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Abstract

Exploration in sparse reward environments remains a significant challenge in
reinforcement learning, particularly in Contextual Markov Decision Processes
(CMDPs), where environments differ across episodes. Existing episodic intrin-
sic motivation methods for CMDPs primarily rely on count-based approaches,
which are ineffective in large state spaces, or on similarity-based methods that
lack appropriate metrics for state comparison. To address these shortcomings, we
propose Episodic Novelty Through Temporal Distance (ETD), a novel approach
that introduces temporal distance as a robust metric for state similarity and intrinsic
reward computation. By employing contrastive learning, ETD accurately estimates
temporal distances and derives intrinsic rewards based on the novelty of states
within the current episode. Experiments on challenging MiniGrid tasks demon-
strate that ETD significantly outperforms state-of-the-art methods, highlighting its
effectiveness in enhancing exploration and generalization in sparse reward CMDPs.

1 Introduction

Exploration in sparse reward environments remains a significant challenge in reinforcement learning
(RL). Recent approaches have introduced the concept of intrinsic motivation [1, 2] to encourage
agents to explore novel states, yielding promising results in sparse reward Markov Decision Processes
(MDPs) [3, 4, 5, 6]. Most existing methods grounded in intrinsic motivation derive rewards from the
agent’s cumulative experiences across all episodes. While these methods are effective in singleton
MDPs, where agents are spawned in the same environment for each episode, they exhibit limited
generalization across environments [7]. Real-world applications are often more suitably represented
by Contextual MDPs (CMDPs) [8], where different episodes correspond to different environments
that nevertheless share certain characteristics, such as procedurally-generated environments [9, 10, 11]
or embodied AI tasks requiring generalization across diverse spaces [12, 13, 14, 15]. In CMDPs, the
uniqueness of each episode indicates that experiences from one episode may offer limited insights
into the novelty of states in another episode, thereby necessitating the development of more effective
intrinsic motivation mechanisms.

To address the challenges of exploration in CMDPs, where episodes differ significantly, several
works have introduced episodic bonuses [8]. These bonuses are derived from experiences within the
current episode, avoiding the generalization limitations of cross-episode rewards. These approaches
can typically be divided into two lines: count-based [16, 17, 18, 19, 20, 21, 22, 23] and similarity-
based [24, 25, 7, 26]. Count-based methods rely on an episodic count term to generate positive
bonuses once encountering a new state but struggle in large or continuous state spaces [27], where
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each state is unique and episodic bonuses remain uniform across all states. Meanwhile, similarity-
based methods require appropriate measurements between pairs of states, which used to be assessed
via Euclidean distance [25, 7] or reachable likelihood [24, 26] in some latent spaces. However, these
similarity measurements used by existing methods do not provide a suitable metric for capturing the
novelty of states, as illustrated in Figure 2. This inadequacy undermines the credibility of subsequent
intrinsic reward calculations and limits the effectiveness of these methods in complex CMDP envi-
ronments. Our work addresses this gap by introducing a new metric—temporal distance—that more
effectively captures novelty in CMDPs by considering the expected number of steps between states.

In this work, we introduce Episodic Novelty Through Temporal Distance (ETD), a novel approach
designed to encourage agents to explore states that are temporally distant from their episodic history.
The critical innovation of ETD lies in its use of temporal distance—the expected number of environ-
ment steps required to transition between two states—as a robust metric for state similarity in intrinsic
reward computation. Unlike existing similarity metrics, temporal distance is invariant to state repre-
sentations, which mitigates issues like the "noisy-TV" problem [5] and ensures the applicability of
ETD in pixel-based environments. We employ contrastive learning with specialized parameterization
to accurately estimate the temporal distances between states. The intrinsic reward is computed based
on the aggregated temporal distances between a new state and each in the episodic memory. Through
extensive experiments on various CMDP benchmark tasks, including MiniGrid [9], Crafter [28], and
MiniWorld [9], we show that ETD significantly outperforms state-of-the-art methods, improving
exploration efficiency.

2 Background

We consider a contextual Markov Decision Process (CMDP) defined by (S,A, C, P, r, µC , µS , γ),
where S is the state space, A is the action space, C is the context space, P : S ×A× C → ∆(S) is
the transition function, r(st, at, st+1) is the reward function and typically sparse, µS is the initial
state distribution conditioned on the context, µC is the context distribution, and γ ∈ (0, 1) is the
reward discount factor. At start at each episode, a context c is sampled from µC , followed by an
initial state s0 sampled from µS(·|c), and subsequent states are sampled from st+1 ∼ P (·|st, at, c).
The goal is to optimize a policy π : S → ∆(A) so that the the expected accumulated reward across
over all contexts Ec∼µC ,s0∼µS(·|c)[

∑
t γ

tr(st, at, st+1)] is maximized.

Examples of CMDPs include procedurally generated environments [9, 10, 11, 28], where each context
c serves as a random seed for environment generation. Similarly, Embodied AI environments [9,
12, 14], where agents navigate various simulated homes, are also examples of CMDPs. Notably,
singleton MDPs (|C| = 1) represent a special case of CMDPs. We primarily focus on CMDPs with
|C| = ∞.

To address the sparse reward challenges, we augment the reward function r by adding an intrinsic
reward bonus. The modified equation is r(st, at, st+1) = ret + β · bt, where ret represents the sparse
extrinsic reward and bt denotes the intrinsic reward at each timestep t. The hyperparameter β controls
the influence of the intrinsic reward.

3 Limitations of Current Episodic Bonuses

Previous intrinsic motivation methods like NovelD [19], often rely on an episodic count term to
perform effectively in CMDPs. However, these count-based methods encounter difficulties in large
or continuous state spaces. When each state is unique, the episodic bonus loses significance as it
attributes the same value to all states. This is exemplified in the "noisy-TV" problem [5] where
random noise interferes with the state. Our experiments in Fig.1 show that NovelD proved ineffective
in states with injected noise, while our method maintained its efficacy.

Potential alternatives include computing episodic novelty based on the current state’s similarity to
previous states. This could be done using metrics like Euclidean distance in an embedding space
learned through inverse dynamics (as used in NGU [25], E3B [7]), or by estimating the likelihood
of easy transitions between states (as in EC [24], DEIR [26]). However, when these methods were
tested in a SpiralMaze environment (shown in Fig.2), neither provided suitable metrics for similarity
measurement. In contrast, our method achieved accurate distance estimates.
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Figure 1: Training curves
in Minigrid-DooKey-16x16
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Figure 2: Distance from to all other states in a 17x17 Spiral-
Maze. (Left) Euclidean distance of embeddings trained by inverse
dynamics. (Center) Likelihood estimation of easy transitions
(EC). (Right) The learned temporal distance (Ours).

4 Methods

In this section, we introduce Episodic Novelty through Temporal Distance (ETD), an algorithm
designed to enhance exploration in CMDPs. The core innovation of ETD is using a temporal distance
quasimetric to measure state similarity. This approach encourages the agent to explore states that are
temporally distant from its episodic history. In the subsequent sections, we detail how we learn the
temporal distance and how we use temporal distance as the intrinsic bonus.

4.1 Temporal Distance Learning

Temporal distance can be intuitively understood through the transition probability between states,
where a lower probability indicates a larger distance. For a given policy π, we define pπ(sk = y|s0 =
x) as the probability of reaching state y at time step k when starting from x. The transition probability
can be described using a discounted state occupancy measure, which equals a geometrically weighted
average of the probabilities:

pπγ (sf = y|s0 = x) = (1− γ)

∞∑
k=0

γkpπ(sk = y|s0 = x). (1)

To ensure the temporal distance behaves as a quasimetric (a metric that relaxes the symmetry
assumption), we use the successor distance [29]. Given a policy π, the successor distance is defined
as the difference between the logarithms of the probabilities of reaching y from y (self-loop) and
reaching y from x:

dπSD(x, y) = log

(
pπγ (sf = y|s0 = y)

pπγ (sf = y|s0 = x)

)
. (2)

This formulation satisfies the triangle inequality and other quasimetric properties [29], even in
stochastic MDPs. Consequently, the successor distance can be reliably used as a measure of similarity
between states.

Contrastive learning can estimate the successor distance when positive samples are drawn from the
discounted state occupancy measure. Define ps(x) as the marginal state distribution, and psf (y) =∫
s
ps(x)p

π
γ (sf = y | s0 = x) as the corresponding marginal distribution over future states. We apply

contrastive learning to learn the energy function by sampling tuples from the joint distribution
(xi, yi) ∼ pπγ (sf = yi|s0 = xi)ps(xi). Give a batch of tuples {xi, yi}Bi=1, we use the symmetrized
infoNCE loss function [30]:

Lθ =
B∑
i=1

[
log

exp(fθ(xi, yi))∑B
j=1 exp(fθ(xi, yj))

+ log
exp(fθ(xi, yi))∑B
j=1 exp(fθ(xj , yi))

]
. (3)

In practice, we parameterize the energy function fθ=(ϕ,ψ)(x, y) as the difference between a potential
network cψ(y) : S → R and a quasimetric network [31] dϕ(x, y) : S × S → R.

fθ=(ϕ,ψ)(x, y) = cψ(y)− dϕ(x, y). (4)
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If the batch size B is large enough, the unique solution fθ∗ of the loss function in Equation 3 with
parameterization in Equation 4 recovers the successor distance, i.e., dπSD(x, y) = dϕ∗(x, y). For
further details, see Appendix B. As a result, we discard cψ(y) after contrastive learning and directly
use dϕ(x, y) as our temporal distance.

To demonstrate the learned temporal distance, we present results from the SpiralMaze 17x17 task, as
shown in Figure 2(c). We collected 100 random episodes (each with 50-time steps) and minimized
the loss function following the process above. The resulting temporal distance dϕ( , ·) is visualized
with a colormap (darker color indicates larger distances), strongly aligning with the ground truth.

4.2 Temporal Distance as Episodic Bonus

Our approach maximizes the temporal distance between newly visited and previously encountered
states within the current episode. At each time step t, we assign a larger intrinsic reward to states that
are temporally distant from the episodic memory. Formally, the episodic temporal distance bonus is
defined as:

bETD(st) = min
k∈[0,t)

dϕ(sk, st), (5)

where {dϕ(sk, st)}t−1
k=0 represents the learned temporal distances between the current state st and

all previous states {sk}t−1
k=0 in the episodic memory. The minimum distance is used as the episodic

intrinsic reward. In terms of computational efficiency, storing CNN-extracted embeddings in episodic
memory minimizes memory overhead. Additionally, concatenating memory states allow all temporal
distances to be computed in a single neural network inference, ensuring high time efficiency.

Connections to previous intrinsic motivation methods. Many previous episodic intrinsic reward
methods, such as DEIR [26], NGU [25], GoBI [32], and EC [24], also rely on episodic memory
and past states to calculate rewards. Compared to these methods, our reward formulation is notably
simpler. Both EC and GoBI use reachability to assess state similarity, which is similar to our approach.
However, EC struggles to learn temporal distance accurately, as shown in Figure 2(b). Meanwhile,
GoBI depends on a world model’s lookahead rollout to estimate temporal distance, which results in
high computational complexity.

5 Experiments

To evaluate the capabilities of existing methods and assess ETD, we aim to identify CMDP en-
vironments that present challenges typical of realistic scenarios, such as sparse rewards, noisy or
irrelevant features, and large state spaces. We consider three domains, including the Minigrid [9] and
its noisy variants, as well as high-dimensional pixel-based Crafter [28] and Miniworld [9]. For all the
experiments, we use PPO as the base RL algorithm and add intrinsic rewards specified by various
methods to encourage exploration.

5.1 MiniGrid Environments

MiniGrid [9] features procedurally generated 2D environments tailored for challenging exploration
tasks. In these environments, agents interact with objects such as keys, balls, doors, and boxes while
navigating multiple rooms to locate a randomly placed goal. The agents receive a single sparse reward
upon completing each episode. We chose four particularly challenging environments: MultiRoom,
DoorKey, KeyCorridor, and ObstructedMaze. In the MultiRoom environment, the agent’s task is
relatively straightforward, requiring navigating through a series of interconnected rooms to reach
the goal. DoorKey presents an increased difficulty, as the agent must first find and pick up a key
and then open a door before reaching the goal. KeyCorridor is even more demanding, requiring
the agent to open multiple doors, locate a key, and then use it to unlock another door to access the
goal. ObstructedMaze is the most complex of all: the key is hidden within a box, a ball obstructs the
door, and the agent must find the hidden key, move the ball, open the door, and finally reach the goal.
Further details on these tasks can be found in the Appendix.
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Figure 3: Training performance of ETD and the baselines on 8 most challenging Minigrid environ-
ments. The x-axis represents the environment steps. All the results are averaged across 5 seeds.
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Figure 4: Training performance of ETD and the baselines on MiniWorld Maze with different sizes.

5.2 MiniWorld

Figure 3 shows the learning curves of ETD and state-of-the-art exploration baselines NovelD,
DEIR and Count on 8 most challenging Minigrid navigation tasks, including MultiRoom, DoorKey,
KeyCorridor and ObstructedMaze. ETD significantly outperforms previous methods in sample
efficiency. Notably, in the most challenging ObstructedMaze-Full environment, ETD achieves near-
optimal performance within 20M steps, doubling the sample efficiency of NovelD, the strongest
baseline where our implementation achieves the best performance reported in the literature.

5.3 High-Dimensional Experiments

To evaluate the scalability of our method with continuous high-dimensional pixel-based observations,
we conducted experiments on three pixel-based CMDP benchmarks: MiniWorld, Crafter, and Procgen
Maze. Due to space limitations, please refer to the appendix for the results of Crafter and Procgen
Maze. Here, we present the results for MiniWorld.

MiniWorld [9] is a procedurally generated 3D environment simulator that offers a first-person,
partially observable view as observation. We focused on the MiniWorld-Maze, where the agent must
navigate through a procedurally generated maze. Exploration in this environment is particularly
challenging due to the 3D first-person perspective and the limited field of view. Additionally, no
reward is given if the agent fails to reach the goal within the time limit, further increasing the difficulty.

We compared ETD against DEIR, NovelD, and PPO without intrinsic rewards. As illustrated in
Figure 4, ETD consistently outperformed or matched the baseline algorithms, demonstrating its
superior ability to address CMDP challenges with high-dimensional pixel-based observations.

6 Conclusion

In this work, we introduce ETD, a novel episodic intrinsic motivation method for CMDPs. ETD
leverages temporal distance as a measure of state similarity, which is more robust and accurate than
previous methods. This allows for more effective calculation of intrinsic rewards, guiding agents to
explore environments with sparse rewards. We demonstrate that ETD significantly outperforms exist-
ing episodic intrinsic motivation methods in sample efficiency across various challenging domains,
establishing it as the state-of-the-art RL approach for sparse reward CMDPs.
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A Related Work

Intrinsic Motivation in RL Exploration driven by intrinsic motivation has long been a key focus in
the RL community [2, 33]. Various methods that combine deep RL agents with exploration bonuses
have been developed. Notable examples include ICM [4], RND [5], and pseudocounts [3, 34, 35, 6],
which have demonstrated success in challenging tasks like Montezuma’s Revenge [36]. These
methods, often categorized as global bonus approaches, were primarily designed for singleton MDPs,
presenting limitations in CMDPs, where environments vary across episodes [12, 13, 14, 15, 37].

To address this limitation, recent works have proposed episodic bonuses [8] relying on episodic
memory [38, 39], where intrinsic rewards are derived from experiences within the current episode.
These methods can be roughly grouped into two categories: count-based [16, 17, 18, 19, 20, 21, 22,
23] and similarity-based [24, 25, 7, 26]. Combining global and episodic bonuses and effectively
utilizing both remains an open challenge. Approaches like AGAC [17], RIDE [16], and NovelD [19]
utilize both, yielding better performance in CMDPs [20, 21, 22, 23]. However, other methods, such
as EC [24] and E3B [7], focus solely on episodic bonuses and have also succeeded in CMDPs. Our
approach belongs to the latter category, leveraging episodic bonuses to enhance performance in
CMDPs. Table 1 compares recent intrinsic motivation approaches and highlights our method.

Our approach, which employs temporal distance as an intrinsic reward, shares similar ideas with
EC [24] and GoBI [32]. EC also utilizes contrastive learning to assess the temporal proximity of
states. However, while EC only predicts the probability that two states are temporally close, our
method defines temporal distance as a theoretically quasimetric measure. GoBI uses a learned world
model and extensive random rollouts to simulate reachable states, rewarding uniqueness. However,
GoBI requires world model pretraining and incurs substantial computational costs. In contrast, our
method achieves comparable performance while maintaining lower computational overhead.

Method Intrinsic Bonus: bMethod(st) Episodic Bonus Category

ICM ||ϕ̂(st)− ϕ(st)||22 /

RND ||f(st)− f̄(st)||22 /

AGAC DKL (π (· | st) ∥πadv (· | st)) + β · 1√
Ne(st+1)

Count

RIDE ∥ϕ (st+1)− ϕ (st)∥2 ·
1√

Ne(st)
Count

NovelD [bRND(st+1)− bRND(st)]+ · I[Ne(st) = 1] Count

NGU bRND(st) · 1(√∑
ϕi∈Nk

K(ϕ(st),ϕi)+c

) Similarity

E3B ϕ (st)
⊤
[∑t−1

i=0 ϕ (si)ϕ (si)
⊤
+ λI

]−1

ϕ (st) Similarity

EC α(β − F{C(si, st)}i∈|M |) Similarity

DEIR mini∈|M |

{
||ϕ(si),ϕ(st)||2

||ϕrnn(si),ϕrnn(st)||

}
Similarity

ETD(ours) mini∈|M | dSD(si, st) Similarity

Table 1: Summary of recent intrinsic motivation methods. We marked the episodic bonus as Blue.

Temporal Distance in RL Temporal distance has been extensively applied in imitation learn-
ing [40], unsupervised reinforcement learning [41, 42, 43], and goal-conditioned reinforcement
learning [44, 45, 46, 47]. Common methods for learning temporal distance include Laplacian-based
representations [48, 49, 50], which use spectral decomposition to capture the geometry of the state
space; constrained optimization [41, 47], which maintains a distance threshold between adjacent
states while dispersing others; and temporal contrastive learning [40, 46], which brings temporally
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close states together in representation space while pushing apart negative samples. Each approach,
however, has its limitations: Laplacian-based representations can be unstable during training [51],
constrained optimization highly depends on deterministic environments [47], and temporal contrastive
learning often violates the triangle inequality [47], a key property of metrics.

Recently, CMD [29] proposes the successor distance, which theoretically guarantees a quasimetric
temporal distance by using a specific parameterization of temporal contrastive learning. While CMD
is limited to goal-conditioned tasks, we extend this method to sparse reward CMDPs.

B Theoretical Properties of Successor Distance

Here we list the most relevant properties of successor distance [29], which we used in the this paper
as the temporal distance.
Proposition 1. For all π ∈ Π, x, y ∈ S, define the random variable Hπ(x, y) as the smallest transit
time from x to y, i.e., the hitting time of y from x,

dπSD(x, y) = − logE
[
γH

π(x,y)
]
.

Proof. Starting from state x and given Hπ(x, y) = h), let pπ(st = y|s0 = x,Hπ(x, y) = h)
denotes the probability of reaching state y at the time t, we have

pπ(st = y|s0 = x,Hπ(x, y) = h) =

{
0 if t < h
pπ(st = y|sh = y) if t ≥ h

. (6)

And thus,

pπγ (sf = y | s0 = x) = (1− γ)

∞∑
t=0

γtpπ (st = y | s0 = x)

= (1− γ)

∞∑
t=0

∞∑
h=0

γtpπ (st = y | s0 = x,Hπ(x, y) = h)P (Hπ(x, y) = h)

= (1− γ)

∞∑
h=0

pπ (Hπ(x, y) = h)

∞∑
t=0

γtP (st = y | s0 = x,Hπ(x, y) = h)

= (1− γ)

∞∑
h=0

pπ (Hπ(x, y) = h)

∞∑
t=h

γtpπγ (st = y | s0 = y)

=

∞∑
h=0

γhP (Hπ(x, y) = h)

(
(1− γ)

∞∑
t=h

γt−hpπ (st = y | s0 = y)

)

=

∞∑
h=0

γhP (Hπ(x, y) = h)

(
(1− γ)

∞∑
t=0

γtpπ (st = y | s0 = y)

)
= EHπ(x,y)

[
γH

π(x,y)
]
pπγ (st = y | s0 = y) .

(7)

Therefore,

dπSD(x, y) = log

(
pπγ (sf = y|s0 = y)

pπγ (sf = y|s0 = x)

)
= − logE

[
γH

π(x,y)
]
. (8)

Corollary 1. Assume Hπ(x, y) is a deterministic value,

dπSD(x, y) = c ·Hπ(x, y), where c is a free value.

Proof. Following Proposition 1,

dπSD(x, y) = − log γH
π(x,y) = Hπ(x, y) · log 1

γ
. (9)
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Proposition 2. dSD is a quasimetric over S, satisfying the Positivity, Identity and triangle inequality.

Proof. A distance function d : S × S → R is called quasimetric if it satisfies the following for any
x, y, z ∈ S.

1. Positivity: d(x, y) ≥ 0

2. Identity: d(x, y) = 0 ⇔ x = y

3. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

Positivity: From Proposition 1, we have dSD = − logEHπ(x,y)
[
γH

π(x,y)
]
≥ 0.

Identity:

• ⇒: dπSD(x, y) = 0 if and only if pπγ (sf = y|s0 = x) = pπγ (sf = y|s0 = y), which occurs
when x = y. For x ̸= y, Hπ(x, y) ≥ 1, so by Proposition 1, dπSD(x, y) ≥ log 1

γ .

• ⇐: When x = y, pπγ (sf = y|s0 = x) = pπγ (sf = y|s0 = y), thus dπSD(x, y) = 0.

Triangle Inequality: According to [52] (Lemma 4.1), the hitting time Hπ(x, y) satisfies the
triangle inequality, that is, Hπ(x, y) ≤ Hπ(x, z)+Hπ(y, z). Let f(Hπ(x, y)) = − logE[γHπ(x,y)],
logE[γHπ(x,y)] is a convex function, and thus f is a concave function. Furthermore, f(0) = 0. By
the property of concave functions [53], f is subadditive, i.e., f(a+ b) ≤ f(a) + f(b) for all a and
b. As desired, f(Hπ(x, y)) ≤ f(Hπ(x, z) +Hπ(y, z)) ≤ f(Hπ(x, z)) + f(Hπ(y, z)) , and thus ,
dπSD(x, y) = f(Hπ(x, z)) satisfying the triangle inequality.

Proposition 3. For x ̸= y, the unique solution to the the loss function in Equation 3 with the
parametrization in Equation 4 is

dϕ∗(x, y) = log

(
pπγ (sf = y|s0 = y)

pπγ (sf = y|s0 = x)

)
.

Proof. If the batch size is large enough, the optimal energy function in Equation 3 satisfy

f∗
θ (x, y) = log

(
pπγ (s

f = y|s0 = x)

C · psf (y)

)
, where C is a free value. (10)

We can further decompose the optimal function into a potential function that depends solely on the
future state minus the successor distance function,

f∗
θ (x, y) = − log

(
pπγ (s

f = y|s0 = y)

C · psf (y)

)
︸ ︷︷ ︸

cψ(y)

− log

(
pπγ (sf = y|s0 = y)

pπγ (sf = y|s0 = x)

)
︸ ︷︷ ︸

dϕ(x,y)

. (11)

C Further Experiments

C.1 MiniGrid Environments with noise

To better simulate realistic scenarios, we introduced noise into the states of MiniGrid, resulting in
stochastic dynamics and ensuring that no two states are identical. The noise is generated as Gaussian
noise with a mean of 0 and a variance of 0.1, which is then directly added to the states. We compared
the ETD method with three effective methods for MiniGrid: DEIR, NovelD, and E3B. The results are
presented in Figure 5.
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Figure 5: Training performance on Minigrid with noise environments. The x-axis represents the
environment steps. All results are averaged across 5 seeds.

Our results indicate that NovelD, a count-based method, completely failed to effectively guide explo-
ration, as the episodic rewards based on counts no longer provided useful information. In contrast,
similarity-based methods such as E3B and DEIR continued to perform reasonably well. However, our
approach provided a more accurate assessment of state similarity by utilizing temporal distance. Even
in the presence of noise, temporal distance effectively represented the similarity between two states,
while the inverse dynamics representation learning used in E3B and the discriminative representation
learning used in DEIR could not perfectly measure the distance between states, allowing our method
to outperform both E3B and DEIR.

C.2 High-Dimensional Further Experiments

Here, we present further experiments of Crafter and Procgen Maze.

Crafter [28] is a 2D environment with randomly generated worlds and pixel-based observations
(64x64x3), where players complete tasks such as foraging for food and water, building shelters and
tools, and defending against monsters to unlock 22 achievements. The reward system is sparse,
granting +1 for each unique achievement unlocked per episode and a -0.1/+0.1 reward based on life
points. With a budget of 1 million environmental steps, Crafter suggests evaluating performance
using both the success rate of 22 achievements and a geometric mean score, which we adopt as our
performance metric. Additionally, we conducted experiments without life rewards, as they often
hindered learning efficiency.

Procgen [10] is a well-known benchmark for procedural generation environments, primarily used
to evaluate the generalization capabilities of reinforcement learning algorithms. The design of this
environment does not require the development of exploration strategies. However, Procgen offers an
exploration mode that makes exploring the environment particularly challenging. We selected the
Maze environment for our study. In this setting, the player, represented as a mouse, must navigate a
maze to locate a single piece of cheese and earn a reward. The player can move up, down, left, or
right to traverse the maze.

We compared ETD against DEIR, NovelD, and PPO without intrinsic rewards. As illustrated
in Figure 7 and Figure 6, ETD consistently outperformed or matched the baseline algorithms,
demonstrating its superior ability to address CMDP challenges with high-dimensional pixel-based
observations.
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Figure 6: Evaluating ETD and the baselines on Crafter.
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Figure 7: Evaluating ETD and the baselines on Exploration Mode of Procgen Maze.

C.3 Ablations of Our Method
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Figure 8: Ablation of representation learning.

Representation Learning To further illustrate the
effectiveness of temporal distance as an intrinsic re-
ward, we compare the ETD with the Euclidean dis-
tance within both inverse dynamics and discriminator
representation learning contexts. Discriminator rep-
resentation learning, introduced in DEIR, resembles
contrastive learning and predicts whether two states
and an action are part of a truly observed transition.
While all these techniques utilize ETD as a form of
intrinsic reward, they differ in evaluating similarities
between states. The results of comparisons are illustrated in Figure 8. In the Doorkey-16x16 task, the
performance difference is not significant. However, in the ObstructedMaze-1Q task, where the state
is considerably richer, ETD outperforms both the inverse dynamic and discriminator methods. This
finding indicates that a more accurate distance measurement contributes significantly to exploration
efficiency.
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Figure 9: Ablation of aggregate function
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Figure 10: Ablation of Asymmetric / Symmetric

Aggregate function For the intrinsic reward formulation, we consider not only the minimum but
also other functions, such as the 10% quantile (quantile10), the 10th nearest neighbor (knn10), and
the average of the 1st to 10th nearest neighbors (knn10avg). The comparisons are presented in
Figure 9. We observe that the minimum consistently outperforms the other functions. This is because
the minimum provides the most aggressive reward signal. For example, if a state in the episodic
memory matches the current state, the minimum yields a reward signal of zero. This aggressive
reward discourages the agent from revisiting similar states, thus enhancing exploration efficiency.

Symmetric Our ETD method uses a quasimetric distance function, which is inherently asymmetric.
However, symmetric alternatives can also be considered. For instance, by removing the asymmetric
components from the MRN, we can obtain a symmetric distance function. The comparison results are
shown in Figure 10. Interestingly, the performances of both the asymmetric and symmetric versions
are nearly identical. Given that most environment transitions exhibit more symmetry than asymmetry,
employing a symmetric distance function is reasonable. Nevertheless, to retain the generality of our
approach, we choose an asymmetric distance function as the default.
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D Implementation Details

In the experiments, all methods are implemented based on PPO. We primarily follow the implementa-
tion of DEIR*, which is based on Stable Baselines 3 (version 1.1.0).

D.1 Full ETD Algorithms

We use MRN [31] as our quasimetric network implementation.

Algorithm 1 Episodic Novelty through Temporal Distance
Initialize policy π, quasimetric dϕ, potential cψ and f(ϕ,ψ) = cψ − dϕ.
while not converged do

Sample context c ∼ µC and initial state s0 ∼ µS(·|c)
for t = 0, ..., T do

at ∼ π(·|st) # Sample action
st+1, r

e
t+1 ∼ P (·|st, at, c) # Step through environment

bt+1 = min{dϕ(sk, st+1)}tk=0 # Compute bonus
rt+1 = ret+1 + βbt+1

end for
Sample pair of states {(xi, yi)}Bi=1 ∼ pπγ (s

f = yi|s0 = xi)ps(xi)
# Practically, xi = st, yi = st+j , j ∼ Geom(1− γ).
Update f(ϕ,ψ) to minimize the loss:

L(ϕ,ψ) =

B∑
i=1

[
log

exp(f(ϕ,ψ)(xi, yi))∑B
j=1 exp(f(ϕ,ψ)(xi, yj))

+ log
exp(f(ϕ,ψ)(xi, yi))∑B
j=1 exp(f(ϕ,ψ)(xj , yi))

]

Perform PPO update on π using rewards r1, ..., rT .
end while

D.2 Network Structures

D.2.1 Policy and value networks

For the policy and value networks, we follow the definitions of DEIR. All the methods shares the
same policy and value network structures.

MiniGrid

CNN
Conv2d(in=3, out=32, kernel=2, stride=1, pad=0),
Conv2d(in=32, out=64, kernel=2, stride=1, pad=0),
Conv2d(in=64, out=64, kernel=2, stride=1, pad=0),
FC(in=1024, out=64).

RNN
GRU(in=64, out=64).

MLP (value network)
FC(in=64, out=128),
FC(in=128, out=1).

MLP (policy network)
FC(in=64, out=128),
FC(in=128, out=number of actions).

FC stands for the fully connected linear layer, and Conv2d refers to the 2-dimensional convolutional
layer, GRU is the gated recurrent units.

*https://github.com/swan-utokyo/deir
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Crafter & MiniWorld

CNN
Conv2d(in=3, out=32, kernel=8, stride=4, pad=0),
Conv2d(in=32, out=64, kernel=4, stride=2, pad=0),
Conv2d(in=64, out=64, kernel=4, stride=1, pad=0),
FC(in=576, out=64).

RNN
GRU(in=64, out=64).

MLP (value network)
FC(in=64, out=256),
FC(in=256, out=1).

MLP (policy network)
FC(in=64, out=256),
FC(in=256, out=number of actions).

D.2.2 Quasimetric Network

Our quasimetric network is based on the MRN [31]. It consists of both a symmetric and an asymmetric
component, which together determine the distance between two states. The structure of this network
is illustrated in Figure 11. Our potential network shares the same CNN as the quasimetric network,
followed by an MLP that outputs a scalar value.

CNN CNN

Figure 11: MRN Network

D.3 Hyperparameters

We found that applying batch normalization to all non-RNN layers could significantly boost the
learning speed, especially in environments with stable observations, a finding also noted in the DEIR
paper. We use Adam optimizer with ϵ = 1e − 5, β1 = 0.9, β2 = 0.999. We normalized intrinsic
rewards for all methods by subtracting the mean and dividing by the standard deviation.

For ETD, hyperparameters were initially tuned on DoorKey-8x8 and refined using KeyCorridorS6R3
and ObsturctedMaze results. For DEIR, we adopted their original hyperparameters but couldn’t fully
replicate their ObsturctedMaze-Full performance. Despite this, ETD still outperforms original DEIR
performance by a factor of two in sample efficiency in ObsturctedMaze-Full. Our NovelD implemen-
tation achieves the best performance reported in the literature. For the Count implementation, we
use the episodic form I[Ne(st) = 1] and found it superior to 1/

√
Ne(st). The hyperparameters for

each method are summarized in following tables. Unless otherwise specified, the hyperparameters
are consistent with those used for ETD.
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Hyperparameter
MultiRoom
DoorKey
KeyCorridor

ObsturctedMaze Candidate Values

γ 0.99 0.99 /
PPO λGAE 0.95 0.95 /
PPO rollout steps 512 512 /
PPO workers 16 16 /
PPO clip range 0.2 0.2 /
PPO training epochs 4 4 /
PPO learning rate 3e-4 3e-4 /
model training epochs 8 4 1, 3, 4, 6, 8
mini-batch size 512 512 /
entropy loss coef 5e-4 1e-2 5e-4, 1e-2
advantage normalization yes yes /
model learning rate 3e-4 3e-4 3e-4, 1e-4, 5e-5, 1e-5, 5e-6
normalization for layers Batch Norm Layer Norm Batch Norm, Layer Norm, None
extrinsic reward coef 1.0 10.0 1, 10
intrinsic reward coef 1e-2 1e-2 1e-2, 1e-3, 5e-3, 1e-4

Table 2: Hyperparameters for ETD in MiniGrid.

Hyperparameter
MultiRoom
DoorKey
KeyCorridor

ObsturctedMaze Candidate Values

PPO learning rate 3e-4 1e-4 3e-4, 1e-4
model training epochs 4 3 1, 3, 4, 6, 8
mini-batch size 512 512 /
entropy loss coef 1e-2 1e-2 5e-4, 1e-2
model learning rate 3e-4 3e-4 3e-4, 1e-4, 5e-5, 1e-5, 5e-6
normalization for layers Batch Norm Layer Norm Batch Norm, Layer Norm, None
extrinsic reward coef 1.0 10.0 1, 10
intrinsic reward coef 3e-2 3e-3 1e-2, 1e-3, 5e-3, 1e-4
α 0.5 0.5 /
β 0 0 /

Table 3: Hyperparameters for NovelD in MiniGrid.

Hyperparameter
MultiRoom
DoorKey
KeyCorridor

ObsturctedMaze Candidate Values

PPO rollout steps 512 512 256, 512
PPO workers 16 64 16, 64
PPO learning rate 3e-4 1e-4 /
model training epochs 4 3 /
mini-batch size 512 512 512, 2048
entropy loss coef 1e-2 5e-4 /
model learning rate 3e-4 3e-4 /
normalization for layers Batch Norm Layer Norm Batch Norm, Layer Norm, None
extrinsic reward coef 1.0 10.0 /
intrinsic reward coef 1e-2 1e-3 /
observation queue size 1e5 1e5 /

Table 4: Hyperparameters for DEIR in MiniGrid.
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Hyperparameter
MultiRoom
DoorKey
KeyCorridor

ObsturctedMaze Candidate Values

PPO learning rate 3e-4 3e-4 /
mini-batch size 512 512 /
entropy loss coef 1e-2 5e-4 /
normalization for layers Batch Norm Layer Norm Batch Norm, Layer Norm, None
extrinsic reward coef 1.0 10.0 /
intrinsic reward coef 1e-2 1e-3 /

Table 5: Hyperparameters for Count in MiniGrid.

Hyperparameter
MultiRoom
DoorKey
KeyCorridor

ObsturctedMaze Candidate Values

PPO learning rate 3e-4 3e-4 /
mini-batch size 512 512 /
entropy loss coef 1e-2 1e-2 /
normalization for layers Batch Norm Layer Norm Batch Norm, Layer Norm, None
extrinsic reward coef 1.0 10.0 /
intrinsic reward coef 1e-2 1e-2 /
α 1 1 /
β 1 1 /
F 90-th percentil 1 /

Table 6: Hyperparameters for EC in MiniGrid.

Hyperparameter
MultiRoom
DoorKey
KeyCorridor

ObsturctedMaze Candidate Values

PPO learning rate 3e-4 3e-4 /
mini-batch size 512 512 /
entropy loss coef 1e-2 1e-2 /
normalization for layers Batch Norm Layer Norm Batch Norm, Layer Norm, None
extrinsic reward coef 1.0 10.0 /
intrinsic reward coef 1e-2 1e-2 /
λ 0.1 0.1 /

Table 7: Hyperparameters for E3B in MiniGrid.

Hyperparameter
MultiRoom
DoorKey
KeyCorridor

ObsturctedMaze Candidate Values

PPO learning rate 3e-4 3e-4 /
mini-batch size 512 512 /
entropy loss coef 1e-2 1e-2 /
normalization for layers Batch Norm Layer Norm Batch Norm, Layer Norm, None
extrinsic reward coef 1.0 10.0 /
intrinsic reward coef 3e-3 1e-2 /

Table 8: Hyperparameters for RND in MiniGrid.
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Hyperparameter ETD NovelD DEIR

γ 0.99 0.99 0.99
PPO λGAE 0.95 0.95 0.95
PPO rollout steps 512 512 512
PPO workers 16 16 16
PPO clip range 0.2 0.2 0.2
PPO training epochs 4 4 4
PPO learning rate 3e-4 3e-4 3e-4
model training epochs 4 4 4
mini-batch size 512 512 512
entropy loss coef 1e-2 1e-2 1e-2
advantage normalization yes yes yes
model learning rate 1e-4 1e-4 1e-4
normalization for layers Layer Norm Layer Norm Layer Norm
extrinsic reward coef 1.0 1.0 1.0
intrinsic reward coef 1e-2 1e-2 1e-2

α / 0.5 /
β / 0 /

observation queue size / / 1e5
Table 9: Hyperparameters for ETD, NovelD and DEIR in Crafter.

Hyperparameter ETD NovelD DEIR

γ 0.99 0.99 0.99
PPO λGAE 0.95 0.95 0.95
PPO rollout steps 512 512 512
PPO workers 16 16 16
PPO clip range 0.2 0.2 0.2
PPO training epochs 4 4 4
PPO learning rate 3e-4 3e-4 3e-4
model training epochs 16 4 4
mini-batch size 512 512 512
entropy loss coef 1e-2 1e-2 1e-2
advantage normalization yes yes yes
model learning rate 1e-4 1e-4 1e-4
normalization for layers Layer Norm Layer Norm Layer Norm
extrinsic reward coef 10.0 1.0 1.0
intrinsic reward coef 1e-2 1e-2 1e-2

α / 0.5 /
β / 0 /

observation queue size / / 1e5
Table 10: Hyperparameters for ETD, NovelD and DEIR in MiniWorld.
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