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ABSTRACT

Recent advancements in Large Vision-Language Models (LVLMs) have signifi-
cantly enhanced their ability to integrate visual and linguistic information, achieving
near-human proficiency in tasks like object recognition, captioning, and visual
question answering. However, current benchmarks typically focus on knowledge-
centric evaluations that assess domain-specific expertise, often neglecting the core
ability to reason about fundamental mathematical elements and visual concepts.
We identify a gap in evaluating elementary-level math problems, which rely on ex-
plicit visual dependencies-requiring models to discern, integrate, and reason across
multiple images while incorporating commonsense knowledge, all of which are
crucial for broader AGI capabilities. To address this gap, we introduce VCBENCH,
a comprehensive benchmark for multimodal mathematical reasoning with explicit
visual dependencies. VCBENCH includes 1,720 problems across six cognitive
domains, featuring 6,697 images (averaging 3.9 per question) to ensure multi-
image reasoning. We evaluate 26 state-of-the-art LVLMs on VCBENCH, revealing
substantial performance disparities, with even the top models unable to exceed 50%
accuracy. Our findings highlight the ongoing challenges in visual-mathematical
integration and suggest avenues for future LVLM advancements.

1 INTRODUCTION

Recent advancements in Large Vision-Language Models (LVLMs) Anthropic (2025); Deepmind
(2025); OpenAI et al. (2024); Bai et al. (2023) have made significant strides in bridging the gap
between visual understanding and language processing. These models have achieved remarkable
performance across a range of tasks, demonstrating near-expert human-level proficiency in domains
such as object recognition, caption generation, and visual question answering Lin et al. (2015);
Agrawal et al. (2016). Among the various domains explored, LVLMs have shown particular promise
in tasks that require both visual and linguistic reasoning, making them increasingly relevant for
real-world applications.

While many visual mathematics benchmarks, such as MathVista Lu et al. (2023) and MathVision
Wang et al. (2024a), focus on knowledge-centric evaluations that assess domain-specific mathematical
or geometric expertise, they often fail to evaluate a model’s core ability to perceive and reason
about fundamental mathematical elements and visual concepts. Moreover, these knowledge-centric
evaluations are easily influenced by the pre-existing knowledge embedded in large language models,
which may obscure true reasoning capabilities. To advance towards Artificial General Intelligence
(AGI), a more holistic approach to multi-modal reasoning is needed-one that goes beyond task-specific
benchmarks and better captures generalizable cognitive abilities.

In this context, we identify a gap in the evaluation of models on elementary-level math problems
Cobbe et al. (2021a); Wei et al. (2023b). These problems, typically at the elementary school level,
do not require complex mathematical or geometric reasoning but rely heavily on explicit visual
dependencies-the ability to discern and integrate visual features across images and understand
how different visual elements relate to one another to solve problems. This mirrors the cognitive
development of children, who rely on similar skills to solve problems despite not yet possessing
advanced reasoning abilities. Understanding and modeling this form of reasoning is crucial, as it
represents a fundamental cognitive ability essential for advancing toward broader AGI capabilities.
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In the following constructed figures, the one that can 
stand stably is:

A.                         B.                         C.

Which of the following diagrams 
represents an angle? 

A.                    B. C.

In the fol lowing images, there are ( ) sets of 
intersecting lines.  A.  1   B .  2   C.  3   D. 4

Among the following groups of three paper pieces, the one 
that can be assembled into a square is ( ).

A.                                 B.                                 C. 

Concon uses the "angle spl icing method" to study the sum of the interior angles of a triangle. Among the following 4 
splicing methods, the correct one is ( ).

A.                                            B.                                  C.                                         D.

The clever dog cut out a small piece from the calendar, with the six 
numbers and their positions as shown below. The correct one is ( ).

A.                                  B.                                  C.                    

The time indicated by the clock face 
below ( ) represents "a little past 11 
o'clock.”

A.                B.                   C.

Among the following four figures, the one that is not a surface 
development diagram of a cube is ( ).

A.                        B.                         C.                         D.  

Among the following paper-cutting works, 
the one that is not an axia lly symmetric 
figure is ( ).

A.                  B.                    C. 

Which of the following is not an example of 
equal distribution?

A.                                  B.                                   

C.

The shape below, when viewed from the front, appears as ( ).

A.                       B.                            C. 

As shown in the image below, which of the following 
descriptions is incorrect?
A. is to the southwest of

B. is to the northwest of

C. is to the south of

D. To the southeast of       is

In the following figures, the one that is a left hand 
is ( ).

A.                             B. C.

The one made up of 4             is ( ).

A.                              B.                               C.

The animal that weighs 3 tons in the picture below is 
( ).

A.                              B.                                C. 

In the picture below, the one that is different is ( ).

A.                      B.                            C.             

Hua Hua strung a series of beads in a  pattern, and 3 of 
them fell off. The ones that fell off are ( ).

A.                        B.                           C.

Figure 1: Representative examples from the VCBENCH, showcasing diverse question types and
categories including Space and Location (Direction, Location and Place), Reasoning and Observation
(Reasoning and Observe), Time and Calendar (Calendar and Clock), Objects and Motion (Cube and
Move), Organization and Pattern (Weight, Organize and Pattern), and Geometry and Shapes (Shape,
Quad, Angle, Rectangular and Triangle).

Table 1: Comprehensive Statistics of the
VCBENCH Dataset, Including Detailed Break-
down of Question-Image Pairs, Image Distribution,
and Question Length Metrics.

Examples (Q&A pairs) 1,720
Images 6,697
Avg. images per question 3.9
Avg. question length 136.2
Max. # images in question 18
Min. # images in question 2

To address this gap, we introduce VCBENCH,
a comprehensive benchmark designed to assess
multimodal mathematical reasoning tasks with
explicit visual dependencies. Specifically tar-
geting elementary-level math problems (grades
1–6), VCBENCH focuses on tasks that require
reasoning across multiple images to derive so-
lutions. As shown in Figure 1, it covers six
key cognitive domains: Time and Calendar, Spa-
tial and Positional Awareness, Geometry and
Shapes, Objects and Motion, Reasoning and Ob-
servation, and Organization and Patterns. It also
evaluates five competencies: temporal reason-
ing, geometric reasoning, logical reasoning, spatial reasoning, and pattern recognition. These
competencies span a broad spectrum, from basic temporal and spatial understanding to more ad-
vanced geometric and logical reasoning, providing a thorough evaluation of multimodal model
performance. Comprising 1,720 QA pairs and 6,697 images (averaging 3.9 images per question),
VCBENCH ensures models must reason across multiple visual inputs, rather than relying on single-
image comprehension. With this holistic framework, VCBENCH serves as a valuable resource for
advancing research in multimodal mathematical reasoning.

In our extensive experimental evaluation, we assessed 26 state-of-the-art LVLMs across 17 distinct
task categories within VCBENCH. Despite achieving near-perfect accuracy on normal human-level
performance, the best-performing visual models were unable to exceed 50% accuracy. Many of these
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Figure 2: (a) Overview of the VCBENCH dataset structure, highlighting its six main categories
and associated subcategories, designed to assess multimodal reasoning capabilities of LVLMs.
(b) Distribution of question types in the VCBENCH, illustrating the relative frequency across different
visual reasoning subcategories

state-of-the-art models exhibited a notable lack of pattern recognition in images, especially when it
came to reasoning tasks that required integrating visual cues across multiple images. Interestingly,
we observed that these same tasks could be easily answered by normal human. This highlights a
significant gap in current benchmarks, which fail to adequately assess vision-centric mathematical
reasoning abilities.

We make several key contributions with VCBENCH:

Unlike existing benchmarks that focus on knowledge-centric evaluations, we emphasize vision-centric
assessments. VCBENCH targets problems that do not require specialized knowledge but rely on the
common perceptual reasoning of mathematical images and concepts. This approach aligns with the
way children learn-first mastering visual reasoning and later acquiring domain-specific knowledge.

VCBENCH is designed around multi-image tasks, with each question containing an average of 3.9
images. This requirement challenges models to explicitly integrate visual cues across multiple images
and reason about how they interact, which better reflects real-world scenarios where information is
often distributed across multiple visual inputs.

Our benchmark provides a holistic evaluation of various visual reasoning capabilities, such as
temporal reasoning, spatial understanding, and pattern recognition. While these tasks may seem
simple to children, they represent fundamental reasoning abilities that LVLMs often struggle with. Our
experiments demonstrate that tasks considered easy for children-such as identifying time sequences
or spatial relationships-prove challenging for state-of-the-art LVLMs, highlighting the gaps in current
multimodal reasoning capabilities.

2 RELATED WORK

Large Vision-Language Models. Large Vision-Language Models (LVLMs) have significantly
advanced the integration of vision and language, demonstrating strong performance in tasks such
as image captioning, visual question answering (VQA), and complex multimodal reasoning Wang
et al. (2024b); Wu et al. (2023). Recent developments, such as Gemini-2.0 Deepmind (2025), QVQ
Team (2024), and Calude-3.7-Sonnet Anthropic (2025), showcase emergent abilities in cross-modal
instruction-following and chain-of-thought reasoning.

Despite these advancements, quantitatively evaluating LVLMs, particularly in visual mathematical
reasoning, remains challenging. Existing benchmarks like MathVista Lu et al. (2023), MathBench
Liu et al. (2024), and Math-LLMs Liu et al. (2023) typically assess models within narrow domains,
such as arithmetic word problems or geometry-based visual environments. Consequently, these
benchmarks primarily measure foundational skills like geometric or spatial reasoning, limiting their
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The figure below ( ) can be considered as 
the unfolded diagram of a cube.

A    B  C  D

The figure below ( ) can be considered as 
the unfolded diagram of a cube.

A  B  C  D 

Multi-Image Setting Single-Image Setting

QVQ-72B-Preview GPT-4o Claude-3.7-Sonnet Llama3.2-90B-Vision Gemini2.0-Flash Mantis-SIGLIP Deepseek-VL2 Llava-Onevision-72B

Multi-Image Setting            D C D A D B A,B,C,D C

Single-Image Setting A B D B A,B,C A A D

Figure 3: Comparative evaluation of various LVLMs under Multi-Image and Single-Image settings
for the same question. The letters (A, B, C, D) indicate models’ predictions, with correct answers
marked in green and incorrect answers in red.

capacity to comprehensively evaluate broader cognitive integration and reasoning abilities. To address
this limitation, we introduce VCBENCH, a systematic evaluation framework designed to rigorously
assess LVLMs performance across diverse multimodal mathematical reasoning tasks with explicit
visual dependencies.

Visual Mathematical Reasoning. Mathematical reasoning is a core cognitive ability increasingly
explored within the context of LVLMs research Hendrycks et al. (2021); Cobbe et al. (2021b).
While earlier benchmarks such as GSM8K Cobbe et al. (2021b) and MATH Hendrycks et al. (2021)
primarily focused on text-based mathematical problems, recent research has expanded toward visual
mathematical reasoning, incorporating diagrams, charts, and geometry-based problem-solving Wang
et al. (2024b); Yang et al. (2024).

Multimodal mathematical reasoning requires LVLMs to integrate visual perception and logical
reasoning, presenting a greater challenge compared to purely textual problems. Recent benchmarks
like MathVista Lu et al. (2023) and MathGLM-Vision Yang et al. (2024) have advanced evaluation
efforts but still suffer from issues including ambiguous annotations, dependency on GPT-based
scoring methods, and limited evaluation of generalizable cognitive abilities Yan et al. (2024).

To overcome these challenges, we proposeVCBENCH, a comprehensive benchmark explicitly de-
signed for multimodal mathematical reasoning with visual dependencies. VCBENCH encompasses
17 distinct subtasks, systematically assessing foundational cognitive skills such as temporal reasoning,
logical reasoning, spatial reasoning, geometric reasoning, and pattern recognition. By standardizing
task instructions and employing a multiple-choice evaluation format, VCBENCH provides objective,
reproducible evaluations, offering deeper insights into the strengths and limitations of current LVLMs.

3 VCBENCH

3.1 BENCHMARK CONSTRUCTION

For VCBENCH, we employed a systematic approach to collect high-quality multimodal mathematical
reasoning problems that explicitly require visual reasoning. We started by examining elementary
school mathematics online question banks, manually filtering for problems that contained at least two
images. In our manual review, we further excluded problems that contained non-English annotations
not inferable from visual cues, were in multiple-choice format, had low-resolution or unclear visuals,
relied on region-specific or cultural knowledge, or were ambiguous or not confidently understood by
the reviewers. The benchmark prioritizes vision-centric evaluation through perceptual reasoning tasks
that avoid specialized knowledge, while simultaneously challenging models to implicitly integrate and
synthesize visual information across multiple images - a critical capability for real-world applications
where understanding emerges from connecting disparate visual cues. During our selection process,
we enforced strict criteria to ensure quality and consistency. We only retained problems with
unique, unambiguous answers to facilitate objective evaluation. After the initial collection phase,
we utilized large language models to translate all problems into English (the specific prompts used
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are available in the Appendix), followed by rigorous human verification to maintain translation
accuracy. The human verification process served as a filtering mechanism, where we eliminated
problems containing non-English content in images, as well as those with unclear visual elements
or ambiguous instructions. This meticulous curation process ensured that our benchmark evaluates
genuine reasoning abilities rather than testing models on their capacity to handle poorly defined
problems. Through this methodology, we assembled our final collection of problems that encompass
various mathematical domains while maintaining consistent quality standards.

3.2 BENCHMARK STATISTICS

TC

SL

GS

OM

RO

OP

85.0

68.0

64.7

58.4

69.1

76.6

GPT-4o
Claude-3.7-Sonnet

Qwen-VL-Max
Gemini2.0-Flash

LLaVA-OneVision-72B
Qwen2.5-VL-72B-Instruct

Figure 4: Comparative performance (%) of six
various prominent LVLMs across six categories:
Time and Calendar (TC), Space and Location (SL),
Geometry and Shapes (GS), Objects and Motion
(OM), Reasoning and Observation (RO), and Or-
ganization and Pattern (OP).

VCBENCH comprises a diverse collection of
multimodal mathematical reasoning problems,
carefully organized into six major categories
to provide comprehensive coverage of differ-
ent cognitive dimensions. As shown in Table 1,
our benchmark contains 1,720 question-answer
pairs featuring a total of 6,697 images. Each
question is paired with, on average, 3.9 images;
some problems are highly complex and include
as many as 18 images, while the minimum per
question is 2 images. To systematically evaluate
the breadth of reasoning skills, we classified our
problems into six major domains, each capturing
distinct aspects of mathematical cognition. This
domain-specific organization enables a granu-
lar assessment of model performance across a
diverse set of cognitive abilities, ranging from
visual perception and spatial understanding to
arithmetic and logical reasoning. Such struc-
tured categorization not only facilitates targeted
diagnostics of model strengths and weaknesses,
but also mirrors the multifaceted nature of hu-
man mathematical problem-solving. Further-
more, we deliberately constrained the vocabu-
lary used in VCBench to 2,312 unique words,
minimizing confounding effects from linguistic
complexity and ensuring that evaluation focuses
squarely on reasoning capability. With an aver-
age question length of 136.2 characters, each problem remains concise, yet provides sufficient detail
and context to support an accurate solution. The six domains are:

• Time and Calendar: Problems testing temporal reasoning across two subcategories (Calendar
and Clock) that require understanding time intervals, and calendar-based calculations.

• Space and Location: Challenges focused on spatial reasoning (Direction, Location, and Place)
that assess understanding of relative positions, directions, and spatial relationships.

• Geometry and Shapes: Problems spanning five subcategories (Angle, Quad, Rectangular, Shape,
and Triangle) that test fundamental geometric comprehension from basic shape recognition to more
complex property analysis.

• Objects and Motion: Tasks in two subcategories (Cube and Move) that evaluate the understanding
of three-dimensional objects and motion transformations.

• Reasoning and Observation: Problems in two subcategories (Reasoning and Observe) designed
to test logical reasoning and careful visual observation skills.

• Organization and Pattern: Challenges across three subcategories (Organize, Pattern, and Weight)
that assess pattern recognition, sequencing, and organizational logic.
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Table 2: Performance of various vision-language models (Close-Source, Open-Source, and Math
Specialist categories) on a Multi-image setting across multiple tasks, including Time and Calendar,
Space and Location, Geometry and Shapes, Objects and Motion, Reasoning and Observation, and
Organization and Pattern.

Models Time and Calendar Space and Location Geometry and Shapes Objects and Motion Reasoning and Observation Organization and Pattern Avg.Calender Clock Direction Location Place Angle Quad Rectangular Shape Triangle Cube Move Reasoning Observe Organize Pattern Weight
Random Guess 33.33 32.78 25.00 29.81 33.33 31.00 27.63 29.17 31.84 29.01 28.37 29.35 33.33 29.41 30.17 31.32 33.33 29.83
Human 100.00 96.00 100.00 93.85 96.67 95.60 96.84 95.00 94.02 94.07 97.67 94.63 100.00 93.59 93.20 95.52 100.00 93.30

Close-Source Models
GPT-4o-mini OpenAI et al. (2024) 80.00 60.66 0.00 38.46 53.33 38.40 21.05 53.57 37.99 55.56 32.19 38.24 0.00 28.68 60.00 41.38 100.00 34.88
GPT-4o OpenAI et al. (2024) 100.00 40.00 20.00 30.77 66.67 46.00 57.89 28.57 50.22 51.85 37.67 50.37 90.00 31.27 76.00 37.93 80.00 40.29
Claude-3.7-Sonnet Anthropic (2025) 100.00 50.00 100.00 53.85 50.00 58.00 63.16 57.14 60.70 59.26 40.41 67.28 100.00 31.27 76.40 53.45 100.00 46.63
Qwen-VL-Max Bai et al. (2023) 0.00 46.67 0.00 42.31 66.67 74.00 52.63 42.86 54.15 66.67 56.16 60.66 50.00 35.27 68.00 39.66 100.00 47.03
Gemini2.0-Flash Deepmind (2025) 100.00 70.00 20.00 57.69 66.67 70.00 68.42 53.57 61.14 70.37 44.52 68.75 40.00 35.53 74.00 46.55 100.00 49.77

Open-Source Models
Emu2-Chat Sun et al. (2024b) 0.00 13.33 0.00 3.85 0.00 4.00 10.53 10.71 12.66 3.70 8.90 6.99 0.00 3.62 0.00 3.45 20.00 6.05
Idefics3-8B Laurençon et al. (2024) 0.00 3.33 20.00 15.38 33.33 11.60 10.53 17.86 23.14 3.70 9.59 16.91 0.00 9.69 8.40 15.52 0.00 12.91
DeepSeek-VL2 Wu et al. (2024) 0.00 23.33 0.00 23.08 16.67 14.00 10.53 14.29 29.69 14.81 6.85 18.38 10.00 9.43 44.00 20.69 0.00 15.47
Phi-3.5-vision-instruct Abdin et al. (2024) 0.00 23.33 100.00 19.23 66.67 16.00 15.79 28.57 27.07 33.33 22.60 22.79 0.00 21.32 34.00 12.07 0.00 22.73
InternVL2.5-8B Chen et al. (2024) 0.00 33.33 0.00 34.62 50.00 34.00 31.58 50.00 35.81 37.04 23.29 25.74 0.00 18.99 38.00 6.90 0.00 24.71
Llama-3.2-90B-Vision-Instruct AI (2024) 20.00 24.67 100.00 11.54 16.67 26.40 31.58 32.14 26.20 22.22 27.40 25.37 0.00 25.58 12.00 29.31 20.00 25.41
Qwen2.5-VL-7B-Instruct Bai et al. (2025) 100.00 13.33 0.00 19.23 50.00 20.00 31.58 25.00 30.13 51.85 32.19 40.81 0.00 25.19 30.00 27.59 0.00 29.24
Mantis-CLIP Jiang et al. (2024) 0.00 30.00 80.00 50.00 66.67 14.00 15.79 35.71 38.43 37.04 19.86 32.35 40.00 28.04 52.40 22.41 100.00 30.23
Mistral-Small-3.1-24B-Instruct Mistral (2025) 20.00 40.00 0.00 30.77 30.00 38.00 31.58 35.71 29.26 51.85 30.82 31.62 50.00 29.59 38.00 34.48 20.00 31.34
Kimi-VL-A3B-ThinkingTeam et al. (2025b) 100.00 26.67 100.00 30.77 33.33 48.00 36.84 28.57 49.78 33.33 30.14 41.91 0.00 25.32 68.00 27.59 100.00 34.13
LLaVA-Interleave-7B Li et al. (2024b) 0.00 36.67 20.00 19.23 83.33 46.00 26.32 57.14 39.74 29.63 30.82 33.46 50.00 33.46 62.00 31.03 100.00 35.47
LLaVA-OneVision-7B Li et al. (2024a) 0.00 40.00 0.00 11.54 83.33 44.00 36.84 32.14 37.99 48.15 30.82 46.69 50.00 32.56 58.00 29.31 100.00 36.63
Kimi-VL-A3B-InstructTeam et al. (2025b) 0.00 46.67 0.00 30.77 83.33 44.00 47.37 39.29 43.23 33.33 34.93 44.49 50.00 31.31 58.00 36.21 0.00 37.33
InternVL2.5-78B Chen et al. (2024) 20.00 31.33 100.00 42.31 66.67 54.00 47.37 46.43 53.28 55.56 33.56 40.44 50.00 28.04 76.00 31.03 100.00 37.56
Gemma3-27B-it Team et al. (2025a) 100.00 50.00 0.00 38.46 83.33 48.40 31.58 25.00 41.92 40.74 32.88 47.79 50.00 32.82 54.00 31.03 80.00 38.02
QVQ-72B-Preview Team (2024) 100.00 43.33 0.00 46.15 83.33 58.00 42.11 46.43 44.10 62.96 36.30 48.16 50.00 28.55 78.00 48.28 100.00 39.13
LLaVA-OneVision-72B Li et al. (2024a) 0.00 33.33 0.00 26.92 66.67 61.20 57.89 57.14 60.70 51.85 41.10 60.29 100.00 38.24 82.00 41.38 80.00 47.67
Qwen2.5-VL-72B-Instruct Bai et al. (2025) 0.00 40.67 0.00 53.85 50.00 68.00 68.42 53.57 55.02 74.07 58.22 60.66 60.00 35.53 76.00 43.10 100.00 48.08

4 EXPERIMENT

4.1 MAIN RESULTS

There are a total of 17 subtasks for the evaluation from the perspectives of Temporal Reasoning,
Spatial Reasoning, Geometric Reasoning, Logical Reasoning, and Pattern Recognition abilities over
21 VLMs. Table 2 provides detailed evaluation results across six visual reasoning tasks. Human
performance is near-perfect with an average score of 93.30, while random guessing achieves only
29.83, which emphasizes that these tasks, though inherently solvable by humans, pose substantial
challenges to current AI systems.

Figure 4 shows the comparative performance of six various prominent LVLMs across six tasks. Their
relative strengths lie particularly in tasks requiring spatial reasoning and observational interpretation,
suggesting these models have better internal representations or more effective cross-modal alignment
between visual and linguistic information. However, despite these advancements, even these top-
performing closed-source models exhibit notable shortcomings relative to humans, particularly in
high-complexity reasoning scenarios (e.g., Geometry and Objects and Motion), reflecting an ongoing
gap in advanced spatial reasoning, logical reasoning and pattern recognition capabilities.

Open-source models present an even more heterogeneous and generally lower performance landscape,
indicative of diverse model architectures, varying degrees of multi-modal integration sophistication,
and potentially inconsistent data quality or quantity during training. For example, large open-
source models, including Qwen2.5-VL-72B-Instruct (48.08%) and LLaVA-OneVision-72B (47.67%),
demonstrate performance comparable to mid-tier closed-source models. Their comparatively stronger
results, particularly in Geometry and Shapes and Organization and Pattern tasks, suggest these models
benefit from scale and possibly more sophisticated visual encoders or pre-training strategies. However,
they still encounter substantial difficulties in tasks requiring nuanced observation or reasoning about
motion and object interactions, highlighting remaining challenges in achieving cognative visual
reasoning. The variability across different tasks, especially pronounced in Objects and Motion
and Reasoning and Observation categories, points toward crucial areas requiring further research:
enhancing temporal reasoning, improving dynamic visual understanding, and strengthening the
integration of geometric and spatial cognition into visual-language models.

4.2 EVALUATION IN SINGLE-IMAGE SETTING

The evaluation is also conducted in a single-image setting for comparison. In single-image setting,
we integrate visual and textual elements into a cohesive layout as shown in Figure 3. If a model
performs well in single-image but poorly in multi-image, it suggests the model lacks compositional
reasoning ability to link separate inputs.

The results in Table 3 reveal two key findings: First, most models perform significantly better in single-
image settings compared to multi-image scenarios (average improvement of +42.3%), indicating a
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Table 3: Performance comparison of vision-language models across different categories in single-
image settings. The rightmost column shows the performance improvement ratio when switching
from multi-image to single-image settings.

Models Time and Calendar Space and Location Geometry and Shapes Objects and Motion Reasoning and Observation Organization and Pattern Avg. Improvement
RatioCalender Clock Direction Location Place Angle Quad Rectangular Shape Triangle Cube Move Reasoning Observe Organize Pattern Weight

Random Guess 33.33 32.78 25.00 29.81 33.33 31.00 27.63 29.17 31.84 29.01 28.37 29.35 33.33 29.41 30.17 31.32 33.33 29.83 -
Human 100.00 96.00 100.00 93.85 96.67 95.60 96.84 95.00 94.02 94.07 97.67 94.63 100.00 93.59 93.20 95.52 100.00 93.30 -

Close-Source Models
GPT-4o-mini OpenAI et al. (2024) 100.00 20.00 0.00 30.77 100.00 42.80 26.32 50.00 56.77 40.74 34.93 43.01 90.00 32.43 72.00 37.93 60.00 39.65 13.7%
GPT-4o OpenAI et al. (2024) 80.00 40.67 100.00 42.31 66.67 68.40 57.89 64.29 68.12 44.44 42.47 56.99 60.00 30.10 90.40 44.83 100.00 45.52 12.9%
Claude-3.7-Sonnet Anthropic (2025) 100.00 54.67 80.00 65.38 83.33 61.20 68.42 78.57 68.56 77.78 43.84 69.12 100.00 34.37 92.00 63.79 100.00 51.69 10.8%
Gemini2.0-Flash Deepmind (2025) 20.00 76.67 100.00 61.54 83.33 58.00 63.16 42.86 71.62 59.26 46.58 73.90 100.00 39.41 90.00 46.55 100.00 53.90 8.3%
Qwen-VL-Max Bai et al. (2023) 0.00 53.33 100.00 73.08 83.33 80.00 52.63 75.00 69.87 66.67 57.53 72.43 100.00 43.54 91.60 41.38 80.00 57.03 21.3%

Open-Source Models
Idefics3-8B Laurençon et al. (2024) 0.00 10.00 20.00 11.54 16.67 10.00 5.26 32.14 20.52 7.41 17.12 18.01 0.00 12.53 30.00 20.69 0.00 15.64 21.2%
LLaMA-3.2-90B-Vision-Instruct AI (2024) 80.00 30.00 0.00 15.38 33.33 26.00 15.79 25.00 17.03 33.33 27.40 26.47 100.00 19.64 49.60 12.07 0.00 22.38 -11.9%
Emu2-Chat Sun et al. (2024b) 60.00 12.67 100.00 23.08 16.67 24.00 42.11 28.57 24.02 18.52 22.60 24.63 10.00 22.87 12.00 22.41 0.00 23.08 281.5%
DeepSeek-VL2 Wu et al. (2024) 20.00 33.33 0.00 19.23 33.33 28.00 10.53 32.14 32.31 25.93 13.70 32.35 0.00 20.03 46.00 27.59 100.00 24.77 60.1%
Mantis-CLIP Jiang et al. (2024) 0.00 35.33 80.00 23.08 0.00 28.00 42.11 46.43 31.88 11.11 26.03 25.00 0.00 27.52 12.00 34.48 0.00 27.50 -9.0%
LLaVA-Interleave-7BLi et al. (2024b) 00.00 30.00 100.00 30.77 0.00 26.00 36.84 42.86 33.19 14.81 31.51 26.47 50.00 29.07 28.00 25.86 0.00 29.24 -17.6%
Phi-3.5-vision-instruct Abdin et al. (2024) 0.00 13.33 80.00 19.23 16.67 24.40 10.53 42.86 34.50 22.22 32.19 29.78 20.00 31.40 46.00 25.86 100.00 30.93 36.1%
LLaVA-OneVision-7B Li et al. (2024a) 0.00 43.33 0.00 23.08 100.00 44.00 21.05 35.71 44.10 44.44 30.82 42.65 40.00 29.07 64.40 27.59 80.00 35.47 -3.2%
InternVL2.5-8B Chen et al. (2024) 0.00 33.33 0.00 26.92 50.00 46.40 31.58 39.29 51.53 48.15 31.51 42.65 30.00 28.42 60.80 29.31 80.00 36.16 46.3%
Gemma3-27B-itTeam et al. (2025a) 80.00 40.00 0.00 26.92 33.33 48.40 21.05 57.14 45.85 33.33 33.56 45.22 100.00 30.10 66.80 20.69 60.00 36.80 2.1%
Kimi-VL-A3B-ThinkingTeam et al. (2025b) 0.00 33.33 0.00 34.62 50.00 62.00 52.63 39.29 52.40 77.78 26.03 55.15 50.00 25.19 86.00 39.66 100.00 38.72 13.4%
LLaVA-OneVision-72B Li et al. (2024a) 20.00 53.33 0.00 30.77 33.33 38.00 47.37 39.29 51.53 55.56 39.73 41.54 100.00 32.95 32.00 55.17 100.00 39.24 -17.7%
Mistral-Small-3.1-24B-Instruct Mistral (2025) 20.00 40.00 0.00 38.46 50.00 64.00 57.89 46.43 56.77 70.37 30.14 50.74 100.00 31.65 82.00 43.10 80.00 42.21 34.7%
QVQ-72B-Preview Team (2024) 80.00 41.33 80.00 61.54 50.00 64.00 68.42 39.29 58.95 81.48 32.19 64.34 50.00 35.01 90.00 50.00 100.00 47.44 21.2%
InternVL2.5-78B Chen et al. (2024) 80.00 50.00 100.00 42.31 50.00 62.80 63.16 57.14 65.94 55.56 32.19 61.76 90.00 36.43 88.00 36.21 100.00 47.73 27.1%
Kimi-VL-A3B-InstructTeam et al. (2025b) 0.00 70.00 100.00 50.00 66.67 50.00 31.58 35.71 59.39 51.85 46.58 62.13 50.00 38.11 82.00 46.55 100.00 48.37 29.6%
Qwen2.5-VL-7B-Instruct Bai et al. (2025) 0.00 53.33 100.00 46.15 83.33 72.80 52.63 60.71 61.14 55.56 60.96 64.34 100.00 37.86 92.00 36.21 80.00 51.10 74.8%
Qwen2.5-VL-72B-Instruct Bai et al. (2025) 20.00 55.33 100.00 73.08 83.33 80.00 52.63 75.00 69.87 66.67 57.53 72.43 90.00 43.54 92.00 41.38 100.00 57.03 18.6%

Math Specialist Models
G-LLaVA-13B Gao et al. (2023) 0.00 40.00 0.00 23.08 33.33 20.40 31.58 32.14 26.64 25.93 15.75 26.10 0.00 26.49 24.00 24.14 20.00 25.47 -
G-LLaVA-7B Gao et al. (2023) 100.00 36.67 20.00 30.77 0.00 30.00 21.05 50.00 31.88 40.74 23.97 27.21 0.00 27.26 28.00 24.14 100.00 28.26 -
MathLlava Shi et al. (2024) 100.00 20.00 80.00 26.92 0.00 32.00 31.58 21.43 27.51 11.11 34.93 29.04 40.00 29.97 28.40 29.31 80.00 29.30 -

Table 4: Influence of Chain-of-Thought Wei et al. (2023a) on model performances.

Model CoT Time and Calendar Space and Location Geometry and Shapes Objects and Motion Reasoning and Observation Organization and Pattern Avg.Calender Clock Direction Location Place Angle Quad Rectangular Shape Triangle Cube Move Reasoning Observe Organize Pattern Weight

GPT-4o OpenAI et al. (2024)
✗ 100.00 40.00 20.00 30.77 66.67 46.00 57.89 28.57 50.22 51.85 37.67 50.37 90.00 31.27 76.00 37.93 80.00 40.29
✓ 100.00 40.00 0.00 38.46 66.67 52.00 63.16 32.14 53.71 66.67 33.56 52.57 100.00 30.75 82.00 58.62 100.00 42.03

0.00 0.00 -20.00 +7.69 0.00 +6.00 +5.27 +3.57 +3.49 +14.82 -4.11 +2.20 +10.00 -0.52 +6.00 +20.69 +20.00 +1.74

Qwen-VL-Max Bai et al. (2023)
✗ 0.00 46.67 0.00 42.31 66.67 74.00 52.63 42.86 54.15 66.67 56.16 60.66 50.00 35.27 68.00 39.66 100.00 47.03
✓ 20.00 36.67 100.00 57.69 66.67 74.40 52.63 57.14 60.26 77.78 52.74 61.03 90.00 36.05 93.60 44.83 100.00 49.48

+20.00 -10.00 +100.00 +15.38 0.00 +0.40 0.00 +14.28 +6.11 +11.11 -3.42 +0.37 +40.00 +0.78 +25.60 +5.17 0.00 +2.45

Gemini2.0-Flash Deepmind (2025)
✗ 100.00 70.00 20.00 57.69 66.67 70.00 68.42 53.57 61.14 70.37 44.52 68.75 40.00 35.53 74.00 46.55 100.00 49.77
✓ 80.00 83.33 20.00 69.23 83.33 66.40 68.42 67.86 71.62 66.67 41.10 70.96 100.00 37.86 89.40 56.90 100.00 53.66

-20.00 +13.33 0.00 +11.54 +16.66 -3.60 0.00 +14.29 +10.48 -3.70 -3.42 +2.21 +60.00 +2.33 +15.40 +10.35 0.00 +3.89

strong bias toward single-image optimization. For instance, Qwen-VL-Max shows a +21.3% gain in
single-image performance, while models like Emu2-Chat exhibit dramatic improvements (+281.5%).
Second, specialized multi-image models like LLaVA-Interleave-7B show the opposite trend (-17.6%
in single-image mode), achieving higher accuracy in multi-image tasks than in single-image ones.
This contrast suggests that unlike dedicated multi-image architectures, conventional models struggle
to integrate visual information across multiple inputs, highlighting a critical limitation in current
vision-language systems. Addressing this gap by effectively leverage cross-image cues for reasoning
remains an essential challenge for future research.

4.3 RESULTS OF MATH SPECIALIST MODELS

The Math Specialist models, including G-LLaVA-13B, G-LLaVA-7B, and MathLlava, exhibit rela-
tively low overall performance, with average scores from 25.47 to 29.30. Notably, G-LLaVA-13B
records the lowest score at 25.47, while MathLlava achieves a slightly higher score of 29.30. Though
these models are designed to focus on mathematical reasoning, their performance across diverse
tasks-such as time and calendar, spatial reasoning, and geometric challenges-remains inconsistent.
For example, while G-LLaVA-7B reaches a perfect score (100.00) on the Calendar sub-task, its scores
in other categories, such as Clock and geometry-related tasks, are considerably lower.

Furthermore, the results indicate that these Math Specialist models struggle to match the performance
of their general-purpose counterparts. Despite showing some strengths-for example, MathLlava
scoring 34.93 on the Cube task-these models fall short on several key aspects, including Clock,
Location, and reasoning tasks. This pattern underscores the challenge of integrating specialized
mathematical capabilities with the broader spectrum of visual understanding.

5 ANALYSIS

5.1 INFLUENCE OF CHAIN-OF-THOUGHT ON MODEL PERFORMANCE

Chain-of-thought Wei et al. (2023a) reasoning generally enhances model performance, as the Table 4
shows stable improvements across several domains when CoT is enabled. For instance, Qwen-VL-
Max exhibits a dramatic 40% boost in the “Reasoning” task, highlighting the significant impact of
structured reasoning on spatial understanding. Gemini2.0-Flash also benefits substantially, with a
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Table 5: Comparisons between existing visual math benchmarks for LVLMs.

Benchmark Image Numbers Question Numbers Required Skills Multi-Images Answer Type
Temporal Spatial Geometric Logical Pattern

Olympiadbench He et al. (2024) 5,129 8,952 ✗ ✗ ✓ ✗ ✗ ✗ Free-form
GeoQA Chen et al. (2021) 4,998 4,998 ✗ ✗ ✓ ✗ ✗ ✗ Multiple Choice
MATH-Vision Wang et al. (2024a) 3,472 3,040 ✗ ✗ ✓ ✗ ✗ ✓ Free-form & Multiple Choice
MathVista Lu et al. (2023) 5,487 6,141 ✓ ✗ ✓ ✓ ✗ ✗ Free-form & Multiple Choice
MMMUmath Yue et al. (2024) 577 540 ✗ ✗ ✓ ✗ ✗ ✓ Free-form & Multiple Choice
GeoMath Xu et al. (2024) 4,540 9,155 ✗ ✗ ✓ ✗ ✗ ✗ Free-form & Multiple Choice & Prove
U-Math Chernyshev et al. (2025) 225 1,100 ✗ ✗ ✓ ✗ ✗ ✗ Free-form
Blink Fu et al. (2024) 7,358 3,807 ✗ ✗ ✗ ✗ ✓ ✓ Multiple Choice
MM-MATH Sun et al. (2024a) 5,929 5,929 ✗ ✗ ✓ ✗ ✗ ✗ Free-form
MMIEmath Xia et al. (2024) 26,534 20,103 ✗ ✗ ✓ ✗ ✗ ✓ Free-form & Multiple Choice
Polymath Gupta et al. (2024) 5,000 5,000 ✗ ✓ ✓ ✗ ✓ ✗ Multiple Choice
NTSEBench Pandya et al. (2025) 4,642 2,728 ✗ ✓ ✗ ✓ ✓ ✓ Multiple Choice
BSA 1 Xu et al. (2025) 312 312 ✗ ✓ ✗ ✗ ✗ ✓ Multiple Choice
MV-MATH Wang et al. (2025) 6,061 2,009 ✗ ✓ ✓ ✓ ✓ ✓ Free-form & Multiple Choice
Ours 6,697 1,720 ✓ ✓ ✓ ✓ ✓ ✓ Multiple Choice

Visual Perception Error Calculation Error Contextual Misinterpretation Logical Error Answer Consolidation Error

GPT-4o Gemini2.0-Flash Calude-3.7-SonnetQVQ

Figure 5: A comparison of error distributions among three model, GPT-4o, Gemini2.0-Flash, and
Calude-3.7-Sonnet, across five error categories: visual perception errors, calculation errors, contextual
misunderstandings, logical errors, and answer integration errors.

15.40 point increase in the “Pattern” category and a 16.66 point rise in “Place” suggesting that CoT
particularly aids in tasks requiring complex organizational and geometric reasoning.

While improvements are evident, the efficacy of chain-of-thought (CoT) prompting exhibits strong
task-dependent variation. CoT consistently enhances performance in multi-step reasoning tasks (e.g.,
Pattern and Reasoning tasks), where all models show gains. However, it proves neutral in perception-
heavy tasks (e.g., Calender and Direction tasks) due to interference with low-level spatial or temporal
processing. Nonetheless, the overall trend supports that incorporating CoT tends to enhance problem-
solving abilities, especially in tasks that demand high-level reasoning and pattern recognition.

5.2 COMPARISON WITH OTHER BENCHMARKS

In comparison to existing visual math benchmarks, our dataset stands out in several important ways
as shown in Table 5. While benchmarks such as Olympiadbench He et al. (2024) and GeoQA Chen
et al. (2021) focus primarily on specific skills like geometry and logical reasoning, our benchmark
includes a broader spectrum of required skills, including temporal, spatial, geometric, logical, and
pattern recognition. This comprehensive skill coverage provides a more holistic evaluation of
LVLMs. Additionally, our dataset supports multi-image tasks, a feature not widely supported by
other benchmarks such as Blink Fu et al. (2024) and GeoQA Chen et al. (2021), enhancing its
applicability for real-world tasks that require understanding across multiple visual inputs. Moreover,
our benchmark boasts a higher image-question ratio than other benchmarks, meaning that on average,
each question is associated with more images. Finally, our dataset offers multiple-choice answer
types for easier evaluation, unlike other benchmarks that provide free-form answer format which is
hard to evaluate, such as MM-MATH Sun et al. (2024a) and U-Math Chernyshev et al. (2025).

5.3 ERROR DISTRIBUTION FOR VCBENCH

We define five error types in this benchmark: Visual Perception Error indicates that the model
misinterprets or fails to accurately perceive visual content; Calculation Error captures mistakes made
during arithmetic computations; Contextual Misinterpretation occurs when the model misreads the
textual conditions, such as treating unrelated information as relevant; Logical Error refers to flaws
in the reasoning process; and Answer Consolidation Error encompasses failures to directly answer
the question or instances where multiple, conflicting answers are provided. We conduct manual
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error classification for all questions across four top-tier models, enabling precise identification of
each model’s failure patterns and relative weaknesses across different error categories. As shown in
Figure 5, Visual Perception Errors are predominant across all models, with Gemini2-Flash exhibiting
the highest rate at about 62%. This persistent pattern across architectures suggests that enhancing
visual perception capabilities remains the most critical challenge for multimodal models. Calculation
Errors remain consistently low (ranging from about 4% to about 7%), indicating that basic arithmetic
computation has become relatively robust in modern models. Contextual Misinterpretation errors
are minimal, particularly for Gemini2-Flash (about 3%) and Claude (about 4%), which indicates a
relatively robust understanding of textual context. However, QVQ’s comparatively higher rate (6%)
may reflect its tendency toward over-reasoning, where excessive analysis leads to detachment from
the original question context.

On the other hand, discrepancies are more apparent in the Logical and Answer Consolidation Error
rates. Claude shows a significantly high Logical Error rate of about 33% compared to GPT-4o’s about
15% and QVQ’s about 22%, revealing the weaknesses in its deductive reasoning pipelines. Moreover,
while Answer Consolidation Errors are generally low (QVQ at about 11% and both Gemini2-Flash
and Claude at about 7%), GPT-4o presents a higher rate of about 23%, suggesting its advanced
reasoning capabilities may come at the cost of response discipline, where the model sometimes
generates multiple answers rather than a single one. This trade-off between exploratory reasoning
and answer precision presents an important optimization target for future iterations.

5.4 ANALYSIS OF PROBLEM DIFFICULTY AND MODEL PERFORMANCE

Table 6: Accuracy comparison of various models
on questions categorized by difficulty along with
their average performance.

Models Easy Medium Hard Avg.
LLaMA-3.2-90B-Vision-Instruct 22.22 26.15 23.89 25.41
Mantis-CLIP 29.63 29.30 32.37 30.23
InternVL2.5-78B 25.93 36.03 41.62 37.56
QVQ-72B-Preview 18.52 36.71 45.66 39.13
LLaVA-OneVision-72B 29.63 45.32 53.76 47.62
Qwen2.5-VL-72B-Instruct 25.93 45.49 55.11 48.08

All questions in our benchmark were sourced
from established online question banks and an-
notated by editors with a difficulty coefficient
ranging from 0.0 to 1.0. Questions with coeffi-
cients between 0.0 and 0.35 are categorized as
easy, those between 0.35 and 0.75 as medium,
and those from 0.75 to 1.0 as hard. Overall,
27.7% of questions are classified as easy, 41.6%
as medium, and 30.7% as hard. Interestingly,
the results in Table 6 reveal that questions an-
notated as hard tend to yield higher accuracy,
while the easy and medium problems register lower accuracy. This counterintuitive outcome may
be attributed to the fact that simpler questions, which primarily require the identification of patterns
rather than intricate computations, pose a different challenge compared to the hard questions that
demand complex calculation and structured reasoning. It is important to note that the difficulty
levels in our benchmark are derived from the original textbook platforms, where they are based on
large-scale student performance statistics and thus reflect authentic human difficulty. Upon closer
analysis, we observed that models often perform worse on problems considered “easy” by human
standards. These are typically perception-heavy tasks. For instance, in clock reading questions,
models struggle to recognize the positions of hour and minute hands, particularly when the clocks
have decorative or irregular designs. Similarly, in block counting tasks, the presence of stacked
or overlapping cubes frequently confuses model predictions due to challenges in depth perception
and object segmentation. Although both types of questions are suitable for elementary students and
considered trivial by humans, they expose current models’ significant limitations in low-level visual
understanding, leading to surprisingly low performance on these “easy” items.

6 CONCLUSION

This paper introduces VCBENCH—a comprehensive evaluation framework designed to assess mul-
timodal mathematical reasoning with explicit visual dependency. By addressing the limitations of
existing datasets in multi-image integration and cross-modal relational reasoning, our benchmark
provides a detailed analysis of 26 state-of-the-art LVLMs across six cognitive domains and 17 task
categories. The evaluation reveals significant performance disparities, particularly in areas such as
multi-step instruction following, basic visual perception, cross-image consistency, and vulnerability
to visual hallucinations.
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7 ETHICS STATEMENT

This research complies with the ICLR Code of Ethics. All Large Vision-Language Models (LVLMs)
evaluated in this study are publicly available and widely adopted in academia and industry. VCBENCH
was constructed using synthetic and open-access visual content, without involving any personally
identifiable, sensitive, or proprietary information. Our work is limited to methodological exploration
and model evaluation, with no direct experimentation on human subjects or real-world deployment.
While the benchmark is designed to rigorously assess multimodal mathematical reasoning, we
recognize that advancements in LVLMs may inadvertently reinforce existing biases embedded in
training corpora. We encourage future researchers and practitioners to systematically take fairness,
bias, and robustness into account when applying or extending our methodology. The authors declare
no conflicts of interest associated with this submission.

8 REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our findings with VCBENCH.
The benchmark, including all problems, images, and evaluation protocols, is described in detail
in Sections 3 and 4. We provide comprehensive documentation on dataset construction, problem
generation, cognitive domain taxonomy, and visual dependency design. Evaluation procedures for all
26 LVLMs—including model configurations, scoring metrics, and inference setups—are transparently
reported in the main text and further clarified in the Appendix. All preprocessing, benchmark scripts,
and evaluation code will be released alongside the paper, enabling independent replication of our
results. In addition, the full problem set, associated images, and baseline evaluation outputs will be
released as part of the anonymous supplementary materials, to facilitate benchmarking, comparison,
and future work in multimodal mathematical reasoning.
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A APPENDIX

A.1 EXPERIMENT DETAILS

Table 7: Generation parameters for LVLMs (with grouped configurations).

Model Generation Setup

GPT-4o-mini & GPT-4o API URL: https://api.openai.com/v1/chat/completions
temperature = 0.2, max_tokens = 1024

Claude-3.7-Sonnet API URL: https://api.anthropic.com/v1/messages, tempera-
ture = 0.2, max_tokens = 1024

Gemini2.0-Flash API URL: https://generativelanguage.googleapis.com/
v1beta/models/gemini-pro:generateContent, temperature =
0.2, max_tokens = 1024

Qwen-VL-Max Use dashscope package, temperature = 0.2, max_new_tokens = 1024

Open-Source Models

Same parameters for all below:
Deployed by vllm, with do_sample = True, temperature = 0.2,
max_new_tokens = 1024
• Idefics3-8B
• LLaMA-3.2-90B-Vision-Instruct
• Emu2-Chat
• DeepSeek-VL2
• Mantis-CLIP
• LLaVA-Interleave-7B
• Phi-3.5-vision-instruct
• InternVL-2.5
• LLaVA-OneVision-7B/72B
• Gemma3-27B-it
• Mistral-Small-3.1-24B-Instruct
• Qwen2.5-VL-7B/72B-Instruct

QVQ-72B-Preview do_sample = True, temperature = 0.2, max_new_tokens = 2048

G-LLaVA-7B/13B do_sample = True, temperature = 0.2, max_new_tokens = 1024

MathLlava do_sample = True, temperature = 0.2, max_new_tokens = 1024

A.2 IMPACT OF IMAGE COUNT ON MODEL ACCURACY

Table 8: Model accuracy (%) across problems grouped by image count. The number of questions per
image count is shown in the second row. As image count increases, accuracy generally decreases
with some fluctuations.

Model / Image Count 2 images 3 images 4 images 5 images 6–7 images 8–10 images 11+ images

Question Count 316 544 515 221 76 34 14

GPT-4o 58.9 47.3 44.7 40.3 35.5 30.9 21.4
Claude-3.7-sonnet 63.5 54.8 50.1 46.7 40.8 37.2 23.1
Qwen-VL-max 61.9 52.1 48.0 45.2 39.7 36.7 18.7
Gemini-2.0-flash 65.2 57.1 53.8 51.2 44.1 39.8 26.2

Table 8 presents the accuracy of four leading multimodal models across problems grouped by the
number of images provided in each question. We observe a general trend: as the number of images
increases, average model accuracy tends to decrease. These results underscore the importance of
developing models capable of robust visual reasoning, especially in scenarios requiring the integration
of multiple visual inputs.
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Lele built a structure with blocks, and from the top view, it looks like:

where the numbers indicate the number of small cubes in that position. 
From the front view, this structure would look like:

A.                               B.                               C.                      D.

To solve this problem, I need to 
determine what the structure 
would look like from the front view 
based on the top view… Looking at 
the options, the answer is A.

Lele built a structure with blocks, 
and there‘s a top view shown with 
numbers indicating how many…
So, the answer is B.

To determine the front view of 
the structure, we will analyze the 
top view given in the problem and 
deduce how the structure…
So, the answer is A.

The top view tells us the number 
of blocks at each position when 
viewed from above. To determine 
the front view…
So, the answer is B.

Figure 6: Case for Visual Perception Error.

To solve this problem, we need to 
determine the number of faces 
exposed to the outside when…
So, the answer is A.

To solve this problem, let's analyze 
the structure of the figures and 
how many faces are exposed.…
So, the answer is C.

To solve this problem, we need to 
determine the number of faces 
exposed to the outside when the 
⑥th figure is placed on the…
So, the answer is A.

Let's analyze the number of 
faces exposed to the outside for 
the first few figures. Figure 1: 5 
faces are exposed.…
So, the answer is C.

When the 

is placed on the table as shown in the diagram:

the ⑥th figure has ( ) faces exposed to the outside.

A. 20     B. 7 C. 30 D. 36

Figure 7: Case for Calculation Error.

A.3 CASE STUDIES

Individually, each of the five cases highlights a distinct type of reasoning error made by models. In
Figure 6 (Visual Perception Error), models failed to accurately map the numbers from a top view
to a front view, resulting in confusion about the arrangement of cubes in three-dimensional space.
Figure 7 (Calculation Error) exposed mistakes in pattern recognition and extrapolation, with models
incorrectly calculating the number of exposed faces as the sequence grew. Figure 8 (Contextual
Misinterpretation) showed that models struggled to correctly interpret the scenario and geometric
relationships required to form a triangle, often misapplying the cutting method or misreading the
intent of the task. In Figure 9 (Logical Error), models made incorrect choices about physical stability,
suggesting a lack of real-world reasoning about spatial structure and balance. Figure 10 (Answer
Consolidation Error) demonstrated the models’ challenges in mentally rotating and consolidating
three-dimensional information to select the correct two-dimensional viewpoint.

These examples reveal that current models face significant difficulties in visual and mathematical
reasoning. Their limitations extend beyond simple miscalculations, reflecting deeper struggles with
tasks that require the integration of visual perception, contextual understanding, logical reasoning, and
spatial manipulation. In many cases, models fail to synthesize information across multiple steps or
modalities, leading to errors in connecting abstract concepts to specific visual details or consolidating
reasoning into correct answers. Together, these challenges suggest that current models lack the
comprehensive, multi-step cognitive processing abilities required for human-level performance in
complex multimodal mathematical problems.
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To determine which cutting 
method can form a triangle, we 
need to consider the triangle…
So, the answer is D.

To determine which cutting 
methods can form a triangle, we 
need to apply the triangle…
So, the answer is C.

To determine which cutting 
method can form a triangle, I need 
to analyze each option and check if 
the three resulting pieces…
So, the answer is A.

Lele built a structure with blocks, 
and there‘s a top view shown with 
numbers indicating how many…
So, the answer is B.

As shown in the image below, each box contains two sticks. If one of the 
sticks is cut into two pieces with scissors, and you want to form a triangle with 
the other stick, which of the following cutting methods can form a triangle?

A.  B. 

C.                                                         D.  

Figure 8: Case for Contextual Misinterpretation.

The most stable one is ( ).

A. B. 

C. 

To determine which of the given 
structures is the most stable, we 
need to consider the principles of…
So, the answer is A.

To determine the most stable 
structure among the given options, 
we must consider the base area…
So, the answer is B.

I need to analyze the stability of 
the three structures shown in the 
images to determine which one is 
the most stable…
So, the answer is B.

Lele built a structure with blocks, 
and there‘s a top view shown with 
numbers indicating how many…
So, the answer is B.

Figure 9: Case for Logical Error.

The figure viewed from the left is ( )

A. B. C. 

To determine the correct answer, 
we need to visualize how the 3D 
figure would look when viewed…
So, the answer is C.

To determine the correct answer, 
we need to analyze the 3D 
structure in the first image and…
So, the answer is C.

To solve this problem, I need to 
determine what the figure would 
look like when viewed from the…
So, the answer is A.

Lele built a structure with blocks, 
and there‘s a top view shown with 
numbers indicating how many…
So, the answer is B.

Figure 10: Case for Answer Consolidation Error.
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A.4 PROMPT FOR EXPERIMENT

Table 9: Inference Prompt.

Inference Prompt

You are a helpful AI assistant.
Please answer the following questions and output the answer options directly.
Question: { question }

Table 10: Inference Prompt with Chain-of-Thought.

Inference Prompt with Chain-of-Thought

You are a helpful AI assistant.
Please think step by step before answer the following questions and the output the answer.
Question: { question }

Table 11: LLM-Based Evaluation Prompt.

LLM-Evaluation Prompt

You are an answer evaluator. I will give you a response and an answer.
Please tell me whether this response is correct or wrong. Just answer yes or no.
For example,
Response: The figure that cannot be folded into a cube is: C. <image>
Correct Answer: B
So, you need to respond no only.
Response: The unfolded shape of the cube is: B. <image>
Correct Answer: B
So, you need to respond yes only.
Here is the response and correct answer I want you to evaluate.
Response: { model response }
Correct Answer: { correct answer }
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