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Figure 1: An example of refocusing using our method. The input and refocused images are on the left and right.
Two regions are highlighted with red and blue boxes, and their zoomed-in views are displayed in the center.

Abstract

In photography, an All-in-Focus (AiF) image may not always effectively convey
the creator’s intent. Professional photographers manipulate Depth of Field (DoF)
to control which regions appear sharp or blurred, achieving compelling artistic
effects. For general users, the ability to flexibly adjust DoF enhances creative
expression and image quality. In this paper, we propose UiD, a User-Instructed
DoF control framework, that allows users to specify refocusing regions using
text, box, or point prompts, and our UiD automatically simulates in-focus and
out-of-focus (OoF) regions in the given images. However, controlling defocus
blur in a single-lens camera remains challenging due to the difficulty in estimating
depth-aware aberrations and the suboptimal quality of reconstructed AiF images.
To address this, we leverage dual-pixel (DP) sensors, commonly found in DSLR-
style and mobile cameras. DP sensors provide a small-baseline stereo pair in a
single snapshot, enabling depth-aware aberration estimation. Our approach first
establishes an invertible mapping between OoF and AiF images to learn spatially
varying defocus kernels and the disparity features. These depth-aware kernels
enable bidirectional image transformation—deblurring out-of-focus (OoF) images
into all-in-focus (AiF) representations, and conversely reblurring AiF images
into OoF outputs—by seamlessly switching between the kernel and its inverse
form. For user-guided refocusing, we first generate masks based on user prompts
using SAM, which modulates disparity features in closed form, allowing dynamic
kernel re-estimation for reblurring. This achieves user-controlled refocusing effects.
Extensive experiments on both common datasets and the self-collected dataset
demonstrate that UiD offers superior flexibility and quality in DoF manipulation
imaging.
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1 Introduction

Modern cameras utilise sophisticated compound lenses designed to focus light onto the sensor.
However, adjusting the aperture has another effect: a larger aperture (lower f-number) introduces
depth-dependent blur, rendering only specific regions in focus [20]. This depth of field (DoF) effect
is often intentionally used by photographers to direct viewer attention to a subject (e.g., macro
photography) or create artistic compositions (e.g., tilt-shift photography) [2]. Unlike professional
photographers, who possess the expertise to control DoF effectively, general users often struggle
with achieving the desired DoF composition. Therefore, a framework that enables users to flexibly
manipulate sharp and blurred regions in their captured images using simple text or point-based inputs
to create visually striking effects would be a valuable application.

Given images with undesired DoF regions captured by general users, effectively controlling depth-
dependent blur involves several key steps: (i) estimating the all-in-focus (AiF) image; (ii) computing
the corresponding depth/defocus map of the undesired image; (iii) generating a mask to designate
regions for in-focus and out-of-focus (OoF); and (iv) adjusting the defocus map with the mask for
refocusing. Inspired by [52], which employs dual-pixel (DP) sensors [8] to synthetically generate
blur on human subjects, we integrate DP sensors into our framework for flexible, user-instructed
refocusing.

DP sensors are widely used in DSLR and smartphone cameras [22]. These sensors divide each pixel
into two photodiodes, capturing separate left and right views of a scene, effectively forming a stereo
system with a tiny baseline [39]. The depth information inherently encoded in the DP pair also
contains defocus information [6], which makes DP image pairs highly beneficial for tasks such as
defocus deblurring, refocusing, and bokeh effect synthesis [52]. Therefore, in this work, we focus
on DP refocusing by incorporating user-specified prompts to identify desired focus regions, thereby
enabling our network to effectively address all key steps within a single unified framework.

Different from existing work [52]—which synthesizes DSLR-style images from smartphone-captured
data by directly treating the input DP image as the AiF image during refocusing—our task is more
challenging. First, to estimate the latent AiF image and the defocus map, we jointly optimize defocus
deblurring and reblurring. In contrast to earlier methods [5, 45, 56, 57] that treat deblurring and
reblurring as independent processes or rely on ground truth depth maps for reblurring, we propose an
invertible deblurring and reblurring framework that learns the robust defocus map and the spatially-
varying associated blur kernels to assist the final refocusing step. Next, to facilitate mask generation,
we employ flexible user inputs—such as point or box prompts—and models like SAM [43, 62]
to generate masks that guide the refocusing process. Finally, to ensure that the generated mask
effectively controls the depth-aware blur, we use the blur kernels learned by the invertible deblurring
and reblurring framework to produce the final refocused image.

Specifically, we first analyze the relationship between DP disparity, the circle of confusion (CoC,
or defocus map), and spatially varying defocus blur, which leads to a closed-form solution for
controlling the disparity of a DP pair to achieve refocusing. This insight enables our network to
perform controllable refocusing at test time simply by specifying regions of interest—even without
explicit training on refocused images or reliance on depth annotations. Building on this understanding,
we perform both invertible deblurring and reblurring within a unified framework, enabling the network
to learn and regularize the mapping between blurred DP inputs and the sharp image in a self-consistent
manner via learned disparity features. These learned disparity features are then converted into CoC
features, which are used to construct spatially varying deblurring kernels. To ensure consistency,
these kernels are further constrained to perform reblurring when inverted, thereby enabling effective
simulation of the DP model. During testing, we first restore an all-in-focus image from the input DP
pair and then modulate its disparity using a user-specified mask to generate the target CoC features,
guiding the reblurring process for spatially controllable refocusing. In addition to comprehensively
evaluating the robustness and flexibility of the proposed method in real-world refocusing scenarios
and to enrich community benchmarking, we further construct a dual-pixel real-world evaluation
dataset. The detailed evaluations and visualizations will be provided in the supplementary material.
Our contributions are as follows:

* A framework that enables general users to flexibly manipulate sharp and blurred regions

using simple text or point-based inputs.

* Aninvertible deblurring and reblurring framework that learns the defocus map and associated
blur kernels in close alignment with the mathematical formulation of the DP model.



» Extensive experiments, including a self-collected dual-pixel real-world dataset, on defocus
deblurring and image refocusing, demonstrate the superior performance of our method.

2 Related Work

Defocus Deblurring. Defocus blur refers to the blur effect when observed objects fall outside
the depth-of-field (DoF) of a camera lens. To recover lost details from such blurred images, one
widely-embraced scheme [ 1, 26, 58] is a two-stage pipeline: (1) estimating an explicit defocus map
that accurately reflects the level of blur, followed by (2) performing deblurring guided by this map.
Earlier approaches often relied on hardware assistance [10, 12, 17] to obtain a depth map as a proxy
for defocus map in deblurring tasks. To improve flexibility, several studies have explored using
pre-trained monocular depth estimators to infer depth maps from single images, which are then used
as guidance for defocus-aware deblurring [40, 41]. While these methods offer greater accessibility,
they often struggle to generalize beyond their training datasets. To enhance depth estimation accuracy
for defocus map recovery, other researchers have incorporated additional cues, such as dual-pixel (DP)
data [52]. DP images provide defocus-related disparity information that significantly improves the
guidance quality during the deblurring process [42]. Wadhwa et al. [52] propose the first framework
that uses DP sensors to enlarge the blur effect in the background to sythesize the DSLR-style images,
and assume the foreground faces are in focus. Different from the settings in [52], in this paper, our
UiD leverages the disparity cues encoded in DP image pairs to flexibly control the blur in a scalable
and effective manner.

Image Refocus. Achieving accurate refocusing in post-capture images is challenging, as it requires
both deblurring sharp regions and synthesizing realistic blur effects that align with the desired
DoF [45]. Several studies [16, 36, 54] have explored software- and hardware-based approaches
to enhance refocusing performance. Prior work [36, 54] often relies on specialized hardware to
capture light field information, enabling post-capture focus control. However, light field cameras
typically suffer from limited spatial resolution, making it difficult to capture intricate scene dynamics.
An alternative solution [7, 48] is to capture a focus stack and leverage multi-frame information to
estimate the desired focus distance. However, capturing long-term focus stacks inevitably leads to
scene evolution, restricting refocusing to static environments [5]. Another line of research focuses on
single-image refocusing, where the typical framework first deblurs the image to obtain an all-in-focus
(AiF) representation, followed by reblurring. A recent representative study, RefocusGAN [45],
trains a two-stage conditional GAN [35] for sequential deblurring and reblurring, enabling flexible
single-image refocusing using a focus control vector. The most recent work, DC? [5], adopts a
dual-camera setup, where the captured wide-frame and ultra-wide-frame images are first aligned, and
a built-in depth sensor is leveraged to guide the image refocusing process. In this work, we follow
the deblur-and-reblur paradigm and develop a disparity-aware invertible framework to overcome the
limitations of inaccessible hardware (e.g., built-in depth sensors), the constraints of capturing a focus
stack, and the challenge of achieving both defocus deblurring and selective reblurring.

3 User-Instructed Disparity-aware Defocus Control

Motivation. In the DP image pair, two images B; and B, are generated by light rays from the real
scene passing through the left and right sub-apertures into two juxtaposed half pixels. The disparity
D for a DP pair (B, B,.) at location (i, j) is approximately,

D(i,j) = f x B/Z(i,j) +const ~ f x BJZ(i. ). ()

where f is the focal distance, B denotes the shift between two sub-apertures, and Z(4, j) denotes the
scene depth. DP disparity is strongly correlated with the degree of defocus blur [42]. Specifically, the
blur radius at location (i, j) is given by,

where 7 (f) is a function of the focus distance f, controlling the strength of the blur. C is known
as CoC. When refocusing to objects indicated by a binary mask M, its blur radius follows a linear
relation with respect to the disparity offset from the target focal disparity. The refocused blur radius

at (4, j) becomes,
C(ZM]) = j(f) : (D(lv.]) - dtrg) ) 3)



where the target focal disparity d;,4 is computed as the average disparity within the masked region:
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with || denoting the number of pixels where M(¢’, j') = 1. This formulation enables spatially
adaptive refocusing to user-specified regions of interest defined by the mask.

Overview. Our key idea is to learn
a disparity-aware feature space that
adheres to Eq. 2, enabling a blur-
aware representation suitable for both
deblurring and refocusing. Leverag-
ing standard DP defocus-deblurring
datasets containing DP pairs (B;, B,.)
and their corresponding sharp images
I, we train an invertible network that
jointly models deblurring and reblur-
ring (i.e., red, , and arrow
in Figure 2). During training, a CoC-
based feature F, is computed in the
feature space by combining a disparity
feature and a blur strength feature ac-
cording to Eq. 2. This feature is used
to generate spatially varying deblur-
ring kernels K that restore the input
DP pair (B;, B,) into a sharp image
I. Reblurring is then performed by
inverting these kernels, using K~! to
degrade the sharp image I back into a
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Figure 2: Illustration of overall framework. The arrow with
red color and color denotes the deblurring pathway,
and the arrow with color and color denotes
the reblurring pathway. These two pathways are collabora-
tively trained with disparity-aware shared kernel learning
(.e., arrow). The arrow with gray color indicates the
user-instructed mask generation, which is only activated dur-
ing inference time. The dotted box with yellow color denotes
the early fusion paradigm. F,,, can be multimodal encoder
or MLLM [ 1, proj is the projector, and F¢,,,, denotes
the visual encoder of SAM.

blurred DP pair. At test time, we first

apply the deblurring process to (B;, B;) to recover the sharp image I. To perform refocusing, the
disparity feature obtained during deblurring is modulated according to Eq. 4, resulting in a target
CoC feature F'79, computed using the user-provided mask M!"9 and blur level as in Eq. 2. The mask

can be derivedc%iom point or box prompts by leveraging the SAM-like model [43, 62]. This target

feature guides the reblurring process, transforming the sharp image I into a refocused DP image.
An overview of the network architecture is shown in Figure 2, where deblurring, reblurring, and

refocusing operations are carried out in a shared feature space learned by an encoder F.(-, ) and a
decoder Fy(-).

3.1 Deblurring

Feature Encoding. We restore the DP pair (B;, B,) in feature space by first embedding them into a
base feature representation F g using an encoder F, (-, -). In parallel, a disparity-related feature F is
extracted using a stereo matching network G(, -) applied to the DP pair. Within G(-, -), we first use
dual visual encoder for feature extraction, forming F; ;, and F,. ;. For each pixel in F; ;,, we search
for its counterpart F,. ;, within scope d horizontally, where d is defined as the disparity index. We
calculate all the possible disparity using widely-used matching costs following [50], where the left
and right features concatenated to form the cost volume,

Cd(l’, y) = [Fl,b(xa y)v Fr,b(x - da y)] ) (5)

where = and y are the pixel coordinates. Then, all the obtained disparity feature C, are concate-
nated, forming C = [Cy, Cy, ..., Cp], where D denotes the maximum disparity scope. Afterwards,
two cascaded 3D convolutional networks are sequentially employed for aggregating the geometry
information stored in the cost volumes C, learning the approximate disparity clues in each location.
Finally, a lightweight regression block is used on the top of network to compute the expected disparity
feature F¢.

While disparity or depth is fundamental to refocus control, directly manipulating the feature space
spanned by F & based on these geometric cues is infeasible. In other words, the lack of an interpretable



correspondence between feature dimensions and defocus blur prevents meaningful, controllable
editing. Therefore, we thus further normalize the DP disparity feature and scale it as follow,

Fp =2-Tanh (Norm(Fg)/p) — 1, (6)

where Tanh(+) denotes the hyperbolic tangent function, Norm(-) is the £ normalization along with
channel dimension, and p is a temperature parameter that sharp the distribution of the output. By
this way, we condense the depth information conveyed in F into a one-channel disparity map Fp,
which serves as a direct interface for refocus control. Recognizing that the DP pair also encodes focal
length—dependent blur information, we extract this information from feature F  using an encoder
J (+). Following Eq. 2, the initial CoC-related feature can be rewritten as,

Finit = J(Fg) -Fp . @)

Next, we apply a decoder—encoder structure to refine F;,,;;. The refined feature is projected into
RGB space via a projection head P,.4;(-), and projected back to the feature space through a second
projection head Py.q:(-), with a gating residual connection [47] for numerical stability,

Fcoc =RO FG + 7)feat (Prgb (anzt)) 5 (8)

where R denotes the learnable gate (see supplementary material for details). This decoder—encoder
structure enables auxiliary supervision either through ground-truth CoC annotations or via self-
supervised CoC estimation applied to the RGB-projected output Prgp (Finis).

Feature Restoration. By maintaining a set of IV learnable blur kernels {K, }_,, we use the
CoC-related feature F .. to query spatially-varying deblurring kernels from the set, and apply the
queried kernels to restore the feature F' 5. Note that we keep F.,. and F g as the same spatial size.
Specifically, for each pixel (4, j), a spatially-varying kernel K, ; is constructed as a weighted sum of
the kernel set,

N
Ki; =Y a,;(n)-K,, a;=Softmax (P (Avg({Kn}1_1) © Peoc(Feoc(is§)))) » (9
n=1

where a; ; is a soft attention vector over the N kernels. The function Avg(-) computes the average of
each kernel K,, (resulting in a scalar per kernel), forming a /N-dim vector representation. This vector
is element-wise multiplied ® with the CoC-projected feature Peoe(Fcoc(?, j)), and passed through a
linear layer Py (-) followed by a Softmax function to produce the attention weights. The learnable
projections Py () and Peoc(-) are both implemented as linear layers.

We then convolve Fp with queried kernels for each pixel (i, 7), and refine the feature by using
forward mapping of invertible block Inv(-), to get restored feature F,

Fr(i,) = Inv(Y_ Fpli+0i,j + 65) - K, (54, 57)) , (10)
81,07

where (d1,07) is offset of the receptive field of the spatial kernel K;; ;. Notably, the special design

of architecture theoretically guarantees that Jacobian determinant ‘ gg;

is non-zero, ensuring that

invertibility of overall network, irrespective of the specific form of the components within Inwv(-).
The details can be referred to supplementary materials.

Feature Decoding. We decode the F 1(7, j) to RGB space for calculating an all-in-focus restoration
with a decoder F4(-) by I = F4(Fp).

3.2 Reblurring

Our reblurring process is analogous to the deblurring procedure, but it employs the inverse of the
queried kernels. For an all-in-focus image I, we first obtain feature F; by F; = F.(F, Fr). Then,
we reverse the computation performed by the invertible block Inwv(-) by applying its corresponding
inverse operation Inv’(-). Simultaneously, for each pixel (i, j), we calculate the inverse of the
deblurring kernel K; ; with the Fourier transform F(-),

K71 — ‘/—_'71(

m)» (11)



outputting an inverse kernel K~ jl for reblurring, where F~1(-) denotes the inverse Fourier transform.
The reblurred feature is calculated as,

Fp(i,j) =Y Inv'(Fr)(i+ i, j + 65) - K, } (51, 65) - (12)
54,87

The resulting reblurred feature map F 5 is then decoded into an image B using a decoder Fy(-). The
goal is to synthesize the center view of the DP pair B = %Bl + %BT.

3.3 Refocusing

During testing, to perform refocusing on a DP pair (B;, B,.) using a user-provided focus mask M*"9,

we first restore an all-in-focus image I following the forward mapping of our invertible network
(Eq. 10). We then reblur the image by modulating the original disparity feature F p by

F9(i,5) = Fpli,j) - T > Fp(i'.j) (13)
(i7,57) € : Mtr9 (i 57)=1

This operation shifts the disparity feature such that the selected region appears in focus, effectively
implementing a disparity-aware refocusing strategy, as outlined in Eq. 4. We then calculate an updated
CoC feature F'”9 based on Eq. 8, and repeat the kernel querying process defined in Eq. 9. These
kernels are applied in the reblurring process according to Eq. 12, ultimately producing the refocused

feature to decode the target refocused image, denoted as B9,

Training-free Instructed SAM. Given a user instruction 7~ specifying the region of interest, the
instructed Segment Anything Model (SAM) generates a target mask M*"9 semantically aligned with
the prompt. A key challenge lies in obtaining a high-quality segmentation mask to effectively guide
the refocusing process. While end-to-end joint training of the instructed SAM with our deblur-and-
reblur framework is a natural solution, it suffers from two critical drawbacks: (1) the segmentation
mask, when suboptimal in early training stages, dynamically affects the refocusing network and
may produce erroneous gradients, impeding optimal convergence; and (2) fine-tuning SAM from
scratch with deblur-and-reblur framework entails significant computational overhead, making the
overall process resource-intensive. To circumvent these issues, we first forgo the joint training tactics.
Instead, we first training our deblur-and-reblur network using a mask-free manner, which means
that it does not require masks during training. Mask are only provided at test time, where the user
inputs a binary mask to specify the region of interest for refocusing. Therefore, the degradation on
mask would not affect the dynamics and robustness of our model training. Given the inaccessibility
of clear reference images during testing, we adopt an early fusion strategy to deeply exploit the
rich semantic cues conveyed by both the user prompt and the input image, enabling more precise
mask generation. This approach demonstrates superior performance compared to the conventional
late fusion paradigm [62]. Specifically, it takes the restored image i that generated via forward
mapping in Eq. 10, prompt 7, and a random initialized [cls] query as input, and using multimodal
transformer-based encoder F,,(+) to enhance the interaction between modalities,

Qcis = ]:m(iv T7 qcls)7 (14)

the output [cls] query q.;s encodes the compact multimodal clues, and then fed into the mask decoder
together with the SAM-extracted image features F',,,,,, enabling accurate spatial alignment towards
robust mask generation,

Mtrg = ]:g (qu57 Fsam)- (15)

Furthermore, we localize the region of interest using structured, template-based prompts that combine
number, object color, category, and spatial position, such as “a brown dog on the chair”, to enhance
spatial grounding precision. For those still imperfect masks, we further apply post-processing
techniques such as dilation or erosion operations for refinement. The detailed implementation of
Fm(-) and Fy(-) can be referred in supplementary material.

3.4 Loss

Our network is trained with a combination of objectives to supervise deblurring, reblurring, and CoC
estimation. Specifically, we use a deblurring loss L4 (I, I) and a reblurring loss L,..; (B, B) based



on multi-scale setting following [57], a MSE-based CoC regression 10ss Loc(C, Prgt(Fint)), and a
MSE-based CoC gradient loss LY, .(C, Prgb(Fint)) to enhance edge precision. The total loss is,

coc

Etotal = Edeb(Ia i) + Ereb(B» B) + Acoc : Ecoc(c» Prgb(Finit)) + Agrad : ‘CCVOC(C; Prgb(Finit)) )
(16)

where each A controls the relative weight of the corresponding loss term.

4 Experiment

Dataset. For defocus deblurring task, we evaluate our method on widely-used DPD-blur [2] dataset
and recent DP5K [27] dataset. For refocusing task, we use three datasets for evaluation, DP5K
dataset, DPD-disp dataset, and our self-collected DP dataset. Our model is trained using the training
splits of DPD-blur and DP5K. Refer to our supplementary material for detailed dataset configurations
and evaluation protocols.

Evaluation Metrics. We evaluate the model with using standard metrics, i.e., peak signal-to noise
ratio (PSNR) [19], structural similarity (SSIM) [55], relative error (RMSE rel) [37], mean absolute
error (MAE), and learned perceptual image patch similarity (LPIPS) [61].

Implementation Detail. For training, we use the AdamW optimizer [24] with 81 = 0.9, 52 = 0.999,
a learning rate of 3 x 1074, and a weight decay of 1076, A cosine annealing learning rate [32]
scheduler with warmup is employed, where the cycle steps, warmup steps, and minimum learning
rate are set to 200, 100, and 6 x 1072, respectively. For the DPD-blur dataset, the model is trained
for 40k iterations with a batch size of 4. For the DP5K dataset, we train the model for 64k iterations
with a batch size of 6. We elaborate our network architecture and more hyper-parameter setting in
supplementary material.

4.1 Experimental Results

As mentioned Sec. 3, image refocusing task is decomposed into two key stages: (1) defocus deblurring,
and then (2) refocusing. In this section, we conduct extensive experiments to evaluate the effectiveness
of each part in two stages. First, we perform quantitative and qualitative evaluations of both deblurring
and refocusing, comparing their performance with several strong baselines. Then, we provide a
detailed component-wise analysis of our refocusing framework.

4.1.1 Quantitative and Qualitative Results on Image Refocus

Setting. Image refocus takes a user-specified mask and an all-in-focus image as input, the goal is to
generate a new image where the masked region remains sharp while other areas exhibit controlled
defocus blur. Therefore, obtaining an all-in-focus image from blurred image is the first step to achieve
refocusing, and its restored quality greatly determine refocus performance.

Table 1: Deblurring quantitative comparisons on DPD-blur dataset [2] with several SOTA baselines.

Method Computional Cost Quantitative Metrics
Params (M) Flops (G) PSNRT SSIMt MAE(o-1) } MSE_relj0-1y |
single-image defocus deblurring
EBDB - - 2345  0.683 0.49 0.67
DMENet 26.71 4787 2341 0.714 0.51 0.67
RDPD 24.28 901 2539  0.772 0.40 0.53
IFAN 10.48 794 2599  0.804 0.37 0.50
BAMBNet 4.50 1804 2640 0.821 0.36 0.47
DeepRFT 9.60 3682 2571  0.801 0.37 0.51
Restormer 26.13 4458 26.66  0.833 0.35 0.46
dual-pixel defocus deblurring

DPDNet 31.03 3150 25.13  0.786 0.41 0.55
DDDNet 6.40 1661 2536  0.768 0.41 0.54
K3DN 5.00 1033 26.84  0.829 0.35 0.46
Ours 3.12 495 26.89 0.829 0.33 0.47
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Figure 3: Qualitative comparison on the DP5SK-test dataset [3]. We present the blurry image in the
first column, and boxed regions with red color are zoomed results.

Table 2: Comparison of refocusing perfor-
mance on DP5K-test. 1 denotes the model
version adapted for refocusing

Table 3: Comparison of refocusing performance
on DPD-disp for OOD evaluation. T denotes the
model version adapted for refocusing.

Methods ~ PSNRT SSIM{ MAE(-1y | LPIPS] Methods ~ PSNRT SSIMT MAEo-1y | LPIPS|
Omni-Kernel! | 2532  0.816 0.47 235 Omni-Kernel® | 18.75  0.692 0.79 31.4
K3DNf 3076 0.943 0.30 14.4 K3DN' 2172 0.765 0.67 29.7
Ours 3121 0.953 0.33 13.8 Ours 2193 0.772 0.56 25.1

Methods. To evaluate the deblurring ability of our framework, we compared with two primary
categories of defocus deblurring approaches. (1) Single-image defocus deblurring: KPAC [49],
RDPD [4], DRBNet [44], DeepRFT [34], IFAN [26], RAMBNet [28], and Restormer [59]. (2) Dual-
pixel defocus deblurring: DPDNet [2], DDDNet [38], K3DN [57]. For refocusing, BokehMe [40]
and Dual-Camera [5] are most closely related to our approach. However, they neither release training
code nor pretrained models. Thus, we manually modify two SOTA methods on deblurring task,
K3DN and Omni-Kernel [ 1], to enable their refocusing functionality. Refer to our supplementary
materials for details.

Evaluation. The deblurring comparisons with state-of-the-art methods are given in Table 1 and
Table 5. The result reveals that we achieve superior performance, while having smallest computation
cost (495 GFlops). Figure 3 showcases the deblurring results of two cases against several state-of-
the-art baselines. Our method is able to restore severely blurred regions, especially textual region,
compared to existing models. For refocusing, we report the qualitative comparison in Table 2 and
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Figure 4: Visualization of blur effect by setting {F p(,7)|(¢,5) € Qboor} = 0 when performing
reblurring using Eq. 12. We take the all-in-focus and a user-specified mask (a mask referring to a
unfolding book in this case) as input, and observe the blur variation with different F . The top-right
figure shows the overall PSNR variation trend with different F p.
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Table 4: The effect of joint deblurring- Table 5: Comparison of deblurring performance

reblurring training on performance. on DP5K-test. The best is bold with black.
Model Variants PSNRT SSIM? MAE(jo-1) | Methods PSNRT SSIMT RMSE_rel(1o-1) . MAE(1o1) |

Deblurring Performance DDDNet | 2559 0.777 0525 0.58

IFAN | 2823 0875 0387 0.44

W E””; Laes gg'gg 8'252 8'32 DeepRET | 3024 0.915 0.307 037

W Ldeb : ; : BAMBNet | 30.54 0.917 0.297 0.34

Reblurring Performance Restormer | 30.71 0.922 0.291 0.33

W Lyep + Laer 29.18  0.875 0.22 K3DN | 30.82 0.923 0.291 0.32

W Lrep 29.06  0.863 0.28 Ours | 3072 0.926 0.280 0.30

v T
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Figure 5: Visualization on immediate process in refocusing. Notably, Fp and thg denotes the

disparity map used in reblurring and refocusing, and P,.g,(Fin¢) and Pf;g (Fin4t) are predicted CoC

map from their corresponding disparity map (Eq. 8), which both exhibits satisfactory consistency.

Table 3. We also show two cases from DPD-disp dataset to evaluate the out-of-distribution (OOD)
generalization capability of our model, as shown in Figure 6.

4.1.2 Component-wise Analysis

Effect of Joint Deblurring and Reblurring Training. Joint deblurring-reblurring training enables
robust blur kernel estimation and exhibits more flexible refocusing. As can be seen in the Table 4,
model with both L,..;, and L.}, supervision achieves substantial advantages compared to that only
with L;.¢p or L4ep. This observation indicates that one process not only does not disturb another branch
but also effectively help to optimize the learned blur kernel, thereby enhancing the representation
capability learned by our network. Using the shared kernel in deblurring process, user-specified
refocusing process can be simply achieved by using the with inverse kernel obtained in Eq. 11, which
exhibits satisfactory flexibility and viability.

Refoused Image
Figure 6: Visualization of refocusing on DPD-disp dataset. The bounding box is highlighted for clear
observation, and region with red box refers to the user-specified region. The images in the first row
refers to blurred image B (unified by B = %(Bl + B,)), images in the second row are deblurred
image recovered by our model (Eq. 10), and the last row showcases the refocused images.



Visualization of Kernel Selection Behavior. We provide the visualization map of retrieved ker-
nel index in kernel pool of different pixel locations to reveal deeper understanding. We first talk
from the learned disparity feature F, because the retrieved kernel intrinsically rely on the dis-
parity feature. As shown in the second row in Figure 7, we use K-means clustering [23] to
group the similar disparity feature with different cluster numbers, ¢ = 6,10 and then visual-
ize the clustered group index. We can observe that our learned F¢ conforms with the actual
depth or blur cues in B. Done well with Fg, we verify the reliability of using F¢ for kernel
selection. As shown in kernel selection of Figure 7, the distribution of retrieved kernel index
via Eq. 9 tends to approximate the blur distribution of the original blurred image. This obser-
vation further demonstrate the feasibility of our design: when perform refocusing, specifying
the mask of focus would specify the disparity thereby further determining the kernel selection.

Necessity of Disparity Alignment towards Refocusing
Based on Eq. 2, we conclude that CoC map and dis-
parity map provide the approximate indication clues for
blur kernel estimation. Particularly, a pixel (4,j) with
C(i,7) = D(i,4) = 0 indicates to be well-focused. In
practice, we empirically observe that training network only
with disparity feature F';,,;;+ as blur kernel guidance enables
faster convergence while achieving better deblurring and
reblurring performance than that only using CoC feature.
However, indirect supervision of F;,,;; through joint train-
ing on deblurring and reblurring tasks may not adequately -
capture explicit blur cues. Ideally, regions with Fp = 0 Clusteting on  (c=10 and c=6)
should exhibit perfect focus. As illustrated in Figure 4, in  Fjgure 7: Illustration of kernel selection
the absence of CoC map supervision, the disparity value and clustered disparity feature F.
corresponds to minimum PSNR happen to shift. With the

aid of CoC supervision, the book is observed to be visu-

ally well-focused exactly. {Fp(7,7)|(¢,7) € Qpoor} = 0 corresponds to minimum PSNR 23.6dB
compared with ground-truth blurred image. It indicates that an accurate correspondence between
disparity and blur kernel or defocus blur can be explicitly calibrated with the supervision of CoC
map C. Moreover, we visualize the correspondence between F p and predicted CoC map, known as
Prgb(Finit), in Figure 5.

Ablation of Components in Invertible Mapping. To

investigate the impact of different invertible component Taple 6: The ablation of joint training
designs towards the robustness of the visual representation, on both deblurring and reblurring perfor-
we tailor several variants. As shown in Table 6, model v1 apce.

denotes adopting the 1 x 1 convolution for channel shuf-
fle [13], model v2 adopts the residual invertible network Variants PSNRT  SSIM}  MAE(o-1) |

similar to [1%], and model v3 incorporates affine transfor- = 7757 2556 0,795 052
mation operations for more stable invertibility. Among v2[13] 2621 0810 035
them, model v3 achieves the best performance. It demon- v3[18] 2689  0.829 0.31

strates that robust invertible mapping enables more effec-
tive kernel learning for refocusing. More details of these variants are provided in the supplementary
material.

5 Conclusion and Future Work

Without bells and whistles, we re-frame the task of image refocus as two interconnected sub-
tasks—joint reblurring and deblurring using the shared kernel, and the disparity feature extracted
from dual-pixel (DP) image pairs is leveraged as an indicator for blur kernel estimation. Specifically,
our work experimentally explores several key aspects: (1) We investigate the potential benefits of
using DP image pairs to achieve effective defocus control. (2) We mark the first attempt to demon-
strate the feasibility of using joint deblurring and reblurring as a proxy of image refocusing, which
is a non-trivial endeavor. (3) We analyze the behavior of kernel selection and test its sensitivity
to adjustment of disparity. (4) We incorporate an early-fusion SAM into our deblur-and-reblur
framework to accurately identify the region of interest, enabling robust mask generation and flexible
defocus control. In future work, we aim to adapt our method to the diffusion framework to further
explore its practical applications and commercial potential.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The paper has a clear abstract and an introduction section.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the limitations in the future work section included in the
supplementary material.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?
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Justification: This work does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We state all experimental details in Experiment section in the main paper and
Supplementary Material A. We state which datasets we used and provide references.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: If the paper is accepted, the code and data will be released.
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» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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Answer: [Yes]
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that is necessary to appreciate the results and make sense of them.
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of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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the experiments?

Answer: [Yes]
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« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Guidelines:

* The answer NA means that the paper does not release new assets.
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tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Guidelines:
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Guidelines:

* The answer NA means that the core method development in this research does not
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for what should or should not be described.
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Abstract of Appendix

This appendix provides more implementation details (Appendix A), details of curated DP image
dataset (Appendix B), adaptation for refocusing functionality (Appendix C), comparison with existing
methods (Appendix D), and more visualization results and analysis (Appendix E).

A More Implementation Details

Network Architecture. Our method adopts a 4-stage UNet-style architecture for progressive feature
refinement. As mathematically formulated in Eq. 9 and Eq. 10 of main paper, each stage has two
cascaded parameter-independent modules: (i) disparity-aware feature convolution, followed by (ii)
invertible block Inv(-) and Inv~1(-). For (i), we use the disparity feature F (i, ;) to retrieve a

kernel K;; ; from kernel pool {Kn}nNzl, and then a point-wise convolution [51] with K; ; or K; jl

is employed for feature refinement to obtain U’ or U'*!, and the architecture of (ii) is elaborated
in Table 7. Notably, we parameterize learnable matrix W directly in its LU decomposition [25] for
efficiency, i.e., W = PL(Q + diag(s)), where P is a permutation matrix, L is a lower triangular
matrix with ones on the diagonal, Q is upper triangular matrix with zeros on the diagonal, and s is a
vector.

Towards F,,(-) and Fy(-) in instructed SAM, we primarily adopt BEIT-3 [53] as F,, (), which
implements a multi-way Transformer architecture. The input text is tokenized using the XLM-
RobertaTokenizer [9]. Within each encoder block, image and text tokens are fused through cross-
modal attention mechanisms and subsequently processed by separate Feed-Forward Networks (FFNs).
Following the ViT paradigm [14], we extract the compact multimodal representation by taking the
output of the [cls] token. Specifically, the original prompt encoder generates sparse embeddings of
shape B x P x D, where B denotes the batch size, P is the number of input points or boxes, and
D represents the embedding dimension. Following [62], we replace these spatial prompts with the
projected multimodal embeddings from the multimodal encoder F,,, (). If there are point or box
inputs, these are concatenated with an empty sparse embedding tensor and perform alignment with
the image feature extracted from F2,,(-), subsequently fed into the mask decoder.

Table 7: Illustration of invertible block operations Inv(-) and Inv~1(-) in our method. In the forward
mapping, the input and output to each block are denoted as U’ and U'*'. During the backward
mapping, only Plus (+) and Multiply (®) needs to be inverted. ¢1, ¢2, ¢3 and ¢4 do not need to be
inverted, which can be any neural networks.

# Forward Operation Inv(-) Backward Operation Inv=1(-) Specification

B B L(Q + diag(s)) denotes the matrix by
RO U' = PL(Q + diag(s))U* U = (Q + diag(s))'P7L~1U*! | LU decomposition [25],

and P is a permutation matrix.

R1 U, U} = split(TY) ULt Ul = Split(UH) Split(-) denotes the channel-wise split.
R2 Ui = U, © exp(¢1(U})) + 65 (U}) U = (Uéﬂ = ¢a(UL)/ exp(65(UL)) b1, P9, ¢3 and ¢, can be any neural networks.
R3 U§7+1 = UL © exp(s(ULH)) + 4 (UL Ul = (UL — $o(UL))/ exp(¢, (UL)) © is the multiply operation.
R4 U't! = Concat(ULH, UL U' = Concat(U}, U}) Concat(-) is the channel-wise concatenation.

As mentioned in Table 6 of main paper, we adopt two variants v1 and v2 to investigate the impact of
different invertible blocks towards visual representation learning. Their architectures are illustrated in
Table 8 and Table 9, respectively.

Table 8: The invertible block of variant v1.

# Forward Operation Backward Operation Specification

L(Q + diag(s)) denotes the matrix by
RO | U = PL(Q + diag(s))U! | U' = (Q + diag(s)) " 'L~'P~'U!*! | LU decomposition [25],

and P is a permutation matrix.

Hyper-parameter Setting. Our L ;.;, and L., both uses a combination of Multi-Scale Charbonnier
loss Lchar [63], Multi-Scale Edge 10ss Leqge [63], and Multi-Scale Frequency loss L ¢rcq [34], 1. €.,
Lrev = Laeb = Lenar + M Ledge + A2Lfreq- Weset A\p =5 x 1072 and Ao = 1 x 1072, Regarding
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Table 9: The invertible block of variant v2.

# Forward Operation Backward Operation Specification

_ _ L(Q + diag(s)) denotes the matrix by
RO | U!'=PL(Q +diag(s))U! | U+ = (Q + diag(s))'L~'P~1U! | LU decomposition [25],

and P is a permutation matrix.

R1 U, Ul = split(TY) ULt Uttt = split(TH1) Split(-) denotes the channel-wise split.
R2 ULt = UL + ¢,(U} Ul = Ut — gy (UL
l-tl at ol b? b b : ¢5(Ua") @1, ¢o, ¢ and ¢, can be any neural networks.
R3 | U™ =1, +¢,(UgH) U, = UM - ¢,(U})
R4 | U = Concat(ULH, UL U! = Concat(Ul, UL) Concat(-) is the channel-wise concatenation.

other two loss supervision Acoe and Agrqq, We set Aqo. = 0.5 due to that a excessive large Ao would
overwhelm the useful cues in F;,,;; learned from reblurring and deblurring task, and Agqq = 0.5 to
reserve the high-frequency information and sharp the edge in restored image.

Design of Gate Vector R in Eq. 7. A computed in Eq. 8 of main paper,
Fcoc =R ®© FG + Pfeat (Prgb (anzt)) ) (17)

where R serves as the gating vector to balance the learning between the vanilla disparity feature F
and CoC-aligned feature Py, (Fpi.). Specifically, it is formulated as,

R = Tanh(Pg(Fa) 4+ P (Preat (Prgs(Finit)))), (18)

where P (+) and P¢(-) are two simple linear neural layers. We empirically observe that using the
gate R could strengthen the gradient of F;,,;;, and adaptively balance the contribution of F';,,;; and
F ¢ to feature vector F ...

B Details of Curated DP image Dataset

In this paper, We present a real-world DP dataset consisting of 10 high-quality pairs with a resolution
of 6720 x 4480 pixels, for refocusing evaluation. The DP image is captured by Canon EOS 5D
MarkIV '. The camera sensor features two independent photodiodes embedded within each pixel,
enabling phase-detection autofocus for rapid focusing. During image capture, the left and right
sub-pixels combine their outputs to generate the final view. After collection, we use software Digital
Photo Professional ? to split the DP view from the captured center one. In our dataset, the image pairs
are captured using aperture settings corresponding to f /2.8, which results in the greatest DoF and
thus most defocus blur. As shown in Figure 8, we select two objects 07 and o5 as focal point to form
a image pair (B,1, B,2), and each of pair B. contains a dual-pixel image pair (B.;,B.,). When
performing evaluation, we take one dual-pixel image pair as the input, and regard another image
(center view) as the target image.

Notably, considering that when two objects are far apart, focusing on different objects may introduce
noticeable misalignment of the captured scene. To address this issue, we adopt the following strategies
during the captured process: (1) Restrict the distance between the two focus targets within a certain
range to allow only minimal and acceptable shifts. (2) Manually crop and align the two images
when slight misalignment still occur. (3) First adopting classical image matching techniques [33, 46]
for pixel matching, and then compute corresponding quantitative metrics. All the datasets will be
released.

C Adaptation of Refocusing Functionality

We manually modify two SOTA methods on deblurring task, K3DN and Omni-Kernel [! 1], for
refocusing adaption. For K3DN (architecturally similar to our approach), we replace our 4-level
UNet with K3DN’s backbone while preserving only RO (Table 7) to maintain essential reversibility.
For Omni-Kernel that has more complex architecture, we simply concatenate disparity feature and
DP image features in a channel-wise manner, and take them as input for target image approximation.

"https://www.canon.co.uk/cameras/eos-5d-mark-iv/
*https://app.ssw.imaging-saas.canon/app/zh/dpp.html?region=6
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1 1, 2, 2, Zoomin

Figure 8: Three examples of our collected DP image pairs. The red and green circles indicate the
focal points, while the orange bounding box highlight the zoomed-in regions.

D Comparison with Existing methods

Compared to existing deblur-and-reblur frameworks (e.g., RefocusGAN), our key improvements are:

* Reversible Block with Shared Kernel: We establish an invertible connection between de-
blurring and reblurring with shared kernel learning, which strictly follows the mathematical
formulation in Eq. 11 while achieving better deblurring and reblurring performance.

* Unified Network Architecture: We reuse one network parameter to achieve refocusing task
(deblur-and-reblur), significantly reducing the total number of parameters and improving
training efficiency.

To highlight our contribution, we explain the necessity of invertibility in what follows. The network’s
invertibility ensures that reblurring and deblurring can be jointly trained while sharing the blur kernel,
better establishing one-to-one correspondence between disparity feature and blur kernel. Intuitively,
an effective disparity-aware blur kernel should be capable of both restoring an image (deblurring) and
blurring it (reblurring). This paves a crucial path for the subsequent refocusing, enabling accurate
kernel retrieval for defocus control by modifying the disparity (refer to Figure 7 for illustration).
When we empirically adopt a traditional encoder-decoder architecture, the correspondence between
the kernel and disparity becomes difficult to learn effectively, leading to unintended control effects.

E More Visualization Results and Analysis

Blurry Image B Kernel Selection Preference Kernel Selection Preference

Blurry Image B

w

Accumulated Weight
N

-

20

40 60 40 6
Kernel Index Kernel Index

Figure 9: Kernel selection preference when performing refocusing from all-in-focus image.
Accumulated Weight refers to assigned weight score of each blur kernel K,, accumulated across
al the layer in invertible network.

Kernel Setting. We visualize the kernel selection preference of two cases in Figure 9 for deeper
behavior revelation. It can be observed that most kernels has a smaller accumulated weight while
only a small part of kernels are activated for blur indication. In these two cases, the commonly
used kernels lies in index {56, 57, 65, 73, 86}, and kernels with index {3, 17, 22, 80} are sample-
specific. We also employ the hard selection of blur kernel, which can be differentiably achieved by
Gumbel-Softmax [21]. However, we empirically observe that hard selection achieves the suboptimal
deblurring and reblurring performance. We posit that this issue arises because hard selection induces
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Table 10: Performance with different number . .
of pre-defined kernel {K,,}Y_,. Table 11: Comparison of refocusing perfor-

mance on self-collected dataset.

N 32 48 96 128

Variants ~ PSNRT SSIMt MAE(;o-1) | LPIPS|

Deblurring Performance

PSNRT 25.92 26.14 26.89 26.82 Omni-Kernel 19.50 0.690 0.56 32.94
- K3DN 19.52  0.698 0.52 31.91
Reblurring Performance Ours 19.68 0707 0.52 30.87

PSNRT 2832 28.46 29.18 29.18

an initial bias toward specific kernels during the early stages of training, which subsequently hinders
the optimization process for kernel selection. Additionally, we further investigate how different
number of pre-defined kernels affect model performance. As shown in Table 10, Both insufficient and
excessive numbers of kernels impair model performance. Fewer kernels cannot adequately cover the
necessary blur range across the dataset, while too many introduce excessive non-trainable parameters
that compromise model robustness.

Blurred Image ~ Omni-Kernel Zoom in K3DN Zoom in Ours Zoom in
N » o " o

Figure 10: Visualization comparison of refocusing on self-collected DP image pairs. The red point
indicates the focal object, and the yellow bounding box highlights the zoomed-in regions.

More Refocusing Results on Self-Collected DP image pair. We give the quantitative results on our
self-collected dataset in Table 11, our method achieves the consistent superior results across all the
metrics. As shown in Figure 10, we take the first case as the example, the sheep is focused initially,
and our goal is to transfer the focal point from sheep to its right bottle. We compare our method with
two SOTA baselines K3DN and Omni-Kernel, the comparison results show that our refocusing result
is more scene-realistic.

Evaluation on Mask Quality. To evaluate the mask qual-

ity from our adopted SAM, we manually annotate tWo  Taple 12: Comparison of segmentation
objects for each image of our collected images as the performance with different prompts.
groundtruth. We compare the average mloU metrics [15]  and % denote the early-fusion and late-
on different version. From Table 12, we observe that early  fysjon version, respectively. Ours de-
fusion achieves the clear-cut performance compared with potes the template-based prompt.

late fusion. Furthermore, our structured template-based
prompt achieves better segmentation result.
Performance Variation with Different Blur Degree. Be- 93.6 875 816 918
sides, we also exploit instructed SAM segmentation results  Taple 13: Segmentation performance
towards the image inputs with different degree of defocus  ith different degrees of defocus blur.
blur and our restored image I. We sample ten groups of -
sample from DP5K-test and each of which has 5 cases f18 j28 J40 /56 1

with different f-number, 1.8, 2.8, 4.0, and 5.6. We use the 858 903 908 9L1 918
SAM with early fusion to generate the mask, and manually

annotate the region with interest as the ground-truth. As

can be seen from Table 13, we empirically observe that our used SAM could functions well when
handling the image with large defocus blur (i.e., f-1.8), and using our restored image as the SAM
input could achieves the best result. Beyond that, with the blur degree decreasing, the segmentation
result becomes saturated.

3-Click"  Vanilla Prompt’ ~ Ours*  Ours’
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