
MetaBox: A Benchmark Platform for Meta-Black-Box
Optimization with Reinforcement Learning

Zeyuan Ma1, Hongshu Guo1, Jiacheng Chen1, Zhenrui Li1, Guojun Peng1,
Yue-Jiao Gong1,∗, Yining Ma2, Zhiguang Cao3

1South China University of Technology
2National University of Singapore
3Singapore Management University

{scut.crazynicolas, guohongshu369, jackchan9345}@gmail.com,
zhenrui.li@outlook.com, {pgj20010419, gongyuejiao}@gmail.com,

yiningma@u.nus.edu, zhiguangcao@outlook.com

Abstract

Recently, Meta-Black-Box Optimization with Reinforcement Learning (MetaBBO-
RL) has showcased the power of leveraging RL at the meta-level to mitigate manual
fine-tuning of low-level black-box optimizers. However, this field is hindered by
the lack of a unified benchmark. To fill this gap, we introduce MetaBox, the first
benchmark platform expressly tailored for developing and evaluating MetaBBO-
RL methods. MetaBox offers a flexible algorithmic template that allows users
to effortlessly implement their unique designs within the platform. Moreover, it
provides a broad spectrum of over 300 problem instances, collected from synthetic
to realistic scenarios, and an extensive library of 19 baseline methods, including
both traditional black-box optimizers and recent MetaBBO-RL methods. Besides,
MetaBox introduces three standardized performance metrics, enabling a more
thorough assessment of the methods. In a bid to illustrate the utility of MetaBox
for facilitating rigorous evaluation and in-depth analysis, we carry out a wide-
ranging benchmarking study on existing MetaBBO-RL methods. Our MetaBox is
open-source and accessible at: https://github.com/GMC-DRL/MetaBox.

1 Introduction

Black Box Optimization (BBO) is a class of optimization problems featured by its objective function
that is either unknown or too intricate to be mathematically formulated. It has a broad range of
applications such as hyper-parameter tuning [1], neural architecture searching [2], and protein-
docking [3]. Due to the black-box nature, the optimizer has no access to the mathematical expression,
gradients, or any other structural information related to the problem. Instead, the interaction with
the black-box problem is primarily realized through querying inputs (i.e., a solution) and observing
outputs (i.e., its objective value).

Traditional solvers for BBO problems include population-based optimizers such as genetic algo-
rithms [4], evolutionary strategies [5–7], particle swarm optimization [8, 9], and differential evo-
lution [10–13]. The Bayesian Optimization (BO) [14, 15] is also commonly used. However, with
limited knowledge of the problem, these optimizers lean on carefully hand-crafted designs to strike a
balance between exploration and exploitation when seeking the optimal solution.

To eliminate the burdensome task of manual fine-tuning, recent research has proposed the concept
of Meta-Black-Box Optimization (MetaBBO), which aims to refine the black-box optimizers by

∗Yue-Jiao Gong is the corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

https://github.com/GMC-DRL/MetaBox


Figure 1: Blueprint of our MetaBox platform. MetaBox offers template scripts for quick-start and,
once completed by the user, it carries out an automatic Train-Test-Log process on the testsuites for
comparison. Results such as performance scores, optimization curves, and comparative tables are
automatically generated and made available for review.

identifying optimal configurations or parameters that boost the overall performance across various
problem instances within a given problem domain. This leads to a bi-level optimization framework,
where the meta-level enhances the performance of low-level black-box optimizers. The meta-level
approaches include supervised learning (MetaBBO-SL) [16–18], reinforcement learning (MetaBBO-
RL) [19–25], and self-referential search (MetaBBO-SR) [26, 27]. Among them, MetaBBO-RL
models the optimizer fine-tuning as a Markov Decision Process (MDP) and learns an agent to
automatically make decisions about the algorithmic configurations. By automating the tuning process,
MetaBBO-RL not only significantly reduces the time and effort needed for customizing algorithms to
specific unseen problems, but also potentially enhances the overall optimization performance.

Despite the success, MetaBBO-RL calls for a unified benchmark platform. Upon examining the
recently proposed MetaBBO-RL approaches [19–25], we found that while several approaches claim
state-of-the-art performance, they lack a comprehensive benchmark and comparison using a standard-
ized, unified testbed. As a result, identifying which approach truly excels under specific conditions
poses a significant challenge, thereby hindering further progress and advancement in this field.

To bridge the gap, we introduce MetaBox, the first benchmark platform for MetaBBO-RL. The
blueprint of MetaBox is illustrated in Figure 1, aiming to offer researchers a convenient means to
develop and evaluate the MetaBBO-RL approaches. Specifically, we have made the following efforts:

1. To simplify the development of MetaBBO-RL and ensure an automated workflow:
1) We introduce a MetaBBO-RL Template, depicted at the top left of Figure 1. It comprises
two main components: the meta-level RL agent and the low-level optimizer, where we
provided several implemented works (e.g., [19, 21, 24, 25]) following a unified interface
protocol. 2) We automate the Train-Test-Log procedure in MetaBox, shown in the middle of
Figure 1. The users simply need to complete their MetaBBO-RL template, specify the target
problem set, and select several baselines for comparison. Initiating the entire automated
process is as straightforward as executing the run_experiment() command. This provides
users with considerable flexibility in implementing different types of internal logic for their
MetaBBO-RL algorithms while benefiting from the automated workflow.

2. To facilitate broad and standardized comparison studies: 1) We integrate a large-scale
MetaBox testsuite consisting of over 300 benchmark problems with diverse landscape
characteristics (such as single-/multi- modal, non-ill/ill- conditioned, strong/weak global
structured, and noiseless/noisy). Showing in the left centre of Figure 1, the MetaBox
testsuite inherits problem definitions from the well-known COCO [28] platform and the
Protein-Docking benchmark (version 4.0) [29], with several modifications to adapt to the
MetaBBO paradigms. 2) We develop a Baseline Library, located at the bottom left in

2



Figure 1. The library currently encompasses a wide range of classic optimizers [6, 8–
14, 30, 31] and up-to-date MetaBBO-RL approaches [19–25]. We additionally integrate
a MetaBBO-SL approach [16] to provide an extended comparison. Notably, all of the
baselines are implemented by our MetaBBO-RL Template. This ensures consistency and
allows for a fair and standardized comparison among the different approaches.

3. To comprehensively evaluate the effectiveness of MetaBBO-RL approaches: 1) We
propose three Standardized Metrics to evaluate both optimization performance and learning
effectiveness of a MetaBBO-RL approach, including a novel Aggregated Evaluation Indica-
tor (AEI) that offers a holistic view of the optimization performance, a Meta Generalization
Decay (MGD) metric that measures the generalization of a learned approach across different
problems, and a Meta Transfer Efficiency (MTE) metric that quantifies the transfer learning
ability. 2) We conduct a tutorial large-scale comparison study using Baseline Library, evalu-
ate them on MetaBox testsuite by the proposed Standardized Metrics. Several key findings
reveal that the pursuit of state-of-the-art performance continues to present challenges for
current MetaBBO-RL approaches. Nonetheless, our MetaBox platform provides valuable
insights and opportunities for researchers to refine and improve their algorithms.

To summarize, MetaBox provides the first benchmark platform for the MetaBBO-RL community
(novel). It is fully open-sourced, offering template scripts that facilitate convenient development,
training, and evaluation of MetaBBO-RL algorithms (automatic). Furthermore, MetaBox provides
diverse benchmark problems and an extensive collection of integrated baseline algorithms, which
will continue to expand through regular maintenance and updates (extendable).

2 Background and Related Work

Figure 2: Illustration of
the bi-level optimization
procedure of MetaBBO.

As shown in 2, MetaBBO methods operate within a bi-level optimization
framework designed to automate the fine-tuning process for a given BBO
optimizer. Distinguishing themselves from conventional BBO techniques,
MetaBBO methods introduce a novel meta-level as an automatic decision
process. The purpose is to alleviate the need for labor-intensive manual
fine-tuning of low-level BBO optimizers. Typically, they require the abil-
ity to generalize behaviors to address previously unseen problems through
extensive training in a given problem distribution. Concretely: 1) At the
meta level, the meta optimizer (e.g., an RL agent) dynamically configures
the low-level optimizer based on the current optimization status at that
particular time step. Then, the meta optimizer evaluates the performance
of the low-level optimizer over the subsequent optimization steps, referred
to as meta performance. The meta optimizer leverages this observed meta
performance to refine its decision-making process, training itself through
the maximization of accumulated meta performance, thereby advancing
its meta objective. 2) At the lower level, the BBO optimizer receives a
designated algorithmic configuration from the meta optimizer. With this
configuration in hand, the low-level optimizer embarks on the task of opti-
mizing the target objective. It observes the changes in the objective values
across consecutive optimization steps and transmits this information back
to the meta optimizer, thereby contributing to the meta performance signal.

MetaBBO-RL. It leverages reinforcement learning at the meta-level to configure the low-level
black-box optimizer for boosting meta-performance [26] over a problem distribution. It involves three
components: an RL agent (policy) Πθ, a backbone black-box optimizer Λ, and a dataset D following
certain problem distribution. The environment Env in MetaBBO-RL is formed by coupling the
optimizer with a problem from the dataset, i.e., Env := {Λ, f =sample(D)}, where f represents
the sampled problem. Unlike traditional RL tasks [32, 33], the environments in MetaBBO-RL not
only include the problem of optimizing but also include the low-level optimizer itself. At each step
t, the agent queries the optimization status st, which includes the current solutions produced by Λ
and their evaluated values by f . The policy Πθ takes st as input and suggests an action at = Πθ(st)
to configure the optimizer Λ. Note that the action space of different MetaBBO algorithms can
vary largely, as it could involve determining solution update strategy [19, 20, 23], generating hyper-
parameter [21, 24, 25], or both of the above two [22]. Subsequently, Env executes at to obtain the

3



Table 1: Comparison to BBO benchmarks. We report #Problem: the number of problems (#synthetic
+ #realistic); #Baseline: the number of baselines; Template: Template coding support; Automation:
automated train/test workflow support; Customization: configurable settings; Visualization: visualiza-
tion tools support; and RLSupport: Gym-style [33] RL benchmark.

#Problem #Baseline Template Automation Customization Visualization RLSupport

COCO [28] 54+0 2 ✓ ✓ × ✓ ×
CEC [34, 36, 37] 28+0 0 × × × × ×
IOHprofiler [38, 39] 24+0 0 ✓ × ✓ ✓ ×
Bayesmark [40, 41] 0+228 10 ✓ ✓ × × ×
Zigzag [42, 43] 4+0 0 × × ✓ × ×
MetaBox 54+280 19 ✓ ✓ ✓ ✓ ✓

next optimization status st+1 and the reward rt that measures the meta-performance improvement
of Λ on problem f . The meta-objective of MetaBBO-RL is to learn a policy Πθ that maximizes the
expectation of the accumulated meta-performance improvement rt over the problem distribution
D, Ef∼D,Πθ

[
∑T

t=0 rt], where T denotes the predefined evaluation budget, typically referred to the
maxFEs parameter as in the existing BBO benchmarks [28, 34].

Other MetaBBO methods. Apart from MetaBBO-RL, two other paradigms include MetaBBO-
SL [16–18] and MetaBBO-SR [26, 27], which all belong to the MetaBBO community but leverage
different approaches at the meta-level. Existing MetaBBO-SL methods consider a recurrent neural
network (RNN) that helps determine the next solutions at each step [16–18]. However, they often
encounter a dilemma in setting the horizon of RNN training: a longer length improves the difficulty
of training, whereas a shorter length requires breaking the entire optimization process into small
pieces, often resulting in unsatisfactory results. MetaBBO-SR utilizes black-box optimizers (such
as an evolution strategy [35]) at both the meta and low levels to enhance the overall optimization
performance. Since the black-box optimizers themselves can be computationally expensive, the
MetaBBO-SR approaches may suffer from limited efficiency due to their inherently nested structure.

Related BBO benchmarks. Existing benchmarks for MetaBBO are currently absent. However,
there are several related BBO benchmark platforms, including COCO [28] and IOHprofiler [38, 39]
for continuous optimization, ACLib [44] for algorithm configuration, Olympus [45] for planning
tasks, and Bayesmark [40] for hyper-parameter tuning. These platforms provide testsuites, logging
tools and some baselines for users to compare or refer to. In addition to these platforms, some BBO
competitions provide a series of problems to evaluate specific aspects of algorithms, such as the
GECCO BBOB workshop series (based on COCO [28]), the NeurIPS BBO challenge [41] (based on
Bayesmark [40]), the IEEE CEC competition series [36], and the Zigzag BBO [42, 43] that consists
of highly challenging problems. In contrast, our proposed MetaBox introduces a novel benchmark
platform specifically tailored for MetaBBO-RL. It provides an algorithm development template, an
automated execution philosophy, a wide range of testsuites, an extensive collection of baselines,
specific MetaBBO performance metrics, and powerful visualization tools. In Table 1, we compare
MetaBox and other related benchmarks to showcase the novelty of this work.

3 MetaBox: Design and Resources

3.1 Template coding and workflow automation

The core structure of MetaBox is presented on the left of Figure 3, shown in the form of a UML
class diagram [46]. Drawing from the recent MetaBBO-RL, we abstract the MetaBBO-RL Template
into two classes: the reinforcement Agent and the backbone Optimizer (both marked in pale orange).
To develop or integrate a new MetaBBO-RL approach, users are required to specify their settings
in the attributes Agent.config and Optimizer.config, and implement the following interfaces:
1) Agent.train_episode(env) for the training procedure, 2) Agent.rollout_episode(env) for the
rollout procedure, and 3) Optimizer.update(action, problem) for the optimization procedure. Once
these interfaces are set, the implemented templates seamlessly integrate with other components,
requiring no extra adjustments. Except for the Agent and Optimizer classes, the other classes are
hidden from users, simplifying coding tasks and ensuring code consistency.

4



Figure 3: The core structure and workflow of MetaBox. Left: UML Class diagram of MetaBox.
Users can inherit from MetaBBO-RL templates highlighted in orange to enable polymorphism. Right:
The automated Train-Test-Log workflow. The Agent directs the low-level (inner loop) optimization
and trains itself on meta-level (outer loop), followed by testing and post-processing.

Given an implemented approach based on MetaBBO-RL Template, the right side of Figure 3 illustrates
the entirely automated Train-Test-Log workflow in MetaBox. The process initiates when a user
launches the function run_experiment(). Then, function Trainer.train() executes an outer-loop
for meta-level iterations, where a runtime RL environment (env) is instantiated by pairing a problem
from the trainset with an optimizer instance. The Agent.train_episode(env) function is then called
to start an inner-loop for the BBO iterations, during which the optimizer in env follows the action
informed by Agent and applies its update(action, problem) function to optimize the target BBO
problem until the predefined function evaluation budget is exhausted. The meta-iteration ends when
the Agent has trained its policy model for M steps. Next, the Tester.test() function is called
to evaluate the learned policy on the testset through N independent runs, recording the statistic
results. Finally, the Logger.log() function restores all saved training and testing results. These
basic results are further post-processed into comprehensive metrics for in-depth analysis. The key
to this automation resides in the universal internal-call bridging the MetaBBO-RL Template and the
Train-Test-Log workflow, thereby obviating the need for users to grapple with complex coding tasks.

3.2 Testsuites

The testsuites integrated into MetaBox are briefly described as follows (more details in Appendix A):

Synthetic. It consists of 24 functions in five groups: separable, moderate, ill-conditioned, multi-
modal with global structure, and multi-modal with weakly structured. They are collected from the
coco:bbob function set in the renowned COCO platform [28].

Noisy-Synthetic. It consists of 30 noisy functions from the coco:bbob-noisy function set [28], by
extending the Synthetic set with different noise models and levels. The noises come from three
different models: Gaussian noise, Uniform noise and Cauchy noise [47].

Protein-Docking. It is extracted from the Protein-Docking benchmark [29], with 280 instances of
different protein-protein complexes. These problems are characterized by rugged objective landscapes
and are computationally expensive to evaluate.

Besides, we make the following efforts to adapt the above testsuites, while enhancing usability and
flexibility: 1) We treat each testsuite as a dataset and split it into training and testing sets according to
a particular proportion, referred to as difficulty. This proportion determines the level of difficulty in
generalizing or transferring the learned knowledge to unseen instances during testing. We provide two
modes for controlling this aspect: easy mode, allocating 75% of the selected instances for training,
and difficult mode, designating 25% of the selected instances for training. 2) Instead of providing
predefined problem dimension candidates, such as {2,3,5,10,20,40} in COCO [28] and {10,30} in
CEC2021 [34], we introduce an additional control parameter problem-dim to support customized
problem dimension. 3) We also recognize that there is a potential user group (e.g., those in [16–18])

5



who require access to gradients of the objective during the training of their approaches2. To cater to
this need, we provide a PyTorch function interface with tensor calculation support, enabling users to
incorporate back-propagation in their methods.

3.3 Baseline library

MetaBox leverages a total of 19 baselines, categorized into three types: 1) Classic Optimizer:
Random Search (RS), Bayesian Optimization (BO) [14], Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [6], Differential Evolution (DE) [10] and its self-adaptive variants JDE21 [12],
MadDE [11], NL-SHADE-LBC [13], Particle Swarm Optimization (PSO) [8] and its self-adaptive
variants GLPSO [9], sDMSPSO [30], SAHLPSO [31]. 2) MetaBBO-RL: the Q-learning [48–50]
styled approaches DEDDQN [19], DEDQN [20], RLHPSDE [22], QLPSO [23], and the Policy Gradi-
ent [51, 52] styled methdos LDE [21], RLPSO [24], RLEPSO [25]. 3) MetaBBO-SL: RNN-OI [16].

The majority of the classic baselines are reproduced by referring to the originally released codes
(when available) or the respective original papers. We meticulously filled the Optimizer template (see
Section 3.1) with their specific internal logic. However, there are a few exceptions: CMA-ES, DE
and PSO are implemented by calling APIs of DEAP [53] (an evolutionary computation framework
with LGPL-3.0 license), and BO is implemented by the Scikit-Optimizer [54] (a BO solver set with
BSD-3-Clause license). This showcases the compatibility of MetaBox with existing open-sourced
optimization codebases. For MetaBBO-RL, we first encapsulate the internal logic of the RL agent
into the Agent template (see Section 3.1), and then encapsulate the internal logic of the backbone
optimizer into the Optimizer template. This showcases the ease of integrating various MetaBBO-RL
methods into MetaBox. In addition, we provide an example of a MetaBBO-SL approach, RNN-OI,
to showcase that MetaBox is compatible with other MetaBBO methods.

3.4 Performance metrics

In MetaBox, we implement three standardized metrics to evaluate the performance of MetaBBO-RL
approaches from aspects of both the BBO performance and the training efficacy.

AEI. The MetaBBO approaches can be evaluated using traditional BBO performance metrics, includ-
ing the best objective value, the budget to achieve a predefined accuracy (convergence rate), and the
runtime complexity [28, 36, 39]. In addition to analyzing them separately, we propose the Aggre-
gated Evaluation Indicator (AEI), a unified scoring system to provide users with a comprehensive
assessment. Aggregating these metrics together is challenging due to the significant variation in
values across different metrics and problems. To address this, the AEI normalizes and combines the
three metrics in the following way. We test a MetaBBO-RL approach on K problem instances for N
repeated runs and then record the basic metrics (usually pre-processed by a min-max conversion for
consistency towards AEI maximization, refer to Appendix B for details): best objective value vk,nobj ,
consumed function evaluation times vk,nfes, and runtime complexity vk,ncom. To make the values more
distinguishable and manageable, they have been first subjected to a logarithmic transformation:

vk,n∗ = log(vk,n∗ ). (1)

Then, Z-score normalization is applied:

Zk
∗ =

1

N

N∑
n=1

vk,n∗ − µ∗

σ∗
, (2)

where µ∗ and σ∗ are calculated by using RS as a baseline. Finally, the AEI is calculated by:

AEI =
1

K

K∑
k=1

eZ
k
obj+Zk

com+Zk
res , (3)

where Z-scores are first aggregated, then subjected to an inverse logarithmic transformation, and
subsequently averaged across the test problem instances. A higher AEI indicates better performance
of the corresponding MetaBBO-RL approach.

2Important to note that the gradients of the objective during testing are not allowed in the context of BBO.

6



MGD. We then introduce the Meta Generalization Decay (MGD) metric, so as to assess the gener-
alization performance of MetaBBO-RL for unseen tasks. Given a model that has been trained on
a problem set B and its AEI on the corresponding testset as AEIB , we train another model on a
problem set A and record its AEI on the testset B as AEIA. The MGD(A,B) is computed by:

MGD(A,B) = 100× (1− AEIA
AEIB

)%, (4)

where a smaller MGD(A,B) indicates that the approach generalizes well from A to B. Note that
MGD has neither symmetry nor transitivity properties.

MTE. When zero-shot generalization is unachievable due to significant task disparity, the Meta
Transfer Efficiency (MTE) metric is proposed to evaluate the transfer learning capacity of a MetaBBO-
RL approach. We begin by maintaining checkpoints of a MetaBBO-RL approach trained on a problem
set B. We locate the checkpoint with the highest cumulative return, recording its index as Tscratch.
Next, we pre-train a checkpoint of the MetaBBO-RL approach on another problem set A, then
load this checkpoint back and continue the training on the problem set B until it reaches the same
best-accumulated return, recording the current index as Tfinetune. The MTE(A,B) is calculated by:

MTE(A,B) = 100× (1− Tfinetune

Tscratch
)%, (5)

where a larger MTE(A,B) indicates that the knowledge learned in A can be easily transferred to
solve B, while an MTE value less than or equal to zero indicates potential negative transfer issues.
Similar to MGD, the MTE has neither symmetry nor transitivity properties.

4 Benchmarking Study

MetaBox serves as a valuable tool for conducting experimental studies, allowing researchers to
1) benchmark specific groups of MetaBBO algorithms, 2) tune their algorithms flexibly, and 3) per-
form in-depth analysis on various aspects including generalization and transfer learning abilities. In
this section, we provide several examples to illustrate the use of MetaBox in experimental studies.

4.1 Experimental setup

To initiate the fully automated Train-Test-Log process of MetaBox, users need to follow two steps:
1) indicate environment parameters, including problem-type, problem-dim and difficulty, to inform
MetaBox about the problem set, its dimension and the train-test split used in the comparison study;
and 2) specify the maximum number of training steps (M ), the number of independent test runs (N ),
and the reserved function evaluation times (maxFEs) for solving a problem instance. Once these two
steps are completed, users can trigger the run_experiment() to enjoy the full automation process. In
the exemplary study below, M , N and maxFEs are set to 1.5× 106, 51, and 2× 104, respectively,
unless specified otherwise. All results presented are obtained using a machine of Intel i9-10980XE
CPU with 32GB RAM. Note that MetaBox is also compatible with other platforms. We provide
default control parameters for each baseline, which are listed in Appendix C.

4.2 Comparison of different baseline (Meta)BBO methods

We train all MetaBBO baselines (7 MetaBBO-RL and 1 MetaBBO-SL) in the Baseline Library on
Synthetic and Protein-Docking testsuites, using both easy and difficult train-test split. We then test
these baselines against the classic black-box optimizers available in our library and calculate the AEI
of each algorithm. The results are depicted in Figure 4. On the Synthetic testsuites, two MetaBBO-
RL methods, namely LDE and RLEPSO, show competitive performance against classic baselines.
Specifically, LDE outperforms JDE21, the winner of IEEE CEC 2021 BBO Competitions [34], on
the Synthetic-difficult testsuites, while RLEPSO outperforms both JDE21 and NL-SHADE-LBC,
the winner of IEEE CEC 2022 BBO Competitions [55], on the Synthetic-easy testsuites. However,
for this particular problem set, CMA-ES remains a strong baseline. As we shift to more realistic
testsuites (Protein-docking of 280 instances), most baselines show varying degrees of performance
drop. Notably, CMA-ES is inferior to a number of algorithms such as DEDQN, LDE, RLEPSO, and
GLPSO. In general, we observe that MetaBBO-RL methods are more robust than classic hand-crafted

7



0

5

10

15

20

25

A
E

I

8.97

2.93

10.77
12.06

6.36

4.15

16.09 16.10

13.23 12.97 13.14
14.13

13.40

9.25

11.57

22.61

2.43
1.40

7.85

2.57

7.14

9.84

5.16

3.43

9.36 9.45 9.90 9.70 10.22

7.21

10.22

6.77
5.91

15.98

1.49

0.02

MetaBBO-RL Classic Optimizer MetaBBO-SL

Synthetic-easy

Synthetic-difficult

DEDDQ
N

DEDQ
N

RLHPSD
E

LDE

Q
LPSO

RLPSO

RLEPSO DE

JD
E21

M
ad

DE

NL-S
HADE-L

BC
PSO

G
LPSO

sD
M

SP
SO

SA
HLPSO

CM
A-E

S
BO

RNN-O
I0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
E

I

0.71

1.07

0.87

0.98

0.82
0.75

1.03

0.82

0.95
1.00

0.95

0.84

1.19
1.13

0.81

0.93

0.43

1.00

0.70

1.07

0.87
0.90

0.81

0.70

1.02

0.76

0.93
0.86

0.73

0.84

1.05

0.85 0.86
0.92

0.43

0.98

Protein-easy

Protein-difficult

Figure 4: AEI scores of baselines, with error bars denoting the robustness across different tasks. Top:
Results on Synthetic testsuites with easy or difficult difficulty. Bottom: Results on Protein-Docking
testsuites with easy or difficult difficulty.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Learning Steps ×106

4

5

6

7

8

9

10

11

A
vg

R
et

u
rn

The average return
REINFORCE-50

REINFORCE-30

PPO-50

PPO-30

0 2500 5000 7500 10000 12500 15000 17500 20000
FEs

−10

−8

−6

−4

−2

0

L
og

ge
d

N
or

m
al

iz
ed

C
os

ts

The normalized cost curve
REINFORCE-50

REINFORCE-30

PPO-50

PPO-30

RE.-5
0

RE.-3
0

PPO-50

PPO-30
0

2

4

6

8

10

12

A
E

I

12.06 12.18

10.61

12.86
The AEI scores

Figure 5: Hyper-tuning for the MetaBBO-RL approach LDE [21] using a 2×2 grid search. Left: The
average return during the training over 10 trials. Middle: The normalized cost over 51 independent
runs during the test. Right: The corresponding AEI scores during the test.

optimizers when tested on different problem sets. For example, DEDQN generally performs the best
for the Protein-Docking problems, ranking first and third in difficult and easy modes, respectively.
This suggests that the classic optimizers might be only tailored to a specific family of problems,
while MetaBBO-RL learns to enhance the low-level optimizer through meta-level learning, thereby
exhibiting stronger robustness. Due to the space limitation, we leave additional comparison results,
including those on other testsuites, as well as the detailed sub-metrics such as running time, algorithm
complexity, and per-instance optimization results in Appendix D.

4.3 Hyper-tuning a MetaBBO-RL approach

Tuning a MetaBBO-RL requires efforts in configuring both the meta-level RL Agent and the low-level
black-box Optimizer. Fortunately, our MetaBox provides Template coding with convenient interfaces
to assist users in accomplishing this task. To illustrate this, we conduct a 2 × 2 grid search to
hyper-tune the MetaBBO-RL approach LDE [21]. We noticed that LDE achieved lower AEI scores
on Synthetic-easy testsuites than some classic optimizers such as JDE21 and MadDE (see Figure 4).
In our study, we investigate both REINFORCE [51] and PPO [52] RL agents for LDE, setting the
population size (a hyper-parameter of DE) to either 30 or 50 (where the original version of LDE uses

8



Synthetic Noisy
Synthetic

Protein
Docking

S
ynth

etic
N

oisy
S

ynth
etic

P
rotein

D
ockin

g

0.000 -7.049 -0.006

2.222 0.000 -0.017

-0.502 -7.006 0.000

Zero-shot Generalization

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Learning Steps ×106

5.0

5.5

6.0

6.5

7.0

7.5

A
vg

R
et

u
rn

t = 0.24

T = 0.30

MTE = (1 - t/T) = 0.2

Fine-tuning (Noisy-Synthetic → Synthetic)

pre-train

scratch

Figure 6: Meta performance (MGD and MTE) of LDE [21] across different tasks, tested under the
easy mode. Left: Logits on i-th row and j-th column is the MGD(i, j), the smaller the better. Right:
The average return over 10 trials is compared between the LDE models pre-trained and trained from
scratch. The annotated MTE score shows that it saves 0.2x learning steps through fine-tuning.

REINFORCE and a population size of 50). Figure 5 depicts the average return along the training, the
optimization curve during testing, and the AEI scores of these four LDE versions. It turns out that
LDE with the PPO agent and a population size of 30 achieves higher scores and surpasses JDE21 and
MadDE. This shows that, by leveraging the capabilities of MetaBox and conducting hyper-tuning
studies, researchers are able to pursue the best configurations for their MetaBBO-RL methods.

4.4 Investigating generalization and transfer learning performance

Existing MetaBBO-RL methods [19–25] rarely assess their generalization and transfer ability, al-
though they are two crucial aspects for evaluating the effectiveness of a learning-based method. To
bridge this gap, we have introduced two explicit indicators (namely the MGD and MTE) in MetaBox
to measure the level of learning achieved by a MetaBBO-RL algorithm. In Figure 6, we display the
values of MGD and MTE for the MetaBBO-RL approach LDE.

Generalization performance. Results in the MGD plot (the left part of Figure 6) show that the
pre-trained LDE model possesses a strong generalization ability. When the model is pre-trained on
the Noisy-Synthetic testsuites, it exhibits a positive MGD on the Synthetic testsuites, with only a
2.222% drop in AEI, which is considered acceptable. Additionally, the LDE model trained on the
Protein-Docking-easy or Synthetic-easy testsuites both exhibits exceptional generalization to the
Noisy-Synthetic-easy testsuites, as evidenced by an MGD of −7.006% and −7.049%. Such robust
generalization abilities are highly desirable in practical applications.

Transfer performance. We fine-tune the LDE pre-trained on the Noisy-Synthetic testsuites for the
Synthetic testsuites. The progress of this fine-tuning process is depicted in the MTE plot (the right
part of Figure 6), showing the average return over 10 trials. The results reveal that the pre-trained
LDE requires fewer learning steps to arrive at the peak return level than the LDE trained from scratch,
with the MTE value of 20%. Compared with the MGD value of 2.222% when zero-shotting the
pre-trained LDE for the Synthetic testsuites, it can be noticed that the MGD and MTE capture two
different aspects of the learning effectiveness. By considering both measures, researchers can gain
deeper insights into the learning behavior and effectiveness of their MetaBBO-RL approaches.

5 Discussion and Future Work

We propose MetaBox, a benchmark platform for Meta-Black-Box Optimization with Reinforcement
Learning (MetaBBO-RL). It intends to, 1) provide the first unified benchmark platform, 2) simplify
coding towards efficient researching, 3) provide broad testsuites and baselines for comprehensive
comparison, and 4) provide novel evaluation metrics for in-depth analysis.

Our preliminary experimental investigations lead to the following key observations. First, although
hand-crafted optimizers currently outperform learning-based optimizers (e.g., MetaBBO-RL), they
are mostly designed to specific problem sets and become less effective when applied to other problem
domains. In contrast, MetaBBO-RL exhibits adaptability across various optimization scenarios,

9



showing stronger robustness across different problem domains. This is a significant advantage, as it
allows MetaBBO-RL to perform well on diverse problem sets without the need for much manual
customization. Second, there is still room for further improvement in MetaBBO-RL, by discovering
more effective designs in both meta-level agents and low-level optimizers. We find that even basic
modifications, such as incorporating a PPO agent and adjusting the population size, can bring a
significant performance boost. Third, interpreting the generalization and transfer effects in MetaBBO-
RL can be challenging. While we were able to observe positive and negative effects in terms of MGD
and MTE, rationally interpreting and understanding them is still difficult. Hence, additional studies
are needed to interpret the learning effects of MetaBBO-RL in a more comprehensible manner.

While our MetaBox presents a significant advancement, we also acknowledge its potential limitations.
It is important to note that the evaluation of BBO performance is not a one-size-fits-all endeavour.
Different practical applications may have varying preferences and additional concerns, such as
solution robustness, solution diversity, parallelization and scalability. These nuances extend beyond
the scope of a single evaluation metric. In conjunction with the proposed AEI, MetaBox is committed
to exploring more pragmatic and advanced evaluation criteria. Moreover, the problem sets in
MetaBox will be expanded to include more diverse and eye-catching BBO tasks. Additionally,
proactive maintenance and updates to MetaBox, including the extension of the baseline library, will
also be pursued to ensure it is up-to-date with the latest methodologies in the field.

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Natural Science Foundation of China under Grant
62276100, in part by the Guangdong Natural Science Funds for Distinguished Young Scholars under
Grant 2022B1515020049, in part by the Guangdong Regional Joint Funds for Basic and Applied
Research under Grant 2021B1515120078, and in part by the TCL Young Scholars Program.

References
[1] Matthias Feurer and Frank Hutter. Hyperparameter optimization. Automated Machine Learning:

Methods, Systems, Challenges, pages 3–33, 2019.

[2] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
The Journal of Machine Learning Research, 20(1):1997–2017, 2019.

[3] Graham R Smith and Michael JE Sternberg. Prediction of protein–protein interactions by
docking methods. Current Opinion in Structural Biology, 12(1):28–35, 2002.

[4] John H Holland. Adaptation in natural and artificial systems. MIT press, 1975.

[5] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary Computation, 9(2):159–195, 2001.

[6] Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary
Computation, 11(1):1–18, 2003.

[7] Raymond Ros and Nikolaus Hansen. A simple modification in cma-es achieving linear time
and space complexity. In Parallel Problem Solving from Nature–PPSN X: 10th International
Conference, Dortmund, Germany, September 13-17, 2008. Proceedings 10, pages 296–305.
Springer, 2008.

[8] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-
International Conference on Neural Networks, pages 1942–1948. IEEE, 1995.

[9] Yue-Jiao Gong, Jing-Jing Li, Yicong Zhou, Yun Li, Henry Shu-Hung Chung, Yu-Hui Shi, and
Jun Zhang. Genetic learning particle swarm optimization. IEEE Transactions on Cybernetics,
46(10):2277–2290, 2015.

[10] Rainer Storn and Kenneth Price. Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 11(4):341, 1997.

10



[11] Subhodip Biswas, Debanjan Saha, Shuvodeep De, Adam D Cobb, Swagatam Das, and Brian A
Jalaian. Improving differential evolution through bayesian hyperparameter optimization. In
2021 IEEE Congress on Evolutionary Computation (CEC), pages 832–840. IEEE, 2021.

[12] Janez Brest, Mirjam Sepesy Maučec, and Borko Bošković. Self-adaptive differential evolution
algorithm with population size reduction for single objective bound-constrained optimization:
Algorithm j21. In 2021 IEEE Congress on Evolutionary Computation (CEC), pages 817–824.
IEEE, 2021.

[13] Vladimir Stanovov, Shakhnaz Akhmedova, and Eugene Semenkin. Nl-shade-lbc algorithm with
linear parameter adaptation bias change for cec 2022 numerical optimization. In 2022 IEEE
Congress on Evolutionary Computation (CEC), pages 01–08. IEEE, 2022.

[14] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, volume 25, 2012.

[15] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep
neural networks. In International Conference on Machine Learning, pages 2171–2180, 2015.

[16] Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P
Lillicrap, Matt Botvinick, and Nando Freitas. Learning to learn without gradient descent by
gradient descent. In International Conference on Machine Learning, pages 748–756. PMLR,
2017.

[17] Vishnu TV, Pankaj Malhotra, Jyoti Narwariya, Lovekesh Vig, and Gautam Shroff. Meta-learning
for black-box optimization. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019,
Proceedings, Part II, pages 366–381. Springer, 2020.

[18] Hugo Siqueira Gomes, Benjamin Léger, and Christian Gagné. Meta learning black-box
population-based optimizers. arXiv preprint arXiv:2103.03526, 2021.

[19] Mudita Sharma, Alexandros Komninos, Manuel López-Ibáñez, and Dimitar Kazakov. Deep
reinforcement learning based parameter control in differential evolution. In Proceedings of the
Genetic and Evolutionary Computation Conference, pages 709–717. Association for Computing
Machinery, 2019.

[20] Zhiping Tan and Kangshun Li. Differential evolution with mixed mutation strategy based on
deep reinforcement learning. Applied Soft Computing, 111(-):107678, 2021.

[21] Jianyong Sun, Xin Liu, Thomas Bäck, and Zongben Xu. Learning adaptive differential evolution
algorithm from optimization experiences by policy gradient. IEEE Transactions on Evolutionary
Computation, 25(4):666–680, 2021.

[22] Zhiping Tan, Yu Tang, Kangshun Li, Huasheng Huang, and Shaoming Luo. Differential
evolution with hybrid parameters and mutation strategies based on reinforcement learning.
Swarm and Evolutionary Computation, 75(-):101194, 2022.

[23] Yue Xu and Dechang Pi. A reinforcement learning-based communication topology in particle
swarm optimization. Neural Computing and Applications, 32(-):10007–10032, 2020.

[24] Di Wu and G Gary Wang. Employing reinforcement learning to enhance particle swarm
optimization methods. Engineering Optimization, 54(2):329–348, 2022.

[25] Shiyuan Yin, Yi Liu, GuoLiang Gong, Huaxiang Lu, and Wenchang Li. Rlepso: Reinforcement
learning based ensemble particle swarm optimizer*. In 2021 4th International Conference
on Algorithms, Computing and Artificial Intelligence, pages 1–6. Association for Computing
Machinery, 2021.

[26] Robert Lange, Tom Schaul, Yutian Chen, Chris Lu, Tom Zahavy, Valentin Dalibard, and
Sebastian Flennerhag. Discovering attention-based genetic algorithms via meta-black-box
optimization. In Proceedings of the Genetic and Evolutionary Computation Conference, pages
929–937, 2023.

11



[27] Robert Tjarko Lange, Tom Schaul, Yutian Chen, Tom Zahavy, Valentin Dalibard, Chris Lu,
Satinder Singh, and Sebastian Flennerhag. Discovering evolution strategies via meta-black-box
optimization. In The Eleventh International Conference on Learning Representations, 2023.

[28] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and Dimo Brockhoff.
Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization
Methods and Software, 36(1):114–144, 2021.

[29] Howook Hwang, Thom Vreven, Joël Janin, and Zhiping Weng. Protein–protein docking
benchmark version 4.0. Proteins: Structure, Function, and Bioinformatics, 78(15):3111–3114,
2010.

[30] Jing J Liang, L Guo, R Liu, and Bo-Yang Qu. A self-adaptive dynamic particle swarm optimizer.
In 2015 IEEE Congress on Evolutionary Computation (CEC), pages 3206–3213. IEEE, 2015.

[31] Xinmin Tao, Xiangke Li, Wei Chen, Tian Liang, Yetong Li, Jie Guo, and Lin Qi. Self-adaptive
two roles hybrid learning strategies-based particle swarm optimization. Information Sciences,
578:457–481, 2021.

[32] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[33] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[34] Ali Wagdy Mohamed, Anas A Hadi, Ali Khater Mohamed, Prachi Agrawal, Abhishek Kumar,
and P. N. Suganthan. Problem definitions and evaluation criteria for the cec 2021 special session
and competition on single objective bound constrained numerical optimization. In Tech. Rep.
Singapore: Nanyang Technological University, 2021. URL https://www3.ntu.edu.sg/
home/epnsugan/index_files/CEC2021/CEC2021-2.htm.

[35] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[36] Urban Škvorc, Tome Eftimov, and Peter Korošec. Cec real-parameter optimization competitions:
Progress from 2013 to 2018. In 2019 IEEE Congress on Evolutionary Computation (CEC),
pages 3126–3133. IEEE, 2019.

[37] Jing J Liang, BY Qu, Ponnuthurai Nagaratnam Suganthan, and Alfredo G Hernández-Díaz.
Problem definitions and evaluation criteria for the cec 2013 special session on real-parameter
optimization. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, 2013.

[38] Carola Doerr, Hao Wang, Furong Ye, Sander Van Rijn, and Thomas Bäck. Iohprofiler: A bench-
marking and profiling tool for iterative optimization heuristics. arXiv preprint arXiv:1810.05281,
2018.

[39] Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas
Bäck. IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics. arXiv
e-prints:2111.04077, 2021.

[40] R.Turner and D.Eriksson. Bayesmark: Benchmark framework to easily compare bayesian
optimization methods on real machine learning tasks, 2019. URL https://github.com/
uber/bayesmark.

[41] Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, and
Isabelle Guyon. Bayesian optimization is superior to random search for machine learning
hyperparameter tuning: Analysis of the black-box optimization challenge 2020. In NeurIPS
2020 Competition and Demonstration Track, pages 3–26. PMLR, 2021.

[42] Jakub Kudela. Novel zigzag-based benchmark functions for bound constrained single objective
optimization. In 2021 IEEE Congress on Evolutionary Computation (CEC), pages 857–862.
IEEE, 2021.

12

https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2021/CEC2021-2.htm
https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2021/CEC2021-2.htm
https://github.com/uber/bayesmark
https://github.com/uber/bayesmark


[43] Jakub Kudela and Radomil Matousek. New benchmark functions for single-objective optimiza-
tion based on a zigzag pattern. IEEE Access, 10(-):8262–8278, 2022.

[44] Frank Hutter, Manuel López-Ibánez, Chris Fawcett, Marius Lindauer, Holger H Hoos, Kevin
Leyton-Brown, and Thomas Stützle. Aclib: A benchmark library for algorithm configuration.
In Learning and Intelligent Optimization: 8th International Conference, Lion 8, Gainesville,
FL, USA, February 16-21, 2014. Revised Selected Papers 8, pages 36–40. Springer, 2014.

[45] Florian Häse, Matteo Aldeghi, Riley J Hickman, Loïc M Roch, Melodie Christensen, Elena
Liles, Jason E Hein, and Alán Aspuru-Guzik. Olympus: a benchmarking framework for noisy
optimization and experiment planning. Machine Learning: Science and Technology, 2(3):
035021, 2021.

[46] Grady Booch. The unified modeling language user guide. Pearson Education India, 2005.

[47] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-parameter black-box
optimization benchmarking 2009: Noiseless functions definitions. PhD thesis, INRIA, 2009.

[48] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[49] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

[50] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine Learning, 8(-):279–292, 1992.

[51] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. The Springer International Series in Engineering and Computer Science, 173:
5–32, 1992.

[52] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[53] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner Gardner, Marc
Parizeau, and Christian Gagné. Deap: Evolutionary algorithms made easy. The Journal of
Machine Learning Research, 13(1):2171–2175, 2012.

[54] Gilles Louppe and Manoj Kumar. Scikit-optimize, 2016. URL https://github.com/
scikit-optimize/scikit-optimize.

[55] Abhishek Kumar, Kenneth V. Price, Ali Wagdy Mohamed, Anas A. Hadi, and P. N. Sug-
anthan. Problem definitions and evaluation criteria for the cec 2022 special session and
competition on single objective bound constrained numerical optimization. In Tech. Rep. Sin-
gapore: Nanyang Technological University, 2022. URL https://www3.ntu.edu.sg/home/
epnsugan/index_files/CEC2022/CEC2022.htm.

[56] Yue Cao and Yang Shen. Bayesian active learning for optimization and uncertainty quantification
in protein docking. Journal of Chemical Theory and Computation, 16(8):5334–5347, 2020.

[57] Iain H Moal and Paul A Bates. Swarmdock and the use of normal modes in protein-protein
docking. International journal of molecular sciences, 11(10):3623–3648, 2010.

[58] Alex D MacKerell Jr, Donald Bashford, MLDR Bellott, Roland Leslie Dunbrack Jr, Jeffrey D
Evanseck, Martin J Field, Stefan Fischer, Jiali Gao, H Guo, Sookhee Ha, et al. All-atom
empirical potential for molecular modeling and dynamics studies of proteins. The Journal of
Physical Chemistry, 102(18):3586–3616, 1998.

[59] Brian G Pierce, Kevin Wiehe, Howook Hwang, Bong-Hyun Kim, Thom Vreven, and Zhiping
Weng. Zdock server: interactive docking prediction of protein–protein complexes and symmetric
multimers. Bioinformatics, 30(12):1771–1773, 2014.

13

https://github.com/scikit-optimize/scikit-optimize
https://github.com/scikit-optimize/scikit-optimize
https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2022/CEC2022.htm
https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2022/CEC2022.htm


MetaBox: A Benchmark Platform for Meta-Black-Box
Optimization with Reinforcement Learning

(Appendix)

A Details of Testsuites

A.1 Synthetic

There are 24 functions in the Synthetic testsuites. These noiseless synthetic functions, established
by Hansen et al. [47], are taken from COCO [28]. The mathematical definitions and formulations
of these functions can be found in Hansen et al. [47]. We have listed these functions in Table 2. To
provide different levels of difficulty, we have divided the 24 functions into two parts: 25% and 75%.
The 25% portion includes functions No.1, 5, 6, 10, 15, and 20, while the remaining 18 functions make
up the 75% portion. In the easy mode, the 75% portion is used for training, and the 25% portion is
used for testing. On the other hand, in the difficult mode, the 25% portion is used for training, and
the 75% portion is used for testing. The maximum number of function evaluations (maxFEs) for
problems in these test suites is set to 2× 104.

Table 2: Summary of the Synthetic test functions.

No. Functions f∗
i

Separable functions

1 Sphere Function 700
2 Ellipsoidal Function 1900
3 Rastrigin Function 100
4 Buche-Rastrigin Function 1000
5 Linear Slope 2000

Functions
with low or moderate

conditioning

6 Attractive Sector Function 400
7 Step Ellipsoidal Function 300
8 Rosenbrock Function, original 1300
9 Rosenbrock Function, rotated 1300

Functions with
high conditioning

and unimodal

10 Ellipsoidal Function 600
11 Discus Function 900
12 Bent Cigar Function 2000
13 Sharp Ridge Function 2400
14 Different Powers Function 1500

Multi-modal
functions

with adequate
global structure

15 Rastrigin Function (non-separable counterpart of F3) 1700
16 Weierstrass Function 1400
17 Schaffers F7 Function 200
18 Schaffers F7 Function, moderately ill-conditioned 700
19 Composite Griewank-Rosenbrock Function F8F2 1700

Multi-modal
functions
with weak

global structure

20 Schwefel Function 2100
21 Gallagher’s Gaussian 101-me Peaks Function 700
22 Gallagher’s Gaussian 21-hi Peaks Function 2400
23 Katsuura Function 600
24 Lunacek bi-Rastrigin Function 1200

Default search range: [-5, 5]D

A.2 Noisy-Synthetic

There are 30 functions in the Noisy-Synthetic testsuites. These noiseless synthetic functions, es-
tablished by Hansen et al. [47], are taken from COCO [28]. The mathematical definitions and
formulations of these functions can be found in Hansen et al. [47]. We have listed these functions in

1



Table 2. To provide different levels of difficulty, we have divided the 24 functions into two parts: 25%
and 75%. The 25% portion includes functions No.1, 5, 15, 16, 17, 19, 20, 25, while the remaining 22
functions make up the 75% portion. The maximum number of function evaluations (maxFEs) for
problems in these test suites is set to 2× 104.

Table 3: Summary of the Noisy-Synthetic test functions.

No. Functions f∗
i

Functions
with

moderate noise

1 Sphere with moderate gaussian noise 700
2 Sphere with moderate uniform noise 1900
3 Sphere with moderate seldom cauchy noise 100
4 Rosenbrock with moderate gaussian noise 1000
5 Rosenbrock with moderate uniform noise 2000
6 Rosenbrock with moderate seldom cauchy noise 400

Functions
with

severe noise

7 Sphere with gaussian noise 100
8 Sphere with uniform noise 2000
9 Sphere with seldom cauchy noise 2000

10 Rosenbrock with gaussian noise 500
11 Rosenbrock with uniform noise 400
12 Rosenbrock with seldom cauchy noise 700
13 Step ellipsoid with gaussian noise 1900
14 Step ellipsoid with uniform noise 800
15 Step ellipsoid with seldom cauchy noise 2300
16 Ellipsoid with gaussian noise 200
17 Ellipsoid with uniform noise 100
18 Ellipsoid with seldom cauchy noise 200
19 Different Powers with gaussian noise 500
20 Different Powers with uniform noise 1600
21 Different Powers with seldom cauchy noise 1000

Highly
multi-modal

functions
with

severe noise

22 Schaffer’s F7 with gaussian noise 2400
23 Schaffer’s F7 with uniform noise 1400
24 Schaffer’s F7 with seldom cauchy noise 2400
25 Composite Griewank-Rosenbrock with gaussian noise 2200
26 Composite Griewank-Rosenbrock with uniform noise 400
27 Composite Griewank-Rosenbrock with seldom cauchy noise 2500
28 Gallagher’s Gaussian Peaks 101-me with gaussian noise 1000
29 Gallagher’s Gaussian Peaks 101-me with uniform noise 600
30 Gallagher’s Gaussian Peaks 101-me with seldom cauchy noise 2100

Default search range: [-5, 5]D

A.3 Protein-Docking

Ab initio protein docking poses a significant challenge in optimizing a noisy and costly black-box
function [56]. The objective of ab initio protein docking, for a fixed basis protein conformation x0, is
to minimize the change in Gibbs free energy resulting from protein interaction between x0 and any
other conformation x, denoted as Eint(x, x0). Following the approach of Moal and Bates [57], we
formulate the objective as follows:

min
x

Eint(x, x0) =

atoms∑
i

atoms∑
j

E(xi, xj
0), (6)

where E(xi, xj
0) is the energy between any pair atoms of x and x0, and is defined as :

Ei,j =


qiqj
ϵri,j

+
√
ϵiϵj

[
(
Ri,j

ri,j
)12 − (

Ri,j

ri,j
)6
]
, if ri,j < 7[

(roff−fi,j
)2(roff+2ri,j−3ron)

(roff−ron)3

]{
qiqj
ϵri,j

+
√
ϵiϵj

[
(
Ri,j

ri,j
)12 − (

Ri,j

ri,j
)6
]}

, if 7 ≤ ri,j ≤ 9

0 if ri,j > 9

(7)

All parameters and calculations are taken from the Charmm19 force field [58]. A switching function
is employed, between 7 and 9, to disregard long-distance interaction energy. To construct the task

2



instance x0 for protein docking, we select 28 protein-protein complexes from the protein docking
benchmark set 4.0 [29]. Each complex is associated with 10 different starting points, chosen from the
top-10 start points identified by ZDOCK [59]. Consequently, the Protein-Docking testsuites comprise
a total of 280 docking task instances. We split these instances into two parts, with approximately
75% and 25% of the instances serving as the difficulty levels within the testsuites. It is important
to note that we parameterize the search space as R12, which is a reduced dimensionality compared
to the original protein complex [56]. This reduction in dimensionality enables computational time
savings while retaining the optimization nature of the problem. Due to the computationally expensive
evaluations, the maximum number of function evaluations (maxFEs) is set to 103. The default search
range for the optimization is [−∞,∞].

B Details of AEI Calculation

We describe the calculations of AEI as follows. Suppose we want to test a (Meta)BBO approach Λ to
obtain its AEI on Testsuites A, i.e., AEI(Λ,A). Suppose A has K problem instances, and we run Λ to
optimize each problem in A for N times. In this testing process, we record 3 kinds of values:

Best objective value. The best objective value vk,nobj denotes the best objective found by Λ on the k-th
problem during the n-th test run. To convert its monotonicity, we conduct an inverse transformation,
i.e., vk,nobj = 1

vk,n
obj

.

Consumed function evaluations. We let vk,nfes denote the number of consumed function evaluations
when the approach Λ terminates the optimization process for the k-th problem during the n-th test
run, where Λ would terminate the optimization either upon locating a high-quality solution that
fulfils a predetermined accuracy or when it reaches the maximum allowed function evaluations, i.e.,
maxFEs. We then pre-process this value by a min-max conversion for the consistency towards AEI
maximization, i.e., vk,nfes =

maxFEs

vk,n
fes

.

Runtime complexity. The calculation includes three steps following the conventions of IEEE CEC
Competitions [34, 55]. We first pre-calculate a T0 which is a basic normalization term, calculating the
computation time of some basic numpy operations (e.g., add, division, log, exp) as references. We
record the time T k,n

1 for Λ to evaluate the k-th problem’s objective during n-th run, and T k,n
2 as total

running time for Λ to solve the k-th problem’s objective during n-th run. The runtime complexity

vk,ncom is then calculated by Tk,n
2 −Tk,n

1

T0
. Then we pre-process this value by a min-max conversion for

consistency towards AEI maximization, i.e., vk,nobj = 1

vk,n
obj

.

C Baseline Setup

Classic optimizer. Random Search does not necessitate any control parameters. We establish the
control parameters for CMA-ES, DE, and PSO in alignment with DEAP [53], while the control
parameters for BO are set in accordance with Scikit-Optimizer [54]. For the classic optimizers
implemented by us, the control parameters are delineated and can be accessed at https://github.
com/GMC-DRL/MetaBox/blob/main/src/control_parameters_classic.md.

MetaBBO-SL. We briefly introduce the control parameters of RNN-OI here. It adopts an LSTM
network to generate the next solution position on the observation of some present optimization
status. This LSTM has input size as problem_dim + 2, hidden size as 32, and projection size as
problem_dim. The Adam optimizer is used to train the network with a fixed learning rate 10−5.
However, it can only optimize a problem for around maxFEs = 100 due to the inefficiency arising
from utilizing RNNs to model an extended optimization horizon.

3

https://github.com/GMC-DRL/MetaBox/blob/main/src/control_parameters_classic.md
https://github.com/GMC-DRL/MetaBox/blob/main/src/control_parameters_classic.md


DEDDQ
N

DEDQ
N

RLHPSD
E

LDE

Q
LPSO

RLPSO

RLEPSO DE

JD
E21

M
ad

DE

NL-S
HADE-L

BC
PSO

G
LPSO

sD
M

SP
SO

SA
HLPSO

CM
A-E

S
BO

RNN-O
I0

1

2

3

4

5

6

7

8

9

A
E

I
3.47

1.93

3.38

5.04

3.04
2.68

4.34

4.83
5.22

4.36

5.42

3.08

5.19

4.28

2.68

7.73

1.07
1.49

3.00

1.95

3.19

4.89

3.19
2.74

4.31
4.55

4.79

4.25

4.73

3.10

5.11

4.43

2.72

6.38

0.79
1.26

MetaBBO-RL Classic Optimizer MetaBBO-SL

Noisy-easy

Noisy-difficult

Figure 7: AEI scores with error bars of baselines on Noisy-Synthetic testsuites.

Figure 8: Average cost curve of baselines over Noisy-Synthetic-easy testsuites.

D Additional Results and Comparisons

D.1 Additional results

In addition to the AEI scores, MetaBox provides additional experimental results that complement the
comprehensive analysis of MetaBBO-RL approaches. These results, along with AEI, are automati-
cally generated and presented after the testing process. The currently available results for all baselines
in Baseline Library can be accessed at https://github.com/GMC-DRL/MetaBox/blob/main/
post_processed_data/content.md. We briefly preview these additional results here:

Overall performance table. For each baseline in the Baseline Library, it presents the average final
objective value (Obj), the average Gap with respect to the performance of CMA-ES, and the average
consumed function evaluation times (FEs). These values are obtained based on 51 independent runs.

Wall-time table. For each baseline in the Baseline Library, it presents the average running time
1

K×N

∑K
k=1

∑N
n=1 T

k
2 and the average algorithm complexity Z-score 1

K

∑K
k=1 Z

k
com. These values

are averaged over all the problems in the testsuites and 51 independent runs.

Cost curve. For each baseline in the Baseline Library, the figure draws the averaged optimization
curves (cost curves) over all the problems in the testsuites and 51 independent runs.

In this appendix, as preview examples, we present the experimental results of baselines on the Noisy-
Synthetic testsuites, which includes AEI scores with error bars on both the Noisy-Synthetic-easy and
the Noisy-Synthetic-difficult testsuites in Figure 7, the overall performance table on Noisy-Synthetic-
easy testsuites in Table 4, the wall-time table on Noisy-Synthetic-easy testsuites in Table 5, and the
cost curves of MetaBBO-RL baselines on Noisy-Synthetic-easy testsuites in Figure 8. Note that they
are partially displayed due to space limitations, without loss of generality.

D.2 Investigation on RLEPSO

Hyper-tuning. Since RLEPSO [25] also shows competitive performance in all of the three testsuites,
we execute the same 2×2 grid-search experiment for it and measure its MGD and MTE. Similarly, we

4

https://github.com/GMC-DRL/MetaBox/blob/main/post_processed_data/content.md
https://github.com/GMC-DRL/MetaBox/blob/main/post_processed_data/content.md


Table 4: Per-instance optimization results of baselines on Noisy-Synthetic-easy testsuites, showing
the first 3 problems in the test set for illustration purpose.

Sphere-moderate-gauss Rosenbrock-moderate-uniform Step-Ellipsoidal-cauchy
Obj Gap FEs Obj Gap FEs Obj Gap FEs

Random 1.101E+1
(2.739E+0) 1.000 2.000E+4

(0.000E+0)
2.267E+3

(1.023E+3) 1.000 2.000E+4
(0.000E+0)

6.363E+2
(2.709E+2) 1.000 2.000E+4

(0.000E+0)
C

la
ss

ic

CMA-ES 7.689E-9
(1.844E-9) 0.000 4.958E+3

(1.931E+2)
1.147E+0

(2.696E+0) 0.000 1.624E+4
(2.174E+3)

5.743E+0
(4.048E+1) 0.000 6.119E+3

(3.629E+3)

PSO 1.906E+0
(8.624E-1) 0.173 2.000E+4

(0.000E+0)
2.679E+2

(5.578E+2) 0.118 2.000E+4
(0.000E+0)

2.950E+2
(2.453E+2) 0.459 2.000E+4

(0.000E+0)

SAHLPSO (-g) 4.477E+0
(2.875E+0) 0.407 2.000E+4

(0.000E+0)
9.651E+2

(9.798E+2) 0.426 2.000E+4
(0.000E+0)

4.189E+2
(2.584E+2) 0.655 2.000E+4

(0.000E+0)

sDMSPSO (v1) 1.661E+0
(7.380E-1) 0.151 2.010E+4

(0.000E+0)
1.080E+2

(4.728E+1) 0.047 2.010E+4
(0.000E+0)

1.395E+2
(1.922E+2) 0.212 2.010E+4

(0.000E+0)

GLPSO 1.292E-6
(7.497E-7) 0.000 2.000E+4

(0.000E+0)
6.867E+0
(8.194E-1) 0.003 2.000E+4

(0.000E+0)
3.322E+2

(3.195E+2) 0.518 2.000E+4
(0.000E+0)

DE (rand/1) 8.010E-9
(1.636E-9) 0.000 4.601E+3

(1.794E+2)
5.719E+0

(1.373E+0) 0.002 2.000E+4
(0.000E+0)

1.373E+2
(2.041E+2) 0.209 2.000E+4

(0.000E+0)

JDE21 5.302E-9
(2.477E-9) -0.000 6.283E+3

(1.562E+3)
6.212E+0

(5.923E+0) 0.002 2.001E+4
(0.000E+0)

2.227E+2
(2.440E+2) 0.344 2.001E+4

(0.000E+0)

NL-SHADE-LBC 7.826E-9
(1.494E-9) 0.000 1.444E+4

(1.161E+2)
4.541E+0
(8.124E-1) 0.001 2.000E+4

(0.000E+0)
1.849E+2

(2.153E+2) 0.284 2.000E+4
(0.000E+0)

MadDE 7.988E-9
(1.602E-9) 0.000 1.945E+4

(1.438E+2)
5.361E+0

(1.083E+0) 0.002 2.000E+4
(0.000E+0)

1.613E+2
(2.382E+2) 0.247 2.000E+4

(0.000E+0)

Bayesian (BO) 9.144E-2
(1.197E-1) 0.008 1.000E+2

(0.000E+0)
4.506E+3

(1.303E+4) 1.988 1.000E+2
(0.000E+0)

1.024E+3
(2.678E+1) 1.615 1.000E+2

(0.000E+0)

L
ea

rn
ab

le

QLPSO 2.568E+0
(2.915E+0) 0.233 2.000E+4

(0.000E+0)
1.467E+2

(2.788E+2) 0.064 2.000E+4
(0.000E+0)

1.411E+2
(2.387E+2) 0.215 2.000E+4

(0.000E+0)

RLPSO 2.419E+0
(1.277E+0) 0.220 2.000E+4

(0.000E+0)
1.607E+2

(1.164E+2) 0.070 2.000E+4
(0.000E+0)

1.440E+2
(1.843E+2) 0.219 2.000E+4

(0.000E+0)

RLEPSO 7.521E-6
(1.163E-5) 0.000 2.000E+4

(1.707E+0)
7.244E+0

(2.131E+0) 0.003 2.000E+4
(1.473E+0)

1.580E+2
(1.824E+2) 0.241 2.000E+4

(1.695E+0)

DEDQN 3.369E+1
(9.025E+0) 3.060 2.000E+4

(0.000E+0)
2.152E+4

(9.820E+3) 9.498 2.000E+4
(0.000E+0)

1.097E+3
(4.189E+1) 1.730 2.000E+4

(0.000E+0)

DEDDQN 7.907E-9
(1.523E-9) 0.000 1.692E+4

(5.373E+2)
2.913E+0

(2.859E+0) 0.001 1.977E+4
(7.700E+2)

1.022E+2
(1.726E+2) 0.153 2.000E+4

(0.000E+0)

LDE 8.127E-9
(1.628E-9) 0.000 9.685E+3

(3.920E+2)
2.681E+0

(2.639E+0) 0.001 2.000E+4
(0.000E+0)

1.292E+2
(2.007E+2) 0.196 2.000E+4

(0.000E+0)

RLHPSDE 1.118E-1
(6.738E-2) 0.010 2.025E+4

(0.000E+0)
4.248E+1

(2.126E+1) 0.018 2.025E+4
(0.000E+0)

6.269E+2
(3.087E+2) 0.985 2.025E+4

(0.000E+0)

RNN-OI 6.940E+1
(6.824E-1) 6.304 1.000E+2

(0.000E+0)
3.177E+4

(6.347E+2) 14.021 1.000E+2
(0.000E+0)

1.099E+3
(1.198E+1) 1.734 1.000E+2

(0.000E+0)

Table 5: Running time and algorithm complexity of baselines on Noisy-Synthetic-easy testsuits.

Baselines CMA-ES PSO SAHLPSO sDMSPSO GLPSO DE
T2 (ms) 3.337E+02 2.021E+03 4.506E+03 6.484E+01 5.508E+01 8.838E+02
Z-score 9.540E-01 8.093E-01 7.254E-01 1.047E+00 1.066E+00 8.420E-01

Baselines JDE21 NL-SHADE-LBC MadDE QLPSO RLPSO RLEPSO
T2 (ms) 1.639E+02 2.036E+02 4.015E+02 4.442E+03 1.337E+04 3.540E+02
Z-score 9.588E-01 9.370E-01 8.827E-01 7.265E-01 6.530E-01 8.918E-01

Baselines DEDQN DEDDQN LDE RLHPSDE RNN-OI BO
T2 (ms) 2.309E+02 2.787E+04 3.303E+02 5.867E+02 4.846E+03 1.407E+07
Z-score 9.262E-01 6.101E-01 8.972E-01 8.517E-01 7.216E-01 3.542E-01

investigate the combination of different RL methods (REINFORCE or PPO) and different population
sizes (100 or 50). The original RLEPSO is implemented in PPO with 100 population size. The grid
search results are shown in Figure 9. The RLEPSO with the PPO agent and a population size of
50 has the highest average return during the training, however, this configuration shows the worst
optimization results (considering the normalized cost) during the test. On the contrary, RLEPSO with
the REINFORCE agent and a population size of 50 has the lowest average return during the training
and the lowest normalized cost during the test. This may indicate that the design of the RLEPSO
reward function may not be appropriate. Meanwhile, we note that for RLEPSO, changing its RL
agent from PPO to REINFORCE may slightly improve the overall performance.

Generalization performance. We also present the MGD of RLEPSO on the testsuites with an
easy difficulty level, displayed on the left side of Figure 10. It appears that RLEPSO exhibits poor
generalization ability. For instance, when the RLEPSO model is pre-trained on the Protein-Docking-
easy testsuites, there is a significant 40.312% drop in the AEI score. These results indicate that while
RLEPSO achieves competitive AEI performance, its generalization ability is much worse compared

5



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Learning Steps ×106

−100

0

100

200

300

A
vg

R
et

u
rn

The average return
PPO-100

PPO-50

REINFORCE-100

REINFORCE-50

0 2500 5000 7500 10000 12500 15000 17500 20000
FEs

−10

−8

−6

−4

−2

0

L
og

ge
d

N
or

m
al

iz
ed

C
os

ts

The normalized cost curve
PPO-100

PPO-50

REINFORCE-100

REINFORCE-50

PPO-100

PPO-50

RE.-1
00

RE.-5
0

0

5

10

15

A
E

I

16.09

11.79

17.28 17.75
The AEI scores

Figure 9: Hyper-tuning for the MetaBBO-RL approach RLEPSO [25] using a 2 × 2 grid search.
Left: The average return during the training over 10 trials. Middle: The normalized cost over 51
independent runs during the test. Right: The corresponding AEI scores during the test.

to LDE. The subpar MGD performance of RLEPSO may be attributed to its non-generalizable state
design, which directly utilizes the consumed FEs as the state representation.

Transfer performance. We performed fine-tuning on the RLEPSO model that was pre-trained on the
Noisy-Synthetic-easy testsuites for solving the Synthetic-easy testsuites. The progress of the average
return over 10 trials is shown on the right side of Figure 10. However, the pre-trained RLEPSO
exhibits negative transferability, with an MTE value of 0. This transfer failure suggests that some
of the current MetaBBO-RL methods face overfitting issues, which in the case of RLEPSO may be
attributed to its oversimplified state representation or other design elements that lack generalizability.

Synthetic Noisy
Synthetic

Protein
Docking

S
ynth

etic
N

oisy
S

ynth
etic

P
rotein

D
ockin

g

0.000 -10.558 -0.026

-0.126 0.000 -0.023

40.312 4.824 0.000

Zero-shot Generalization

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Learning Steps ×106

−40

−20

0

20

40

60

80

100

A
vg

R
et

u
rn

Fine-tuning (Noisy-Synthetic → Synthetic)

pre-train

scratch

Figure 10: Meta performance (MGD and MTE) of RLEPSO [25] across different tasks, tested under
the easy mode. Left: Logits on i-th row and j-th column is the MGD(i, j), the smaller the better.
Right: the average return over 10 trials is compared between the RLEPSO models pre-trained and
trained from scratch, with a MTE = 0. This is a transfer failure.

E Used Assets

MetaBox is an open-sourced tool, and it can be accessed at: https://github.com/GMC-DRL/
MetaBox. It is currently licensed under the BSD 3-Clause License. In Table 6, we provide a list of
the resources or assets utilized in MetaBox, along with their respective licenses. It is important to
note that we adhere strictly to these licenses during the development of MetaBox.

Table 6: Used assets and their licenses

Type Asset Codebase License

Baseline

CMA-ES [5] DEAP [53] LGPL-3.0 License
DE [10] DEAP [53] LGPL-3.0 License
PSO [8] DEAP [53] LGPL-3.0 License
BO [14] Scikit-Optimizer [54] BSD-3-Clause License

Testsuites
Synthetic COCO [28] BSD 3-clause License

Noisy-Synthetic COCO [28] BSD 3-clause License
Protein-Docking Protein-Docking 4.0 [29] -

6

https://github.com/GMC-DRL/MetaBox
https://github.com/GMC-DRL/MetaBox


Algorithm 1: MetaBoxTrainer
Input: User-designed learnable agent A, User-designed optimizer O, User-specified problem set

Ptrain with configuration Ctrain
Output: Trained Agent A, training records
Initialize problem set Ptrain with configuration Ctrain as the training dataset;
while max learning steps Not reached do

for each problem instance ins ∈ Ptrain do
Construct optimization environment Env = Env_Construction(O, ins);
A.train_episode(Env);
Record training data;
Plot training figures;

end
end
Summarize and visualize the training records in Logger and return the trained agent;

Algorithm 2: TrainingEpisode
Input: User-designed learnable agent A, Constructed environment Env
Output: Training records
state = Env.reset();
while termination condition Not achieved do

action = A.get_action(state);
next_state, reward, info = Env.step(action);
Store transition <state, action, reward, next_state>;
Update agent A;
Record training data and plot figures;
state = next_state;

end
Summarize training records and return;

F Pseudo-code of MetaBox

The pseudo-code of Trainer is shown in Algorithm 1. Given the user-designed learnable agent A and
optimizer O, our MetaBox framework firstly initializes the problem instance set (e.g., determines
problem types, indexes file directories and loads data to construct problem instances according to
the user-specified configuration Ctrain). Then MetaBox iteratively performs training on each training
instance until the max learning step is reached. For each instance, a Gym-style environment Env is
constructed to merge O and the problem instance together, so as to provide a unified interface. Agent
A then calls the train_episode() interface for interacting with Env and performing the actual training.
All the generated logs during training are managed by the Logger as depicted in Figure 1.

We now turn to the details of train_episode(). Given the variance among numerous learning ap-
proaches, such as RL and SL, the internal workflow of train_episode() necessitates implementation
aligned with specific designs. Within MetaBox, we offer a range of examples through the imple-
mentation of various baselines, serving as guides for users who wish to develop their own interfaces.
Meanwhile, we note that our baseline library also covers the implementations of prevalent RL algo-
rithms like PPO and REINFORCE. In Algorithm 2, we showcase a straightforward example of the
workflow for implementing RL training algorithms within train_episode(). Starting from the Env
initialization, in each step, the agent A provides Env the action according to the state, receives the
next state, reward and other information, and uses them to update the policy. Within the env.step()
interface, the action is translated into configurations which are then applied to the optimizer O. The
optimizer then performs update rules to derive and evaluate new solutions. Following this, rewards
and subsequent states are computed, with certain logging information being concurrently summarized.

As for the Tester shown in Algorithm 3, it first initializes the test problem set which is used to
evaluate each algorithm in an algorithm set (including several baseline agents for comparison and
the user’s trained agent). For learning-based algorithms, respective agents and optimizers are then

7



Algorithm 3: MetaBoxTester
Input: User-specified algorithm set B including baselines and user’s trained agent,

User-specified problem set Ptest with configuration Ctest
Output: Testing results
Initialize problem set Ptest with configuration Ctest as the test set;
for each algorithm alg ∈ B do

for each problem instance ins ∈ Ptest do
if alg is a learning-based method then

Initialize alg.agent and alg.optimizer;
end
else

Initialize alg.optimizer as an optimizer;
end
Construct optimization environment Env = Env_Construction(alg.optimizer, ins);
alg.rollout_episode(Env);
Record testing data;
Plot testing figures;

end
end
Summarize testing results and call Logger for standardized metrics and visualization;

initialized, which may involve loading network models and initializing parameters. Conversely,
classic optimizers are simply initialized as the optimizers. The rollout_episode() interface mirrors the
train_episode() but removes the policy update procedures. After the testing, the recorded testing logs
will be organized and presented within the Logger.

8


	Introduction
	Background and Related Work
	MetaBox: Design and Resources
	Template coding and workflow automation 
	Testsuites 
	Baseline library
	Performance metrics

	Benchmarking Study
	Experimental setup
	Comparison of different baseline (Meta)BBO methods
	Hyper-tuning a MetaBBO-RL approach
	Investigating generalization and transfer learning performance

	Discussion and Future Work 
	Details of Testsuites
	Synthetic
	Noisy-Synthetic
	Protein-Docking

	Details of AEI Calculation
	Baseline Setup
	Additional Results and Comparisons
	Additional results
	Investigation on RLEPSO

	Used Assets
	Pseudo-code of MetaBox

