we have 1¢ < 7> L2||V f(X;0)/?.
As aresult,

27,2 N n2L>2
Efle - T M2 < 0 LE||VF(X0o)|? - B[

M7 ).
Recall the definition of 3.

B < V/nkL|| X0 — X
_\fLHVthO ,/ Zztj

Applying triangle inequality and union bound, we get

Lyspor < WVBPPEPLIV f(Xo) | > 1) + H{VIONLI| Y Zuy) > 1)
j=0

Note that Xt,O is independent of M, ;.. To handle the second term below, apply Cauchy Schwarz
and a Gaussian concentration inequality.

n°L? 2 3/21.1/2 % n*L? 2
E[l54251 - TMt,k] < PVBn* 2K 2LV £ (X 0)]| > 1] - TE[Mt,iJ
! 12 n?L?
PVIOnL| . Zul > 1] ”k E[M},]?
j=0
< 37.72 v 21 L7 L 2
S PRLE(|V (X)) - LB,
2r?
+explerd — (e L2R) 1) - TEIM ]
Where c1, ¢, > 0 are absolute constants. Applying item 2 of Lemma 5] completes the proof. [
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F PROOF FOR UNDERDAMPED PLMC

F.1 BASIS CHANGE FOR CONTRACTIVITY

Recall from Section the definitions of Um, f/“ We make the following coordinate change for
the iterates of underdamped LMC/PLMC.

] I

{x —~ M m , where M = [Id 22 ] .

Y] ) d  5ld

We denote Wy ; = Uy ; + %Vm7 and W, ; = Uy ; + %f/m Similarly, Wtj,Li = [7;2 + %Vtt, and

,and Xy ; = |:I[}vaifl:| .

o (U] 5+ U,
X P = ~ 7){ .= bt
t, _Wt,i:| i, [th

The transformed iterates Um, Wt,i satisfy the following recursion.

] = () (] () [P a7

+ kil G (7)) {Vf(ﬁtvo) . Vf(Ut?)}

The matrices A, Gaq and T'pq account for the change of basis. It can be verified that Ay, =
MAM™L, and Gy = MG. Moreover, Iy, = MT, and these are explicated below.
'vh—(l—e);p(—vh))ld O]

1 . 101 — exp(—
Apm(h) = [§(1+e p(—vh))1y g(l exp( 'Yh))Id] , Gaq(h) = [’Y“(l_g’.‘p(_'yh))Id ol -

(1 —exp(—vh))Ig (1 + exp(—vh))Iy

~
4(1—exp(—yh)—(1—exp(2vh))+2vh I, 27h—(1—exp(2vh))1d
I3 (h) = i 0
M 2’yh—(1—exp(2’yh))1 4(1—exp(—'yh)+(1—exp(2’yh))+2’yhI
2 d ~2 d

In order to interpret this as ULMC with perturbed Gaussian noise, we write
Utit n\ [T, M [~V F(U) A
) = A () ) o G) |70 o () 2o
[Wmﬂ M) D) TG (N VA
The perturbed Gaussian Zt,i can be expressed as Zt_yi = Zi i+ Bt ; + S, where

B, =Ty} (%)GM (%) [vf(Ut,i) . Vf(U;i)]

St = k(Hyi — 1/k)T pq (%)_1@4 (3) {Vf@o) . Vf(ﬁtﬁ’)} .

Here By ;, St ; are called the bias and variance terms respectively.

The midpoints are given by

i—1

= () [Feo] - Gaa () [T+ T e (PE=LE0) 6 ()

Jj=0

T+
Upi
+
Wi

The iterates of underdamped LMC satisfy
Ut it1 (n) Ut,i (77) Vf(Ut:) (n)
: =Am| - = = ' Ll = )Y,
{WMJ M) (W) ~ M5 0 | M)t
Ut+1,0 _ Utk
Wit1,0 Wikl|®
Here Y;; and Z; ; are i.i.d. standard Gaussians, H,; are Bernoulli with parameter 1/k, and all

random variables above live on the same probability space with a coupling yet to be specified.

19



Under review as a conference paper at ICLR 2026

F.2 PROOF OVERVIEW

Our proof follows the same method as in the overdamped case. As before, We condition on the
previous iterates — with the following event:

~ ~ Y ~ +
g= {Xt,o =Yoo = [Zﬂ X =y = [g} 7X7j:7; :y+ = {:fﬁ} s Xei =1 = [Z] }7

where 4o, y,y" and x arbitrary points in R2¢. For any valid coupling of Xt i+1 and )N(murl, the
following holds.

Proposition 2. Assume 1/k < ﬁ, and 1 < o for sufficiently small ¢g > 0. Then with v =
Cy V'L for some ¢y > 2, the following holds.

~ a’r]
E[ Xei41 — Xeira|*1G) < (1= Q(%))le —y?

nL? ~n2 M 2
O[— - B[ Zes + Spi — Yo }
O[T — >+ TElIZui+ Si = Vil
The above Proposition is proved in Section The first term arises from the contractivity of the
ULMC update rule, while the second term comes from the bias. Having conditioned on G, we use
to bound the final term E[||Z;; + St — Y2.4/|°G]. We refer to Section for the proof of the
following proposition.

Proposition 3. Let p > 0 be an integer. Conditioned on G, there exists a coupling of Z; ;, H; ; and
Y; i such that

374 1 +2,.p—172p+2
SB[\ Zes + s — YealP10] S T [lug — |4 + ZEE I g — o242,

Remark 7. The presence of p is due to the manner in which handle the low probability event
{5p% > 1}, appearing in Lemma We use 155251 < 5P 3% with an appropriate bound on 327,
Each choice of p leads to a different error bound, so we write this in generality.

With the above results, we produce an explicit coupling of X, ;11 and X +i+1 to bound the Wasser-
stein distance between their distributions. This is done by coupling X; ; optimally with X; ;, then
bounding the moments E||u* —||? and E||ug — @||P. These moments contain gradient, momentum,
and Gaussian terms; and are handled via the following Lemma.

Lemma 9 (Lemma 21, Kandasamy & Nagaraj (2024)). Let II denote projection onto the position
axis: Tlu, v]" = [u, 0]". Let My, = supo<; <, [ 25— A(@)F(%)Zw”n. Then the following
inequalities are true.

102, = Teoll S nllVeoll + 0?1V £ (Te0)ll + Mo
p
E[M])] 5 eXP(%)Vp”an/Q(d + log k)P/2.

The proof of the following Lemma is given in Section|[G.2]

1
Lemma 10. Assume n/k < 7

some c > 2, the following is true.

,and 7 < ¢, for sufficiently small ¢y > 0. With v = ¢V/L for

~ ~ Tr4 ~
W3 (Law(X,i41), Law(Xei41)) < (1= QEE))IW3 (X, Xii) + O[%EHVM ?

974 ~ 8r4 Tr4 ~
+ LR EIV S (Uno)|? + 55 (d + log k) + L B[ Vi o

3p+4p—172p+2

1174 ~ 9754 ~
+ LBV F(Uro)lI* + L (d + log k) + A\ [ —2——E||V; |7

4 n5p+6kp—1L2p+2 (d + 1Og k_)p+1:|’

4p+5pp—172p+2
Y

P +2 E||Vf(0t,0)H2p+2 +

Where A, is a constant depending only on p.
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F.3 FINISHING THE PROOF

Open up the recursion, summing up the constant terms as a geometric series. This gives

Wg(LaW(Xt7O),LaW(Xt,0)) < exp (Q( O‘”t))W2 (Law(Xo,0), Law(Xo 0))

+

M=~

Tr4 ~ 9754 ~ Tr4
[ZEETiol? + ZEBIV S (T0)l?] + 52 (d + log k)

o

S

Sl

Tr4 ~ 1174 ~ 8r4
+ 3 [EEEIVioll* + LBV (T00) 1] + T (d + log k)?

S

=~
=)

3p+4ppr2p+2 5p+6p.py2p+2

300 [y 7 o 4 R g ()

s=

[=)

Ap+4pp 1 2p+2

+ AL (d + log k)PT!

(e

Note that X0 = Xo,0 by definition, so the first term is zero. The moments Zi:o E||V;.0|[?” and
ZZ:O E||Vf (Ut,o) ||?? are bounded the following Lemma.

Theorem 4 (Theorem 4, Kandasamy & Nagaraj| (2024)). Fix p > 1, and let Sy,(Vf)
Z?:OE|\Vf(Ut’0)||2p. Let S, (V) = ZtT:O E||V;0|?", and ¥, = Uy o + %f/}o There exist con-

3p—1Tp71L2p

stants Cp, ¢, ¢, > 0 such that whenever: v > C,, VL, ay < Cp, "T < €p, the following
results hold:

SQp(vf

(BNl + B (0 — £ 1] +

n
c T[% (T)"~19%] (d+ log k)"

Sup(V) < Gy [BIVaoll + EI(F(¥0) — ()P + 1]

+C,T [VL—Z: + (’ynT)p’l} (d + log k)P
Remark 8. We believe these bounds are suboptimal. When V is a standard Gaussian random vector,
we have E||V||?? = dP. Similarly, when f is L-smooth, it can be shown that

P

/I\Vf( ||2Pdr () H 2n — 1) - (Ld)P.

This is Lemma [T2] and is a generahzatlon of Lemma 11 from [Vempala & Wibisono| (2019). We
thus believe the dominant term in both bounds should be O(T'dP), whereas what we have is
O(nP~1TPdP). When T = 1/an, this is suboptimal in x dependence.

We substitute the bounds from [} ignoring lower order terms via the assumption v < cg.

W2(Law(Xy0), Law(X;0)) < L LS [EHVOHQHEI( (o f(\IfT)>++1]
+ B+ 1 (d+log k) + 25 [E[Vo|' + EI(F (o) — f(¥r)) " + 1]
Ay [f n (Ws)} (d + log k)2

3p+3 ka2p+2

A R [ V5 2742 4 BI(£(Wo) — F(@))HPH + 1]

+A "”fﬁiﬁzwt [T + (b)) (d + log ky*!

Ap+4pp 1 2p+2

+” (d+logk)+”L (d+log k)* + A, (d + log k)PT1.
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G DEFERRED PROOFS FOR ULMC

G.1 PROOF OF PROPOSITION[3]

IN

Proof. Let 8 = ”kL||u0 — ut|. By Proposmonwe have |G (BT () 2Gm(D)]|
k, and we know H;; < 1 since it is a Bernoulli. It follows that ||S;;[|* < B2. Now let v =
Tr(E[S:,:5/;1G]). Since E[(H;; — 1/k)?] < 1/k, it follows that v < %Huo —u't||%. Applying
LemmaT| gives

2 772 ! 4 77L2 2
EllZe,i + St — Vil *1G] S Juo — u¥|* + 155251 - v [ug — u™ ||
274 +1 2p+2
L 5p D ka P
S LE Bl — oI+ T g — a2

Pl

In the last line, we have used 155251 < (58%)P = w”u —uT||?P. Multiplying this inequal-

ity by % finishes the proof. O

G.2 PROOF OF LEMMA [10]

We will use the following bounds in the proof.

Lemma 11 (Lemmas 18/19, Kandasamy & Nagaraj| (2024)). Let IT : R2¢ — R2?¢ denote projection
onto the first d coordinates. Let G(h) and fl(h)~be as defined in the update rule for underdamped
Langevin Monte-Carlo in Section Let Uj"i, V;t and U, ;, V; ; denote the midpoints and iterates
respectively of Poisson-ULMC, as defined in Section Let || - || denote the operator norm of a

matrix, and || - |g~ denote the Euclidean norm in dimension n. Then the following inequalities are
true.
Jn | < n?
() em(E) | =
Mk )T~k
i1 o N .
U = U (=3 =Dy (1) [VI(Uro) = V()
< kH'.A( )G(—) t0 ti
H [VM—VH < D ki, k k 0
R2d 7=0 R2d

Proof. Recall the definition of G.

~ il ut u
g:{Xt,OZyO:|:wO:| XtZ: :|:1I}:|7X::Z:y+:|:w+:|’Xt’l:x:|:w:| }.

By definition, conditioned on G, we have

Xiip1 = AM(k)JH—G (k) {_vg(u)]-&-rmyt,i,

Xiiv1 = AM(k)y+G (k‘)[ V(J;( )] +FM(77>Z“'

) {Vf (uo) — éf (uw

+ kH,, - GM(

k 0

Conditioned on G, we couple Z;;, H;; and Y;; as in Lemma This allows us
to define (X;;41,X;,41) using the equations above and gives a conditional coupling of
(Zt,ia Hi 5, Y, Xtita, Xt,i+1) given G. ~

We produce an unconditional coupling as follows. Couple X; ; and X, ; optimally w.r.t. W, then
sample )N(;Ll and X; ¢ jointly conditioned on X; ;. Conditioned on (X; ;, X ,, )N(:fi, X:,0) we then
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sample (Z;, Y., Ht’i,Xt’iJthtyiH) from the conditional coupling described above. We now
take the expectation in Proposition 2] after substituting the bound in Proposition[3] This gives

a ~
W3 (Xt 41, X)) < (1 — Q(V—Z))WQQ(Xt,Z-, X14) + By, where

L2 . - - -
Bvi o pBIOS = Ouall® + L5 ENO = Dol

5Ppp+2fp—1[2p+2

E|U5 = Urol**2.

P2
We now bound each of the error terms individually. Recall N; := El 0 Ht i and let M, ; be as
defined in Lemma[0]
nL>? - nL? (i—1—jn 1\ [Vf(Uro) = VF(U)
T2 g\ TF — T2 < kH, || A (7)6‘ (f) t0 i
Ot’)/k H t,i t, || —= Oé")’k Z t,g M L M L 0
1—1
nL? 27177+ _ T 2
S B2 Hus IO~ Uil
7=0
n oLt 2 T+ T2
< IE[N su Ur. —U, }
~ ’yk t OS]E]C || t,g t;0||
574
n°L [ o2
< sup |10, = Ul
p 0<Jp 1U;; = Uroll
714 nSLA
n'L ~ L
S ok E|Viol* + (Tro)lI? + ok E[M?]
777L4 2 4
< WEIIVf(Uto)II (d+ log ).

In the first inequality, we have used item 2 of Lemma [T} In the second, we have used item 1 of
Lemmaﬂ;fl and Assumption[I] In the fourth we have used that N, is independent of the iterates, and
E[N;]? < 1. In the fifth and last inequalities, we have used items 1 and 2 of Lemma@respectlvely,
with the assumption that v7 is bounded.

n3 L
E[M;]

77
t,e Ut0||4< k

(Teo)ll* +

I, 5 1y 5 97,
e E||v;,o||4+ LRIV Gl +

- (d + log k).

The above inequality follows from items 1 and 2 of Lemma [9} with the assumption that 7 is
bounded. Now, for some constant )\, depending only on p:

5p77p+2 fep—1712p+2 3p+4 p—172p+2

S EIO = DuolH < [ Vi
D 1 + T gpa ey
< )\p WEH%DH%H + WEHVf(Um)HZPH
MR L (1 og k;)P+1] .
As before, the above inequality follows from items 1 and 2 of Lemmal[9)] O

H PROOF OF COROLLARY

Proof. Triangle inequality on W, gives
W3 (Un,0,m) S W5 (Un,0, Unyo) + W3 (Uno, ™) < W3(Xn0, Xnj0) + Wi (Un o, ).
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Under the conditions of the Corollary, we show that both these terms are < e%‘i. Recall the following
Theorem for the convergence of Underdamped LMC.

Theorem 5 (Corollary of Theorem 2, |Dalalyan & Riou-Durand| (2020)). Let f satisfy Assumption
In addition, let the initial condition of ULMC be drawn from the product distribution y =

N(0,1) ® vp. For vy = V'L and step-size h = 0. i{}f the distribution v, of the kth iterate of

the ULMC algorithm satisfies W3 (v, ) < <2 d for k > c3 - log M and some absolute
constant c3.

With k defined as in the Corollary we have 7 < e*éa. Note that the Theorem above is valid

with an inequality h < % rather than equality, so we get W3(Uy o, m) < Ez—d for N >

637 log \/%W\%Vm

™) 1t remains to be shown that W3 (XN 0, XnNo) S &2 d . Let n be a natural num-

ber. Under our assumptions on Vg ¢ and Uy o, we have E|[Vp|[?" = d" and

(f(Wo) — f(¥p))T < f(Wo) — f(a¥)
< L|[®o — z*[|?

N L
< LU — z*|* + ?HVO@HQ

Under our assumptions, we thus get E|(f(¥o) — f(¥7))T|™ < d". Moreover, we have logk =
max(0, log f) < log % under the assumption that v < co. Now let Ly = czlog %,
L3 = log % and apply Theoremlw1th N as above, and

p+2

0 < min (51/3 e1/3 e1/3,.1/6 e1/3 ¢4p+3
= VL’ Hl/GL;/G\/f’ di/6\/L "’ N1/6d1/6L;/3\E7 p/2—1 p
r 4p+3 g4p+3 /T
p+2 p+2 1
c4p+3 e1/341/6,.1/6 e1/341/6 e4p+3 g4p+3
3 1 ) 1/6 v 1/671/3 ’ 3 p+1 p+1
,.;81)41;6 d4l’i3 LA LYSVE 7 ki/sLYPVE NSpifs L33 W3

Our assumption on e is sufficient to ensure that the conditions of Theorem [2 are satisfied with 7 as
. . < 2 . .
above. This gives W3 (Xn,0, Xn,0) < €24, with N = Lzy(an)~! as desired. O

I TECHNICAL RESULTS FOR ULMC

I.1 PROOF OF PROPOSITION[2]

The following proposition provides useful bounds on the operator norms of I' x4 and G 4 based on
Taylor series expansion. We refer to Section[[.2)for its proof.

Proposition 4. Let || - || denote the operator norm of a matrix, and || - ||z~ denote the Euclidean norm
in dimension n. Let p and ¢ denote arbitrary points in R?. Assume vh < ¢ for some sufficiently
small constant ¢y > 0, and Assumption[I] Then the following inequalities are true.

WOIEEES
2. | Gath)TTaa ()2 Gan(B)| < .

3 HGM (n) {Vf(p) - Vf(q):| ‘

< hL
R2d ™~ Y

0 1P = llra-

We now prove Proposition 2]

Proof. Leth = i, and
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Given Assumptlon with v = ¢v/L for some ¢ > /2, the map 7 is Lipschitz with ||T'||pi, < 1 —
Jeh+ O(Lh?*) (Lemma 16, Zhang et al{(2023).) Under our assumptions we have L(#)? < 7 +
and 7T is thus a contraction with parameter 1 — Q(%) Under the event G, we have

~ 2 2 - 2
P Sas = - 0 + () 2

+ 2<FM (k)(Ym Zy;), T(z) — T(y)>-

By the definition of Z; ;,

Dot () (Zoi = Yi) = Daa () (Zui + Sui = Ye) + G (3

Conditioned on G, (H;,; — 1/k) is zero mean and Z, ; and Y; ; are standard Gaussians. This gives

ETm(E)(Z]; — Z:4)|G) = G (%) {vf(U“) N Vf(UtTi)} . By item 3 ofPropositionH and the

) {Vf(Um) ]

Vﬂ@m}

0
contractivity of 7', we get

B[ Xeis1 ~ Kisnal16] < (1= S e~ 1? + O [aa () (s - 220

L
+%¢m+fw~w—m@

An application of the AM-GM inequality gives
L nL?
T = all - - < = |y T
ot =l e =yl S 22

Where 7 > 0 is arbitrary. Choose 7 small enough so that the second term can be absorbed into
(1= Q(5)llz — ylI*. We also have

B () a0 5 10 (F) [0

10w () 17 EllIZei + S — Vil 210,

~112 arn 2
—a Ny —
12+ 75— wl?

ViU, )] 2

By item 3 ofPropositionH |G Aq %) {Vf(Uf,,z) V1T, )} 12 < nsz @ — ut]? < nLkHu _

0

uT|?; and by item 1, ||I‘M(")H <%

E(|Ta () (Zes — Yio)l?19] S LLQIIQ—WIIQ + VE[| Zei + St — YailPIG)

M A tag — Lt ~ Oé’}/k ’)/k t,i t,i t,i .
O
1.2 PROOF OF PROPOSITION[4]
Proof. The eigenvalues of T'y((h)? are
exp(—2+vh exp(—2vh
B - p(fYZv )(a_b)’ EQ:P(WQ7 )(a—i—b)

where a = —1 + exp(2vh)(1 + 27vh), and
b=/1—32exp(37h) + 2exp(27h)(7 + 2vh) + exp(dyh)(17 — dyh + 4v2h2).

Taylor expansion in the variable h gives

exp(—2vyh) 4h

4h?
200, Ay,
v v

+O(*hY),
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exp(—2vh) 4h

’72 b:772h2+

h3
% + O(v%hY).

As a result, the eigenvalues E; and F are of order yh3 and % respectively, with E5 > F; being the
spectral norm of I' x4 (h)?. We compute the inverse:

et (T (1)?) =~ exp(=24h) (=1 +exp(11) (2 + 7h -+ exp(1h) (=2 + 7h)).

) oy 4(1—exp(—’yh)—(12—exr>(2'yh))+2vh I, _ 2'yh—(1—<?2xp(2’vh)) 1,
L' am (h)_ = det<FM (h) )_ _Qﬂ/h—(l’y—cxp(Z'yh))Id 4(1—Cxp(—’yh)+(f—cxp(2'yh))+2'yh I,
72 %

An explicit computation gives

T 2 [0
Gan ()T (1) GM(m—[%v O]

A Taylor expansion on the entries of Gz (h) shows

+ O(vh3) 0
Gm(h) = .
p(h) [i’l — 2L O(h?) 0
Item 3 of the proposition follows from this and the smoothness of f — Assumption O

Lemma 12. Assume 7 = exp(—f) is L-smooth, and let p € N. Then

/HVf )[*Pdr(x) H 2n — 1) - (Ld)P.

Proof. This is a generalization of [Vempala & Wibisono| (2019, Lemma 11). By definition, we have

/Rd IV £ ()| dr(x) = /R eXp(—f(:c))[i (gaiﬂpdx

By Jensen’s inequality, we get

< dP~ 12/ exp(— gi)

Applying integration by parts along z;, we get

d

82f Of \2r—2
— qgp—1 _ _ el
— (2 1@/ eo(~f@)(52) (52) @
Since f is L-smooth, we have gz’; < L.
3f 2p—2
< LdP~'(2 d
-3 [ vl stan (2L)"

By a repeated application of integration by parts, we get

< LPaP~ 1H (2n—1) Z/ exp(—

Since 7 is a probability measure, [ exp(—f) = 1.

P

H2n71

n=1
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