
HOW CAN DEEP LEARNING PERFORMS DEEP (HIER-
ARCHICAL) LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning is also known as hierarchical learning, where the learner learns to
represent a complex target function by decomposing it into a sequence of simpler
functions to reduce sample and time complexity. This paper formally analyzes
how multi-layer neural networks can perform such hierarchical learning efficiently
and automatically by applying stochastic gradient descent (SGD) or its variants.
On the conceptual side, we present a characterizations of how certain deep (i.e.
super-constantly many layers) neural networks can still be sample and time effi-
ciently trained on hierarchical learning tasks, when no known existing algorithm
(including layer-wise training, kernel method, etc) is efficient. We establish a new
principle called “backward feature correction”, where the errors in the lower-level
features can be automatically corrected when training together with the higher-
level layers. We believe this is a key behind how deep learning is performing
deep (hierarchical) learning, as opposed to layer-wise learning or simulating some
known non-hierarchical method. 1

1 INTRODUCTION

Deep learning is also known as hierarchical (feature) learning.2 The term hierarchical learning can
be defined as learning to represent the complex target function g(x) using a composition of much
simpler functions: g(x) = hL(hL−1(· · ·h1(x) · · ·)). In deep learning, for example, each hℓ(·) is
usually represented by a linear operator followed with activation function. Empirically, the training
process of deep learning is done by stochastic gradient descent (SGD) or its variants. After training,
one can verify that the complexity of the learned features (i.e., hℓ(hℓ−1(· · ·x · · ·)) indeed increases
as ℓ goes deeper — see (Zeiler & Fergus, 2014) or Figure 2. It has also been discovered for a long
time that hierarchical learning, in many applications, requires fewer training examples (Bouvrie,
2009) when compared with non-hierarchical methods that learn g(x) in one shot.

Hierarchical learning from a theoretical perspective. It is well-known that neural networks
can represent a wide range of complicated functions using the composition of much simpler layers.
Instead of learning a degree 2L function from scratch, can hierarchical learning learn to represent it
as a composition of L-quadratic functions, and thus learning one quadratic function at a time? The
main difficulty is that being able to represent a complex target function in a hierarchical network
does not necessarily guarantee efficient learning. For example, L layers of quadratic networks can
represent all parity functions up to degree 2L; but in the deep L = ω(1) setting, it is unclear if
one can learn parity functions over x ∈ {−1, 1}d with noisy labels via any efficient poly(d)-time
algorithm (Feldman et al., 2006), not to say via training neural networks.

So, for what type of functions can we formally prove that deep neural networks can hierarchically
learn them? And, how can deep learning perform hierarchical learning to greatly improve learning
efficiency in these cases?

1Note: although this paper has been circulated for a while, this is our first time to submit to an ML venue.
This is a theory paper but we tried to make it suitable for a wider audience. We included many figures to support
the connection between our theory and practice, but due to space limitation, many of the figures are deferred to
Appendix A starting on Page 14.

2Quoting Bengio (2009), “deep learning aim at learning feature hierarchies with features from higher levels
of the hierarchy formed by the composition of lower level features.” Quoting Goodfellow et al. (2016) “the
hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones.”

1

Hierarchical learning and layer-wise learning. Motivated by the large body of theory works
for two-layer networks, a tentative approach to analyze hierarchical learning in deep learning is via
layer-wise training. Consider the example of using a multi-layer network with quadratic activation,
to learn the following target function.

g(x) = x2
1 + 2x2

2︸ ︷︷ ︸
low-complexity signal

+0.1 (x2
1 + 2x2

2 + x3)
2︸ ︷︷ ︸

high-complexity signal

. (1.1)

In this example, one may hope that the first train a two-layer quadratic network to learn simple,
quadratic features (x2

1, x
2
2), and the train another two-layer quadratic network on top of the first one

learns a quadratic function over (x2
1, x

2
2, x3). In this way, one can hope for never needing to learn

a degree-4 polynomial in one shot, but simply learning two quadratic functions in two steps. Is
hierarchical learning in deep learning really this simple?

In fact, layer-wise training is known to perform poorly in practical deep learning, see Figure 7. A
common sense is that when we train lower-level layers, it might over-fit to higher-level features.
Using the example of (1.1), if one uses a quadratic network to fit g(x), then the first-layer features
may be trained too greedily and over-fit to high-complexity signals: for instance, the best quadratic
network to fit g(x) may learn features (x1+

√
0.1x3)

2 and x2
2, instead of (x2

1, x
2
2). Now, if we freeze

the first layer and train a second layer quadratic network on top of it (and the input), this “error” of√
0.1x3 can no longer be fixed thus we cannot fit the target function perfectly.

Our main message. On the conceptual level, we show (both theoretically and empirically) although
lower-level layers in a neural network indeed tend to over-fit to higher complexity signals at the
beginning of training, when training all the layers together — using simple variants of SGD —
the presence of higher-level layers can eventually help reduce this type of over-fitting in lower-
level layers. For example, in the above case the quality of lower-level features can improve from
(x1 +

√
0.1x3)

2 again to get closer and closer to x2
1 when trained together with higher-level layers.

We call this backward feature correction. More generally, we identify two critical steps in the
hierarchical learning process of a multi-layer network.

• The forward feature learning step, where a higher-level layer can learn its features using the
simple combinations of the learned features from lower-level layers. This is an analog of layer-
wise training, but a bit different (see discussions in (Allen-Zhu & Li, 2019a)) since all the layers
are still trained simultaneously.

• The backward feature correction step, where a lower-level layer can learn to further improve
its feature quality with the help of the learned features in higher-level layers. We are not aware
of this being recorded in the theory literature, and believe it is a most critical reason for why
hierarchical learning goes beyond layer-wise training in deep learning. We shall mathematically
characterize this in Theorem 2.

Remark. When all the layers of a neural network are trained together, the aforementioned two steps
actually occur simultaneously. For interested readers, we also design experiments to separate them
and visualize, see Figure 3, 5, and 10 in Section A. On the theoretical side, we also give toy examples
with mathematical intuitions in Section 1.2 to further explain the two steps.

Our technical results. With the help of the discovered conceptual message, we show the following
technical results. Let input dimension d be sufficiently large, there exist a non-trivial class of “well-
conditioned” L-layer neural networks with L = ω(1) and quadratic activations3 so that:

• Training such networks by a variant of SGD efficiently and hierarchically learns this concept
class. Here, by “efficiently” we mean time/sample complexity is poly(d/ε) where ε is the gener-
alization error; and by “hierarchically” we mean the network learns to represent the concept class
by decomposing it into a composition of simple (i.e. quadratic) functions, via forward feature
learning and backward feature correction, to significantly reduce sample/time complexity.

• We are unaware of existing algorithm that can achieve the same result in polynomial time. For
completeness, we prove super-polynomial lower bounds for shallow learning methods such as
(1) kernel method, (2) regression over feature mappings, (3) two-layer networks with degree

3It is easy to measure the network’s growing representation power in depth using quadratic activations (Livni
et al., 2014). As a separate note, quadratic networks can perform as well as ReLU networks in practice (see
Figure 11 on Page 25), and has particular cryptographic advantage (Mishra et al., 2020).

2

≤ 2L activations, or (4) the previous three with any regularization. Although proving separation
is not our main message, we still illustrate in Section 1.2 that neither do we believe layer-wise
training, or applying kernel method multiple (even ω(1) many) times can achieve poly-time.

To this extent, we have shown, at least for this class of L-layer networks with L = ω(1), deep
learning can indeed perform efficient hierarchical learning when trained by a variant of SGD to
learn functions not known to be learnable by “shallow learners” (including layer-wise training which
can be viewed as applying two-layer networks multiple times). Thus, we believe that hierarchical
learning (especially with backward feature correction) is critical to learn this concept class.

Difference from existing theory. Many prior works have studied the theory of deep learning. We
try to cover them all in Section F but we summarize our difference from them as follows.

• Starting from Jacot et al. (2018), there is a rich literature that reduces multi-layer neural networks
to kernel methods (e.g. neural tangent kernels, or NTKs). They approximate neural networks by
linear models over (hierarchically defined) random features — which are not learned through
training. They do not show the power of deep learning beyond kernel methods.

• Many other theories focus on two-layer networks but they do not have the deep hierarchical
structure. In particular, some have studied feature learning as a process (Daniely & Malach,
2020; Li et al., 2020; Allen-Zhu & Li, 2021), but still cannot cover how the features of the
second layer can help backward correct the first layer; thus naively repeating them for multi-layer
networks may only give rise to layer-wise training as opposed to the full hierarchical learning.

• Allen-Zhu et al. (2019a) shows that 3-layer neural networks can learn the so-called “second-
order NTK,” which is not a linear model; however, second-order NTK is also learnable by doing
a nuclear-norm constrained linear regression, which is still not truly hierarchical.

• Allen-Zhu & Li (2019a) shows that 3-layer ResNet can learn a concept class otherwise not
learnable by kernel methods (within the same level of sample complexity). We discuss more in
Section F, but most importantly, that concept class is learnable by applying kernel method twice.

In sum, prior works may have only studied a simpler but already non-trivial question: “can
multi-layer neural networks efficiently learn simple functions that are already learnable by non-
hierarchical models.” While the cited works shed great light on the learning process of neural
networks, in the language of this paper, they cannot justify how deep learning performs deep hi-
erarchical feature learning. Our work is motivated by this huge gap between theory and practice.

Admittedly, with a more ambitious goal we have to sacrifice something. Notably, we study quadratic
activations while some cited works can handle ReLU. Note this may be still fine: in practice, deep
learning with quadratic networks perform very closely to ReLU ones, and significantly better than
two-layer networks or neural kernel methods (see Figure 11). Hence, our theoretical result may also
serve as a provisional step towards understating the deep learning process in ReLU networks.

1.1 OUR THEOREM

We give an overview of our theoretical result. The learner networks we consider are like DenseNets:

G(x) =
∑L

ℓ=2

〈
uℓ, Gℓ(x)

〉
∈ R where G0(x) = x ∈ Rd, G1(x) = σ(x)− E[σ(x)] ∈ Rd

Gℓ(x) = σ
(∑

j∈Jℓ
Mℓ,jGj(x)

)
for ℓ ≥ 2 and Jℓ ⊆ {0, 1, · · · , ℓ− 1} (1.2)

Here, σ is the activation function and we pick σ(z) = z2 in this paper, Mℓ,j’s are weight matrices,
and the final output G(x) ∈ R is a weighted summation of the outputs of all the layers. The set
Jℓ defines the connection graph. We can handle any connection graph with the only restriction
being there is at least one “skip link.”4 To illustrate the main idea, we focus here on a regression
problem in the teacher-student setting, although our result applies to classification as well as the
agnostic learning setting (where the target network may also have label error). In this teacher-
student regression setting, the goal is to learn some unknown target function G⋆(x) in some concept
class given samples (x,G⋆(x)) where x ∼ D follows some distributionD. In this paper, we consider

4In symbols, for every ℓ ≥ 3, we require (ℓ − 1) ∈ Jℓ, (ℓ − 2) /∈ Jℓ but j ∈ Jℓ for some j ≤ ℓ − 3. As
comparisons, the vanilla feed-forward network corresponds to Jℓ = {ℓ − 1}, while ResNet (He et al., 2016)
(with skip connection) corresponds to Jℓ = {ℓ− 1, ℓ− 3} with weight sharing (namely, Mℓ,ℓ−1 = Mℓ,ℓ−3).

3

the target functions G⋆(x) ∈ R coming from the same class as the learner network:

G⋆(x) =
∑L

ℓ=2 αℓ ·
〈
u⋆
ℓ , G

⋆
ℓ (x)

〉
∈ R where G⋆

0(x) = x ∈ Rd, G⋆
1(x) = σ(x)− E[σ(x)] ∈ Rd

G⋆
ℓ (x) = σ

(∑
j∈Jℓ

W⋆
ℓ,jG

⋆
j (x)

)
∈ Rkℓ for ℓ ≥ 2 and Jℓ ⊆ {0, 1, · · · , ℓ− 1} (1.3)

Since σ(z) is degree 2-homogenous, without loss of generality we assume ∥W⋆
ℓ,j∥2 = O(1), u⋆

ℓ ∈
{−1, 1}kℓ and let αℓ ∈ R>0 be a scalar to control the contribution of the ℓ-th layer.

In the teacher-student setting, our main theorems can be sketched as follows:

Theorem (sketched). For every input dimension d > 0 and every L = o(log log d), for certain
concept class consisting of certain L-layer target networks defined in Eq. (1.3), over certain input
distributions (such as standard Gaussian, certain mixture of Gaussians, etc.), we have:

• Within poly(d/ε) time/sample complexity, by a variant of SGD starting from random initializa-
tion, the L-layer quadratic DenseNet can learn this concept class with any generalization error
ε, using forward feature learning + backward feature correction. (See Theorem 1.)

• As side result, we show any kernel method, any linear model over prescribed feature mappings,
or any two-layer neural networks with arbitrary degree-2L activations, require dΩ(2L) sample or
time complexity, to achieve non-trivial generalization error such as ε = d−0.01. (See Section O.)

Remark. As we shall formally introduce in Section 2, the concept class in our theorem — the class of
target functions to be learned — comes from Eq. (1.3) with additional width requirement kℓ ≈ d1/2

ℓ

and information gap requirement αℓ+1 ≪ αℓ with α2 = 1 and αL ≥ 1√
d

. The requirement
L = o(log log d) is very natural: a quadratic network even with constant condition number can
output 22

L

and we need this to be at most poly(d) to prove any efficient training result.
Remark. We refer the assumption αℓ+1 ≪ αℓ as information gap. In a classification problem, it
can be understood as “αℓ is the marginal accuracy improvement when using ℓ-layer networks to fit
the target function comparing to (ℓ− 1)-layer ones.” We discuss more in Section B.1. For example,
in Figure 4, we see > 75% of the CIFAR-10 images can be classified correctly using a two-hidden-
layer network; but going from depth 7 to depth 8 only gives < 1% accuracy gain. Information gap
was also pointed out in natural language processing applications (Tenney et al., 2019).

1.2 HIGH-LEVEL INTUITIONS

Intuitively, learning a single quadratic function is easy, but our concept class consists of a sufficiently
rich set of degree 2L = 2ω(1) polynomials over d dimensions. Using non-hierarchical learning
methods, typical sample/time complexity is dΩ(2L) = dω(1) — and we prove such lower bound for
kernel (and some other) methods, even when all kℓ = 1. This is not surprising, since kernel methods
do not perform hierarchical learning so have to essentially “write down” all the monomials of degree
2L−1, which suffers a lot in the sample complexity. Even if the learner performs kernel method O(1)
times, since the target function has width kℓ = dΩ(1) for any constant ℓ, this cannot avoid learning in
one level a degree-ω(1) polynomial that depends on dΩ(1) variables, resulting again in sample/time
complexity dω(1).

Now, the hope for training a quadratic DenseNet with poly(d) time, is because it may decompose a
degree-2L polynomial into learning one quadratic function at a time. Easier said than done, let us
provide intuition by considering an extremely simplified example: L = 3, d = 4, and

G⋆(x) = x4
1 + x4

2 + α((x4
1 + x3)

2 + (x4
2 + x4)

2) for some α = o(1).

(Recall L = 3 refers to having two trainable layers that we refer to as the second and third layers.)

Forward feature learning: richer representation by over-parameterization. Since α ≪ 1,
one may hope for the second layer G2(x) to learn x4

1 and x4
2 — which is quadratic over G1(x) —

through some representation of its neurons; then feed this as input to the third layer. If so, the third
layer G3(x) could learn a quadratic function over x4

1, x
4
2, x3, x4 to fit the remainder α((x4

1 +x3)
2 +

(x4
2 + x4)

2) in the objective. This logic has a critical flaw:

• Instead of learning x4
1, x

4
2, the second layer may as well learn 1

5 (x
2
1 + 2x2

2)
2, 1

5 (2x
2
1 − x2

2)
2.

4

Indeed, 1
5 (x

2
1 + 2x2

2)
2 + 1

5 (2x
2
1 − x2

2)
2 = x4

1 + x4
2; however, no quadratic function over 1

5 (x
2
1 +

2x2
2)

2, 1
5 (2x

2
1 − x2

2)
2 and x3, x4 can produce (x4

1 + x3)
2 + (x4

2 + x4)
2. Therefore, the second layer

needs to learn not only how to fit x4
1 + x4

2 but also the “correct basis” x4
1, x

4
2 for the third layer.

To achieve this goal, we let the learner network to use (quadratically-sized) over-parameterization
with random initialization. Instead of having only two hidden neurons, we will let the network have
m > 2 hidden neurons. We show a critical lemma that the neurons in the second layer of the network
can learn a richer representation of the same function x4

1 + x4
2, given by:

{(αix
2
1 + βix

2
2)

2}mi=1

In each hidden neuron, the coefficients αi, βi behave like i.i.d. Gaussians. Indeed, E[(αix
2
1 +

βix
2
2)

2] ≈ x4
1 + x4

2, and w.h.p. when m ≥ 3, we can show that a quadratic function of {(αix
2
1 +

βix
2
2)

2}mi=1, x3, x4 can be used to fit (x4
1 + x3)

2 + (x4
2 + x4)

2, so the algorithm can proceed. Note
this is a completely different view comparing to prior works: here over-parameterization is not to
make training easier in the current layer; instead, it enforces the network to learn a richer set of
hidden features (to represent the same target function) that can be better used for higher layers.

Backward feature correction: improvement in lower layers after learning higher layers. The
second obstacle in this toy example is that the second layer might not even learn the function x4

1+x4
2

exactly. It is possible to come up with a distribution where the best quadratic over G1(x) (i.e.,
x2
1, x

2
2, x

2
3, x

2
4) to fit G⋆(x) is instead (x2

1 + αx2
3)

2 + (x2
2 + αx2

4)
2, which is only of magnitude α

close to the ideal function x4
1 + x4

2. This is over-fitting, and the error αx2
3, αx

2
4 cannot be corrected

by over-parameterization. (More generally, this error in the lower-level features can propagate layer
after layer, if one keeps performing forward feature learning without going back to correct them.
This why we do not believe applying kernel method sequentially even ω(1) times can possibly learn
our concept class in poly-time. We discuss more in Section 3.)

Let us proceed to see how this over-fitting on the second layer can be corrected by learning the
third layer together. Say the second layer has an “α-error” and feeds the over-fit features (x2

1 +
αx2

3)
2, (x2

2 + αx2
4)

2 to the third layer. The third layer can therefore use ∆′ = α((x2
1 + αx2

3)
2 +

x3)
2 +α((x2

2 +αx2
4)

2 + x4)
2 to fit the remainder term ∆ = α((x4

1 + x3)
2 +(x4

2 + x4)
2) in G⋆(x).

A very neat observation is that ∆′ is only of magnitude α2 away from ∆. Therefore, when the
second and third layers are trained together, this “α2-error” remainder ∆′ will be subtracted from
the training objective, so the second layer can learn up to accuracy α2, instead of α. In other
words, the amount of over-fitting is now reduced from α to α2. We call this “backward feature
correction” (see Figure 3, 5, and 10 in Section A). (This is also consistent with what we discover on
ReLU networks in real-life experiments, see Figure 5 where we visualize such “over-fitting.”)

In fact, this process α → α2 → α3 → · · · keeps going and the second layer can feed better and
better features to the third layer (forward learning), via the reduction of over-fitting from the third
layer (via backward correction). We can eventually learn G⋆ to arbitrarily small error ε > 0. When
there are more than two trainable layers, the process is slightly more involved, and we summarize
this hierarchical learning process in Figure 6 on Page 15.

Hierarchical learning in deep learning goes beyond layer-wise training. Our results also shed
lights on the following observation in practice: typically layer-wise training (i.e. train layers one
by one starting from lower levels) performs much worse than training all the layers together, see
Figure 7. The fundamental reason is due to the missing piece of “backward feature correction.”

2 TARGET NETWORK AND LEARNER NETWORK

Target network. Recall we have defined the layers G⋆
2(x), . . . , G

⋆
L(x) of target networks in (1.3).

The weights W⋆
ℓ,j ∈ Rkℓ×kj for j ∈ Jℓ and we write W⋆

ℓ,j = 0 for j /∈ Jℓ. Our concept class to be
learned consists of functions G⋆ : Rd → R written as coordinate summation of each layer:5

G⋆(x) =
∑L

ℓ=2 αℓ · Sum(G⋆
ℓ (x)) :=

∑L
ℓ=2 αℓ

∑
i∈[kℓ]

G⋆
ℓ,i(x)

5Our result trivially extends to the case when Sum(v) is replaced with
∑

i pivi where pi ∈ {±1} for half
of the indices. We refrain from proving that version for notational simplicity.

5

𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆4 𝑆ℓ−2 𝑆ℓ−1

𝐹ℓ = 𝜎 𝑊ℓ,1∎+𝑊ℓ,4∎+𝑊ℓ,ℓ−1∎

𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆4 𝑆ℓ−2 𝑆ℓ−1 𝑆ℓ = 𝐾ℓ,1∎+𝐾ℓ,4∎+ 𝐾ℓ,ℓ−1∎

distillation

𝑊ℓ,1 𝑊ℓ,4

𝑊ℓ,ℓ−1

𝐾ℓ,ℓ−1

𝐾ℓ,4𝐾ℓ,1

…

…

distillation

distillation
distillation

Figure 1: learner network structure with distillation

where Sum(v) :=
∑

i vi, and it satisfies α2 = 1 and αℓ+1 < αℓ. We will provide more explanation
of the meaningfulness and necessity of information-gap αℓ+1 < αℓ in Section B.1.

It is convenient to define S⋆
ℓ (x) as the hidden features of target network (and G⋆

ℓ (x) = σ(S⋆
ℓ (x))).

S⋆
0 (x) = G⋆

0(x) = x, S⋆
1 (x) = G⋆

1(x), S⋆
ℓ (x) :=

∑ℓ−1
j=0 W

⋆
ℓ,jG

⋆
j (x) ∀ℓ ≥ 2

Learner network. Recall we have constructed the learner network to be of the same structure
(with over-parameterization, see (1.2)) as G⋆. We choose Mℓ,0,Mℓ,1 ∈ R(

kℓ+1
2)×d and Mℓ,j ∈

R(
kℓ+1

2)×(kj+1

2) for every 2 ≤ j ≤ ℓ − 1. In other words, the amount of over-parameterization is
quadratic (i.e., from kj →

(
kj+1

2

)
) per layer. Using samples (x,G⋆(x)) from an unknown target

network G⋆(x), our goal is to learn weight matrices Mℓ,j to satisfy

G(x) :=
∑L

ℓ=2 αℓ · Sum(Gℓ(x)) ≈ G⋆(x) .

2.1 LEARNER NETWORK RE-PARAMETERIZATION

In this paper, for theoretical efficient training purpose, we work on a re-parameterization of the
learner network. We use the following function to fit the target G⋆(x):

F (x) =
∑L

ℓ=2 αℓ · Sum(Fℓ(x))

where the layers are defined as: S0(x) = G⋆
0(x), S1(x) = G⋆

1(x), and for ℓ ≥ 2:

Sℓ(x) =
∑

j∈Jℓ,j≥2 Kℓ,jσ (RjSj(x)) +
∑

j∈{0,1}∩Jℓ
Kℓ,jSj(x) ∈ Rkℓ (2.1)

Fℓ(x) = σ
(∑

j∈Jℓ,j≥2 Wℓ,jσ (RjSj(x)) +
∑

j∈{0,1}∩Jℓ
Wℓ,jSj(x)

)
∈ Rm (2.2)

Above, we shall choose m to be polynomially large and let

• Rℓ ∈ R(
kℓ+1

2)×kℓ be randomly initialized for every layer ℓ, not changed during training; and
• Wℓ,j ∈ Rm×q,Kℓ,j ∈ Rkℓ×q be trainablefor every ℓ and j ∈ Jℓ, and the dimension q =

(
kj+1

2

)
for j ≥ 2 and q = d for j = 0, 1.

It is easy to verify that when R⊤
ℓ Rℓ = I and when Wℓ,j = Kℓ,j , by defining Mℓ,j = RℓKℓ,j

we have Fℓ(x) = Gℓ(x) and F (x) = G(x). We remark that the hidden dimension kℓ can also be
learned during training, see Algorithm 1 in Section C.6

Why this re-parameterization. We work with this re-parameterization F (x) for efficient training
purpose. It is convenient to think of Sℓ(x) as the “hidden features” used by the learner network.
Since Sℓ(x) is of the same dimension kℓ as S⋆

ℓ (x), our goal becomes to prove that the hidden
features Sℓ(x) and S⋆

ℓ (x) are close up to unitary transformation (i.e. Theorem 2).

One may also consider Fℓ(x) = σ(W · · ·) and treat the pre-activation part (W · · ·) ∈ Rm in
(2.2) — instead of Sℓ(x) ∈ Rkℓ — as the “over-parameterized hidden features.” This over-
parameterization is used to make the training provably efficient. As we shall see, we will impose
regularizers during training to enforce K⊤K ≈ W⊤W; and this idea of using a larger unit W

6From this definition, it seems the learner needs to know {αℓ}ℓ and {Jℓ}ℓ; as we point out in Section C,
performing grid search over them is efficient in poly(d) time. This can be viewed as neural architecture search.
As a consequence, in the agnostic setting, our theorem can be understood as: “the learner network can fit the
labeling function using the best G⋆ from the concept class as well as the best choices of {αℓ}ℓ and {Jℓ}ℓ.”

6

for training and using a smaller unit K to learn the larger one can be viewed as knowledge distilla-
tion. One can then argue that the “over-parameterized hidden features” are also close to S⋆

ℓ (x) up
to knowledge distillation and unitary transformation. Knowledge distillation is commonly used in
practice (Hinton et al., 2015), and we illustrate this by Figure 1.

Truncated quadratic activation. To make our theory simpler, during training, it would be easier to
work with an activation function that has bounded derivatives in the entire space (recall the derivative
|σ′(z)| = |z| is unbounded). We make a theoretical choice of a truncated quadratic activation σ̃(z)

that is sufficiently close to σ(z). Accordingly, we rewrite F (x), Fℓ(x), Sℓ(x) as F̃ (x), F̃ℓ(x), S̃ℓ(x)
whenever we replace σ(·) with σ̃(·). (For completeness we still include the formal definition in
Appendix H.1.) Our lemma — see Appendix J.1 — shall ensure that F (x) ≈ F̃ (x) and Sℓ(x) ≈
S̃ℓ(x). Thus, our final learned network F (x) is truly quadratic. In practice, people use batch/layer
normalizations to make sure activations stay bounded, but truncation is more theory-friendly.

Notation simplification. We concatenate the weight matrices used in the same layer ℓ as follows:

Wℓ = (Wℓ,j)j∈Jℓ
Kℓ = (Kℓ,j)j∈Jℓ

W⋆
ℓ =

(
W⋆

ℓ,j

)
j∈Jℓ

Wℓ◁ = (Wℓ,j)j∈Jℓ,j ̸=ℓ−1 Kℓ◁ = (Kℓ,j)j∈Jℓ,j ̸=ℓ−1 W⋆
ℓ◁ =

(
W⋆

ℓ,j

)
j∈Jℓ,j ̸=ℓ−1

2.2 TRAINING OBJECTIVE

We focus our notation for the regression problem in the realizable case. We will introduce notations
for the agnostic case and for classification in Section B.1 when we need them.

As mentioned earlier, to perform knowledge distillation, we add a regularizer to ensure W⊤
ℓ Wℓ ≈

K⊤
ℓ Kℓ so that K⊤

ℓ Kℓ is a low-rank approximation of W⊤
ℓ Wℓ. (This also implies Sum(Fℓ(x)) ≈

Sum(σ(Sℓ(x))).) Specifically, we use the following training objective:

Õbj(x;W,K) = L̃oss(x;W,K) +Reg(W,K)

where the ℓ2 loss is L̃oss(x;W,K) = (G⋆(x)− F̃ (x))2 and

Reg(W,K) =
∑L

ℓ=2 λ3,ℓ

∥∥∥K⊤
ℓ,ℓ−1Kℓ◁ −W⊤

ℓ,ℓ−1Wℓ◁

∥∥∥2
F
+
∑L

ℓ=2 λ4,ℓ

∥∥∥K⊤
ℓ,ℓ−1Kℓ,ℓ−1 −W⊤

ℓ,ℓ−1Wℓ,ℓ−1

∥∥∥2
F

+
∑L

ℓ=2 λ5,ℓ

∥∥K⊤
ℓ Kℓ −W⊤

ℓ Wℓ

∥∥2
F
+
∑L

ℓ=2 λ6,ℓ

(
∥Kℓ∥2F + ∥Wℓ∥2F

)
.

For a given set Z consisting of N i.i.d. samples from the true distribution D, the training process
minimizes the following objective (x ∼ Z denotes x is uniformly sampled from the training set Z)

Õbj(Z;W,K) = E
x∼Z

[Õbj(x;W,K)] (2.3)

The regularizers we used are just (squared) Frobenius norm on the weight matrices, which are com-
mon in practice. The regularizers associated with λ3,ℓ, λ4,ℓ, λ5,ℓ are for knowledge distillation pro-
pose to make sure K is close to W (they are simply zero when K⊤

ℓ Kℓ = W⊤
ℓ Wℓ). They play no

role in backward feature corrections (since layers ℓ and ℓ′ for ℓ′ ̸= ℓ are optimized independently in
these regularizers). These corrections are done solely by SGD automatically.

For the original, non-truncated quadratic activation network, we also denote by

Loss(x;W,K) = (G⋆(x)− F (x))
2 and Obj(x;W,K) = Loss(x;W,K) +Reg(W,K).

3 STATEMENTS OF MAIN RESULT

We assume the input distribution x ∼ D satisfies random properties such as isotropy and hyper-
contractivity. We defer the details to Section D, while pointing out that not only standard Gaussian
but even some mixtures of non-spherical Gaussians satisfy these properties (see Proposition D.1).
For simplicity, the readers can think of D = N (0, I) in this section.

We consider a concept class consisting of target networks satisfying the following parameters

1. (monotone) d ≥ k := k2 ≥ k3 ≥ · · · ≥ kL.

7

2. (normalized) Ex∼D [Sum(G⋆
ℓ (x))] ≤ Bℓ for some Bℓ ≥ 1 for all ℓ and B := maxℓ{Bℓ}.

3. (well-conditioned) the singular values of W⋆
ℓ,j are between 1

κ and κ for all ℓ, j ∈ Jℓ pairs.

Remark 3.1. Properties 1, 3 are satisfied for many practical networks; in fact, many practical net-
works have weight matrices close to unitary, see (Huang et al., 2018). For property 2, although there
may exist some worst case W⋆

ℓ,j , at least when each W⋆
ℓ,j is of the form Uℓ,jΣVℓ,j for Uℓ,j ,Vℓ,j

being random orthonormal matrices, with probability at least 0.9999, it holds Bℓ = κ2O(ℓ)

kℓ for
instance for standard Gaussian inputs — this is small since L ≤ o(log log d). Another view is that
practical networks are equipped with batch/layer normalizations, which ensure Bℓ = O(kℓ).

Our results. In the main body of this paper, we state a special case of our main (positive result)
Theorem 1 which is sufficiently interesting and has simpler notations. The full Theorem 1’ is in
Appendix H. In this special case, we assume there are absolute integer constants C > C1 ≥ 2 such
that, the concept class consists of target networks G⋆(x) satisfies the above three properties with
parameters κ ≤ 2C

L
1 , Bℓ ≤ 2C

ℓ
1kℓ, kℓ ≤ d

1

Cℓ+C1 and there is an information gap αℓ+1

αℓ
≤ d−

1

Cℓ for
ℓ ≥ 2; furthermore, suppose in the connection graph {2, 3, · · · , ℓ − C1} ∩ Jℓ = ∅, meaning that
the skip connections do not go very deep, unless directly connected to the input.

Theorem 1 (special case of Theorem 1’). In the special case as defined above, for every sufficiently
large d > 0, every L = o (log log d), every ε ∈ (0, 1), consider any target network G⋆(x) satisfying
the above parameters. Then, given N = poly(d/ε) i.i.d. samples x from D with corresponding la-
bels G⋆(x), by applying Algorithm 1 (a variant of SGD) with over-parameterization m = poly(d/ε)
and learning rate η = 1

poly(d/ε) over the training objective (2.3), with probability at least 0.99, we
can find a learner network F in time poly(d/ε) such that:

E
x∼D

(
G⋆(x)− F (x)

)2 ≤ ε2 and E
x∼D

(
G⋆(x)− F̃ (x)

)2 ≤ ε2 .

We defer the detailed pseudocode of Algorithm 1 to Section C but make several remarks:

• Note αℓ+1 = αℓd
− 1

Cℓ implies αL ≥ d−
1
C ≥ 1√

d
. Hence, to achieve for instance ε ≤ 1

d4

error, the learning algorithm has to truly learn all the layers of G⋆(x), as opposed to for instance
ignoring the last layer which will incur error αL ≫ ε.

• The reason we focus on L = o(log log d) and well-conditioned target networks should be natural.
Since the target network is of degree 2L, we wish to have κ2L ≤ poly(d) so the output of the
network is bounded by poly(d) for efficient learning.

The main conceptual and technical contribution of our paper is the “backward feature correction”
process. To illustrate this, we highlight a critical lemma in our proof and state it as a theorem:

Backward Feature Correction Theorem
Theorem 2 (highlight of Corollary L.3d). In the setting of Theorem 1, during the training process,
suppose the first ℓ-layers of the learner network has achieved ε generalization error,

or in symbols, E
[(
G⋆(x)−

∑
ℓ′≤ℓ αℓ′Sum(Fℓ′(x))

)2] ≤ ε2 , (3.1)

then for every ℓ′ ≤ ℓ, there is unitary matrix Uℓ′ ∈ Rkℓ′×kℓ′ such that (we write αL+1 = 0)

E
[
α2
ℓ′ ∥S⋆

ℓ′(x)−Uℓ′Sℓ′(x)∥2
]
≲ (α2

ℓ+1 + ε2) .

In other words, once we have trained the first ℓ layers well enough, for some lower-level layer ℓ′ ≤ ℓ,
the “error in the learned features Sℓ′(x) comparing to S⋆

ℓ′(x)” is proportional to αℓ+1. Recall for
fixed ℓ′, as we increase ℓ the value αℓ+1 decreases, thus Theorem 2 suggests that

the lower-level features can actually get improved when we train higher-level layers together.

Remark 3.2. Theorem 2 is not a “representation” theorem. There might be other networks F such
that (3.1) is satisfied but Sℓ′(x) is not close to S⋆

ℓ′(x) at all. Theorem 2 implies during the train-
ing process, as long as we following carefully the training process of SGD, such “bad F ” will be
automatically avoided. We give more details in our intuition and sketched proof Section E.

8

Comparing to sequential kernel methods. Recall we have argued in Section 1.2 that our concept
class is not likely to be efficiently learnable, if one applies kernel method O(1) times sequentially.
Even if one applies kernel method for ω(1) rounds, this is similar to layer-wise training and misses
“backward feature correction.” As we pointed out using examples in Section 1.2, this is unlikely
to learn the target function to good accuracy either. In fact, one may consider “sequential kernel”
together with “backward feature correction”, but even this may not always work, since small gener-
alization error does not necessarily imply sufficient accuracy on intermediate features if we do not
follow the SGD training process (see Remark 3.2).7

Importance of hierarchical learning. To the best of our knowledge, for the concept class consid-
ered in this paper, we do not know any other simple algorithm to learn it in polynomial time, and the
only simple learning algorithm we are aware of is to train a neural network to perform hierarchical
learning. In other words, we believe we have presented a setting where we prove that training a
neural network via a simple SGD variant can perform hierarchical learning, to solve an underly-
ing problem that is not known solvable by existing algorithms, including applying kernel methods
sequentially multiple times, tensor decomposition methods, sparse coding.

3.1 BACKWARD FEATURE CORRECTION: HOW DEEP? HOW MUCH?

How deep does it need for the neural network to perform backward feature correction? In our theo-
retical result, we studied an extreme case in which training the L-th layer can even backward correct
the learned weights on the first layer for L = ω(1) (see Theorem 2). In practice, we demonstrate that
backward feature correction may indeed need to be deep. For the 34-layer WideResNet architecture
on CIFAR tasks, see Figure 8 on Page 16, we show that backward feature correction happens for at
least 8 layers, meaning that if we first train all the ≤ ℓ layers for some large ℓ (say ℓ = 21), the
features in layer ℓ − 8, ℓ − 7, · · · , ℓ still need to be (locally) improved in order to become the best
features comparing to training all the layers together.

We also give a characterization on how much the features need to be backward corrected using
theory and experiments. On the empirical side, we measure the changes given by backward feature
correction in Figure 8 and 9. We detect that these changes are local: meaning although the lower
layers need to change when training with higher layers together to obtain the highest accuracy, they
do not change by much (the correlation of layer weights before and after backward correction is
more than 0.9). In Figure 10, we also visualize the neurons at different layers, so that one can easily
see backward feature correction is indeed a local correction process in practice.

This is consistent with our theory. Theorem 2 shows at least for our concept class, backward feature
correction is a local correction, meaning that the amount of feature change to the lower-level layers
(when trained together with higher-level layers) is only little-o(1) due to αℓ+1 ≪ αℓ′ .

Intuitively, the locality comes from “information gap”, which asserts that the lower layers in G⋆ can
already fit a majority of the labels. When the lower layers in G are trained, their features will already
be close to those “true” lower-level features in G⋆ and only a local correction is needed.

We believe that the need for only local backward feature corrections is one of the main reasons
that deep learning works in practice on performing efficient (deep) hierarchical learning. We refer
to (Allen-Zhu & Li, 2019a) for empirical evidence that deep learning fails to perform hierarchi-
cal learning when information gap is removed and the correction becomes non-local, even in the
teacher-student setting with a hierarchical target network exactly generating the labels. The main
contribution of our theoretical result is to show that such local “backward feature correction” can be
done automatically when applying (a variant of) SGD to the training objective.

What’s in Supplementary Materials. We include an Appendix I to cover some missing details:
including missing Figures 2-13, and experiments to support the connection between our theory and
practice, theorem statements in the agonistic or classification settings, formal specification of the
SGD training algorithm, formal specification of the data distribution, as well as a sketched proof.
Detailed detailed proofs to Appendix II.

7One may also want to connect this to (Allen-Zhu & Li, 2019a): according to Footnote 16, the analysis
from (Allen-Zhu & Li, 2019a) is analogous to doing “sequential kernel” for 2 rounds, but even if one wants
to backward correct the features of the first hidden layer, its error remains to be α and cannot be improved to
arbitrarily small.

9

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. LazySVD: even faster SVD decomposition yet without agoniz-
ing pain. In NeurIPS, pp. 974–982, 2016.

Zeyuan Allen-Zhu and Yuanzhi Li. What Can ResNet Learn Efficiently, Going Beyond Kernels? In
NeurIPS, 2019a. Full version available at http://arxiv.org/abs/1905.10337.

Zeyuan Allen-Zhu and Yuanzhi Li. Can SGD Learn Recurrent Neural Networks with Provable
Generalization? In NeurIPS, 2019b. Full version available at http://arxiv.org/abs/
1902.01028.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In FOCS, 2021. Full version available at http://arxiv.org/abs/2005.
10190.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and Generalization in Overparameter-
ized Neural Networks, Going Beyond Two Layers. In NeurIPS, 2019a. Full version available at
http://arxiv.org/abs/1811.04918.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. In NeurIPS, 2019b. Full version available at http://arxiv.org/abs/1810.
12065.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019c. Full version available at http://arxiv.org/abs/
1811.03962.

Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds for learning some
deep representations. In International Conference on Machine Learning, pp. 584–592, 2014.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. arXiv preprint arXiv:1904.11955, 2019a.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural networks. CoRR,
abs/1901.08584, 2019b. URL http://arxiv.org/abs/1901.08584.

Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rectified neural networks
in polynomial time. arXiv preprint arXiv:1811.01885, 2018.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In International Conference on Machine Learning, pp. 583–593, 2019.

Yoshua Bengio. Learning deep architectures for AI. Now Publishers Inc, 2009.
Digvijay Boob and Guanghui Lan. Theoretical properties of the global optimizer of two layer neural

network. arXiv preprint arXiv:1710.11241, 2017.
Jacob V Bouvrie. Hierarchical learning: Theory with applications in speech and vision. PhD thesis,

Massachusetts Institute of Technology, 2009.
Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with gaussian

inputs. arXiv preprint arXiv:1702.07966, 2017.
Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and

deep neural networks. In Advances in Neural Information Processing Systems, pp. 10835–10845,
2019.

Amit Daniely. Sgd learns the conjugate kernel class of the network. In Advances in Neural Infor-
mation Processing Systems, pp. 2422–2430, 2017.

Amit Daniely and Eran Malach. Learning parities with neural networks. arXiv preprint
arXiv:2002.07400, 2020.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. In Advances in Neural Information
Processing Systems (NIPS), pp. 2253–2261, 2016.

Simon S Du and Wei Hu. Width provably matters in optimization for deep linear neural networks.
arXiv preprint arXiv:1901.08572, 2019.

Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. arXiv preprint arXiv:1811.03804, November 2018a.

10

http://arxiv.org/abs/1905.10337
http://arxiv.org/abs/1902.01028
http://arxiv.org/abs/1902.01028
http://arxiv.org/abs/2005.10190
http://arxiv.org/abs/2005.10190
http://arxiv.org/abs/1811.04918
http://arxiv.org/abs/1810.12065
http://arxiv.org/abs/1810.12065
http://arxiv.org/abs/1811.03962
http://arxiv.org/abs/1811.03962
http://arxiv.org/abs/1901.08584

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018b.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference
on learning theory, pp. 907–940, 2016.

Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. New results for
learning noisy parities and halfspaces. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06), pp. 563–574. IEEE, 2006.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic
gradient for tensor decomposition. In Conference on Learning Theory, pp. 797–842, 2015.

Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape
design. arXiv preprint arXiv:1711.00501, 2017.

Rong Ge, Rohith Kuditipudi, Zhize Li, and Xiang Wang. Learning two-layer neural networks with
symmetric inputs. arXiv preprint arXiv:1810.06793, 2018.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized two-layers
neural networks in high dimension. arXiv preprint arXiv:1904.12191, 2019.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. arXiv
preprint arXiv:1909.05989, 2019.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. arXiv preprint arXiv:1611.04231,
2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hier-
archy. arXiv preprint arXiv:1909.08156, 2019.

Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu, Yongliang Wang, and Bo Li. Orthogonal
weight normalization: Solution to optimization over multiple dependent stiefel manifolds in deep
neural networks. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. In Advances in neural information processing systems, pp.
103–112, 2019.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pp. 8571–
8580, 2018.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. In International Conference on Learning Representations,
2018.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, pp. 586–594, 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.
Yuanzhi Li and Zehao Dou. When can wasserstein gans minimize wasserstein distance? arXiv

preprint arXiv:2003.04033, 2020.
Yuanzhi Li and Yingyu Liang. Provable alternating gradient descent for non-negative matrix factor-

ization with strong correlations. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 2062–2070. JMLR. org, 2017.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems, 2018.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with
relu activation. In Advances in Neural Information Processing Systems, pp. 597–607.

11

http://www.deeplearningbook.org
http://www.deeplearningbook.org

http://arxiv.org/abs/1705.09886, 2017.
Yuanzhi Li, Yingyu Liang, and Andrej Risteski. Recovery guarantee of non-negative matrix fac-

torization via alternating updates. In Advances in neural information processing systems, pp.
4987–4995, 2016.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In COLT, 2018.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. arXiv preprint arXiv:1907.04595, 2019a.

Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. Learning over-parametrized two-layer relu neural
networks beyond ntk. arXiv preprint arXiv:2007.04596, 2020.

Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du, Wei Hu, Ruslan Salakhutdinov, and Sanjeev
Arora. Enhanced convolutional neural tangent kernels. arXiv preprint arXiv:1911.00809, 2019b.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the diffi-
culty of training transformers. arXiv preprint arXiv:2004.08249, 2020a.

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng Gao. Very deep transformers for neural ma-
chine translation. arXiv preprint arXiv:2008.07772, 2020b.

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
neural networks. In Advances in Neural Information Processing Systems, pp. 855–863, 2014.

Shachar Lovett. An elementary proof of anti-concentration of polynomials in gaussian variables. In
Electronic Colloquium on Computational Complexity (ECCC), volume 17, pp. 182, 2010.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A cryptographic inference service for neural networks. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pp. 2505–2522. USENIX Association, August 2020. ISBN 978-1-
939133-17-5. URL https://www.usenix.org/conference/usenixsecurity20/
presentation/mishra.

Elchanan Mossel. Deep learning and hierarchal generative models. arXiv preprint
arXiv:1612.09057, 2016.

Ido Nachum and Amir Yehudayoff. On symmetry and initialization for neural networks. In LATIN
2020, pp. 401–412, 2020.

Samet Oymak and Mahdi Soltanolkotabi. Towards moderate overparameterization: global conver-
gence guarantees for training shallow neural networks. arXiv preprint arXiv:1902.04674, 2019.

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and
Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. In
Advances in Neural Information Processing Systems, pp. 11289–11300, 2019.

Warren Schudy and Maxim Sviridenko. Concentration and moment inequalities for polynomials of
independent random variables. In Proceedings of the twenty-third annual ACM-SIAM symposium
on Discrete Algorithms, pp. 437–446. Society for Industrial and Applied Mathematics, 2012.

Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Ludwig Schmidt, Jonathan
Ragan-Kelley, and Benjamin Recht. Neural kernels without tangents. arXiv preprint
arXiv:2003.02237, 2020.

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimiza-
tion landscape of over-parameterized shallow neural networks. arXiv preprint arXiv:1707.04926,
2017.

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees
for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

Matus Telgarsky. Benefits of depth in neural networks. arXiv preprint arXiv:1602.04485, 2016.
Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv

preprint arXiv:1905.05950, 2019.
Yuandong Tian. An analytical formula of population gradient for two-layered relu network and its

applications in convergence and critical point analysis. arXiv preprint arXiv:1703.00560, 2017.
Loc Quang Trinh. Greedy layerwise training of convolutional neural networks. Master’s thesis,

Massachusetts Institute of Technology, 2019.

12

https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra

Santosh Vempala and John Wilmes. Polynomial convergence of gradient descent for training one-
hidden-layer neural networks. arXiv preprint arXiv:1805.02677, 2018.

Bo Xie, Yingyu Liang, and Le Song. Diversity leads to generalization in neural networks. arXiv
preprint Arxiv:1611.03131, 2016.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019.

Gilad Yehudai and Ohad Shamir. On the power and limitations of random features for understanding
neural networks. arXiv preprint arXiv:1904.00687, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer relu
networks via gradient descent. arXiv preprint arXiv:1806.07808, 2018.

Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees
for one-hidden-layer neural networks. arXiv preprint arXiv:1706.03175, 2017.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. In Advances in Neural Information Processing Systems, pp. 2053–2062, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep relu networks. arXiv preprint arXiv:1811.08888, 2018.

13

	1 Introduction
	1.1 Our Theorem
	1.2 High-Level Intuitions

	2 Target Network and Learner Network
	2.1 Learner Network Re-parameterization
	2.2 Training Objective

	3 Statements of Main Result
	3.1 Backward Feature Correction: How deep? How much?

