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Abstract
In this paper, we investigate a Multi-Armed Ban-
dit (MAB) setting where an arm exits the game if
the algorithm continuously neglects it. This setup
is motivated by real-world scenarios, such as on-
line advertising and crowdsourcing, where arms
only gain benefits after being pulled by the algo-
rithm. We identify the intrinsic hardness of this
problem and limitations in existing approaches.
We propose FC-SE algorithm with expected re-
gret upper bounds as our solution to this problem.
As an extension, we even allow new arms to enter
after the game starts and design FC-Entry algo-
rithm with performance guarantees for this setup.
Finally, we conduct experiments to validate our
theoretical results.

1. Introduction
Multi-Armed Bandit (MAB), first introduced in (Robbins,
1952), is a type of machine learning model used to describe
the decision-making problems with unknown information
that needs to be learned. In this model, each arm represents
a potential choice with unknown expected reward. The al-
gorithm’s objective is to achieve the highest possible overall
reward. The central challenge in a MAB problem is to strike
a balance between exploiting the arms that have yielded
high rewards and exploring unknown arms to uncover their
potential. MAB algorithms find real-world applications in
various fields, such as online advertising (Schwartz et al.,
2017; Yang & Lu, 2016; Aramayo et al., 2023; Avadhanula
et al., 2021; Han & Gabor, 2020), clinical trials (Aziz et al.,
2021; Chakravorty & Mahajan, 2014), recommendation sys-
tems (Santana et al., 2020; Xie et al., 2021; Mahadik et al.,
2020), crowdsourcing (Rangi & Franceschetti, 2018; Song
& Jin, 2021; Qin et al., 2023; Liu & Liu, 2017; Zhang et al.,
2015; Tran-Thanh et al., 2014), and resource allocation in
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computer networks (Zuo & Joe-Wong, 2021; Pase et al.,
2022; Feki & Capdevielle, 2011). In these applications, ban-
dit algorithms attempt to find choices that maximize their
own benefits, while arms passively comply with and accept
the arrangements made by the algorithm.

However, in many situations, bandit arms also have their
own interests, preferences, and even the right to make
choices. For instance, a series of recent studies (Liu et al.,
2020; 2021a; Kong et al., 2022; Basu et al., 2021; Sankarara-
man et al., 2021; Zhang et al., 2022) investigated multi-agent
multi-armed bandit in two-sided matching markets. In these
contexts, each arm selects its most preferred agent among
those who have chosen it. Beyond this, the arms’ pref-
erences and choices can manifest in various ways. One
crucial aspect is their decision to participate in the game. If
participation promises satisfactory benefits, they may opt
to remain involved; conversely, if participation does not
yield sufficient benefits, they may be motivated to exit. To
illustrate this, we present the following real world scenarios:
Example 1 (Online Advertising). A website owner allocates
advertisement slots to advertisers across various time peri-
ods. The owner generally prefers advertisements with high
click-through rates to generate higher revenue. However,
for advertisers with low click-through rates, their ads may
remain undisplayed for an extended period. This situation
may lead to financial losses for advertisers and evoke their
dissatisfaction. Consequently, advertisers may find it advan-
tageous to withdraw from the competition for ad slots on
this site.
Example 2 (Crowdsourcing). The crowdsourcing workers
participating in a dataset labeling task receive compensation
for each label they provide. A crowdsourcing system as-
suming control over the task assignments to workers (Zhang
et al., 2015) often continuously assigns tasks to workers
with proven proficiency, while potentially neglecting oth-
ers. Given that workers are only compensated upon task
completion, certain workers might experience prolonged
periods without receiving any tasks, leading to a lack of
income from the platform. They may lose patience and turn
to alternative avenues for earning income.

What these two cases have in common is that if the algo-
rithm frequently neglects an arm, it can harm the arm’s
interests, leading it to lose patience and ultimately incen-
tivizing it to leave. Patience, to some extent, represents

1



On Multi-Armed Bandit with Impatient Arms

the threshold of loss that an arm is willing to tolerate. The
conventional MAB model does not account for the arms’
patience and the possibility that they may leave the game if
they run out of patience, making it inadequate for effectively
capturing the real-world examples outlined above. To ad-
dress this limitation, we introduce the patience of arms into
the conventional model and study the Multi-Armed Bandit
with Impatient Arms setting. In this setup, there are K arms
and each arm k is associated with a positive integer mk

indicating arm k’s patience. If arm k is consistently ignored
by the algorithm for mk consecutive times, it will leave the
game. Consequently, the algorithm cannot pull it within the
remaining time horizon.

While existing bandit algorithms such as the Upper Confi-
dence Bound (UCB) (Lai, 1987; Auer et al., 2002), Succes-
sive Elimination (SE) (Even-Dar et al., 2006) and Thompson
Sampling (TS) (Thompson, 1933) algorithms can operate
within the proposed setting, they do not explicitly accom-
modate the limited patience of the arms. When the optimal
arm is impatient, it could deplete its patience and leave the
game early. As a result, the algorithm would be compelled
to choose the remaining sub-optimal arms, leading to a lin-
ear regret. Therefore, in this paper, we ask two research
questions: 1) How does the patience of arms impact the
performance of existing algorithms? 2) How can we address
the challenges posed by the impatience of arms?

1.1. Our Contributions

• We introduce a new version of MAB problem, where
an arm leaves the game if the algorithm continuously
neglects it. As an extension, we also consider a more
general and realistic setup that allows not only the
participating arms to exit but also new arms to enter.

• We derive a minimax lower bound to highlight the fun-
damental hardness of the proposed problem especially
when the arms exhibit significant impatience. We also
comprehensively study the existing algorithms such
as UCB and SE in the proposed setup. We identify
a broad range of problem instances where they incur
(nearly) linear expected regret.

• When existing algorithms have no guaranteed perfor-
mance, we propose the Feasible Cycle-based Succes-
sive Elimination (FC-SE) algorithm. In FC-SE, we
repeat a special sequence of arms (referred to as a
feasible cycle) to prevent unexpected arm departures.
When it is possible to include all arms in the feasi-
ble cycle, FC-SE achieves a regret of Õ

(
n +
√
nT
)
,

where n is the feasible cycle length and T is the time
horizon. However, when it’s only possible to include
a subset of arms in the initial feasible cycle, FC-SE
randomly drops arms from the current feasible cycle,
if necessary, to accommodate remaining arms, achiev-

ing a regret of Õ
(
K

4
3T

2
3n

1
3

)
if the remaining arms

have sufficient patience. We design the FC-Entry al-
gorithm for the extension scenario with new entering
arms. FC-Entry accounts for unknown entry times for
new arms, assuming that entries are sparse. FC-Entry
achieves a dynamic regret of Õ

(
K2T

2
3n

1
3

)
if the arms

initially available but not in the initial feasible cycle
have sufficient patience.

• We conduct numerical experiments to validate our the-
oretical results.

1.2. Related Work

There are several prior works allowing time-variant arm
sets. The literature on sleeping bandits (Kanade et al., 2009;
Kanade & Steinke, 2014; Cortes et al., 2019; Saha et al.,
2020; Gaillard et al., 2023) assumes that the set At of avail-
able arms at any given time t may change. Additionally,
Chakrabarti et al. (2008) and Tracà et al. (2020) are related
to our work since they assume that if an arm leaves the
game, it will not return. While our setting is related to these
works, there are significant differences. In these papers, arm
availability can be either stochastic (Saha et al., 2020) or
adversarial (Gaillard et al., 2023). On the one hand, our
setting assumes that the available set of arms is determined
by the algorithm’s previous actions, making it incompatible
with the stochastic arm availability assumption. On the other
hand, in previous works assuming adversarial arm availabil-
ity, the algorithm’s performance is typically evaluated by
comparing its choice at time t against an arm from the adver-
sarially selectedAt. In our scenario, instead, the algorithm’s
choice should always be compared against the offline op-
timal arm k∗, even though an algorithm can unfortunately
lose it (k∗ /∈ At).

One step in our proposed algorithms is to schedule the arms
in a way that prevents any of them from running out of
patience. Similar scheduling problems are considered in
the Age of Information (AoI) literature (Kaul et al., 2011;
2012; Abbas et al., 2023). In the field of communication,
AoI serves as a metric for measuring information freshness.
Although a main line of research has focused on AoI min-
imization (Liu et al., 2019; Arafa et al., 2020; Chen et al.,
2023), our paper is more related to scheduling under hard
constraints. For instance, the peak AoI deadline resembles
the concept of arm patience in this paper. Li et al. (2021);
Liu et al. (2021b); Li et al. (2023a) study the scheduling
problem under various AoI constraints. Due to space limits,
we defer other details of related work to Appendix A.

2. Preliminaries
The problem studied in this paper is built upon the stan-
dard stochastic MAB. We consider a time horizon of length
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T and a finite set of K arms. At each time t ∈ [T ], an
algorithm pulls one arm at ∈ At, where At is the set of
arms available at time t. When arm k is pulled the n-th
time, the algorithm observes and collects a reward Xk,n.
{Xk,n}n≥1 are i.i.d random variables and we assume that
for any k, n, Xk,n − µk is 1-sub-Gaussian (The definition
can be found for example in Chapter 5 of Lattimore &
Szepesvári (2020)). Let Xt denote the reward at time t. For
any arm k ∈ [K], µk is its mean reward. µ = (µ1, ..., µK)
is the vector of the mean rewards, which is unknown to the
algorithm. The largest mean reward is µ∗ = maxk∈[K] µk
and the optimal arm is k∗ ∈ argmaxk∈[K] µk. For sim-
plicity of presentation, we assume that the optimal arm is
unique. Minor modification can be applied to adapt our
results to the non-unique optimal arm case. We define the
reward gap such that ∆k = µ∗ − µk ≤ ∆̄,∀k ̸= k∗, where
a known constant ∆̄ ≥ 1 is an upper bound for all the re-
ward gaps. We also define the relative reward gap ∆k,k′ =
µk − µk′ ,∀k, k′ s.t. µk ≥ µk′ . Define the empirical mean
for arm k given n observations: µ̂k,n = n−1

∑n
k=1Xk,n.

Let Tk(t) :=
∑t
s=1 I{as = k} denote the number of times

arm k is pulled from time 1 to time t. As we consider the
Multi-Armed Bandit with Impatient Arms setup, we intro-
duce a threshold mk ∈ N+ for each arm k. We refer to
mk as arm k’s patience. Similar to µ, m = (m1, ...,mK)
is the vector of mk, k ∈ [K]. When the algorithm con-
tinuously ignores arm k for a duration of mk time steps,
arm k loses patience and exits the game. For example, if
at0 = k and as ̸= k for all s = t0 + 1, ..., t0 +mk, and
if t0 + mk + 1 ≤ T , then arm k exits at the end of time
t0 + mk. Arm k can no longer be selected starting from
time t = t0 +mk + 1 as it has already left the game. We
assume that all arms are initially full of patience when they
enter the game. In other words, if arm k has not been pulled
since time t = 1, we regard the time when it was last pulled
as t = 0. We assume that m is given in advance and discuss
this in Appendix H. Define a bijective index mapping ind:
[K]→ [K] such that ind(k) is the index of arm k when m
is sorted from small to large. Let ind−1(i) denote the arm
whose patience is the i-th small. Following Li et al. (2021),
we define the load factor

l(K,m) =

K∑
k=1

1

mk
, (1)

as a measure of arm impatience. We adopt cumulative ex-
pected regret RT as the performance metric for algorithms,
where

RT = E
[ T∑
t=1

µ∗ −
T∑
t=1

µat
]
= E

[ T∑
t=1

∆at

]
. (2)

It is worth noting that, at any time t, the algorithm’s choice
at is compared against k∗, even if k∗ may not be available at

time t (i.e., k∗ /∈ At). This definition of regret is reasonable
because the best an algorithm can do is to pull k∗ since the
beginning and keep it in At throughout the time horizon.
This reveals one of the crucial differences between our work
and the sleeping bandit literature (Gaillard et al., 2023; Kale
et al., 2016), whose regrets typically compare at against
some arm in At.

3. Hardness of the Problem and Limitations of
the Existing Approaches

3.1. Negative Results in the Low Patience Case

Consider the configuration (K,m) = (3, (2, 2, 2)). It can
be verified that at least one arm exits at the end of time
slot t = 2, regardless of which arms the algorithm pulls at
times t = 1 and 2. Intuitively, this serves as an extreme
example where some arms have very low level of patience
and no algorithm can guarantee a sub-linear regret under
such a (K,m) configuration and different µ values. This is
because it is impractical to determine the best arm among
the three with only two reward observations. In this section,
we formally demonstrate how a low level of patience renders
learning infeasible. We first define a quantity characterizing
the time when the first exit happens given (K,m).
Definition 3.1. Fix K,m, define the maximum number of
reward observations when the first arm departure happens
Q(K,m) to be

max
{
L ∈ N

∣∣∣ ∃{at}Lt=1,∀s ∈ [L− 1], k ≤ K : s < mk

or s ≥ mk,∃l = s−mk + 1, ..., s with al = k
}
,

where {at}Lt=1 is a sequence of arm a1, a2, ..., aL. If there
exists an infinite-length arm sequence such that no arm
leaves, let Q(K,m) = +∞.

For example, Q(3,(2,2,2)) = 2. By Definition 3.1, at
least one arm exits the game before or at the end of time
t = Q(K,m), regardless of the algorithm’s arm choices. We
note that Q(K,m) can be uniquely determined by the num-
ber of arms K and the vector of patience m, although the
computation of Q(K,m) may be of significant time complex-
ity. Intuitively speaking, the less patient the arms are, the
more likely they are to exit early. Thus low level of patience
results in a small value of Q(K,m). We present a minimax
expected regret lower bound depending on Q(K,m), which
is especially powerful when Q(K,m) is small.
Theorem 3.2. Given a configuration (K,m) such that
Q(K,m) ≤ T . Suppose the rewards are independent Gaus-
sian random variables with variance 1. Then the minimax
expected regret lower bound is given by

min
A∈A

sup
µ∈Ξ

RT (A, (K,m,µ)) ≥

√
1

Q(K,m)
ln

K

K − 1
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×
[
1− f−1

K (
1

2
ln

K

K − 1
)
]
(T −Q(K,m)),

where RT (A, (K,m,µ)) is the expected regret when algo-
rithm A is operated on the problem instance (K,m,µ)
for a time horizon T . The possible set of algorithms
A =

{
{πt}Tt=1

}
, where {πt}Tt=1 is a sequence of policies

π1, ..., πT that πt maps from (a1, X1, ..., at−1, Xt−1) and
m to the probability simplex over [K]. Ξ = {µ | ∆k ≤
∆̄,∀k ̸= k∗}. fK(p) := h(p) + p ln K

K−1 and h(p) =
p ln p + (1 − p) ln(1 − p) is the entropy of Bernoulli dis-
tribution. f−1

K ( 12 ln
K
K−1 ) denotes the unique p such that

fK(p) = 1
2 ln

K
K−1 .

Though it can be difficult to compute Q(K,m) for arbitrary
K,m, we find that if the load factor l(K,m) > 1, it is
possible to obtain upper bounds of Q(K,m). In fact, there
is a rich set of configurations whose load factor exceeds 1.
For instance, l(3, (2, 2, 2)) = 3

2 > 1. We formally describe
the upper bound in the following lemma and detail its proof
in Appendix C.

Lemma 3.3. Given a configuration (K,m), if ∃λ ∈ N+

such that l(K,m) > 1+ 1
λ , then we haveQ(K,m) ≤ λK+1.

Combining Theorem 3.2 and Lemma 3.3, we directly have
the following result.

Corollary 3.4. Fix a configuration (K,m) with l(K,m) >
1, we have

min
A∈A

sup
µ∈Ξ

RT (A, (K,m,µ)) = Ω
(
W (K,m)T

)
,

where W (K,m) is a quantity purely depending on (K,m).
A,Ξ and RT (A, (K,m,µ)) are defined in Theorem 3.2.

Corollary 3.4 demonstrates the hardness of algorithm design
when l(K,m) > 1. If we regard l(K,m) as a measure of
arm impatience, then l(K,m) > 1 is associated with a low
level of patience case, when the arms are so likely to leave
early that learning their reward distributions is not feasible.

3.2. Analysis of UCB Algorithm

In this part, we study the well-known Upper Confidence
Bound (UCB) algorithm in our Multi-Armed Bandit with
Impatient Arms setup. We adopt the definition in Latti-
more & Szepesvári (2020). Define the upper confidence
bound of arm k given n observations as UCBk(n) =

µ̂k,n +
√
2n−1 ln δ−1 if n > 0 and UCBk(0) = +∞.

δ is the confidence parameter, typically set to be δ =
1/T 2. The UCB algorithm operates by pulling at =
argmaxk∈[K] UCBk(Tk(t)). We find that when the arms
are sufficiently patient, UCB still has performance guaran-
tees. Such results are presented in Appendix D. However,
when the optimal arm is impatient, it is highly possible that

it exits early under UCB, leaving the algorithm with only
sub-optimal arms to choose. We will show that, if there are
impatient arms, we can find many problem instances such
that UCB performs badly, thus demonstrate its limitation in
the proposed setup.
Theorem 3.5. Run UCB with confidence parameter δ =
1/T 2 in the Multi-Armed Bandit with Impatient Arms setup.
Suppose the rewards are independent Gaussian random vari-
ables with variance 1. If ∃θ ∈ (0, 1), mk∗ = O((lnT )θ)
and ∃β ̸= k∗ such that mβ ≥ T , then for any γ ∈ (0, 1),
we have

RT = Ω
(
∆minT

1−γ(C(T ) lnT )−1
)
,

where ∆min := mink ̸=k∗ ∆k and C(T ) is a polynomial
function of lnT .

Proof Sketch of Theorem 3.5. We define events Ek∗ ={
minn∈[κT−1]UCBk∗(n) > x1,UCBk∗(κT ) < x2

}
and

Eβ =
{
x2 < UCBβ(aβ) < x1,minn∈[bβ ] UCBβ(n) >

x2
}

for arm k∗ and β, respectively. x1, x2, κT , aβ , bβ are
constants and UCBk(n) denotes the UCB index of arm k
given the first n reward observations. We set x1 > x2 and
aβ < bβ . Under these two events, we show that arm k∗ is
pulled no more than κT = o(lnT ) times. Since UCB algo-
rithm always pulls the arm with the highest UCB index, arm
β is pulled at most aβ times before the κT -th pull of arm
k∗, given minn∈[κT−1] UCBk∗(n) > x1 > UCBβ(aβ). If
arm k∗ is pulled the κT -th time, at least the (aβ + 1)-th, ...,
(bβ + 1)-th pulls of arm β happen before the (κT + 1)-th
pull of arm k∗. If the number of arm β pulls between the
κT -th and (κT + 1)-th pull of arm k∗ exceeds arm k∗’s
patience, then arm k∗ leaves the game before it is pulled
the (κT + 1)-th time, not to mention the pulls of other arms.
By carefully designing the values of the constants, we show
that Ek∗ ∩ Eβ occurs with a non-negligible possibility using
some techniques of Brownian motion.

The complete proof of Theorem 3.5 is also in Appendix D.
It shows that as the optimal arm is relatively impatient, the
expected regret of UCB algorithm is asymptotically (almost)
linear. Fix any θ ∈ (0, 1), the patience vector m such that
there are negative problem instances for UCB algorithm can
have a load factor l(K,m) as small as (lnT )−θ + (K −
1)/T → 0 as T → +∞, and as large as we wish. If we use
load factor as a measure of arm impatience, we see that the
capability of UCB algorithm in the proposed setting is very
limited, since we can find problem instances such that UCB
yields almost linear regret asymptotically even as the load
factor approaches 0.

3.3. Analysis of SE Algorithm

In this section, we study the Successive Elimination (SE)
algorithm in our Multi-Armed Bandit with Impatient Arms
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setup. We consider a version similar to Algorithm 3 in Even-
Dar et al. (2006). All arms are active in the beginning. The
algorithm pulls the active arms in a Round-Robin manner, in
an increasing order of the arm indices. If at time t all active
arms are pulled the same number of times, then at the end of
time t the algorithm executes arm elimination when there are
more than one active arms. For arm k, if there exists some

arm k′ such that µ̂k′,Tk′ (t) − µ̂k,Tk(t) > 2
√
4T−1

k (t) lnT ,
arm k is regarded as sub-optimal and deactivated. Since
the arms are scheduled in a Round-Robin fashion, for any
arm k, the total number of pulls of other arms between any
two consecutive pulls of arm k is at most K − 1. Then if
the patience vector m satisfies that mk ≥ K,∀k ∈ [K], no
active arm will exit early. Only those deactivated arms may
leave the game after being eliminated by the algorithm. The
behavior and analysis of SE remain exactly the same in this
case as in standard MAB setting, thus, SE is a competitive
option whenmk ≥ K,∀k ∈ [K], i.e., when arms are patient
enough in general. However, Round-Robin could induce
linear regret when there exists some k such that mk <
K. We present this fact in Proposition 3.6 and its proof in
Appendix E.

Proposition 3.6. Run SE in the Multi-Armed Bandit with
Impatient Arms setup. Then there exists a problem instance
(K,m,µ) such that l(K,m) < 1 but RT = ∆̄T .

4. Our Algorithms
From the discussion in Section 3, we know that it is infeasi-
ble to design new methods to achieve sub-linear regret when
l(K,m) is strictly greater than 1. Meanwhile, existing al-
gorithms (e.g., SE) can guarantee sub-linear regret when
mk ≥ K, ∀k ∈ [K]. In this section, we aim at developing
algorithms for the regime where we do not have clear guar-
antees, i.e., for (K,m) such that ∃k ∈ [K],mk < K.
We notice that in this case, it may be possible to pre-
vent arms’ early departure with some carefully designed
pulling schedules. We say that a schedule is feasible if no
arm leaves early under this schedule. For example, when
m = (2, 4, 4), a feasible schedule can be ”a1, ..., a6...” =
”1, 2, 1, 3, 1, 2, ...”. Formally, define τ ik as the time slot
when the i-th sample from arm k is scheduled, Iik as the
time interval (in number of slots) between the i-th and the
(i + 1)-th pull of arm k, Iik = τ i+1

k − τ ik. Arm k never
leaves the game if Iik ≤ mk,∀i ≥ 1. Furthermore, we
say a schedule ”a1, a2...” is cyclic if ∃C ∈ N+ such that
at = at+C ,∀t ≥ 1. If there exists an infinite-length fea-
sible schedule for m, Lemma 4.1 of Li (2023) shows that
there must be a feasible cyclic schedule, which consists of
repeating finite cycles. We call a finite cycle ”a1, ..., aC”
feasible cycle if it forms feasible schedules by repeating
itself. If a feasible cycle exists for the considered configu-
ration, it is possible to pull arms according to it to prevent

Feasible
Cycle

Checkpoint

T

c

drop

Figure 1. An FC-SE example with N < K. In this example,
N = 4,K = 7. The rectangles denote feasible cycle snapshots.
The colored nodes denote different arms.

early departure and execute arm elimination at the end of
each cycle to remove the sub-optimal arms.

4.1. FC-SE Algorithm

We introduce the intuition and design details of our Feasible
Cycle-based Successive Elimination (FC-SE) algorithm. If
a feasible cycle can be found for the considered configura-
tion, we can directly replace the Round-Robin cycle in the
original SE algorithm with that feasible cycle. In Section
4.2, we introduce how to construct a feasible cycle. Unfor-
tunately, sometimes a feasible cycle exists only for a subset
of the set of all arms. Thus we specify an integer N ≤ K
such that the subset of arms {k : ind(k) ≤ N} can form a
feasible cycle. We can first repeat this initial feasible cycle
to identify sub-optimal arms and then insert remaining arms
into it when some arm is eliminated. However, a problem
arises when the cycle is still full as the patience of a remain-
ing arm is about to expire. Since we cannot discard any arm
without giving it a chance (it might be the optimal arm), we
must remove an arm from the current feasible cycle to make
room for an arm that has not been pulled yet. In fact, when
a full cycle is repeated many times without any arm being
eliminated, it is highly likely that the arms in this cycle have
such similar mean rewards that distinguishing a sub-optimal
arm becomes difficult. Even if the optimal arm in the cur-
rent feasible cycle is mistakenly dropped, another arm in
the cycle can serve as a suitable substitution. To balance the
exploration among arms, we select an appropriate constant
c and divide the entire time horizon into segments of equal
length c. We tighten the patience of a remaining arm k to
m′
k ≤ mk, such that m′

k is an integer multiple of c, and pull
arm k at around t = m′

k to prevent early departure. We drop
arms in the feasible cycle if necessary and add remaining
arms to the cycle only at these checkpoints (referring to the
endpoints of these segments as checkpoints). Figure 1 is a
simple example of FC-SE behavior when N < K.

We formally present FC-SE in Algorithm 1. Given N ,
the algorithm constructs a feasible cycle of length n =∑
k:ind(k)≤N nk, where nk is the number of times that arm

k appears in the feasible cycle. If N < K, we set nk = 1
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Algorithm 1 FC-SE
1: Input: Number of arms in the initial feasible cycle N ,

patience vector m, time horizon T , segment length c
2: Construct a feasible cycle ”ā1, ...ān” for the set of arms
{k : ind(k) ≤ N}

3: t← 1, S ← {k : ind(k) ≤ N}, p← 1, ”ā′1, ..., ā
′
n”←

”ā1, ..., ān”
4: if N < K then
5: for k ∈ {k′ : ind(k′) > N} do
6: m′

k ←
⌈

ind(k)−N
N−1

⌉
c

7: end for
8: end if
9: while t ≤ T do

10: for i = 1, ..., n do
11: if āi ̸= 0 then
12: Pull at = āi and receive reward Xat,Tat (t)

13: t← t+ 1
14: end if
15: end for
16: S ←

{
k ∈ S : ∀j ∈ S, µ̂j,Tj(t−1)−2

√
lnT

1∨Tj(t−1)≤

µ̂k,Tk(t−1) + 2
√

lnT
1∨Tk(t−1)

}
17: āi ← 0 for each i = 1, ..., n such that āi /∈ S
18: if p ≤ ⌈K−N

N−1 ⌉ and t+
∑
k∈S nk > cp− n then

19: Snew ← {k ∈ [K] : m′
k = cp}

20: while |S|+ |Snew| > N do
21: a ∼ Unif(S)
22: S ← S − {a}
23: end while
24: āi ← 0 for each i = 1, ..., n such that āi /∈ S
25: while |Snew| > 0 do
26: a← argmink∈Snew ind(k)
27: S ← S ∪ {a}, Snew ← Snew − {a}
28: āi ← a where i = min

{
i′ ≤ n : ā′i′ =

min{k ∈ [K] | ind(k) ≤ N and ∀j ≤
n s.t. ā′j = k : āj = 0}

}
29: end while
30: p← p+ 1
31: end if
32: end while

for any k such that ind(k) > N . The algorithm maintains
a set of active arms S, initialized as the set of arms in the
initial feasible cycle. p denotes the index of the next check-
point. The algorithm pulls the active arms according to
the feasible cycle. If some arm is eliminated, all positions
associated with it in ”ā1, ...ān” are cleared (i.e. set to 0). At
the end of each feasible cycle, the algorithm checks whether
the next checkpoint is met. It is important to note that there
can be at most N − 1 remaining arms waiting at a check-
point, because if more were assigned, we would need to
drop all the arms in the current cycle, and there would be
no guarantee that a good substitution for the optimal arm

remains in the feasible cycle. When checking whether the
p-th checkpoint is reached, t is the first time slot of a feasi-
ble cycle, which ends at t+

∑
k∈S nk − 1. At the first time

t +
∑
k∈S nk > cp − n, we have that t ≤ cp − n, since t

grows at most n each time. When the p-th checkpoint is met,
the set of arms that need to be added to the feasible cycle is
denoted as Snew. Since the actual length of the new feasible
cycle is also upper bounded by n, each arm k in Snew is
pulled no later than t+ n− 1 ≤ cp− 1 < cp = m′

k ≤ mk.
Therefore, arm k does not leave before being pulled by the
algorithm for the first time. The algorithm randomly drops
arms from the current feasible cycle until there is enough
space for Snew.

First, we analyse the regret performance of FC-SE algo-
rithm in the easier case when we can find a feasible cycle
containing all the available arms (i.e. N = K). Note that in
this case, the value of c does not matter.

Theorem 4.1. Run FC-SE in Algorithm 1 with N = K.
Assume that a feasible cycle can be constructed for the
whole arm set [K], with length n =

∑
k≥1 nk. nk is the

number of times that arm k appears in the feasible cycle.
Then the expected regret of FC-SE is upper bounded by

RT ≤
K∑

k ̸=k∗

[
∆knk +

32 lnT

∆k

(
1 +

nk
nk∗

)]
+ 2K∆max,

where ∆max := maxk ̸=k∗ ∆k.

We provide the detailed proof of Theorem 4.1 in Appendix
F. Under the assumption of Theorem 4.1, it can be shown
that RT = O

(
n+
√
nT lnT

)
. Next, we analyse FC-SE in

the case when we specify some N < K such that a feasible
cycle exists for the subset of arms {k : ind(k) ≤ N}. The
proof is also in Appendix F.

Theorem 4.2. Run FC-SE in Algorithm 1 with N < K.
Assume that a feasible cycle can be constructed for the set of
arms {k : ind(k) ≤ N}, with length n =

∑
k:ind(k)≤N nk

and nk = 1 for any k such that ind(k) > N . We set c to be

min

{⌊
min

k:ind(k)>N

mk⌈ ind(k)−N
N−1

⌉⌋, (3)

3n+

⌈(
4T
√
n lnT

(K − 1)∆̄

) 2
3
⌉}

. (4)

If we have
⌊
mink:ind(k)>N mk

/⌈ ind(k)−N
N−1

⌉⌋
> 3n, then

the expected regret of FC-SE is upper bounded as

RT ≤(K − 1)∆̄c
(
1 +

⌈K −N
N − 1

⌉)
+ 8T

(
1 +

⌈K −N
N − 1

⌉)√ n lnT

c− 3n
+ 2K∆max,
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Algorithm 2 The Shortest Length AUS Cycle Construction
1: Input: Patience vector m
2: Compute the index mapping ind(·) such that
mind−1(1) ≤ mind−1(2) ≤ ... ≤ mind−1(K)

3: Solve the optimization problem and obtain solution r∗:

min
r̂

∑K
k=1 r̂k
r̂K

(5)

s.t.
r̂k
r̂k+1

∈ N+, ∀k ∈ [K − 1] (6)

1

mind−1(k)

≤ r̂k ≤ 1, ∀k ∈ [K] (7)

K∑
k=1

r̂k ≤ 1 (8)

4: if r∗ exists then
5: Construct an AUS cycle with r∗

6: end if

where ∆max := maxk ̸=k∗ ∆k. Specifically, if m sat-

isfies that
⌊
mink:ind(k)>N mk

/⌈ ind(k)−N
N−1

⌉⌋
> 3n +⌈(

4T
√
n lnT

(K−1)∆̄

) 2
3
⌉

, we have RT = O
(
K

4
3T

2
3 (n lnT )

1
3

)
.

4.2. A Form of Feasible Cycles: AUS

In Section 4.1, we presented our first algorithm, FC-SE.
This algorithm requires a feasible cycle containing at least a
subset of all the available arms. Besides, the expected regret
increases with the feasible cycle length n in our analysis.
In this section, we propose a specific method to construct
a feasible cycle with the shortest possible length. We need
the following definition from the Age of Information (AoI)
literature.

Definition 4.3 (Li et al. (2023a)). A cyclic schedule is an
Almost Uniform Schedule (AUS) if for each arm k, there
exists an integer xk such that Iik is either xk or xk+1 for any
i ≥ 1. Iik is the time interval (in number of slots) between
the i-th and the (i+1)-th pull of arm k in the cyclic schedule.

Our process to construct a feasible cycle is listed in Algo-
rithm 2. Given any feasible solution to the optimization
problem in Algorithm 2, a routine to construct a feasible
AUS cycle is described in Li et al. (2021). Besides, our min-
imization objective (5) is the length of the constructed AUS
cycle. In conclusion, Algorithm 2 tries to find the feasible
AUS cycle with the shortest possible length. In Appendix
B.1, we present a dynamic programming-based solution to
the optimization problem in Algorithm 2. Here we formally
describe the output of Algorithm 2 and provide the proof in
Appendix B.2.

Theorem 4.4. Run Algorithm 2 on a patience vector m.
If the optimization problem in Algorithm 2 has a feasible
solution, then Algorithm 2 finds a feasible AUS cycle of
length at most ||m||∞.

Remark 4.5. Although it is obvious that when l(K,m) > 1,
no solution to the optimization problem exists, Li et al.
(2021) has shown that l(K,m) ≤ ln 2 can ensure the exis-
tence of such a feasible solution. For some configurations
that mink∈[K]mk < K but l(K,m) ≤ ln 2, though it can-
not be handled by the SE algorithm, it is possible to schedule
the arms such that no arm leaves early. For instance, in many
configurations where ||m||∞ = O(lnT ), it is also highly
likely that l(K,m) falls below the constant ln 2 as T be-
comes sufficiently large, making feasible AUS cycles exist.
As Theorem 4.4 indicates, Algorithm 2 finds AUS cycles
of length n = O(lnT ) for such configurations. As a conse-
quence, we can find a wide range of configurations results
in AUS cycles of sub-linear length, leading to the sub-linear
regret of our novel algorithms.

4.3. Extension: Allowing New Entering Arms

In the proposed setup, we only assume that arms can exit. In
reality, a more general and realistic scenario involves both
incoming and departing arms. In online advertising, as time
progresses, more advertisers may attempt to display their
advertisements. Similarly, in the crowdsourcing example,
new workers might join the platform and search for jobs.
In this section, we take a step forward and allow for the
entrance of new arms in the proposed setting. There are also
a total of K arms, but only the set of arms [K0] is available
at the beginning, where K0 < K. The remaining arms
K0 + 1, ...,K arrive later within the time horizon T . ρk
denotes the time slot at the beginning of which arm k ∈ [K]
enters the game. We have ρk = 0,∀k ∈ [K0]. Without
loss of generality, we assume that arms k = K0 + 1, ...,K
are ordered by their entry times: 0 < ρK0+1 ≤ ... ≤ ρK .
For any k > K0, we assume that the entry time ρk and the
patience mk is not known in advance. The algorithm does
not know mk and when arm k becomes available until the
beginning of time ρk. In this section, we define the mapping
ind(·) only for the set of initial arms [K0]: mind−1(1) ≤
... ≤ mind−1(K0). When designing performance metrics for
algorithms in this new setup, we notice that it is possible for
the optimal arm k∗ to be among the new entering arms (i.e.
k∗ > K0). In this case, from t = 1 to t = ρk∗−1, no matter
which arm we pull, there is a positive gap in reward mean
when comparing at against arm k∗. Even the Oracle that
always pulls the best possible arm yields a positive regret
that is linear with respect to ρk∗ . The expected regret (2)
is no longer suitable. Instead, we introduce the expected

7
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dynamic regret

R̃T = E
[ T∑
t=1

µ∗
t −

T∑
t=1

µat
]
, (9)

where µ∗
t := maxk∈[K]:ρk≤t µk is the highest reward mean

of the arms that have entered the game before or at time t.

To handle newly entering arms with unknown patience, we
reserve special slots in the feasible cycle. In the beginning,
we use only N − 2 of the initially available arms with
relatively low level of patience and introduce two additional
virtual arms to construct the feasible cycle, where N is also
the maximum number of arms in the cycle. Although mk

is unknown before arm k’s entrance, we assume a known
lower boundm for the patience of newly entering arms. The
two virtual arms are denoted as + and −, and we set their
patience as m+ = m− = m. The reserved slots for the
virtual arms in the feasible cycle are initially empty. New
entering arms occupy the slots of either + or − after their
entrance. The condition m ≤ mk ensures that the slots of
either virtual arm are sufficient to keep any entering arm.
The details of FC-Entry is in Appendix G.
Theorem 4.6. Run FC-Entry algorithm in Algorithm 4 with
N . Assume N satisfies that 3 < N < K0 + 2, the set of
arms {k ∈ [K0] : ind(k) ≤ N − 2} and two virtual arms
+,− with patience m can form a feasible cycle of length
n = n+ + n− +

∑
k∈[K0]:ind(k)≤N−2 nk. n+, n− are the

numbers of pulls of the virtual arms +,− in the constructed
feasible cycle, respectively. nk = 1 for k ∈ [K0] : ind(k) >
N − 2. For arm k > K0, nk = n+ if it takes up the slots of
virtual arm + in the feasible cycle and otherwise nk = n−.
We set c to be

min

{⌊
min

k∈[K0]:ind(k)>N−2

mk⌈ ind(k)−N+2
N−3

⌉⌋, (10)

3n+

⌈(
8(K −N + 3)T

√
n lnT

∆̄(3 +
⌈
K0−N+2
N−3

⌉
)

) 2
3
⌉}

. (11)

If c > 3n and 3c ≤ minK0<k<K(ρk+1 − ρk − 1) then the
expected dynamic regret of FC-Entry is upper bounded as

R̃T ≤2K∆max + (K − 1)∆̄c

(
3 +

⌈K0 −N + 2

N − 3

⌉)

+ 16(K − 1)(K −N + 3)T

√
n lnT

c− 3n
,

where ∆max := maxk ̸=k∗ ∆k. If c is exactly 3n +⌈( 8(K−N+3)T
√
n lnT

∆̄(3+⌈K0−N+2
N−3 ⌉)

) 2
3
⌉
, R̃T = O

(
K2T

2
3 (n lnT )

1
3

)
.

5. Numerical Experiments
We examine the theoretical results in 4 simulations. In a
simulation, each curve is the average over 50 trials with i.i.d.

Figure 2. Simulation results. (a) UCB with sufficient arm patience;
(b) FC-SE when N = K; (c) FC-SE when N < K; (d) FC-Entry
with newly entering arms. The three new arms 5, 6, 7 enter the
game at time ρ5 = 3000, ρ6 = 18000, ρ7 = 38000.

standard Gaussian noises. T = 105 in each simulation.

UCB. We consider there are K = 5 arms. Let µ1 = 0.7.
Other reward means are sampled uniformly from [0, 0.6],
thus k∗ = 1 and µ ∈ Ξϵ (defined in Corollary D.2) with
ϵ = 0.1 and ∆̄ = 0.7. The entries of m are sampled
uniformly from

[
1 + (K − 1)⌈16ϵ−2 lnT ⌉, T

]
. We run

UCB with δ = 1/T 2 to validate the sub-linear regret upper
bound in Appendix D. Fig. 2(a) shows the obtained regret
curve. The figure also shows the realized minimum regret
and maximum regret in the shaded area.

FC-SE with N = K. We consider there are K = 5 arms
and set m = (3, 5, 12, 155, 1000). We run Algorithm 2
and construct a feasible cycle ”1, 2, 3, 1, 2, 4, 1, 2, 5”
with n = 9 for all the arms. The entries of µ are sampled
uniformly from [0, 1]. We run UCB (with δ = 1/T 2) and
SE as baseline algorithms for FC-SE. In each run of FC-SE,
no arm exits the game before it is regarded as sub-optimal.
Fig. 2(b) shows the obtained regret curves.

FC-SE with N < K. We consider there are K = 6 arms
and set m = (2, 4, 4, 6800, 6800, 15000). We let N = 3
and use the feasible cycle ”1, 2, 1, 3” with n = 4. The
entries of µ are sampled uniformly from [0, 1]. We run
UCB (with δ = 1/T 2) and SE as baseline algorithms. In
each run of FC-SE, no arm exits the game before being
regarded as sub-optimal. Fig. 2(c) shows the obtained regret
curves.

FC-Entry. We consider there are K = 7 arms and set
m = (3, 5, 1000, 6667, 12, 10000, 26). Arm 5, 6, 7 are
newly entering arms and m = 12. We construct a feasible
cycle ”1, 2, +, 1, 2, -, 1, 2, 3” with n = 9 for patience vector
(m1,m2,m+,m−,m3) = (3, 5, 12, 12, 1000), where +,−
are two virtual arms with patience m. The entries of µ are

8
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sampled uniformly from [0, 1]. In each run of FC-Entry, no
arm exits the game before it is regarded as sub-optimal. Fig.
2(d) shows the obtained dynamic regret curve.
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A. Details of Related Work
A.1. Bandit with Time-Varying Arm Availability

In many real world applications, the available arm set usually varies over time (Saha et al., 2020). In addition to the sleeping
bandit literature we introduced earlier, there is research on combinatorial bandits with sleeping arms (Kale et al., 2016;
Nika et al., 2020; Huang et al., 2020; Abhishek et al., 2021; Li et al., 2020), where they permit the set of base arms to
evolve. As we have mentioned in the main body, one of the key differences of our work from this literature is the difference
of suitable performance metrics. In the literature, the selected action is compared with some arm in At. To illustrate the
potential pitfalls of such performance metrics, consider an example where the patience of each arm is relatively low and
a simple algorithm that keeps pulling some fixed sub-optimal arm k. As the other arms have all departed, k becomes the
only available option. The regret ceases to increase as arm k is only compared against itself. While this simple algorithm
is satisfactory in terms of the regret defined in these papers, it is important to note that it incurs a linear loss with respect
to the time horizon T if compared to an algorithm that consistently pulls the optimal arm. The appropriate performance
metric is then to compare the algorithm choice against the optimal arm that has ever appeared, regardless of whether it is
still available at time t. In fact, a well-designed algorithm should aim to prevent the unexpected departure of the optimal
arm, as its early exit can result in significant regret. Besides, we note that a concept of patience is also introduced in (Mehta
et al., 2013). The patience there represents the allowed maximum times of pulls for each arm. Say each arm is associated
with a counter recording the number of times it has been pulled. The value in the counter is non-decreasing and the counter
does not reset when the arm is ignored in some round. In contrast, the patience defined in this paper is a threshold for the
time an arm is continuously ignored. Say each arm has a counter recording the time that has elapsed since the last pull of it.
The counter is reset once the arm is pulled. This is why it is possible to schedule some arms infinitely without ever violating
our patience thresholds.

A.2. Streaming Bandit

Recently, motivated by the fact that the number of bandit arms can be notably extensive while the learner often contends
with limited available memory, a line of research (Liau et al., 2018; Chaudhuri & Kalyanakrishnan, 2020; Maiti et al., 2021;
Rathod, 2021; Jin et al., 2021; Assadi & Wang, 2022; Agarwal et al., 2022; Wang, 2023; Li et al., 2023b) have defined and
studied the Streaming Bandit setting. In this context, the arms arrive one at a time in a sequential manner, and the algorithm
is constrained to pulling arms currently stored in memory. The size of the memory is generally much smaller than the total
number of arms. When the memory becomes saturated and the algorithm aims to select a new arm, it is necessary to remove
at least one arm already stored in memory before the new selection can be made (Li et al., 2023b). This model is relevant to
ours for two reasons. Firstly, while our setting does not consider bounded memory, an algorithm must choose to operate
on only a subset of arms when the arms have limited patience. This is necessary because attempting to manage all arms
may deplete the patience of some. Secondly, both this model and ours allow for the entry and exit of arms within the game
process. Although, in most parts of our work, we assume that there are no arm entries. The setup of streaming bandits
can be categorized into two distinct types. The first is the single-pass setting (Maiti et al., 2021; Assadi & Wang, 2022;
Wang, 2023), in which the algorithm is unable to re-add an arm to the arm memory that was previously removed from it.
The second is the multi-pass setting (Liau et al., 2018; Chaudhuri & Kalyanakrishnan, 2020; Rathod, 2021; Agarwal et al.,
2022), where the algorithm is permitted to scan the stream of arms a limited number of times, thus allowing for the retrieval
of arms that were previously discarded. Compared to the multi-pass streaming bandit scenario, the setup we investigate in
this paper is more akin to the single-pass streaming bandit configuration, primarily because arms that have exited cannot
be recovered by the algorithm. Notably, our model differs from the streaming bandit framework by assuming that arms
possess the capacity to autonomously determine whether to persist in participation or withdraw from the game. Despite the
algorithm potentially being aware of their exit strategy, arms retain a certain degree of decision-making power. In contrast,
in the streaming bandit, it is the algorithm that dictates whether to retain an arm in memory or to discard it.

A.3. Age of Information (AoI)

The Age of Information (AoI) is a metric within the application layer of computer networks that characterizes the freshness
of information. In its basic model, there are multiple data collection sources and a base station. Each source collects its
data samples and transmits them to the base station through a shared wireless channel (Liu et al., 2022). AoI is defined
as the time elapsed since the generation of the latest received message at the base station. Since its original introduction
in Kaul et al. (2011; 2012), AoI has recently garnered significant research attention. Several survey papers (Yates et al.,
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2021; Abbas et al., 2023) offer comprehensive summaries of the latest advancements in AoI research. AoI is particularly
suitable for scenarios where the timeliness of status updates is critical, and as a result, it finds a wide range of applications in
intelligent transportation systems (Ni et al., 2018), cellular-based IoT systems (Ling et al., 2022), wireless ad hoc network
traffic scheduling (Lu et al., 2018), smart agriculture (Abbas et al., 2020), and so on.

B. Details of AUS construction
B.1. Solution to the Optimization Problem in Algorithm 2

We design a dynamic programming-based algorithm to compute the solution to the optimization problem in Algorithm
2. The details are presented in Algorithm 3. The algorithm is based on a crucial observation: say r̂ is a feasible
solution to the optimization problem in Algorithm 2, then it can be mapped to another feasible solution r̂′ such that
∃k ∈ [K] : r̂′k = 1

mind−1(k)
and

∑K
k=1 r̂k
r̂K

=
∑K

k=1 r̂
′
k

r̂′K
. If r̂ itself satisfies that ∃k ∈ [K] : r̂k = 1

mind−1(k)
, we can

simply set r̂′ = r̂. Otherwise we can set r̂′ = ar̂ where a = maxk′∈[K]
1

r̂k′mind−1(k′)
< 1. It can be verified that r̂′ is

also a feasible solution and
∑K

k=1 r̂
′
k

r̂′K
=

∑K
k=1 ar̂k
ar̂K

=
∑K

k=1 r̂k
r̂K

. Given this fact, it suffices to find an optimal r̂ such that

∃k ∈ [K] : r̂k = 1
mind−1(k)

. In the outer iteration, the algorithm iterates over k and fixes r̂k = 1
mind−1(k)

. Given k, for s ≤ k,

DP(r, s) denotes the minimum value of
∑k
k′=s r̂k′ where r̂s = r and r̂s, ..., r̂k satisfy (6), (7). Similarly, for s > k, the sum

is from k to s. For s ≤ k, BWD(r, s) denotes the r̂s+1 that achieves DP(r, s), while for s > k, BWD(r, s) denotes the
r̂s−1 that achieves DP(r, s). If k > 1, the algorithm minimizes

∑k
k′=1 r̂k′ . Note that when r̂k is fixed, the minimization of∑k−1

k′=1 r̂k′ is independent of r̂k+1, ..., r̂K . If k < K, the algorithm computes the minimum
∑K
k′=k r̂k′ for each possible

value of r̂K . Then the algorithm computes the minimal objective if a feasible solution exists given r̂k = 1
mind−1(k)

. At the
end of the iteration with k, the algorithm updates the minimal objective seen so far.

B.2. Proof of The Correctness of Algorithm 2

Proof of Theorem 4.4. Say r∗ is a solution of the optimization problem in Algorithm 2. By Lemma 2 in Li et al. (2021),
the schedule that Algorithm 2 outputs is an AUS cycle of length

∑K
k=1 r

∗
k

r∗K
. Since r∗ satisfies (7) and (8), the length can be

upper bounded as
∑K

k=1 r
∗
k

r∗K
≤ 1

r∗K
≤ mind−1(K) = maxk∈[K]mk = ||m||∞. Consider a cyclic schedule composed of such

AUS cycles. To show that this cyclic schedule is feasible for m, it suffices to show that ∀k ∈ [K], i ≥ 1 : Iik ≤ mind−1(k).
We prove this by contradiction. For any k, suppose ∃i : Iik > mind−1(k), we have that ∀i ≥ 1 : Iik ≥ mind−1(k) by
the definition of AUS. We consider the first AUS cycle in the schedule. By Algorithm 1 in Li et al. (2021), in the AUS
cycle, nk =

r∗k
r∗K

for any k and n =
∑K

k=1 r
∗
k

r∗K
. The next cycle in the schedule is just a repetition of the current cycle. So

∀i ≥ 1 : Iik ≥ mind−1(k) implies ∀i ∈ [nk], a[τ i
k mod n]+1, ..., a[(τ i

k+mind−1(k)−2) mod n]+1 ̸= k. The i-th pull of arm k is
followed by at least mind−1(k) − 1 pulls of other arms for i < nk, while the nk-th pull of arm k implies there are at least
mind−1(k) − 1 pulls of other arms in the set of time slots [τ1k ] ∪ {τ

nk

k + 1, ..., n}. Thus we have mind−1(k)nk < n since
∃i : Iik > mind−1(k). Let rk denote the average rate of arm k’s appearance in the schedule, then rk = nk

n < 1
mind−1(k)

. Thus
the rate rk satisfies

1

mind−1(k)

> rk =
r∗k/r

∗
K∑K

k=1 r
∗
k/r

∗
K

≥ r∗k ≥
1

mind−1(k)

.

A contradiction occurs. So we have ∀k ∈ [K], i ≥ 1 : Iik ≤ mind−1(k) and the AUS cycle is feasible given the patience
vector m.

C. Proofs for The Hardness Result
Proof of Lemma 3.3. Let t̄ = λK. Suppose that Q(K,m) > t̄+ 1. We have that from t = 1 to t = t̄+ 1 no arm leaves. For
each arm i, say tki is the time that it is pulled the k-th time. Consider the sequence t = 0, t1i , ..., t

Ti(t̄)
i , t̄+ 1. Say j, j′ are
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Algorithm 3 A Dynamic Programming Solution to the Optimization Problem in Algorithm 2
1: Input: Patience vector m, the index mapping ind(·)
2: r∗ ← (1, ..., 1),min len∗ ← +∞
3: for k = 1, 2, ...,K do
4: r̂ ← (1, ..., 1),min len← +∞
5: r̂k ← 1

mind−1(k)
,Dk ← {r̂k},DP(r̂k, k)← 1

mind−1(k)

6: if k > 1 then
7: Dk′ ← {lr̂k| 1

mind−1(k′)
≤ lr̂k ≤ 1, l ∈ N+} for each k′ = 1, ..., k − 1

8: for k′ = k − 1, ..., 1 do
9: for r ∈ Dk′ do

10: DP(r, k′)← r +minr′:r′∈Dk′+1,
r
r′ ∈N+ DP(r′, k′ + 1)

11: BWD(r, k′)← argminr′:r′∈Dk′+1,
r
r′ ∈N+ DP(r′, k′ + 1)

12: end for
13: end for
14: if minr∈D1

DP(r, 1) > 1 then
15: Continue
16: end if
17: r̂1 ← argminr∈D1 DP(r, 1)
18: for k′ = 2, ..., k − 1 do
19: r̂k′ ← BWD(r̂k′−1, k

′ − 1)
20: end for
21: end if
22: if k < K then
23: Dk′ ← { r̂kl |

1
mind−1(k′)

≤ r̂k
l , l ∈ N+} for each k′ = k + 1, ...,K

24: for k′ = k + 1, ...,K do
25: for r ∈ Dk′ do
26: DP(r, k′)← r +minr′:r′∈Dk′−1,

r′
r ∈N+ DP(r′, k′ − 1)

27: BWD(r, k′)← argminr′:r′∈Dk′−1,
r′
r ∈N+ DP(r′, k′ − 1)

28: end for
29: end for
30: end if
31: if minr∈DK

∑k−1
k′=1 r̂k + DP(r,K) ≤ 1 then

32: min len← minr∈DK :
∑k−1

k′=1
r̂k+DP(r,K)≤1 r

−1[
∑k−1
k′=1 r̂k + DP(r,K)]

33: end if
34: if min len < min len∗ then
35: min len∗ ← min len
36: r∗k′ ← r̂k′ for each k′ = 1, ..., k

37: r∗K ← argminr∈DK :
∑k−1

k′=1
r̂k+DP(r,K)≤1 r

−1[
∑k−1
k′=1 r̂k + DP(r,K)]

38: for k′ = K − 1, ..., k + 1 do
39: r∗k′ ← BWD(r∗k′+1, k

′ + 1)
40: end for
41: end if
42: end for
43: Return r∗
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consecutive items in the sequence, then we have j′ − j ≤ mi. This implies that for ∀i ∈ [K],

Ti(t̄) ≥
⌊ t̄

mi

⌋
>

t̄

mi
− 1

Ti(t̄) + 1

t̄
>

1

mi
.

By definition t̄ =
∑K
i=1 Ti(t̄). Summing over i, we have

1 +
1

λ
= 1 +

K

λK
=
K +

∑K
i=1 Ti(t̄)

t̄
>

K∑
i=1

1

mi
= l(K,m) > 1 +

1

λ
.

A contradiction occurs. Thus we can conclude that Q(K,m) ≤ t̄+ 1 = λK + 1.

Proof of Theorem 3.2. Given an unschedulable configuration (K,m), i.e. Q(K,m) ≤ T , after any bandit algorithm A ∈ A
pulls Q(K,m) times, there must be at least 1 arm that has left. We mainly focus on these first Q(K,m) pulls. Define a
measurable space (ΩQ(K,m)

,FQ(K,m)
) where ΩQ(K,m)

= ([K]× R)Q(K,m) ⊂ R2Q(K,m) and FQ(K,m)
is the σ-algebra of

the subsets of ΩQ(K,m)
. Fix a positive constant ∆ ≤ ∆̄, we construct µi ∈ Ξ, i ∈ [K] such that

µi = (0, 0, ..., ∆︸︷︷︸
the ith entry

, 0, ..., 0).

Say we run any A on some µi. Define Ψ as the set of all measurable mappings ψ that maps from ΩQ(K,m)
to [K]. We want

to find a lower bound on
inf
ψ∈Ψ

max
j∈[K]

Pr
A,(K,m,µj)

(ψ = j),

where PrA,(K,m,µi),∀i ∈ [K] are probability measures over (ΩQ(K,m)
,FQ(K,m)

). Our derivation is similar with that of
Fano’s inequality in Rigollet & Hütter (2019). We write PrA,(K,m,µj) as Pj for notational simplicity. Fix ψ ∈ Ψ, define

pj = Pj(ψ ̸= j), p̄ =
1

K

K∑
j=1

pj ∈ [0, 1], qj =
1

K

K∑
k=1

Pk(ψ ̸= j),

q̄ =
1

K

K∑
j=1

qj =
1

K2

K∑
j,k=1

Pk(ψ ̸= j) =
1

K2

K∑
j,k=1

1− Pk(ψ = j)

= 1− K

K2
=
K − 1

K
.

Let kl(p, p′) denote KL divergence between Bernoulli distributions with mean p, p′, respectively. We have

kl(p, p′) = p ln
p

p′
+ (1− p) ln 1− p

1− p′
.

Denote the entropy of Bernoulli distribution h(p) = p ln p+ (1− p) ln(1− p). We have on the one hand,

kl(p̄, q̄) =h(p̄)− p̄ ln q̄ − (1− p̄) ln(1− q̄)

≥h(p̄)− p̄ ln q̄ = h(p̄) + p̄ ln
K

K − 1
=: fK(p̄).
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On the other hand, we derive an upper bound for kl(p̄, q̄), by the convexity of KL divergence,

kl(p̄, q̄) ≤ 1

K

K∑
j=1

kl(pj , qj) ≤
1

K2

K∑
j,k=1

kl(Pj(ψ ̸= j), Pk(ψ ̸= j)).

Fix any j, k, we derive upper bound for kl(Pj(ψ ̸= j), Pk(ψ ̸= j)). We observe that probability measures Pj , Pk over
(ΩQ(K,m)

,FQ(K,m)
) induce probability measures Ber(Pj({ω ∈ ΩQ(K,m)

: ψ(ω) ̸= j})),Ber(Pk({ω ∈ ΩQ(K,m)
: ψ(ω) ̸=

j})) over measurable space ({0, 1}, 2{0,1}). Then by data processing inequality in Lou & Goldfeld (2020), especially their
Example 7.1.2(i), we have

KL(Pj , Pk) ≥ KL(Ber(Pj(ψ ̸= j)),Ber(Pk(ψ ̸= j)))

= kl(Pj(ψ ̸= j), Pk(ψ ̸= j)).

Some sequences of a1, a2, ..., aQ(K,m)
are impossible due to the leaving behaviour of arms, depending only on (K,m).

However, an arm sequence is possible with respect to (K,m,µj) if and only if it is possible with respect to (K,m,µk).
As a result, Pj is absolutely continuous with respect to Pk. With this fact in mind, we can use Lemma 15.1 in Lattimore &
Szepesvári (2020) to show that

KL(Pj , Pk) =
K∑
i=1

Ej [Ti(Q(K,m))]KL(N (µj,i, 1),N (µk,i, 1))

=
∆2

2
(Ej [Tj(Q(K,m))] + Ej [Tk(Q(K,m))])

≤ ∆2

2
Q(K,m).

Merging the derivations above, we obtain that

fK(p̄) ≤ 1

K2

K∑
j,k=1

∆2

2
Q(K,m) =

∆2

2
Q(K,m).

Now we study the function fK(p) to obtain an upper bound for p̄.

fK(p) = p ln
K

K − 1
+ p ln p+ (1− p) ln(1− p),

f ′K(p) = ln
K

K − 1
+ ln p+ 1− ln(1− p)− 1

= ln
K

K − 1
+ ln

p

1− p
.

We see that fK(0) = 0, fK(1) = ln K
K−1 , fK is monotonically decreasing in [0, K−1

2K−1 ] and monotonically increasing in

[ K−1
2K−1 , 1]. Thus ∀c ∈ (0, ln K

K−1 ], there is a unique p ∈ ( K−1
2K−1 , 1] such that fK(p) = c. Setting ∆ =

√
1

Q(K,m)
ln K

K−1 ,

let f−1
K ( 12 ln

K
K−1 ) denote the unique p such that fK(p) =

Q(K,m)

2
1

Q(K,m)
ln K

K−1 = 1
2 ln

K
K−1 . We obtain that

1

K

K∑
j=1

Pj(ψ ̸= j) = p̄ ≤ f−1
K (

1

2
ln

K

K − 1
).

Thus

inf
ψ∈Ψ

max
j∈[K]

Pj(ψ = j) ≥ inf
ψ∈Ψ

1

K

K∑
j=1

Pj(ψ = j)

= inf
ψ∈Ψ

1

K

K∑
j=1

1− Pj(ψ ̸= j)

≥1− f−1
K (

1

2
ln

K

K − 1
).
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Define ψL as the measurable map that returns the first leaving arm during the first Q(K,m) pulls, breaking tie by returning
the first leaving arm with the smallest arm index. We claim that, for any bandit policy A and configuration (K,m), there
is j ∈ [K] such that Pj(ψL = j) ≥ 1 − f−1

K ( 12 ln
K
K−1 ). Suppose not, then there exist A, (K,m) that for all j ∈ [K],

Pj(ψL = j) < 1− f−1
K ( 12 ln

K
K−1 ), then setting ∆ =

√
1

Q(K,m)
ln K

K−1 ,

1− f−1
K (

1

2
ln

K

K − 1
) > max

j∈[K]
Pj(ψL = j)

≥ inf
ψ∈Ψ

max
j∈[K]

Pj(ψ = j)

≥1− f−1
K (

1

2
ln

K

K − 1
).

A contradiction occurs, so we proved the claim. For any algorithm A, say arm iA satisfies PiA(ψL = iA) ≥ 1 −
f−1
K ( 12 ln

K
K−1 ). Now we derive the lower bound for expected regret when the ground truth reward mean vector is µiA

RT (A, (K,m,µiA)) = EiA
[ T∑
t=1

∆at

]
= EiA

[ K∑
k ̸=iA

∆Tk(T )
]

=

√
1

Q(K,m)
ln

K

K − 1

K∑
k ̸=iA

EiA
[
Tk(T )

]

=

√
1

Q(K,m)
ln

K

K − 1
EiA
[
T − TiA(T )

]
=

√
1

Q(K,m)
ln

K

K − 1
EiA
[
T − TiA(T )|ψL = iA

]
PiA(ψL = iA)

+

√
1

Q(K,m)
ln

K

K − 1
EiA
[
T − TiA(T )|ψL ̸= iA

]
PiA(ψL ̸= iA)

≥

√
1

Q(K,m)
ln

K

K − 1

[
1− f−1

K (
1

2
ln

K

K − 1
)
]
(T −Q(K,m)),

where Ej is the expectation when A, (K,m,µj) is given. Finally, we note that the bound above holds for any A, and

RT (A, (K,m,µiA)) ≤ sup
µ∈Ξ

RT (A, (K,m,µ)).

So we can make our conclusion, for any unschedulable profile (K,m), the minimax lower bound for the expected regret is

min
A∈A

sup
µ∈Ξ

RT (A, (K,m,µ)) ≥

√
1

Q(K,m)
ln

K

K − 1

[
1− f−1

K (
1

2
ln

K

K − 1
)
]
(T −Q(K,m)).

D. Results for UCB Algorithm
In the standard regret analysis of UCB in the stochastic MAB setting (Lattimore & Szepesvári, 2020), a critical observation
is that under a high probability event (usually called a ”Good” event) the number of pulls of sub-optimal arms is bounded.
In our setup characterized by arm patience, arm k exits if there have been too many pulls of other arms after its last pull.
However, if the optimal arm k∗’s patience mk∗ is even greater than the highest possible total number of sub-optimal pulls
under the good event, then it is unlikely that arm k∗ will exit under the good event. Thus, if arm k∗ has good patience,
the performance of UCB algorithm can be intuitively guaranteed. Inspired by this observation, we present the following
expected regret upper bound for UCB algorithm in our setup.
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Theorem D.1. Run UCB algorithm with confidence parameter δ = 1/T 2 in the Multi-Armed Bandit with Impatient Arms
setup. If mk∗ >

∑K
k ̸=k∗⌈

16 lnT
∆2

k
⌉ the expected regret of UCB algorithm is upper bounded by

RT ≤ K∆max + 3

K∑
k ̸=k∗

∆k +

K∑
k ̸=k∗

16 lnT

∆k
,

where ∆max := maxk ̸=k∗ ∆k.

Proof of Theorem D.1. Define D as the event that arm k∗ is ignored for at least mk∗ times, formally

D =
{
∃t ∈ {1, 2, ..., T + 1−mk∗} : at, at+1, ..., at+mk∗−1 ̸= k∗

}
.

The expected regret is decomposed with respect to event D,

RT =E
[ T∑
t=1

µ∗ −
T∑
t=1

µat
]

=E
[ T∑
t=1

∆at

]
=E
[ T∑
t=1

∆atI{D̄}
]
+ E

[ T∑
t=1

∆atI{D}
]

≤∆maxT Pr(D) +RBase
T ,

where RBase
T denotes E

[∑T
t=1 ∆atI{D̄}

]
, whose analysis resembles that of UCB algorithm in the vanilla MAB setting.

Following the standard analysis of UCB algorithm, we can define ”good” events when the sample means of each arm lie in
their corresponding confidence intervals. Now we define ’good’ events.

Ek∗ :=
{
µ∗ < min

n∈[T ]
µ̂k∗,n +

√
2 ln 1/δ

n

}
,

Ek :=
{
µ̂k,uk

+

√
2 ln 1/δ

uk
< µ∗

}
, ∀k ̸= k∗.

If mk∗ is large enough, formally mk∗ >
∑K
k ̸=k∗ uk, by total probability rule,

Pr(D) =Pr
(
D
∣∣∣ K⋂
k=1

Ek
)
Pr
( K⋂
k=1

Ek
)
+ Pr

(
D
∣∣∣ K⋃
k=1

Ēk
)
Pr
( K⋃
k=1

Ēk
)

≤Pr
(
D
∣∣∣ K⋂
k=1

Ek
)
+ Pr

( K⋃
k=1

Ēk
)

≤Pr
(
D
∣∣∣ K⋂
k=1

Ek
)
+

K∑
k=1

Pr
(
Ēk
)
.

Conditioned on event
⋂K
k=1 Ek, if ∃t s.t. at, at+1, ..., at+mk∗−1 ̸= k∗, there must be at least one arm denoted k, that it

is selected more than uk times even during the time interval from t to t +mk∗ − 1. However under event Ek∗ , Ek, and
the fact that arm k may deviate in advance, arm k cannot be selected for more than uk times. There is a contradiction, so
Pr(D|

⋂K
k=1 Ek) = 0. We see that Pr(D) ≤

∑K
k=1 Pr(Ēk) as a result.

20



On Multi-Armed Bandit with Impatient Arms

On the other hand,

RBase
T =E

[ T∑
t=1

∆atI{D̄}
]

=E
[ K∑
k ̸=k∗

T∑
t=1

∆kI{at = k}I{D̄}
]

=

K∑
k ̸=k∗

∆kE
[
Tk(T )I{D̄}

]
=

K∑
k ̸=k∗

∆k

(
E
[
Tk(T )I{Ek∗ , Ek}I{D̄}

]
+ E

[
Tk(T )I{Ēk∗ ∪ Ēk}I{D̄}

])

≤
K∑

k ̸=k∗
∆k

(
uk + E

[
Tk(T )I{Ēk∗ ∪ Ēk}I{D̄}

])

≤
K∑

k ̸=k∗
∆k

(
uk + TE

[
I{Ēk∗ ∪ Ēk}I{D̄}

])

≤
K∑

k ̸=k∗
∆k

(
uk + T Pr(Ēk∗ ∪ Ēk)

)
.

The first inequality holds since under event D̄, arm k∗ never leaves the game and under event Ek∗ ∩ Ek, no matter whether
arm k derivates, it can be selected for no more than uk times. Even if it is pulled for uk times, it will never be pulled again

since arm k∗’s UCB index is always larger. By Chernoff’s inequality, say ck,∀k ̸= k∗ satisfy ∆k −
√

2 ln 1/δ
uk

≥ ck∆k,

Pr(Ēk∗) =Pr
( ⋃
n∈[T ]

{µ∗ ≥ µ̂k∗,n +

√
2 ln 1/δ

n
}
)
≤

T∑
n=1

Pr
(
µ∗ ≥ µ̂k∗,n +

√
2 ln 1/δ

n

)
≤ Tδ,

Pr(Ēk) ≤Pr(µ̂k,uk
− µk ≥ ck∆k) ≤ exp

(
− ukc

2
k∆

2
k

2

)
, ∀k ̸= k∗.

Then for the expected regret when mk∗ >
∑K
k ̸=k∗ uk,

RT ≤
K∑

k ̸=k∗
∆k

(
uk + T Pr(Ēk∗ ∪ Ēk)

)
+∆maxT

K∑
k=1

Pr(Ēk)

≤
K∑

k ̸=k∗
∆kuk +

K∑
k ̸=k∗

∆kT
(
Tδ + exp

(
− ukc

2
k∆

2
k

2

))
+∆maxTTδ +∆maxT

K∑
k ̸=k∗

exp
(
− ukc

2
k∆

2
k

2

)

=

K∑
k ̸=k∗

∆kuk +

K∑
k ̸=k∗

∆k +∆max +

K∑
k ̸=k∗

(∆k +∆max)T exp
(
− ukc

2
k∆

2
k

2

)
.

We set uk = ⌈ 2 ln 1/δ
(1−ck)2∆2

k
⌉ and obtain

RT ≤
K∑

k ̸=k∗
∆k

⌈ 2 ln 1/δ

(1− ck)2∆2
k

⌉
+

K∑
k ̸=k∗

∆k +∆max +

K∑
k ̸=k∗

(∆k +∆max)T
1− 2c2k

(1−ck)2 .
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By setting ck = 1
2 ,∀k ̸= k∗, we obtain

RT ≤
K∑

k ̸=k∗
∆k

⌈8 ln 1/δ
∆2
k

⌉
+

K∑
k ̸=k∗

∆k +∆max +

K∑
k ̸=k∗

(∆k +∆max)

≤K∆max + 3

K∑
k ̸=k∗

∆k +

K∑
k ̸=k∗

16 lnT

∆k
.

In Theorem D.1, we derive a problem-dependent upper bound for a fixed µ. Based on Theorem D.1, we further present a
problem-independent expected regret upper bound for a general set of mean reward vectors in Corollary D.2.

Corollary D.2. Run UCB algorithm with confidence parameter δ = 1/T 2 in the Multi-Armed Bandit with Impatient Arms
setup. For a constant ϵ > 0, consider a set of mean reward vectors Ξϵ =

{
µ
∣∣ ϵ ≤ ∆k ≤ ∆̄,∀k ̸= k∗}. For any instance

(K,m,µ) satisfying: 1. µ ∈ Ξϵ, 2. mk > (K − 1)⌈16ϵ−2 lnT ⌉,∀k ∈ [K], the expected regret of UCB algorithm is
uniformly upper bounded by

RT ≤ K∆max + 3

K∑
k ̸=k∗

∆k + 8
√

(K − 1)T lnT ,

where ∆max := maxk ̸=k∗ ∆k.

In Corollary D.2, we show that UCB algorithm maintains almost the same performance as in stochastic MAB setting, under
the assumption that all arm have relatively high level of patience.

Proof of Corollary D.2. mk > (K− 1)⌈16ϵ−2 lnT ⌉,∀k ∈ [K] implies that ∀µ ∈ Ξϵ, we have mk∗ > (K− 1)⌈ 16 lnT
ϵ2 ⌉ ≥∑K

k ̸=k∗⌈
16 lnT
∆2

k
⌉. We consider two cases for the value of ϵ:

(1) ϵ ≥ ∆ :=
√
16(K − 1)T−1 lnT . In this case, µ satisfies that ∆k ≥

√
16(K − 1)T−1 lnT ,∀k ̸= k∗. We directly

adopt Theorem D.1 and obtain

RT ≤K∆max + 3

K∑
k ̸=k∗

∆k +

K∑
k ̸=k∗

16 lnT

∆k

≤K∆max + 3

K∑
k ̸=k∗

∆k + 4
√
(K − 1)T lnT

≤8
√

(K − 1)T lnT + 3

K∑
k ̸=k∗

∆k +K∆max.

(2) ϵ < ∆ :=
√
16(K − 1)T−1 lnT . Following the derivation in the proof of Theorem D.1, the operation on the first term

22



On Multi-Armed Bandit with Impatient Arms

of the regret decomposition remains the same, since mk∗ >
∑K
k ̸=k∗⌈

16 lnT
∆2

k
⌉. So we focus on the second term,

RBase
T =

K∑
k ̸=k∗

∆kE
[
Tk(T )I{D̄}

]
=

∑
k ̸=k∗:∆k≥∆

∆kE
[
Tk(T )I{D̄}

]
+

∑
k ̸=k∗:∆k<∆

∆kE
[
Tk(T )I{D̄}

]
<∆T +

∑
k ̸=k∗:∆k≥∆

∆k

(
E
[
Tk(T )I{Ek∗ , Ek}I{D̄}

]
+ E

[
Tk(T )I{Ēk∗ ∪ Ēk}I{D̄}

])
≤∆T +

∑
k ̸=k∗:∆k≥∆

∆k

(
uk + E

[
Tk(T )I{Ēk∗ ∪ Ēk}I{D̄}

])
≤∆T +

∑
k ̸=k∗:∆k≥∆

∆k

(
uk + TE

[
I{Ēk∗ ∪ Ēk}I{D̄}

])
≤∆T +

∑
k ̸=k∗:∆k≥∆

∆k

(
uk + T Pr(Ēk∗ ∪ Ēk)

)
.

Merging the two terms, we also have

RT ≤∆T +
∑

k ̸=k∗:∆k≥∆

∆k

(
uk + T Pr(Ēk∗ ∪ Ēk)

)
+∆maxT

K∑
k=1

Pr(Ēk)

≤∆T +
∑

k ̸=k∗:∆k≥∆

∆kuk +

K∑
k ̸=k∗

∆k +∆max +

K∑
k ̸=k∗

(∆k +∆max)T exp(−ukc
2
k∆

2
k

2
)

≤∆T +
∑

k ̸=k∗:∆k≥∆

∆k

( 2 ln 1/δ

(1− ck)2∆2
k

+ 1
)
+ 2

K∑
k ̸=k∗

∆k +K∆max

≤∆T +
∑

k ̸=k∗:∆k≥∆

16 lnT

∆k
+ 3

K∑
k ̸=k∗

∆k +K∆max

≤∆T +
16(K − 1) lnT

∆
+ 3

K∑
k ̸=k∗

∆k +K∆max

=8
√
(K − 1)T lnT + 3

K∑
k ̸=k∗

∆k +K∆max,

with ck = 1
2 for any k ̸= k∗.

Proof of Theorem 3.5. Fix constants aβ , bβ , κT , gT < T , and x1 > x2 > µ∗. The precise values of these constants will be
specified later. We define some events for arm k∗,

Ek∗ := Ek∗(x1, x2) =
{

min
n∈[κT−1]

UCBk∗(n) > x1,UCBk∗(κT ) < x2
}
,

and for arm β,
Eβ := Eβ(x1, x2) =

{
x2 < UCBβ(aβ) < x1, min

n∈[bβ ]
UCBβ(n) > x2

}
.

We will show later that under Ek∗ ∩ Eβ with our value assignments, the optimal arm k∗ is only pulled at most κT times
before it leaves. The number of sub-optimal pulls is at least T − κT in total. Set

x1 = µ∗ +

√
2 ln 1/δ

κT − 1
> x2 = µ∗ +

√
2 ln 1/δ

κT
− gT
κT

> µ∗,
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κT , gT are positive and non-decreasing w.r.t T . Now we compute lower bounds for both Pr(Ek∗(x1, x2)) and
Pr(Eβ(x1, x2)).

Pr(Ek∗(x1, x2)) = Pr
(

min
n∈[κT−1]

UCBk∗(n) > x1,UCBk∗(κT ) < x2

)
=Pr

(
UCBk∗(κT ) < x2

∣∣∣ min
n∈[κT−1]

UCBk∗(n) > x1

)
Pr
(

min
n∈[κT−1]

UCBk∗(n) > x1

)
=Pr

( κT∑
j=1

Xk∗,j − µ∗ < −gT
∣∣∣ min
n∈[κT−1]

UCBk∗(n) > x1

)
Pr
(

min
n∈[κT−1]

UCBk∗(n) > x1

)

=Pr
(
Xk∗,κT

− µ∗ +

κT−1∑
j=1

Xk∗,j − µ∗ < −gT
∣∣∣ min
n∈[κT−1]

UCBk∗(n) > x1

)
Pr
(

min
n∈[κT−1]

UCBk∗(n) > x1

)
=Pr

(
min

n∈[κT−1]
UCBk∗(n) > x1

)∫ +∞

0

Pr
(
Xk∗,κT

− µ∗ < −s− gT
∣∣∣S(k∗)
κT−1 = s, min

n∈[κT−1]
UCBk∗(n) > x1

)
f
(
S
(k∗)
κT−1 = s

∣∣∣ min
n∈[κT−1]

UCBk∗(n) > x1

)
ds,

where we denote that S(i)
t =

∑t
j=1(Xi,j−µi). Say Φ(·) is the cdf of the standard Gaussian distribution. SinceXk∗,κT

−µ∗

is standard Gaussian and it is independent of any other random variables,

Pr
(
Xk∗,κT

− µ∗ < −s− gT
∣∣∣S(k∗)
κT−1 = s, min

n∈[κT−1]
UCBk∗(n) > x1

)
= Φ(−s− gT ) = 1− Φ(s+ gT ).

Now we consider the conditional probably density f
(
S
(k∗)
κT−1 = s

∣∣∣minn∈[κT−1] UCBk∗(n) > x1

)
. By Bayes’ Theorem,

f
(
S
(k∗)
κT−1 = s

∣∣∣ min
n∈[κT−1]

UCBk∗(n) > x1

)
=

Pr
(
minn∈[κT−1] UCBk∗(n) > x1

∣∣∣S(k∗)
κT−1 = s

)
Pr
(
minn∈[κT−1] UCBk∗(n) > x1

) f(S
(k∗)
κT−1 = s).

Since S(k∗)
κT−1 ∼ N (0, κT − 1), we have f(S(k∗)

κT−1 = s) = 1√
2π(κT−1)

exp(− s2

2(κT−1) ). It suffices to lower bounding

Pr
(
minn∈[κT−1] UCBk∗(n) > x1

∣∣∣S(k∗)
κT−1 = s

)
.

Pr
(

min
n∈[κT−1]

UCBk∗(n) > x1

∣∣∣S(k∗)
κT−1 = s

)
=Pr

(
∀n = 1, ..., κT − 1 : S(k∗)

n > (
n√

κT − 1
−
√
n)
√

2 ln 1/δ
∣∣∣S(k∗)
κT−1 = s

)
≥Pr

(
∀n = 1, ..., κT − 1 : S(k∗)

n > (1− 1√
κT − 1

)

√
2 ln 1/δ

κT − 2
(n− κT + 1)

∣∣∣S(k∗)
κT−1 = s

)
=1− Pr

(
∃n = 1, ..., κT − 1 : S(k∗)

n ≤ (1− 1√
κT − 1

)

√
2 ln 1/δ

κT − 2
(n− κT + 1)

∣∣∣S(k∗)
κT−1 = s

)
≥1− Pr

(
∃t ∈ [0, κT − 1] : B(t) ≤ (1− 1√

κT − 1
)

√
2 ln 1/δ

κT − 2
(t− κT + 1)

∣∣∣B(κT − 1) = s
)
,

where {B(t), t ≥ 0} is standard Brownian motion. The first inequality is by convexity. The last inequality is by the
fact that the joint distribution of S(k∗)

1 , ..., S
(k∗)
κT−1 is identical to that of B(1), ..., B(κT − 1). To proceed, we introduce a

boundary-crossing property of Brownian bridge mentioned in Scheike (1992).

Lemma D.3 (Proposition 3, Scheike (1992)). If B(t) is standard Brownian motion, and a > 0, T <∞, and c < a+ bT ,
then

Pr
( ⋃
t∈[0,T ]

(B(t) ≥ a+ bt)
∣∣∣B(T ) = c

)
= exp

(
− 2a(a+ bT − c)/T

)
.

If a ≤ 0, the probability is 1.
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By setting

a = (κT − 1)(1− 1√
κT − 1

)

√
2 ln 1/δ

κT − 2
, b = −(1− 1√

κT − 1
)

√
2 ln 1/δ

κT − 2
, c = −s

and adopting Lemma D.3, we obtain

Pr
(

min
n∈[κT−1]

UCBk∗(n) > x1

∣∣∣S(k∗)
κT−1 = s

)
≥ 1− exp

(
− 2(1− 1√

κT − 1
)

√
2 ln 1/δ

κT − 2
s
)
.

Now we have

Pr(Ek∗(x1, x2)) ≥
∫ +∞

0

[1− Φ(s+ gT )]

[
1− exp

(
− 2(1− 1√

κT − 1
)

√
2 ln 1/δ

κT − 2
s
)]
f(S

(k∗)
κT−1 = s)ds

≥

[
1− exp

(
− 2(1− 1√

κT − 1
)

√
2 ln 1/δ

κT − 2
gT

)]∫ +∞

gT

2√
4 + (s+ gT )2 + s+ gT

1√
2π

exp
(
− (s+ gT )

2

2

)
1√

2π(κT − 1)
exp

(
− s2

2(κT − 1)

)
ds,

in the last inequality we use Komatu’s lower bound mentioned in Duembgen (2010). To further derive a lower bound for
Pr(Ek∗(x1, x2)), we consider∫ +∞

gT

2√
4 + (s+ gT )2 + s+ gT

1√
2π

exp
(
− (s+ gT )

2

2

)
exp

(
− s2

2(κT − 1)

)
ds

≥
∫ +∞

gT

2s√
4 + 4s2 + 2s

1√
2π

exp
(
− (s+ gT )

2

2

)
exp

(
− s2

2(κT − 1)
− s

gT

) 1

gT
ds

≥ 1√
1 + g2T + gT

∫ +∞

gT

1√
2π

exp
(
− (s+ gT )

2

2

)
exp

(
− s2

2(κT − 1)
− s

gT

)
ds

≥ 1√
1 + g2T + gT

exp

(
1

2

κT − 1

κT

(
gT +

1

gT

)2 − 1

2
g2T

)

×
∫ +∞

gT

1√
2π

exp

(
−
( 1√

2

√
κT

κT − 1
s+

√
2

2

√
κT − 1

κT
(gT +

1

gT
)
)2)

ds

≥ 1√
1 + g2T + gT

exp

(
1

2

κT − 1

κT

(
gT +

1

gT

)2 − 1

2
g2T

)√
κT − 1

κT

×
∫ +∞

gT

1
√
2π
√

κT−1
κT

exp

(
−

(
s+ (gT + 1

gT
)κT−1
κT

)2
2κT−1

κT

)
ds

≥ 1√
1 + g2T + gT

exp

(
1

2

κT − 1

κT

(
gT +

1

gT

)2 − 1

2
g2T

)√
κT − 1

κT

×

(
1− Φ

(
gT

√
κT

κT − 1
+ (gT +

1

gT
)

√
κT − 1

κT

))
.

Also by Komatu’s lower bound,

1− Φ
(
gT

√
κT

κT − 1
+ (gT +

1

gT
)

√
κT − 1

κT

)
≥ 1√

2π
exp

(
− 1

2

(
gT

√
κT

κT − 1
+ (gT +

1

gT
)

√
κT − 1

κT

)2)
2√

4 +
(
gT
√

κT

κT−1 + (gT + 1
gT

)
√

κT−1
κT

)2
+
(
gT
√

κT

κT−1 + (gT + 1
gT

)
√

κT−1
κT

) .
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Define

C(T ) =
[√

4 +
(
gT

√
κT

κT − 1
+ (gT +

1

gT
)

√
κT − 1

κT

)2
+ gT

√
κT

κT − 1
+ (gT +

1

gT
)

√
κT − 1

κT

]
× π
√
κT
(√

1 + g2T + gT
)
.

Then we get

Pr(Ek∗(x1, x2)) ≥ C(T )−1

[
1− exp

(
− 2(1− 1√

κT − 1
)

√
2 ln 1/δ

κT − 2
gT

)]

exp

(
− 1

2

(
gT

√
κT

κT − 1
+ (gT +

1

gT
)

√
κT − 1

κT

)2
+

1

2

κT − 1

κT

(
gT +

1

gT

)2 − 1

2
g2T

)

≥ C(T )−1

[
1− exp

(
− 2(1− 1√

κT − 1
)

√
2 ln 1/δ

κT − 2
gT

)]
exp

(
− 1− (2 +

1

2(κT − 1)
)g2T

)
.

Now we turn to lower bounding Pr(Eβ(x1, x2)).

Pr(Eβ(x1, x2))

=Pr
(
x2 < UCBβ(aβ) < x1, min

n∈[bβ ]
UCBβ(n) > x2

)
=

∫ aβ(x1−µβ)−
√

2aβ ln 1/δ

aβ(x2−µβ)−
√

2aβ ln 1/δ

Pr
(

min
n∈[aβ ]

UCBβ(n) > x2, min
n=aβ+1,...,bβ

UCBβ(n) > x2

∣∣∣S(β)
aβ

= s
)
f(S(β)

aβ
= s)ds.

Since minn∈[aβ ] UCBβ(n) > x2 and minn=aβ+1,...,bβ UCBβ(n) > x2 are independent conditioned on S(β)
aβ , we have

Pr
(

min
n∈[aβ ]

UCBβ(n) > x2, min
n=aβ+1,...,bβ

UCBβ(n) > x2

∣∣∣S(β)
aβ

= s
)

=Pr
(

min
n∈[aβ ]

UCBβ(n) > x2

∣∣∣S(β)
aβ

= s
)
×

Pr
(

min
n=aβ+1,...,bβ

UCBβ(n) > x2

∣∣∣S(β)
aβ

= s
)
.

We first derive a lower bound for Pr
(
minn∈[aβ ] UCBβ(n) > x2

∣∣∣S(β)
aβ = s

)
as we did for Pr

(
minn∈[κT−1] UCBk∗(n) >

x1

∣∣∣S(k∗)
κT−1 = s

)
.

Pr
(

min
n∈[aβ ]

UCBβ(n) > x2

∣∣∣S(β)
aβ

= s
)

=Pr
(
∀n = 1, ..., aβ : S(β)

n > n(x2 − µβ)−
√
2n ln 1/δ|S(β)

aβ
= s
)

≥Pr
(
∀n = 1, ..., aβ : S(β)

n > [(x2 − µβ)−
1

√
aβ + 1

√
2 ln 1/δ]n− (1− 1

√
aβ + 1

)
√
2 ln 1/δ

∣∣∣S(β)
aβ

= s
)

≥1− exp
(
− 2(1− 1

√
aβ + 1

)
√
2 ln 1/δ

[
− aβ(x2 − µβ) +

√
2aβ ln 1/δ + s

]
a−1
β

)
,
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where the last inequality is by Lemma D.3. Then we consider Pr
(
minn=aβ+1,...,bβ UCBβ(n) > x2

∣∣∣S(β)
aβ = s

)
,

Pr
(

min
n=aβ+1,...,bβ

UCBβ(n) > x2

∣∣∣S(β)
aβ

= s
)

=Pr
(
∀n = aβ + 1, ..., bβ : S(β)

aβ
+

n∑
j=1+aβ

(Xβ,j − µβ) > n(x2 − µβ)−
√
2n ln 1/δ

∣∣∣S(β)
aβ

= s
)

=Pr
(
∀n = aβ + 1, ..., bβ : s+

n∑
j=1+aβ

(Xβ,j − µβ) > n(x2 − µβ)−
√
2n ln 1/δ

)
=Pr

(
∀n = 1, ..., bβ − aβ : s+ S(β)

n > (n+ aβ)(x2 − µβ)−
√
2(n+ aβ) ln 1/δ

)
≥Pr

(
∀n = 1, ..., bβ − aβ : S(β)

n >
(bβ − aβ)(x2 − µβ)−

√
2 ln 1/δ(

√
bβ −

√
aβ)

bβ − aβ
n

+ aβ(x2 − µβ)−
√
2aβ ln 1/δ − s

)
=Pr

(
∀n = 1, ..., bβ − aβ : S(β)

n >
(
x2 − µβ −

√
2 ln 1/δ√
bβ +

√
aβ

)
n+ aβ(x2 − µβ)−

√
2aβ ln 1/δ − s

)
=
[
1− Pr

(
∃n = 1, ..., bβ − aβ : S(β)

n ≤
(
x2 − µβ −

√
2 ln 1/δ√
bβ +

√
aβ

)
n+ aβ(x2 − µβ)−

√
2aβ ln 1/δ − s

)]
,

where the inequality is due to convexity. We also note that, the joint distribution of S(β)
1 , ..., S

(β)
bβ−aβ is identical to that of

B(1), ..., B(bβ − aβ). Thus we can further lower bound Pr(Eβ(x1, x2)) as

Pr(Eβ(x1, x2))

≥
∫ aβ(x1−µβ)−

√
2aβ ln 1/δ

aβ(x2−µβ)−
√

2aβ ln 1/δ

Pr
(

min
n∈[aβ ]

UCBβ(n) > x2

∣∣∣S(β)
aβ

= s
)[

1− Pr
(
∃t ∈ [0, bβ − aβ ] :

B(t) ≤
(
x2 − µβ −

√
2 ln 1/δ√
bβ +

√
aβ

)
t+ aβ(x2 − µβ)−

√
2aβ ln 1/δ − s

)]
f(S(β)

aβ
= s)ds

≥
[
1− exp

(
− (1− 1

√
aβ + 1

)
√
2 ln 1/δ

gT
κT

)] ∫ aβ(x1−µβ)−
√

2aβ ln 1/δ

aβ(
x1+x2

2 −µβ)−
√

2aβ ln 1/δ

[
1−

Pr
(
∃t ∈ [0, bβ − aβ ] : B(t) ≤

(
x2 − µβ −

√
2 ln 1/δ√
bβ +

√
aβ

)
t+ aβ(x2 − µβ)−

√
2aβ ln 1/δ − s

)]
f(S(β)

aβ
= s)ds

=:
[
1− exp

(
− (1− 1

√
aβ + 1

)
√

2 ln 1/δ
gT
κT

)]
Pβ .

Now it suffices to lower bound Pβ . Again, here we need a proposition in Scheike (1992) that characterizes the probability of
Brownian motion crossing a linear boundary within a finite time horizon.

Lemma D.4 (Proposition 2, Scheike (1992)). If B(t) is standard Brownian motion, and a > 0, T <∞, then

Pr
( ⋃
t∈[0,T ]

(B(t) ≥ a+ bt)
)
= 1− Φ(

a√
T

+ b
√
T ) + exp(−2ab)Φ(− a√

T
+ b
√
T ).

If a ≤ 0, the probability is 1.

By setting

a = s− aβ(x2 − µβ) +
√
2aβ ln 1/δ, b = −

(
x2 − µβ −

√
2 ln 1/δ√
bβ +

√
aβ

)
,
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we have that

Pβ ≥
∫ aβ(x1−µβ)−

√
2aβ ln 1/δ

aβ(
x1+x2

2 −µβ)−
√

2aβ ln 1/δ

[
Φ
(s− aβ(x2 − µβ) +√2aβ ln 1/δ√

bβ − aβ
−
(
x2 − µβ −

√
2 ln 1/δ√
bβ +

√
aβ

)√
bβ − aβ

)
− exp

(
2
(
x2 − µβ −

√
2 ln 1/δ√
bβ +

√
aβ

)(
s− aβ(x2 − µβ) +

√
2aβ ln 1/δ

))
× Φ

(
−
s− aβ(x2 − µβ) +

√
2aβ ln 1/δ√

bβ − aβ
−
(
x2 − µβ −

√
2 ln 1/δ√
bβ +

√
aβ

)√
bβ − aβ

)]
f(S(β)

aβ
= s)ds.

For notational convenience, we denote

A =
(
x2 − µβ −

√
2 ln 1/δ√
bβ +

√
aβ

)√
bβ − aβ , B =

s− aβ(x2 − µβ) +
√
2aβ ln 1/δ√

bβ − aβ
.

For λ, η, a1, a2 ∈ (0, 1), we set

aβ =

⌊
(1− η) 2 ln 1/δ

(x1 − µβ)2

⌋
, bβ =

⌈
(1 + λ)

2 ln 1/δ

(x2 − µβ)2

⌉
,

gT = (lnT )a1 , κT = 3 + ⌈(lnT )a2⌉.

We require that a1, a2 satisfy the following conditions:

1. a2 − 1
2 <

a2
2 < a1 <

1
2

2. a1 + a2
2 > 1

2

In the below, we take T → +∞ and evaluate the asymptotic rates of aβ , bβ , A,B.

lim
T→+∞

aβ
(lnT )a2

= (1− η) lim
T→+∞

1

(lnT )a2
4 lnT(

∆β +
√

4 lnT
κT−1

)2 = (1− η) lim
T→+∞

κT − 1

(lnT )a2
= 1− η,

lim
T→+∞

bβ
(lnT )a2

= (1 + λ) lim
T→+∞

1

(lnT )a2
4 lnT(

∆β +
√

4 lnT
κT
− gT

κT

)2 .
Since 1

2 + 1
2a2 >

1
2 > a1 by condition 1., we further have

lim
T→+∞

bβ
(lnT )a2

= (1 + λ) lim
T→+∞

1

(lnT )a2
4 lnT(

∆β +
√

4 lnT
κT

)2 = 1 + λ,

lim
T→+∞

bβ − aβ
(lnT )a2

= (1 + λ)− (1− η) = λ+ η,

lim
T→+∞

A

(lnT )
1
2

= lim
T→+∞

1

(lnT )
1
2

(
∆β +

√
4 lnT

κT
− gT
κT
−

√
4 lnT√

bβ +
√
aβ

)√
bβ − aβ

= lim
T→+∞

1

(lnT )
1
2

(√
4 lnT (

1
√
κT
− 1√

bβ +
√
aβ

)− gT
κT

)√
bβ − aβ ,
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we observe that limT→+∞

(
1√
κT
− 1√

bβ+
√
aβ

)√
4 lnT/(lnT )

1
2−

a2
2 = 2

(
1 − 1√

1+λ+
√
1−η

)
> 0,

limT→+∞
gT
κT
/(lnT )a1−a2 = 1 > 0, and again 1

2 −
a2
2 > a1 − a2, thus

lim
T→+∞

A

(lnT )
1
2

= lim
T→+∞

1

(lnT )
1
2

(√
4 lnT (

1
√
κT
− 1√

bβ +
√
aβ

)
)√

bβ − aβ

= 2
√
λ+ η

(
1− 1√

1 + λ+
√
1− η

)
.

Finally we consider B. Note that B depends on the value of s, and in the integral s ∈
[
aβ(

x1+x2

2 − µβ) −√
2aβ ln 1/δ, aβ(x1 − µβ)−

√
2aβ ln 1/δ

]
. Thus B is bounded by

0 <
aβ(x1 − x2)
2
√
bβ − aβ

≤ B ≤ aβ(x1 − x2)√
bβ − aβ

.

Now it suffices to evaluate

lim
T→+∞

1

(lnT )a1−
a2
2

aβ(x1 − x2)√
bβ − aβ

= lim
T→+∞

1

(lnT )a1−
a2
2

aβ√
bβ − aβ

( gT
κT

+

√
4 lnT

κT − 1
−
√

4 lnT

κT

)
.

We observe that limT→+∞

(√
4 lnT
κT−1 −

√
4 lnT
κT

)
/(lnT )

1
2−

3
2a2 = 1 > 0 and that by condition 2, for a1, a2,

lim
T→+∞

1

(lnT )a1−
a2
2

aβ(x1 − x2)√
bβ − aβ

= lim
T→+∞

1

(lnT )a1−
a2
2

aβ√
bβ − aβ

gT
κT

=
1− η√
λ+ η

.

Comparing A and B, since 1
2 > a1 − a2

2 , we have that ∃T0 ∈ N+: ∀T > T0, A > B. And we also have that

∀s ∈
[
aβ(

x1+x2

2 − µβ)−
√

2aβ ln 1/δ, aβ(x1 − µβ)−
√
2aβ ln 1/δ

]
2√

4 + (A−B)2 + (A−B)
− 2√

2 + (A+B)2 + (A+B)

≥ 2√
4 +

(
A− aβ(x1−x2)

2
√
bβ−aβ

)2
+
(
A− aβ(x1−x2)

2
√
bβ−aβ

) − 2√
2 +

(
A+

aβ(x1−x2)

2
√
bβ−aβ

)2
+
(
A+

aβ(x1−x2)

2
√
bβ−aβ

) .
Denoting B =

aβ(x1−x2)

2
√
bβ−aβ

, we have that ∃T1 ∈ N, ∀T > T1, AB > 1/2. By straightforward calculation, we can verify that

for any T > T1,

2√
4 + (A−B)2 + (A−B)

− 2√
2 + (A+B)2 + (A+B)

> 0.

Moreover,

lim
T→+∞

[
2√

4 + (A−B)2 + (A−B)
− 2√

2 + (A+B)2 + (A+B)

]
A2

B

= lim
T→+∞

√
2 + (A+B)2 +A+B −

√
4 + (A−B)2 −A+B

2B

=1 + lim
T→+∞

√
2 + (A+B)2 −

√
4 + (A−B)2

2B
= 1 + lim

T→+∞

4AB − 2

2B(
√
2 + (A+B)2 +

√
4 + (A−B)2)

=1 + lim
T→+∞

4A

2(
√
2 + (A+B)2 +

√
4 + (A−B)2)

= 2.
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Adopting both Komatu’s lower bound and upper bound simultaneously, we again focus on Pβ

Pβ ≥
∫ aβ(x1−µβ)−

√
2aβ ln 1/δ

aβ(
x1+x2

2 −µβ)−
√

2aβ ln 1/δ

[
Φ(B −A)− exp(2AB)× Φ(−B −A)

]
f(S(β)

aβ
= s)ds

≥
∫ aβ(x1−µβ)−

√
2aβ ln 1/δ

aβ(
x1+x2

2 −µβ)−
√

2aβ ln 1/δ

1√
2π

[ 2√
4 + (A−B)2 + (A−B)

exp(−1

2
(A−B)2)

− exp(2AB)
2√

2 + (A+B)2 + (A+B)
exp(−1

2
(A+B)2)

]
f(S(β)

aβ
= s)ds

=

∫ aβ(x1−µβ)−
√

2aβ ln 1/δ

aβ(
x1+x2

2 −µβ)−
√

2aβ ln 1/δ

1√
2π

[ 2√
4 + (A−B)2 + (A−B)

− 2√
2 + (A+B)2 + (A+B)

]
exp(−1

2
(A−B)2)f(S(β)

aβ
= s)ds.

When T > max{T0, T1}, noting that S(β)
aβ ∼ N (0, aβ),

Pβ ≥
[ 2√

4 + (A−B)2 + (A−B)
− 2√

2 + (A+B)2 + (A+B)

]
∫ aβ(x1−µβ)−

√
2aβ ln 1/δ

aβ(
x1+x2

2 −µβ)−
√

2aβ ln 1/δ

1√
2π

exp(−1

2
(A−B)2)f(S(β)

aβ
= s)ds

≥
[ 2√

4 + (A−B)2 + (A−B)
− 2√

2 + (A+B)2 + (A+B)

]
∫ aβ(x1−µβ)−

√
2aβ ln 1/δ

aβ(
x1+x2

2 −µβ)−
√

2aβ ln 1/δ

1√
2π

exp(−1

2
A2)

1√
2πaβ

exp(− s2

2aβ
)ds.

Since the upper limit of the integral is negative, i.e.

aβ(x1 − µβ)−
√
2aβ ln 1/δ ≤ (1− η −

√
1− η) 2 ln 1/δ

x1 − µβ
< 0, η ∈ (0, 1),

we have that

exp(−1

2
A2 − s2

2aβ
)

≥ exp
(
− 1

2
A2 −

(aβ(
x1+x2

2 − µβ)−
√

2aβ ln 1/δ)
2

2aβ

)
> exp

(
− 1

2
A2 −

(aβ(x2 − µβ)−
√

2aβ ln 1/δ)
2

2aβ

)
≥ exp

(
− 1

2

[
x2 − µβ −

√
2 ln 1/δ√
bβ +

√
aβ

]2
(bβ − aβ)−

1

2

[
x2 − µβ −

√
2 ln 1/δ
√
aβ

]2
aβ

)
.
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Now we can get rid of the integral and rewrite the lower bound for Pβ as

Pβ ≥
[ 2√

4 + (A−B)2 + (A−B)
− 2√

2 + (A+B)2 + (A+B)

]
exp

(
− 1

2

[
x2 − µβ −

√
2 ln 1/δ√
bβ +

√
aβ

]2
(bβ − aβ)−

1

2

[
x2 − µβ −

√
2 ln 1/δ
√
aβ

]2
aβ

)
1

2π
√
aβ

(
aβ(x1 − µβ)−

√
2aβ ln 1/δ − aβ(

x1 + x2
2

− µβ) +
√

2aβ ln 1/δ
)

=
[ 2√

4 + (A−B)2 + (A−B)
− 2√

2 + (A+B)2 + (A+B)

]
exp

(
− 1

2

[
x2 − µβ −

√
2 ln 1/δ√
bβ +

√
aβ

]2
(bβ − aβ)−

1

2

[
x2 − µβ −

√
2 ln 1/δ
√
aβ

]2
aβ

) (x1 − x2)√aβ
4π

=: LB,

if T > max{T0, T1}. Since we have shown that events Ek∗ and Eβ happen with non-negligible probability, now we focus
on the expected regret lower bound of UCB algorithm,

RT =E
[ T∑
t=1

∆at

]
= E

[ T∑
t=1

∆at(I(Ek∗ ∩ Eβ) + I(Ēk∗ ∪ Ēβ))
]

≥E
[ T∑
t=1

∆atI(Ek∗ ∩ Eβ)
]
= E

[
I(Ek∗ ∩ Eβ)

K∑
i̸=k∗

∆i

T∑
t=1

I(at = i)
]

≥∆minE
[
I(Ek∗ ∩ Eβ)

K∑
i̸=k∗

T∑
t=1

I(at = i)
]
= ∆minE

[
I(Ek∗ ∩ Eβ)

T∑
t=1

I(at ̸= k∗)
]
.

Recall that by assumption, mk∗ = O((lnT )θ), θ ∈ (0, 1). Given this θ, ∃ϵ > 0: max{ 12 , θ} + 2ϵ < 1. We set
a1 = 1

2 max{ 12 , θ} + ϵ, a2 = max{ 12 , θ} + ϵ. Obviously a1, a2 ∈ (0, 1). Here we validate the conditions that a1, a2 are
required to satisfy:

1.
a2 −

1

2
<
a2
2

=
1

2
max{1

2
, θ}+ 1

2
ϵ < a1 =

1

2
max{1

2
, θ}+ ϵ <

1

2
.

2.
a1 +

a2
2

= max{1
2
, θ}+ 3

2
ϵ > max{1

2
, θ} ≥ 1

2
.

Fix any γ ∈ (0, 1), we set

λ =
γ

16
, η = min

{ γ
32
, 1− 1

(1 +
√
γ/4
√
2)2

}
.

Also obviously, λ, η ∈ (0, 1). We now show that, under the event Ek∗ ∩ Eβ and when T is large enough, the optimal arm is
pulled at most κT times before leaving. Under both events, when the number of pulls of arm k∗ is smaller than κT , (1) arm
k∗’s UCB index is greater than x1 and (2) the number of pulls of arm β is no greater than aβ . When the number of pulls of
arm k∗ is κT − 1 and at some time arm k∗’s UCB index is the largest among all active arms, it will be pulled the κT -th time.
After that, arm k∗’s UCB index is below x2. By Eβ , we know that before arm k∗’s UCB index becomes the largest again, at
least the (aβ + 1)-th, (aβ + 2)-th, ..., (bβ + 1)-th pulls of arm β need to be done. The total number of sub-optimal pulls
(contributed by arm β) after arm k∗ is pulled the κT -th time is at least bβ − aβ + 1, not to mention the arms other than k∗

and β. By our assignment, a2 > θ. Besides, we have shown that limT→+∞
bβ−aβ
(lnT )a2

= λ+ η > 0. As a result,

lim
T→+∞

mk∗

bβ − aβ + 1
= lim
T→+∞

mk∗

(lnT )a2
(lnT )a2

bβ − aβ + 1
= 0.
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Thus ∃T2 ∈ N+,∀T > T2,mk∗ < bβ − aβ + 1. Under the event Ek∗ ∩ Eβ , when T > T2, arm k∗ is pulled at most κT
times. We obtain that when T > T2,

RT ≥∆minE
[
I(Ek∗ ∩ Eβ)

T∑
t=1

I(at ̸= k∗)
]
≥ ∆minE

[
I(Ek∗ ∩ Eβ)

]
(T − κT )

= ∆min Pr(Ek∗ ∩ Eβ)(T − κT ) = ∆min Pr(Ek∗) Pr(Eβ)(T − κT ),

noticing that Ek∗ ⊥ Eβ | x1, x2. For Ek∗ , we have

0 ≤ lim
T→+∞

T− 1
2γC(T )−1

Pr(Ek∗)
≤ lim
T→+∞

T− 1
2γC(T )−1

C(T )−1
exp

(
1 + (2 +

1

2(κT − 1)
)g2T

)
,

where we have used the fact that

lim
T→+∞

1− exp
(
− 2(1− 1√

κT − 1
)

√
2 ln 1/δ

κT − 2
gT

)
= 1,

since 1
2 + a1 − a2 > 0. Furthermore,

0 ≤ lim
T→+∞

T− 1
2γC(T )−1

Pr(Ek∗)
≤ lim
T→+∞

C(T )−1

C(T )−1
exp

(
1 + (2 +

1

2(κT − 1)
)g2T −

γ

2
lnT

)
= 0,

because 2a1 < 1. Thus limT→+∞
T− 1

2
γC(T )−1

Pr(Ek∗ ) = 0, Pr(Ek∗) = Ω(T− 1
2γC(T )−1). For Eβ , since Pβ ≥ LB,∀T >

max{T0, T1}, define

h(T ) =
1

2

[
x2 − µβ −

√
2 ln 1/δ√
bβ +

√
aβ

]2
(bβ − aβ) +

1

2

[
x2 − µβ −

√
2 ln 1/δ
√
aβ

]2
aβ ,

we note that

lim
T→+∞

h(T )

lnT

= lim
T→+∞

1

2

bβ − aβ
(lnT )a2

[
∆β(lnT )

a2
2 − 1

2 + 2(lnT )
a2
2 − 1

2

√
lnT

κT
− gT
κT

(lnT )
a2
2 − 1

2 − 2√
bβ

(lnT )a2
+
√

aβ
(lnT )a2

]2

+
1

2

aβ
(lnT )a2

[
∆β(lnT )

a2
2 − 1

2 + 2(lnT )
a2
2 − 1

2

√
lnT

κT
− gT
κT

(lnT )
a2
2 − 1

2 − 2√
aβ

(lnT )a2

]2
= lim
T→+∞

1

2

bβ − aβ
(lnT )a2

[
2(lnT )

a2
2 − 1

2

√
lnT

κT
− 2√

bβ
(lnT )a2

+
√

aβ
(lnT )a2

]2

+
1

2

aβ
(lnT )a2

[
2(lnT )

a2
2 − 1

2

√
lnT

κT
− 2√

aβ
(lnT )a2

]2
,

since a2 < 1 and a1 < 1
2 <

1
2 + a2

2 . Thus

lim
T→+∞

h(T )

lnT
=
1

2
(λ+ η)

[
2− 2√

1 + λ+
√
1− η

]2
+

1

2
(1− η)

[
2− 2√

1− η

]2
=2(λ+ η)

[
1− 1√

1 + λ+
√
1− η

]2
+ 2(1− η)

[
1− 1√

1− η

]2
≤2(λ+ η) + 2

[
1− 1√

1− η

]2
≤2( γ

16
+

γ

32
) + 2

γ

32
=
γ

4
<
γ

2
.
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Thus

lim
T→+∞

exp(h(T )− γ

2
lnT ) = 0.

For Eβ , we have

0 ≤ lim
T→+∞

T− 1
2γ(lnT )−1

Pr(Eβ)
≤ lim
T→+∞

T− 1
2γ(lnT )−1

LB

≤ lim
T→+∞

T− 1
2γ(lnT )−1 4π

(x1 − x2)
√
aβ

A2

aβ(x1−x2)

2
√
bβ−aβ

exp(h(T ))

= lim
T→+∞

8πA2(lnT )−1

(x1 − x2)2(aβ)
3
2

√
bβ − aβ exp(h(T )−

γ

2
lnT ) = 0,

since a1 ≥ 1
2a2 and 1

2 + a1 − a2 > 0. Note that we have used

lim
T→+∞

1− exp
(
− (1− 1

√
aβ + 1

)
√
2 ln 1/δ

gT
κT

)
= 1.

Thus limT→+∞
T− 1

2
γ(lnT )−1

Pr(Eβ)
= 0, Pr(Eβ) = Ω

(
T− 1

2γ(lnT )−1
)

. Finally, we reach a conclusion that

RT = Ω
(
∆minT

1−γ(C(T ) lnT )−1
)

for ∀γ ∈ (0, 1).

E. Proofs for SE Algorithm
Proof of Proposition 3.6. Construct a problem instance: K = 4, m = (20, 20, 3, 2), and µ = (0, 0, 0, ∆̄). In this case,
l(K,m) = 14

15 < 1. Since SE algorithm pulls a1 = 1, a2 = 2, arm 4 exits the game at the end of time 2. The optimal arm is
never pulled during the whole game, thus the expected regret RT = ∆̄T .

F. Proofs for FC-SE Algorithm
Proof of Theorem 4.1. Inspired by the regret analysis of the SE algorithm in Lancewicki et al. (2021), we define τk as the
last time the algorithm attempts to do arm elimination but arm k is NOT eliminated. Clearly, by this definition, at the end of
the next feasible cycle, arm k is eliminated. Arm k is active for only one more cycle, so we have Tk(T ) ≤ Tk(τk) + nk. At
the end of time τk, since arm k is not eliminated,

µ̂k∗,Tk∗ (τk) − 2

√
lnT

Tk∗(τk)
≤ µ̂k,Tk(τk) + 2

√
lnT

Tk(τk)
. (12)

We define the good event

G =
{
∀t ∈ [T ], k ∈ [K] : |µ̂k,Tk(t) − µk| ≤ 2

√
lnT

Tk(t)

}
(13)
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meaning that the empirical means are close to the true reward means for any arm at any time. Then we show that G happens
with high probability by presenting an upper bound on Pr(¬G),

Pr(¬G) = Pr
(
∃t ∈ [T ], k ∈ [K] : µ̂k,Tk(t) − µi > 2

√
lnT

Tk(t)
∨ µ̂k,Tk(t) − µk < −2

√
lnT

Tk(t)

)
≤ Pr

(
∃n ∈ [T ], k ∈ [K] : µ̂k,n − µk > 2

√
lnT

n
∨ µ̂k,n − µk < −2

√
lnT

n

)
≤

T∑
n=1

K∑
k=1

[
Pr
(
µ̂k,n − µk > 2

√
lnT

n

)
+ Pr

(
µ̂k,n − µk < −2

√
lnT

n

)]
≤

T∑
n=1

K∑
k=1

2

T 2
=

2K

T
,

where in the last inequality, we used a sub-Gaussian tail bound in Lattimore & Szepesvári (2020):

Lemma F.1 (Corollary 5.5, Lattimore & Szepesvári (2020)). Assume that Xi − µ are independent, σ-sub-Gaussian random
variables. Then for any ϵ ≥ 0,

Pr(µ̂ ≥ µ+ ϵ) ≤ exp(−nϵ
2

2σ2
), Pr(µ̂ ≤ µ− ϵ) ≤ exp(−nϵ

2

2σ2
)

where µ̂ = n−1
∑n
i=1Xi.

Under the good event G, the optimal arm k∗ is never eliminated since µ̂k∗,Tk∗ (t) + 2
√

lnT
Tk∗ (t) ≥ µ∗ > µk ≥ µ̂k,Tk(t) −

2
√

lnT
Tk(t)

, for all t, i. Furthermore, at time τk, by (12) we have

µ∗ − 4

√
lnT

Tk∗(τk)
≤ µk + 4

√
lnT

Tk(τk)

∆k ≤ 4

√
lnT

Tk∗(τk)
+ 4

√
lnT

Tk(τk)
.

The FC-SE algorithm behaves in a strictly cyclic manner. An arm is pulled the same number of times in each feasible cycle.
Since τk is at the end of a feasible cycle, we observe that

Tk(τk)

nk
=
Tk∗(τk)

nk∗
. (14)

Using this fact, we obtain

∆k ≤ 4

√
lnT

nk∗
nk
Tk(τk)

+ 4

√
lnT

Tk(τk)
= 4

√
lnT

Tk(τk)

(
1 +

√
nk
nk∗

)
,

which directly implies

Tk(τk) ≤
16 lnT

∆2
k

(
1 +

√
nk
nk∗

)2
≤ 32 lnT

∆2
k

(
1 +

nk
nk∗

)

Tk(T ) ≤ nk +
32 lnT

∆2
k

(
1 +

nk
nk∗

)
.
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The expected regret of FC-SE is then upper bounded as

RT =E
[ T∑
t=1

∆at

]
= E

[ K∑
k ̸=k∗

∆kTk(T )
]

=E
[ K∑
k ̸=k∗

∆kTk(T )[I(G) + I(¬G)]
]

≤
K∑

k ̸=k∗
∆kE

[
Tk(T )I(G)

]
+∆maxT Pr(¬G)

≤
K∑

k ̸=k∗

[
∆knk +

32 lnT

∆k

(
1 +

nk
nk∗

)]
+ 2K∆max.

Proof of Theorem 4.2. Let rk be the index of cycle at the end of which arm k enters the feasible cycle. We say that the arms
in the initial feasible cycle enter in the 0-th cycle, ∀k : ind(k) ≤ N , rk = 0. Since in the N < K case, there are some arms
entering the feasible cycle later in the game, the fact (14) in the proof of Theorem 4.1 no longer holds. Say t is the time that
a feasible cycle ends. Arm k, k′ have entered the feasible cycle before or at time t and not been eliminated before time t.
Then we have

Tk(t)

nk
+ rk =

Tk′(t)

nk′
+ rk′ . (15)

Following the analysis in the proof of Theorem 4.1, under the good event G (we use the definition in (13)), if arm j is not
eliminated by the optimal active arm i∗ at the end of some cycle t, we have

∆i∗,j ≤ 4

√
lnT

Tj(t)
+ 4

√
lnT

Ti∗(t)
.

Using (15), we obtain

∆i∗,j ≤ 4

√
lnT

Tj(t)
+ 4

√
lnT

ni∗
nj
Tj(t) + ni∗(rj − ri∗)

.

We consider the following three different cases and get a uniform upper bound for Tj(t)
nj

.

(1) rj ≥ ri∗ . Arm j enters either after or simultaneously with the optimal active arm. We have

∆i∗,j ≤ 4

√
lnT

Tj(t)
+ 4

√
lnT

ni∗
nj
Tj(t)

≤ 4

√
lnT

Tj(t)

(
1 +

√
nj
ni∗

)

Tj(t)

nj
≤ 16 lnT

∆2
i∗,j

(
1 +

√
nj
ni∗

)2 1

nj
.

(2) rj < ri∗ and Tj(t) > nj(ri∗ − rj). We have Tj(t) > Tj(t)− nj(ri∗ − rj). Thus

∆i∗,j ≤4

√
lnT

Tj(t)− nj(ri∗ − rj)
+ 4

√
lnT

ni∗
nj
Tj(t) + ni∗(rj − ri∗)

=4

√
lnT

Tj(t)− nj(ri∗ − rj)

(
1 +

√
nj
ni∗

)
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Tj(t)

nj
≤ ri∗ − rj +

16 lnT

∆2
i∗,j

(
1 +

√
nj
ni∗

)2 1

nj
.

(3) rj < ri∗ and Tj(t) ≤ nj(ri∗ − rj). This directly implies

Tj(t)

nj
≤ ri∗ − rj .

In conclusion, we have

Tj(t)

nj
≤ max(0, ri∗ − rj) +

16 lnT

∆2
i∗,j

(
1 +

√
nj
ni∗

)2 1

nj
, (16)

if arm j is not eliminated by i∗ at t under the good event G.

Due to the patience tightening process in FC-SE, arm ind−1(N + a) is assigned to checkpoint ⌈ a
N−1⌉c, for a ∈ [K −N ].

Let C denote the set of all checkpoints, then

C =

{⌈ a

N − 1

⌉
c

∣∣∣∣∣ a = 1, ...,K −N

}
= {c1, c2, ..., c|C|},

where c1, c2, ... is the ordered sequence of checkpoints: c1 < c2 < ... < c|C|. Now we go through the whole process from
the beginning. Let A0 := {k ∈ [K] : ind(k) ≤ N} be the arms in the initial cycle. Define k∗(0) = argmaxk∈A0

µk.
Consider the first time t1 that triggers the checkpoint c1 = c. It satisfies t1 +

∑
k∈S > c1 − n, where S is the set of arms in

the feasible cycle after the arm elimination at time t1 − 1. Let R1 denote the number of the operated feasible cycles from
time slot 1 to time slot t1 − 1. t1 +

∑
k∈S > c1 − n if and only if the length of R1 feasible cycles plus the length of the

feasible cycle beginning at time t1 is at least c1 − n. The length of all feasible cycles is upper bounded by n, thus we have
n(R1 + 1) ≥ c1 − n, R1 ≥ c1−n

n − 1. This inspires us to define

E0 =

{
i ∈ A0

∣∣∣∣∣ i ̸= k∗(0),
16 lnT

∆2
k∗(0),i

( 1
√
ni

+ 1
)2

+ 1 ≤ c1 − n
n
− 1

}
. (17)

For any k ∈ E0, under the good event G defined in (13), must have been eliminated either before or at the arm elimination

phase of the

(⌊
16 lnT
∆2

k∗(0),k

(
1√
nk

+ 1
)2⌋

+ 1

)
-th feasible cycle by (16). Since

⌊
16 lnT

∆2
k∗(0),k

( 1
√
nk

+ 1
)2⌋

+ 1 ≤ 16 lnT

∆2
k∗(0),k

( 1
√
nk

+ 1
)2

+ 1 ≤ c1 − n
n
− 1 ≤ R1,

arm k is eliminated before the condition t+
∑
k∈S > c1 − n is triggered. Thus for any arm k′ ∈ S when the condition is

triggered, we have that k′ /∈ E0. If k′ = k∗(0), ∆k∗(0),k′ = 0. Otherwise,

16 lnT

∆2
k∗(0),k′

( 1
√
nk′

+ 1
)2

+ 1 >
c1 − n
n
− 1, ∆k∗(0),k′ < 4

√
lnT

c1−n
n − 2

( 1
√
nk′

+ 1
)
= 4

√
lnT
c1
n − 3

( 1
√
nk′

+ 1
)
.

Since it is possible that k∗(0) is unfortunately dropped at checkpoint c1, we can only guarantee that under G there is an arm
in S with a mean reward at least µk∗(0) − 8

√
lnT
c1
n −3

after the operation at checkpoint c1. The operation includes randomly

dropping arms, adding new arms and rebuilding the feasible cycle. Define k∗(1) as the temporarily optimal arm in the
feasible cycle after the operation at checkpoint c1. Then we have under the good event G,

µk∗(1) ≥ max

{
µ
k∗(0)

− 8

√
lnT
c1
n − 3

, max
a∈[K]:m′

a=c1
µa

}
=: µ

k∗(1)

with µ
k∗(0)

= µk∗(0). Define A1 = (A0 − E0) ∪ {a ∈ [K] : m′
a = c1} as the set of arms possibly in the feasible cycle

after the operation at checkpoint c1.
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Now we consider the situation after the operation at checkpoint cj−1 where 1 < j ≤ 1+ |C|. Note that c1+|C| is actually not
a checkpoint in C, but we define it as the time slot c(1 + |C|) for the convenience of our analysis. There is no any special
operation at this ”checkpoint” but the condition t+

∑
k∈S nk > c1+|C| − n is defined. Define Rj−1 as the number of the

operated feasible cycles from time slot 1 to time slot tj−1, where tj−1 is the first time that triggers the checkpoint cj−1.
tj , Rj are defined accordingly. Following the discussion concerning checkpoint c1, we have that the length of the first
Rj−1 feasible cycles plus the length of the next feasible cycle is at least cj−1 − n, but the length of the first Rj−1 feasible
cycles is strictly less than cj−1 − n. Thus we observe that at least the time slots from cj−1 − n to cj − n (cj − cj−1 + 1
time slots in total) is covered by the Rj −Rj−1 + 1 more feasible cycles after the operation at checkpoint cj−1. We have
n(Rj −Rj−1 + 1) ≥ cj − cj−1 + 1, Rj −Rj−1 ≥ cj−cj−1

n − 1. This also inspires us to define

Ej−1 =

{
i ∈ Aj−1

∣∣∣∣∣ µk∗(j−1)
> µi,

16 lnT

(µ
k∗(j−1)

− µi)2
( 1
√
ni

+ 1
)2

+ 1 ≤ cj − cj−1

n
− 1

}
,

where Aj−1 = (Aj−2−Ej−2)∪{a ∈ [K] : m′
a = cj−1} is the set of arms possibly in the feasible cycle after the operation

at checkpoint cj−1 and µ
k∗(j−1)

:= max
{
µ
k∗(j−2)

− 8
√

lnT
c
n−3 ,maxa∈[K]:m′

a=cj−1
µa
}

. For any k ∈ Ej−1, we will show
that it must be eliminated before the operation at checkpoint cj . Assume that arm k has not yet been eliminated after the
operation at checkpoint cj−1. By (16), under the good event G, arm k must have been eliminated either before or at the
feasible cycle indexed by

rk +max(0, rk∗(j−1) − rk) +

⌊
16 lnT

∆2
k∗(j−1),k

( 1
√
nk

+ 1
)2⌋

+ 1.

Before the condition t +
∑
k∈S > cj − n at checkpoint cj is triggered, the last feasible cycle where there can be new

entrance is the Rj−1-th cycle. Thus rk, rk∗(j−1) ≤ Rj−1. By induction hypothesis, µk∗(j−1) ≥ µk∗(j−1)
. We have

rk +max(0, rk∗(j−1) − rk) +

⌊
16 lnT

∆2
k∗(j−1),k

( 1
√
nk

+ 1
)2⌋

+ 1

≤max(rk∗(j−1), rk) +
16 lnT

∆2
k∗(j−1),k

( 1
√
nk

+ 1
)2

+ 1

≤Rj−1 +
16 lnT

(µ
k∗(j−1)

− µk)2
( 1
√
nk

+ 1
)2

+ 1

≤Rj−1 +
cj − cj−1

n
− 1 ≤ Rj−1 +Rj −Rj−1 = Rj .

So arm k must be eliminated before the operation at checkpoint cj . Thus for any arm k′ still in the feasible cycle when the
condition at checkpoint cj is triggered, we have that k′ /∈ Ej−1. We have either µ

k∗(j−1)
≤ µk′ or

µ
k∗(j−1)

− µk′ <

√
16 lnT
c
n − 2

( 1
√
nk′

+ 1
)
≤ 8

√
lnT
c
n − 3

.

Under the good event G, there must be an arm in the feasible cycle after the operation at checkpoint cj whose mean reward

is at least µ
k∗(j−1)

− 8
√

lnT
c
n−3 . Thus we have

µk∗(j) ≥ max

{
µ
k∗(j−1)

− 8

√
lnT
c
n − 3

, max
a∈[K]:m′

a=cj
µa

}
=: µ

k∗(j)

under the good event G. Before formally deriving the expected regret upper bound for the FC-SE algorithm, we need to find
a lower bound for µ

k∗(|C|) which indicates that randomly dropping arms does not severely decrease the highest mean reward
in the active arm set. We consider two cases:

37



On Multi-Armed Bandit with Impatient Arms

(1) µ∗ = maxk∈A0
µk. The optimal arm k∗ is in the initial feasible cycle. µ∗ = µk∗(0) = µ

k∗(0)
. By the definition of

µ
k∗(j)

, j = 0, 1, ..., |C|, we have

µ
k∗(|C|) ≥ µk∗(|C|−1)

− 8

√
lnT
c
n − 3

≥ µ
k∗(|C|−2)

− 2× 8

√
lnT
c
n − 3

≥ ... ≥ µ
k∗(0)

− 8|C|

√
lnT
c
n − 3

= µ∗ − 8|C|

√
lnT
c
n − 3

.

(2) ∃j ∈ {1, 2, ..., |C|}, µ∗ = maxa∈[K]:m′
a=cj

µa. Say the optimal arm enters the feasible cycle at checkpoint cj∗ , thus

µ
k∗(j∗)

= max

{
µ
k∗(j∗−1)

− 8

√
lnT
c
n − 3

, max
a∈[K]:m′

a=cj∗
µa

}
= max

{
µ
k∗(j∗−1)

− 8

√
lnT
c
n − 3

, µ∗

}
= µ∗.

As in the last case, we also obtain

µ
k∗(|C|) ≥ µk∗(|C|−1)

− 8

√
lnT
c
n − 3

≥ ...

≥ µ
k∗(j∗)

− 8(|C| − j∗)

√
lnT
c
n − 3

≥ µ∗ − 8|C|

√
lnT
c
n − 3

.

Now we derive the expected regret upper bound for the FC-SE algorithm

RT =E
[ T∑
t=1

∆at

]
= E

[ K∑
k ̸=k∗

∆kTk(T )
]

=E
[ K∑
k ̸=k∗

∆kTk(T )[I(G) + I(¬G)]
]

≤
K∑

k ̸=k∗
∆kE

[
Tk(T )I(G)

]
+∆maxT Pr(¬G)

=
∑

k ̸=k∗:k∈E|C|

∆kE
[
Tk(T )I(G)

]
+

∑
k ̸=k∗:k/∈E|C|

∆kE
[
Tk(T )I(G)

]
+∆maxT Pr(¬G).

Since all arms have once entered the feasible cycle either before or at checkpoint c|C|, any arm k ∈ E|C| must be eliminated
before (virtual) checkpoint c|C|+1 under the good event G. Thus arm k is pulled at most c(1 + |C|) times. For arm k′ /∈ E|C|,

µk′ is not too small (i.e. µk′ ≥ µk∗(|C|) − 8
√

lnT
c
n−3 ).

RT ≤
∑

k ̸=k∗:k∈E|C|

∆kc(1 + |C|) +
∑

k ̸=k∗:k/∈E|C|

(µ∗ − µ
k∗(|C|) + µ

k∗(|C|) − µk)E
[
Tk(T )I(G)

]
+ 2K∆max

≤
∑

k ̸=k∗:k∈E|C|

∆kc(1 + |C|) +
∑

k ̸=k∗:k/∈E|C|

8(1 + |C|)

√
lnT
c
n − 3

E
[
Tk(T )

]
+ 2K∆max

≤
∑
k ̸=k∗

∆kc(1 + |C|) + 8(1 + |C|)

√
lnT
c
n − 3

T + 2K∆max

≤(K − 1)∆̄c(1 + |C|) + 8T (1 + |C|)
√
n lnT

c− 3n
+ 2K∆max.

The last formula is minimized when

c = 3n+

(
8T (1 + |C|)

√
n lnT

2(K − 1)∆̄(1 + |C|)

) 2
3

= 3n+

(
4T
√
n lnT

(K − 1)∆̄

) 2
3

.
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By the definition of c in (4), if
⌊
mink:ind(k)>N

mk⌈
ind(k)−N

N−1

⌉⌋ > 3n+
⌈(

4T
√
n lnT

(K−1)∆̄

) 2
3
⌉

, we have

RT ≤(K − 1)∆̄

(
3n+

⌈(
4T
√
n lnT

(K − 1)∆̄

) 2
3
⌉)(

1 +
⌈K −N
N − 1

⌉)
+ 8T

(
1 +

⌈K −N
N − 1

⌉)√√√√ n lnT(
4T

√
n lnT

(K−1)∆̄

) 2
3

+ 2K∆max

≤(K − 1)∆̄

(
1 + 3n+

(
4T
√
n lnT

(K − 1)∆̄

) 2
3
)(

1 +
⌈K −N
N − 1

⌉)
+ 8
(
1 +

⌈K −N
N − 1

⌉)
4−

1
3T

2
3 (n lnT )

1
3 (K − 1)

1
3 ∆̄

1
3 + 2K∆max.

Thus RT = O
(
K

4
3T

2
3 (n lnT )

1
3

)
.

G. Details of FC-Entry Algorithm
The details of Feasible Cycle-based successive elimination with new Entering arms (FC-Entry) is given in Algorithm 4. For
notational simplicity, m is written to be one of the inputs for Algorithm 4, but it is important to note that the algorithm only
needs the patience mk of the initially available arms (i.e. k ∈ [K0]). There is a similar patience tightening operation for the
arms initially available but not included in the initial feasible cycle, as in Algorithm 1. We still define checkpoints as integer
multiples of a constant c, while the c for FC-Entry algorithm is instead given in (11). S is the set contain all arms actually
in the feasible cycle, while Sres is the set of arms occupying the reserved slots. When arm k enters the game at time ρk,
the algorithm immediately adds it to the feasible cycle (it is possible that the algorithm randomly drops some arm in the
reserved places to make room for arm k). Thus the algorithm adds arm k to S and Sres. However, the algorithm adds arm k
to the feasible cycle only to prevent its departure. For the ease of theoretical analysis, we require that the rewards generated
by a newly entered arm k before it is ’formally’ involved in the feasible cycle are not used to compute its estimated reward
mean. A new entering arm is formally involved in the feasible cycle only in the operation at the nearest checkpoint after
its entrance. It does not either participate in the arm elimination phase before that checkpoint. When a new entering arm
is detected, the algorithm computes the next checkpoint if necessary. Before formally involved in the feasible cycle, the
newly entered arm temporarily stays in Spre. For any arm k ∈ [K], ξk, T ♭k record the sum of observed rewards and the
number of pulls after arm k is formally involved in the feasible cycle, respectively. At the end of each feasible cycle, the
algorithm checks whether the p-th checkpoint is reached. Checkpoints c1, ..., c⌈K0−N+2

N−3 ⌉ are known in advance since at

these checkpoints the algorithm involves the arms in {k ∈ [K0] : ind(k) > N − 2} into the feasible cycle. However, if
after the operation at checkpoint c⌈K0−N+2

N−3 ⌉ there is still new entering arms that have not formally enter the feasible cycle,

the algorithm needs to compute the previously unknown cp for p > ⌈K0−N+2
N−3 ⌉ when detecting new entering arms. Since

t denotes the first time slot of the next feasible cycle, t̄ := t +
∑
k∈S−Sres

nk + n+ + n− is an upper bound for the first
time slot of the cycle after the next feasible cycle. Let t′ denote the first time slot of the last pulled feasible cycle. The
condition is not triggered then: t ≤ t′+

∑
k∈S′−S′

res
nk+n++n− ≤ cp−n, where S′, S′

res are the versions of S, Sres when
checking the condition at time t′− 1. Snew is not empty, we have p ≤ ⌈K0−N+2

N−3 ⌉. Each arm k in Snew is pulled no later than
t+ n− 1 ≤ cp − 1 < cp ≤ m′

k ≤ mk. Thus arm k does not leave early. In Theorem 4.6 we present an expected dynamic
regret upper bound for FC-Entry algorithm under the sparse entrance assumption: 3c ≤ minK0<k<K(ρk+1 − ρk − 1).

Proof of Theorem 4.6. The set of all check points is

C =

{⌈ a

N − 3

⌉
c

∣∣∣∣∣ a = 1, ...,K0 −N + 2

}
∪ {jkc | k > K0} = {c1, c2, ..., c|C|},

where jk is defined such that arm k is involved in the feasible cycle at the jk-th checkpoint. Specifically, jk = 0 for
k s.t. k ∈ [K0] and ind(k) ≤ N − 2, while jk =

⌈ ind(k)−N+2
N−3

⌉
for k s.t. k ∈ [K0] and ind(k) > N − 2. jk for k > K0 is

39



On Multi-Armed Bandit with Impatient Arms

Algorithm 4 FC-Entry
1: Input: Number of arms in the initial feasible cycle N , patience vector m, time horizon T , a lower bound for the new

entering arms’ patience m, segment length c
2: Construct a feasible cycle ”ā1, ..., ān” for the set of arms {k : ind(k) ≤ N − 2} ∪ {+,−}
3: S ← {k ∈ [K0] : ind(k) ≤ N − 2}, Spre ← ∅, Sres ← ∅, p← 1, e← K0 + 1, ”ā′1, ..., ā

′
n”← ”ā1, ..., ān”

4: āi ← 0,∀i : ā′i ∈ {+,−}. ξk ← 0, T ♭k ← 0,∀k ∈ [K]. t← 1, t̄← t+
∑
k∈S−Sres

nk + n+ + n−
5: for k ∈ {k′ ∈ [K0] : ind(k′) > N − 2} do
6: m′

k ←
⌈

ind(k)−N+2
N−3

⌉
c

7: end for
8: while t ≤ T do
9: for i = 1, ..., n do

10: if e ≤ K and t = ρe then
11: If |Sres| = 2 randomly choose ∗ ∈ {+,−}, S ← S − {a}, Sres ← Sres − {a} such that āi = a,∀i : ā′i = ∗.

āi ← 0 for i = 1, ..., n s.t. āi /∈ S
12: Randomly choose ∗ ∈ {+,−} s.t. āi = 0,∀i : ā′i = ∗, S ← S ∪ {e}, Sres ← Sres ∪ {e}, Spre ← Spre ∪ {e},

āi ← e for i = 1, ..., n s.t. ā′i = ∗
13: if p > ⌈K0−N+2

N−3 ⌉ then
14: cp ← min{j′c | j′ ∈ N+, t̄ ≤ j′c− n}
15: end if
16: e← e+ 1
17: end if
18: if āi ̸= 0 then
19: Pull at = āi and receive reward Xat,Tat (t)

. ξat ← ξat +Xat,Tat (t)
and T ♭at ← T ♭at + 1 if at /∈ Spre

20: t← t+ 1
21: end if
22: end for
23: S ← Spre ∪

{
k ∈ S − Spre : ∀j ∈ S − Spre,

ξj
T ♭
j

− 2
√

lnT
1∨T ♭

j

≤ ξk
T ♭
k

+ 2
√

lnT
1∨T ♭

k

}
24: Sres ← Sres ∩ S
25: āi ← 0 for i = 1, ..., n s.t. āi /∈ S
26: t̄← t+

∑
k∈S−Sres

nk + n+ + n−
27: if cp is known and t̄ > cp − n then
28: Spre ← ∅, Snew ← {k ∈ [K0] : m

′
k = cp}

29: while |S − Sres|+ |Snew| > N − 2 do
30: a ∼ Unif(S − Sres)
31: S ← S − {a}
32: end while
33: āi ← 0 for i = 1, ..., n s.t. āi /∈ S
34: while |Snew| > 0 do
35: a← argmink∈Snew ind(k)
36: S ← S ∪ {a}, Snew ← Snew − {a}
37: āi ← a where i = min

{
i′ ≤ n : ā′i′ = min{k ∈ [K0] | ind(k) ≤ N − 2 and ∀j ≤ n s.t. ā′j = k : āj = 0}

}
38: end while
39: p← p+ 1
40: end if
41: end while

40



On Multi-Armed Bandit with Impatient Arms

a random variable though ρk is fixed because the feasible cycles can have various lengths. Besides, since we assume that
ρk for k > K0 is unknown in advance, only the first part of C (i.e.

{⌈
a

N−3

⌉
c
∣∣∣ a = 1, ...,K0 −N + 2

}
) is known in the

beginning of the game.

Let A0 = {k ∈ [K0] : ind(k) ≤ N − 2} be the set of arms in the initial feasible cycle. Define k∗(0) = argmaxk∈A0 µk.
We define the same E0 as in (17). We note that if there is a new entering arm before the condition at checkpoint c1 is
triggered, no arm in Sres is kicked off because in the beginning, the reserved positions in the feasible cycle are empty. Thus
following the proof of Theorem 4.2, we also have that any arm k ∈ E0 is eliminated before checkpoint c1 under the good
event G defined in (13), while any arm k′ ∈ S−Spre when the condition t+

∑
k∈S−Sres

nk+n++n− > cp−n is triggered
satisfies that

∆k∗(0),k′ < 4

√
lnT

c1−n
n − 2

( 1
√
nk′

+ 1
)
= 4

√
lnT
c1
n − 3

( 1
√
nk′

+ 1
)
.

Define k∗(1) as the temporarily optimal arm in the feasible cycle after the operation at checkpoint c1. Then we have under
G,

µk∗(1) ≥ max

{
µ
k∗(0)

− 8

√
lnT
c1
n − 3

, max
a∈[K0]:m′

a=c1
µa, max

a>K0:ja=1
µa

}
=: µ

k∗(1)

with µ
k∗(0)

= µk∗(0). Define A1 := (A0 − E0) ∪ {a ∈ [K0] : m
′
a = c1} ∪ {a > K0 : ja = 1} as the set of arms possibly

in the feasible cycle after the operation at checkpoint c1. Under the good event G, µ
k∗(1)

is a lower bound for the mean
reward of the temporarily optimal arm in the feasible cycle after the operation at checkpoint c1.

Now we consider the situation after the operation at checkpoint cj−1 where 1 < j ≤
⌈
K0−N+2
N−3

⌉
. The induction hypothesis

is that under G, µ
k∗(j−1)

is a lower bound for the mean reward of the temporarily optimal arm in the feasible cycle after
the operation at checkpoint cj−1. Define Rj−1 as the number of the operated feasible cycles from time slot 1 to time slot
tj−1, where tj−1 is the first time that triggers the checkpoint cj−1. tj , Rj are defined accordingly. When the condition at
checkpoint cj−1 is triggered, we also have that t′j−1 +

∑
k∈S−Sres

nk + n+ + n− ≤ cj−1 − n, where t′j−1 is the last time
when arm elimination is performed before tj−1. Since

∑
k∈S−Sres

nk + n+ + n− is an upper bound for the length of the
feasible cycle beginning at time t′j−1, we have tj−1 ≤ t′j−1 +

∑
k∈S−Sres

nk + n+ + n− ≤ cj−1 − n. At least the time
slots from cj−1 − n to cj − n is covered by the Rj −Rj−1 + 1 more feasible cycles after the operation at checkpoint cj−1.
We have n(Rj −Rj−1 + 1) ≥ cj − cj−1 + 1, Rj −Rj−1 ≥ cj−cj−1

n − 1.

To compute µ
k∗(j)

, we consider the following cases:

1. No entering arm k whose jk = j. Under G, the temporarily optimal arm k∗(j− 1) has a reward mean at least µ
k∗(j−1)

.
Following the analysis in the proof of Theorem 4.2, any k′ ∈ S when the condition at checkpoint cj is triggered

satisfies that µ
k∗(j−1)

− µk′ ≤ 8
√

lnT
c
n−3 . We have µ

k∗(j)
≥ µ

k∗(j−1)
− 8
√

lnT
c
n−3 .

2. A new entering arm k is involved in the feasible cycle at checkpoint cj , but |Sres| < 2 when it enters the game. The
new entering arm does not kick off any arm, thus the temporarily optimal arm with reward mean at least µ

k∗(j−1)
must

be still active. We also have µ
k∗(j)

≥ µ
k∗(j−1)

− 8
√

lnT
c
n−3 .

3. A new entering arm k is involved in the feasible cycle at checkpoint cj and |Sres| = 2 when it enters the game,
but the temporarily optimal arm is not kicked off. As long as the temporarily optimal arm is still active, we have
µ
k∗(j)

≥ µ
k∗(j−1)

− 8
√

lnT
c
n−3 .

4. A new entering arm k is involved in the feasible cycle at checkpoint cj and it kicks off the temporarily optimal arm when
it enters the game. Let +,− represent the arms in Sres when arm k enters the game. In this case, by the sparse entrance
assumption, max(j+, j−) ≤ j − 2. |µ+ − µ−| ≤ 8

√
lnT
c
n−3 because otherwise one of {+,−} will be eliminated by the

other either before or at checkpoint cj−1. Thus although arm k kicks off the temporarily optimal arm, another arm

in Sres has a mean reward at least µ
k∗(j−1)

− 8
√

lnT
c
n−3 . If this arm becomes temporarily optimal, it must be still in
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the feasible cycle after the operation at checkpoint cj , thus µ
k∗(j)

≥ µ
k∗(j−1)

− 8
√

lnT
c
n−3 . But if not, the temporarily

optimal arm is in S − Sres and has a reward mean at least µ
k∗(j−1)

− 8
√

lnT
c
n−3 . Though this arm may be unfortunately

dropped at checkpoint cj , it guarantees that µ
k∗(j)

≥ µ
k∗(j−1)

− 8
√

lnT
c
n−3 − 8

√
lnT
c
n−3 = µ

k∗(j−1)
− 16

√
lnT
c
n−3 .

Thus we define Ej−1 as{
i ∈ Aj−1

∣∣∣∣∣ µk∗(j−1)
− 8

√
lnT
c
n − 3

> µi,
16 lnT(

µ
k∗(j−1)

− 8
√

lnT
c
n−3 − µi

)2( 1
√
ni

+ 1
)2

+ 1 ≤ cj − cj−1

n
− 1

}
,

where Aj−1 := (Aj−2 − Ej−2) ∪ {a ∈ [K0] : m
′
a = cj−1} ∪ {a > K0 : ja = j − 1}. For any arm k ∈ Ej−1, if it is in S

after the operation at checkpoint cj−1, we show that it will be eliminated before checkpoint cj . By our discussion above,

there is an arm v with reward mean at least µ
k∗(j−1)

− 8
√

lnT
c
n−3 which survives until the operation at checkpoint cj . We

have

rk +max(0, rv − rk) +

⌊
16 lnT

∆2
v,k

( 1
√
nk

+ 1
)2⌋

+ 1

=max(rv, rk) +

⌊
16 lnT

∆2
v,k

( 1
√
nk

+ 1
)2⌋

+ 1

≤max(rv, rk) +
16 lnT

∆2
v,k

( 1
√
nk

+ 1
)2

+ 1

≤Rj−1 +
16 lnT(

µ
k∗(j−1)

− 8
√

lnT
c
n−3 − µk

)2( 1
√
nk

+ 1
)2

+ 1

≤Rj−1 +
cj − cj−1

n
− 1

≤Rj−1 +Rj −Rj−1

=Rj .

Thus for any k′ still in the feasible cycle when the condition at checkpoint cj is triggered, we have k′ /∈ Ej−1 and

µk′ ≥ µk∗(j−1)
− 16

√
lnT
c
n − 3

.

In conclusion, under the good event G,

µk∗(j) ≥ max

{
µ
k∗(j−1)

− 16

√
lnT
c
n − 3

, max
a∈[K0]:m′

a=cj
µa, max

a>K0:ja=j
µa

}
=: µ

k∗(j)
.

Aj−1, Ej−1 can be defined the same way for j = ⌈K0−N+2
N−3 ⌉+ 1, ..., |C|+ 1 by setting c1+|C| = c|C| + c. The difference is

that cj − cj−1 can be larger than c and there is no arm dropped out at cj . The temporarily optimal arm can still be kicked off
by a new entering arm. With a similar discussion as in the j ≤ ⌈K0−N+2

N−3 ⌉ case, we obtain

µk∗(j) ≥ max

{
µ
k∗(j−1)

− 16

√
lnT
c
n − 3

, max
a>K0:ja=j

µa

}
=: µ

k∗(j)

for j = ⌈K0−N+2
N−3 ⌉+ 1, ..., |C|.

Whether the optimal arm k∗ is in the initial feasible cycle is crucial for our regret analysis. We consider the following cases:
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1. k∗ > K0. The optimal arm k∗ enters later in the game. Let κ∗0 = argmaxk∈[K0] µk be the optimal arm among those
enter at the beginning of the game. Let κ∗j = min{k > K0 : µk > µκ∗

j−1
} be the first entering arm whose mean reward is

greater than µκ∗
j−1

. Integer τ is defined such that κ∗τ = k∗, we have τ > 0 since k∗ > K0. By these definitions, we have

µκ∗
0
< µκ∗

1
< ... < µκ∗

τ
= µk∗ = µ∗.

And we can rewrite the expected dynamic regret R̃T as

R̃T =E
[ T∑
t=1

µ∗
t −

T∑
t=1

µat
]
= E

[ ρκ∗
1
−1∑

t=1

(µκ∗
0
− µat) +

ρκ∗
2
−1∑

t=ρκ∗
1

(µκ∗
1
− µat) + ...+

T∑
t=ρk∗

(µ∗ − µat)
]

=E
[ ρκ∗

1
−1∑

t=1

(µκ∗
0
− µat)(I{G}+ I{¬G}) +

ρκ∗
2
−1∑

t=ρκ∗
1

(µκ∗
1
− µat)(I{G}+ I{¬G}) + ...

+

T∑
t=ρk∗

(µ∗ − µat)(I{G}+ I{¬G})
]

≤E
[ ρκ∗

1
−1∑

t=1

(µκ∗
0
− µat)I{G}+

ρκ∗
2
−1∑

t=ρκ∗
1

(µκ∗
1
− µat)I{G}+ ...+

T∑
t=ρk∗

(µ∗ − µat)I{G}+
T∑
t=1

∆atI{¬G}
]

≤T∆max Pr(¬G) +
K∑

k ̸=k∗
E
[ ρκ∗

1
−1∑

t=1

(µκ∗
0
− µk)I{at = k}I{G}

+

ρκ∗
2
−1∑

t=ρκ∗
1

(µκ∗
1
− µk)I{at = k}I{G}+ ...+

T∑
t=ρk∗

(µ∗ − µk)I{at = k}I{G}
]

=:T∆max Pr(¬G) +
K∑

k ̸=k∗
E[Dk].

To upper bound Dk, we define

l(k) =

min
{
l = 0, ..., τ

∣∣∣µκ∗
l
− 16(K −N + 3)

√
lnT
c
n−3 > µk

}
, if ∆k > 16(K −N + 3)

√
lnT
c
n−3 .

τ + 1, if ∆k ≤ 16(K −N + 3)
√

lnT
c
n−3 .

and consider three possibilities:

(a) l(k) = τ + 1. In this case, µk is very close to µ∗, thus we trivially bound Dk ≤ ∆kT ≤ 16(K −N + 3)T
√

lnT
c
n−3 .

(b) l(k) ≤ τ, jk ≥ jκ∗
l(k)

. At the jκ∗
l(k)

-th checkpoint, arm κ∗l(k) enters the feasible cycle. Among those have once entered
the feasible cycle, it has the highest mean reward. Thus by our previous definition, µ

k∗(jκ∗
l(k)

)
= µκ∗

l(k)
. The number of

checkpoints is |C| ≤ ⌈K0−N+2
N−3 ⌉ +K −K0 ≤ K0 −N + 2 +K −K0 = K −N + 2. Since arm k enters the feasible

cycle either after or simultaneously with arm κ∗l(k) (i.e. jk ≥ jκ∗
l(k)

), there must be an arm with reward mean at least

µκ∗
l(k)
− 16|C|

√
lnT
c
n−3 − 8

√
lnT
c
n−3 after the operation at checkpoint cjk which survives until at least the next checkpoint.

Given that µκ∗
l(k)
− 16(K −N + 2)

√
lnT
c
n−3 − 8

√
lnT
c
n−3 − µk > 8

√
lnT
c
n−3 , arm k is eliminated before time slot cjk + c− n

under the good event G. Thus the total number of pulls of arm k is at most 3c and Dk ≤ 3c∆k.

(c) l(k) ≤ τ, jk < jκ∗
l(k)

. Arm κ∗l(k) enters the game at time ρκ∗
l(k)

. For notational simplicity, let cκ denote the checkpoint
at which arm κ∗l(k) is involved in the feasible cycle. We show that cκ − c − 2n ≤ ρκ∗

l(k)
. Suppose this inequality

does not hold. Let t′ be the first time slot of the feasible cycle that contains the time slot ρκ∗
l(k)

, t′ ≤ ρκ∗
l(k)

. Thus
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t′ + n ≤ ρκ∗
l(k)

+ n < cκ − c − n. Arm κ∗l(k) should be involved in the feasible cycle at checkpoint cκ − c instead
of cκ, which is a contradiction. If arm k is still active when the condition at checkpoint cκ is triggered, it must be
eliminated before time slot cκ + c− n under the good event G since µκ∗

l(k)
− µk > 16(K −N + 3)

√
lnT
c
n−3 . Then we have∑ρκ∗

l(k)+1
−1

t=ρκ∗
l(k)

I{at = k}I{G} ≤ cκ + c− n− ρκ∗
l(k)
≤ cκ + c− n− cκ + c+ 2n ≤ 3c where we set ρκ∗

τ+1
= T + 1. We

derive an upper bound for Dk,

Dk =

ρκ∗
1
−1∑

t=1

(µκ∗
0
− µk)I{at = k}I{G}+

ρκ∗
2
−1∑
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1
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− µk)I{at = k}I{G}+ ...+
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≤
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− µk) +

ρκ∗
2
−1∑

t=ρκ∗
1
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≤(ρκ∗
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− 1)16(K −N + 3)

√
lnT
c
n − 3

+ 3c∆k ≤ 16(K −N + 3)T

√
lnT
c
n − 3

+ 3c∆k.

Then R̃T can be further bounded as

R̃T ≤ 2K∆max +

K∑
k ̸=k∗

E[Dk] ≤ 2K∆max +

K∑
k ̸=k∗

(
16(K −N + 3)T

√
lnT
c
n − 3

+ 3c∆k

)
.

2. k∗ ≤ K0, ind(k∗) > N − 2. The optimal arm k∗ is in the game from the beginning.

R̃T = E
[ T∑
t=1

µ∗
t −

T∑
t=1

µat
]
≤ T∆max Pr(¬G) +

K∑
k ̸=k∗

E[Dk],

where in this caseDk = ∆k

∑T
t=1 I{at = k}I{G} = ∆kTk(T )I{G}. Arm k∗ is involved in the feasible cycle at checkpoint

c⌈ ind(k∗)−N+2
N−3 ⌉. Consider the case when ∆k > 16(K − N + 3)

√
lnT
c
n−3 . By our previous discussion, it guarantees that

Tk(T ) ≤ 3c when jk ≥ jk∗ under the good event G. When jk < jk∗ , arm k must be eliminated before time slot ck∗ + c−n.
Thus ∆k > 16(K −N + 3)

√
lnT
c
n−3 implies that I{G}Tk(T ) ≤ 3c+ ck∗ ≤ 3c+ c⌈K0−N+2

N−3 ⌉. Since it is also possible that

∆k ≤ 16(K −N + 3)
√

lnT
c
n−3 , we have Dk ≤ 3c∆k +∆kc⌈K0−N+2

N−3 ⌉+ 16(K −N + 3)Tk(T )
√

lnT
c
n−3 . Thus

R̃T ≤ 2K∆max +
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⌉
+ 16(K −N + 3)Tk(T )

√
lnT
c
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)
.

3. k∗ ≤ K0, ind(k∗) ≤ N − 2. The optimal arm k∗ is in the initial feasible cycle. The only difference from the
k∗ ≤ K0, ind(k∗) > N − 2 case is that jk ≥ jk∗ = 0,∀k ̸= k∗. We can similarly obtain

R̃T ≤ 2K∆max +

K∑
k ̸=k∗

(
3c∆k + 16(K −N + 3)Tk(T )

√
lnT
c
n − 3

)
.

Merging the above three cases, the expected dynamic regret upper bound is

R̃T ≤ 2K∆max + (K − 1)∆̄c

(
3 +

⌈K0 −N + 2

N − 3

⌉)
+ 16(K − 1)(K −N + 3)T

√
n lnT
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,

which is minimized when

c = 3n+

(
8(K −N + 3)T

√
n lnT

∆̄(3 +
⌈
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⌉
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) 2
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.

If c is exactly 3n+
⌈( 8(K−N+3)T

√
n lnT

∆̄(3+⌈K0−N+2
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) 2
3
⌉
, it can be verified that R̃T = O

(
K2T

2
3 (n lnT )

1
3

)
.
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H. Discussion on the Knowledge of the Patience Vector m

For the following reasons, we assume that the value of m is known in advance in this paper:

1. In practice, m can come as a result of negotiation between the algorithm and arms in advance. We take the crowd-
sourcing scenario as our example. The system (algorithm) can make a promise of mk for worker (arm) k such that in
any time period of length mk, the worker will surely have at least one job assignments. After a suitable value of m is
confirmed, the proposed algorithms in this paper (FC-SE and FC-Entry) are able to ensure that this promise is never
violated.

2. It is sufficient for the known m to only be a valid element-wise lower bound for the true patience vector. For the clarity
of our discussion, say m′ is the underlying true arm patience vector and m is an element-wise lower bound for m′, i.e.,
mk ≤ m′

k for any k ∈ [K]. The knowledge of any valid m, instead of the exact m′, is sufficient for the construction
of a feasible cycle for the set of arms. This is because, if we repeat a feasible cycle constructed given m, for any arm
k, it is never continuously ignored for a duration of mk time steps, thus arm k is also never continuously ignored for
m′
k ≥ mk time steps and it never leaves the game.

3. If no a-priori knowledge of arm patience m is accessible, we can prove that the bandit learning problem is intractable.
Unlike learning the mean reward µ, learning the arm patience m is impractical, since obtaining partial information of
m is accompanied by the risk of losing the optimal arm. Besides, in this scenario, all arms are initially indistinguishable
for any algorithm. Intuitively, for any algorithm, there exists instances (µ,m) such that the optimal arm leaves very
early. In fact, we can formally prove that, without the knowledge of m, any algorithm can incur unacceptable regret
that is linear in the time horizon T :

Proposition H.1. Given any algorithm A that only takes the historical observations (a1, r1, ..., at−1, rt−1) as input at the
beginning of time slot t and outputs an action at. The algorithm observes reward rt at time t. Then there exists a family of
problem instances such that the expected regret RT satisfies RT = Ω(T ).

Proof of Proposition H.1. Note that the algorithm A has no access to the arm patience m. Assume K > 2. There exists
i′ ∈ [K] such that Pr(a1 = i′) ≥ 1/K, since otherwise 1 =

∑K
i=1 Pr(a1 = i) <

∑K
i=1 1/K = 1. Similarly, there exists

j′ ∈ [K] such that Pr(a2 = j′|a1 = i′, r1 = 0) ≥ 1/K. Note that i′ can be equal to j′. We construct a problem instance as
follows: Select k′ ∈ [K] that satisfies k′ ̸= i′, k′ ̸= j′. Set µk′ = 1,mk′ = 2. For k ̸= k′, set µk = 0,mk = T . Set the
reward noise to be 0 almost surely. That is, rt = µat almost surely.

Obviously, arm k′ is an impatient optimal arm. If the algorithm pulls a1 ̸= k′ and a2 ̸= k′, the optimal arm leaves at the end
of time slot t = 2. We have

RT ≥ Pr(a1 ̸= k′, a2 ̸= k′)T ≥ Pr(a1 = i′, a2 = j′)T.

We observe that

Pr(a2 = j′|a1 = i′) =
∑
r

Pr(a2 = j′|a1 = i′, r1 = r) Pr(r1 = r|a1 = i′)

=Pr(a2 = j′|a1 = i′, r1 = 0)

since µi′ = 0. Now we see

Pr(a1 = i′, a2 = j′) =Pr(a1 = i′) Pr(a2 = j′|a1 = i′)

=Pr(a1 = i′) Pr(a2 = j′|a1 = i′, r1 = 0)

≥1/K2.

As a result, we have shown that RT ≥ T/K2.
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