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ABSTRACT

Recent advancements in Large Vision-Language Models (LVLMs) have signifi-
cantly enhanced their ability to integrate visual and linguistic information, achieving
near-human proficiency in tasks like object recognition, captioning, and visual
question answering. However, current benchmarks typically focus on knowledge-
centric evaluations that assess domain-specific expertise, often neglecting the core
ability to reason about fundamental mathematical elements and visual concepts.
We identify a gap in evaluating elementary-level math problems, which rely on ex-
plicit visual dependencies-requiring models to discern, integrate, and reason across
multiple images while incorporating commonsense knowledge, all of which are
crucial for broader AGI capabilities. To address this gap, we introduce VCBENCH,
a comprehensive benchmark for multimodal mathematical reasoning with explicit
visual dependencies. VCBENCH includes 1,720 problems across six cognitive
domains, featuring 6,697 images (averaging 3.9 per question) to ensure multi-
image reasoning. We evaluate 26 state-of-the-art LVLMs on VCBENCH, revealing
substantial performance disparities, with even the top models unable to exceed 50%
accuracy. Our findings highlight the ongoing challenges in visual-mathematical
integration and suggest avenues for future LVLM advancements.

1 INTRODUCTION

Recent advancements in Large Vision-Language Models (LVLMs) |Anthropic| (2025); |[Deepmind
(2025)); |OpenAl et al.| (2024); Bai et al|(2023)) have made significant strides in bridging the gap
between visual understanding and language processing. These models have achieved remarkable
performance across a range of tasks, demonstrating near-expert human-level proficiency in domains
such as object recognition, caption generation, and visual question answering |Lin et al.| (2015));
Agrawal et al.| (2016). Among the various domains explored, LVLMs have shown particular promise
in tasks that require both visual and linguistic reasoning, making them increasingly relevant for
real-world applications.

While many visual mathematics benchmarks, such as MathVista Lu et al.| (2023 and MathVision
Wang et al.[(2024a), focus on knowledge-centric evaluations that assess domain-specific mathematical
or geometric expertise, they often fail to evaluate a model’s core ability to perceive and reason
about fundamental mathematical elements and visual concepts. Moreover, these knowledge-centric
evaluations are easily influenced by the pre-existing knowledge embedded in large language models,
which may obscure true reasoning capabilities. To advance towards Artificial General Intelligence
(AGI), a more holistic approach to multi-modal reasoning is needed-one that goes beyond task-specific
benchmarks and better captures generalizable cognitive abilities.

In this context, we identify a gap in the evaluation of models on elementary-level math problems
Cobbe et al.|(2021a)); Wei et al.| (2023b). These problems, typically at the elementary school level,
do not require complex mathematical or geometric reasoning but rely heavily on explicit visual
dependencies-the ability to discern and integrate visual features across images and understand
how different visual elements relate to one another to solve problems. This mirrors the cognitive
development of children, who rely on similar skills to solve problems despite not yet possessing
advanced reasoning abilities. Understanding and modeling this form of reasoning is crucial, as it
represents a fundamental cognitive ability essential for advancing toward broader AGI capabilities.
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Figure 1: Representative examples from the VCBENCH, showcasing diverse question types and
categories including Space and Location (Direction, Location and Place), Reasoning and Observation
(Reasoning and Observe), Time and Calendar (Calendar and Clock), Objects and Motion (Cube and
Move), Organization and Pattern (Weight, Organize and Pattern), and Geometry and Shapes (Shape,
Quad, Angle, Rectangular and Triangle).

To address this gap, we introduce VCBENCH, Taple 1: Comprehensive Statistics of the
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geting elementary-level math problems (grades
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. o . Examples (Q&A pairs) 1,720
reasoning across multiple images to derive so-
. . : . . Images 6,697
lutions. As shown in Figure [T} it covers six . .
S A Avg. images per question 3.9
key cognitive domains: Time and Calendar, Spa- .
. - Avg. question length 136.2
tial and Positional Awareness, Geometry and . ) .
. . . Max. # images in question 18
Shapes, Objects and Motion, Reasoning and Ob- . . . -
Min. # images in question 2

servation, and Organization and Patterns. It also
evaluates five competencies: temporal reason-
ing, geometric reasoning, logical reasoning, spatial reasoning, and pattern recognition. These
competencies span a broad spectrum, from basic temporal and spatial understanding to more ad-
vanced geometric and logical reasoning, providing a thorough evaluation of multimodal model
performance. Comprising 1,720 QA pairs and 6,697 images (averaging 3.9 images per question),
VCBENCH ensures models must reason across multiple visual inputs, rather than relying on single-
image comprehension. With this holistic framework, VCBENCH serves as a valuable resource for
advancing research in multimodal mathematical reasoning.

In our extensive experimental evaluation, we assessed 26 state-of-the-art LVLMs across 17 distinct
task categories within VCBENCH. Despite achieving near-perfect accuracy on normal human-level
performance, the best-performing visual models were unable to exceed 50% accuracy. Many of these
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Figure 2: (a) Overview of the VCBENCH dataset structure, highlighting its six main categories
and associated subcategories, designed to assess multimodal reasoning capabilities of LVLMs.
(b) Distribution of question types in the VCBENCH, illustrating the relative frequency across different
visual reasoning subcategories

state-of-the-art models exhibited a notable lack of pattern recognition in images, especially when it
came to reasoning tasks that required integrating visual cues across multiple images. Interestingly,
we observed that these same tasks could be easily answered by normal human. This highlights a
significant gap in current benchmarks, which fail to adequately assess vision-centric mathematical
reasoning abilities.

We make several key contributions with VCBENCH:

Unlike existing benchmarks that focus on knowledge-centric evaluations, we emphasize vision-centric
assessments. VCBENCH targets problems that do not require specialized knowledge but rely on the
common perceptual reasoning of mathematical images and concepts. This approach aligns with the
way children learn-first mastering visual reasoning and later acquiring domain-specific knowledge.

VCBENCH is designed around multi-image tasks, with each question containing an average of 3.9
images. This requirement challenges models to explicitly integrate visual cues across multiple images
and reason about how they interact, which better reflects real-world scenarios where information is
often distributed across multiple visual inputs.

Our benchmark provides a holistic evaluation of various visual reasoning capabilities, such as
temporal reasoning, spatial understanding, and pattern recognition. While these tasks may seem
simple to children, they represent fundamental reasoning abilities that LVL.Ms often struggle with. Our
experiments demonstrate that tasks considered easy for children-such as identifying time sequences
or spatial relationships-prove challenging for state-of-the-art LVLMs, highlighting the gaps in current
multimodal reasoning capabilities.

2 RELATED WORK

Large Vision-Language Models. Large Vision-Language Models (LVLMs) have significantly
advanced the integration of vision and language, demonstrating strong performance in tasks such
as image captioning, visual question answering (VQA), and complex multimodal reasoning 'Wang
et al.| (2024b); Wu et al.| (2023)). Recent developments, such as Gemini-2.0 Deepmind|(2025), QVQ
Team)| (2024), and Calude-3.7-Sonnet |/ Anthropic| (2025), showcase emergent abilities in cross-modal
instruction-following and chain-of-thought reasoning.

Despite these advancements, quantitatively evaluating LVLMs, particularly in visual mathematical
reasoning, remains challenging. Existing benchmarks like MathVista |Lu et al.|(2023)), MathBench
Liu et al.|(2024), and Math-LLMs Liu et al.|(2023) typically assess models within narrow domains,
such as arithmetic word problems or geometry-based visual environments. Consequently, these
benchmarks primarily measure foundational skills like geometric or spatial reasoning, limiting their
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Figure 3: Comparative evaluation of various LVLMs under Multi-Image and Single-Image settings
for the same question. The letters (A, B, C, D) indicate models’ predictions, with correct answers
marked in green and incorrect answers in red.

capacity to comprehensively evaluate broader cognitive integration and reasoning abilities. To address
this limitation, we introduce VCBENCH, a systematic evaluation framework designed to rigorously
assess LVLMs performance across diverse multimodal mathematical reasoning tasks with explicit
visual dependencies.

Visual Mathematical Reasoning. Mathematical reasoning is a core cognitive ability increasingly
explored within the context of LVLMs research Hendrycks et al.| (2021); |Cobbe et al.| (2021b).
While earlier benchmarks such as GSM8K |Cobbe et al.| (2021b) and MATH Hendrycks et al.| (2021)
primarily focused on text-based mathematical problems, recent research has expanded toward visual
mathematical reasoning, incorporating diagrams, charts, and geometry-based problem-solving Wang
et al.| (2024b); |Yang et al.| (2024)).

Multimodal mathematical reasoning requires LVLMs to integrate visual perception and logical
reasoning, presenting a greater challenge compared to purely textual problems. Recent benchmarks
like MathVista [Lu et al.| (2023)) and MathGLM-Vision |Yang et al.|(2024) have advanced evaluation
efforts but still suffer from issues including ambiguous annotations, dependency on GPT-based
scoring methods, and limited evaluation of generalizable cognitive abilities |Yan et al.| (2024).

To overcome these challenges, we proposeVCBENCH, a comprehensive benchmark explicitly de-
signed for multimodal mathematical reasoning with visual dependencies. VCBENCH encompasses
17 distinct subtasks, systematically assessing foundational cognitive skills such as temporal reasoning,
logical reasoning, spatial reasoning, geometric reasoning, and pattern recognition. By standardizing
task instructions and employing a multiple-choice evaluation format, VCBENCH provides objective,
reproducible evaluations, offering deeper insights into the strengths and limitations of current LVLMs.

3 VCBENCH

3.1 BENCHMARK CONSTRUCTION

For VCBENCH, we employed a systematic approach to collect high-quality multimodal mathematical
reasoning problems that explicitly require visual reasoning. We started by examining elementary
school mathematics online question banks, manually filtering for problems that contained at least two
images. In our manual review, we further excluded problems that contained non-English annotations
not inferable from visual cues, were in multiple-choice format, had low-resolution or unclear visuals,
relied on region-specific or cultural knowledge, or were ambiguous or not confidently understood by
the reviewers. The benchmark prioritizes vision-centric evaluation through perceptual reasoning tasks
that avoid specialized knowledge, while simultaneously challenging models to implicitly integrate and
synthesize visual information across multiple images - a critical capability for real-world applications
where understanding emerges from connecting disparate visual cues. During our selection process,
we enforced strict criteria to ensure quality and consistency. We only retained problems with
unique, unambiguous answers to facilitate objective evaluation. After the initial collection phase,
we utilized large language models to translate all problems into English (the specific prompts used
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are available in the Appendix), followed by rigorous human verification to maintain translation
accuracy. The human verification process served as a filtering mechanism, where we eliminated
problems containing non-English content in images, as well as those with unclear visual elements
or ambiguous instructions. This meticulous curation process ensured that our benchmark evaluates
genuine reasoning abilities rather than testing models on their capacity to handle poorly defined
problems. Through this methodology, we assembled our final collection of problems that encompass
various mathematical domains while maintaining consistent quality standards.

3.2 BENCHMARK STATISTICS

VCBENCH comprises a diverse collection of

multimodal mathematical reasoning problems, __ ... . quenvVimax  ——  LlavA-OneVision-728
Carefully Organized intO SiX major Categories ——  Claude-3.7-Sonnet —— Gemin.iI?(.:o-Flash ——  Qwen2.5-VL-72B-Instruct
to provide comprehensive coverage of differ-

ent cognitive dimensions. As shown in Table[T]
our benchmark contains 1,720 question-answer
pairs featuring a total of 6,697 images. Each
question is paired with, on average, 3.9 images;
some problems are highly complex and include
as many as 18 images, while the minimum per
question is 2 images. To systematically evaluate
the breadth of reasoning skills, we classified our
problems into six major domains, each capturing
distinct aspects of mathematical cognition. This
domain-specific organization enables a granu-
lar assessment of model performance across a
diverse set of cognitive abilities, ranging from
visual perception and spatial understanding to
arithmetic and logical reasoning. Such struc-
tured categorization not only facilitates targeted
diagnostics of model strengths and weaknesses,
but also mirrors the multifaceted nature of hu-
man mathematical problem-solving. Further-
more, we deliberately constrained the vocabu-
lary used in VCBench to 2,312 unique words,
minimizing confounding effects from linguistic
complexity and ensuring that evaluation focuses
squarely on reasoning capability. With an aver-
age question length of 136.2 characters, each problem remains concise, yet provides sufficient detail
and context to support an accurate solution. The six domains are:

oM

Figure 4: Comparative performance (%) of six
various prominent LVLMs across six categories:
Time and Calendar (TC), Space and Location (SL),
Geometry and Shapes (GS), Objects and Motion
(OM), Reasoning and Observation (RO), and Or-
ganization and Pattern (OP).

* Time and Calendar: Problems testing temporal reasoning across two subcategories (Calendar
and Clock) that require understanding time intervals, and calendar-based calculations.

» Space and Location: Challenges focused on spatial reasoning (Direction, Location, and Place)
that assess understanding of relative positions, directions, and spatial relationships.

* Geometry and Shapes: Problems spanning five subcategories (Angle, Quad, Rectangular, Shape,
and Triangle) that test fundamental geometric comprehension from basic shape recognition to more
complex property analysis.

* Objects and Motion: Tasks in two subcategories (Cube and Move) that evaluate the understanding
of three-dimensional objects and motion transformations.

* Reasoning and Observation: Problems in two subcategories (Reasoning and Observe) designed
to test logical reasoning and careful visual observation skills.

* Organization and Pattern: Challenges across three subcategories (Organize, Pattern, and Weight)
that assess pattern recognition, sequencing, and organizational logic.
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Table 2: Performance of various vision-language models (Close-Source, Open-Source, and Math
Specialist categories) on a Multi-image setting across multiple tasks, including Time and Calendar,
Space and Location, Geometry and Shapes, Objects and Motion, Reasoning and Observation, and
Organization and Pattern.

Models ‘Time and Calendar ‘Space and Location Geometry and Shapes Objects and Motion ~ Reasoning and Observation _Organization and Pattern

Calender  Clock  Direction Location Place Angle Quad Rectangular Shape Triangle Cube  Move  Reasoning  Observe  Organize Pattern Weight ‘&

Random Guess 3333 3278 2500 2081 3333 3100 27.63 29.17 3184 2901 2837 2935 33.33 2941 3007 3132 3333 2983

Human 10000 9600 10000 9385 9667 9560 9684 9500 9402 9407 9767 9463 100.00 93.59 9320 9552 100.00 9330
Close-Source Models

GPT-do-minilOpenAl et al 12024 8000  60.66  0.00 3846 5333 3840 2105 53.57 3799 5556 3219 3824 0.00 28.68 6000 4138 10000 3488

GPT-doOpenAl et al | 2024 10000 4000 20.00 3077 6667 4600 57.89 2857 5022 5185 3767 5037 90.00 3127 7600 3793 8000 4029

Claude-3.7-Soniel{ Anthropic J2025 10000 5000 10000 5385 5000 5800 63.16 5714 6070 5926 4041 6728 100.00 3127 7640 5345 10000 4663

Quwen-VL-Max/Bar elal § 2025 000 4667  0.00 4231 6667 7400 5263 4286 5415 6667 5616 6066 50.00 3527 6800 3966 100.00 47.03

Gemini2.0-Flash|Déepmind | 2025 10000 7000 20.00 5769 6667 7000 6842 53.57 6114 7037 4452 6875 40.00 35.53 7400 4655 10000 49.77
Open-Source Models

Emu2-Chat[Sun et al_|2024b 0.00 1333 000 385 000 400 1053 1071 1266 370 890 699 0.00 3.62 0.00 345 2000 605

Idefics3-8B|Laurencon et al.| 2024 0.00 333 20.00 1538 3333 1160 10.53 17.86 204 370 959 1691 0.00 9.69 8.40 1552 000 1291

et alJ 2025 000 2333 0.00 2308 1667 1400 1053 14.29 2069 1481 685 18.38 10.00 943 4400 2060 000 1547

NS Abdin et al 12024 000 2333 10000 1923 6667 1600 1579 2857 2707 3333 2260 2279 0.00 21.32 3400 1207 000 2273

8B|Chen el al.| 2024 000 3333 000 3462 5000 3400 3158 50.00 3581 3704 2329 2574 0.00 18.99 3800 690 000 2471

-90B-Vision-TAStruc AL 2024, 2000 2467 10000 1154 1667 2640 3158 32.14 2620 2222 2740 2537 0.00 25.58 1200 2931 2000 2541

7B-Instruct/Bai el al. | 2025 10000 1333 0.00 1923 5000 2000 3158 25.00 3003 5185 3219 4081 0.00 25.19 3000 2759 000 2924

1PfJiang ct al. | 2024 000 3000  80.00 5000 6667 14.00 1579 3571 3843 3704 1986 3235 40.00 28.04 5240 2241 10000 3023

mall-3.T-Z9B-TnstructMistral J2025] 2000 4000 0.00 3077 3000 3800 3158 3571 2926 5185 3082 3162 50.00 29.59 3800 3448 2000 3134

ingTeam eCal. 20250 10000 2667 10000 3077 3333 4800 3684 2857 4978 3333 3004 4191 0.00 25.32 6800 2759 100.00 3413

erlea Lictal J 20240 000 3667 2000 1923 8333 4600 2632 57.14 3974 2963 3082 3346 50.00 3346 6200 3103 10000 3547

neVision-TBILi eLal. | 200a; 000 4000 000 1154 8333 4400 3684 3214 3799 4815 3082 4669 50.00 32.56 5800 2031 10000 3663

o 000 4667 000 3077 8333 4400 4737 3929 4323 3333 3493 4449 50.00 3131 5800 3621 000 3733

2000 3133 10000 4231 6667 5400 47.37 4643 5328 5556 3356 4044 50.00 2804 7600 3103 10000 37.56

10000 5000 0.0 3846 8333 4840 3158 25.00 4192 4074 3288 4779 50.00 3282 5400 3103 80.00 3802

10000 4333 0.00 4615 8333 5800 4211 4643 4410 6296 3630 4816 50.00 28.55 7800 4828 100.00 39.13

000 3333 000 2692 6667 6120 5789 5714 6070 5185 4110 6029 100.00 3824 8200 4138 80.00 47.67

000 4067 0.0 5385 5000 68.00 6842 53.57 5502 7407 5822 60.66 60.00 35.53 7600 4310 10000 4808

4 EXPERIMENT

4.1 MAIN RESULTS

There are a total of 17 subtasks for the evaluation from the perspectives of Temporal Reasoning,
Spatial Reasoning, Geometric Reasoning, Logical Reasoning, and Pattern Recognition abilities over
21 VLMs. Table 2] provides detailed evaluation results across six visual reasoning tasks. Human
performance is near-perfect with an average score of 93.30, while random guessing achieves only
29.83, which emphasizes that these tasks, though inherently solvable by humans, pose substantial
challenges to current Al systems.

Figure [] shows the comparative performance of six various prominent LVLMs across six tasks. Their
relative strengths lie particularly in tasks requiring spatial reasoning and observational interpretation,
suggesting these models have better internal representations or more effective cross-modal alignment
between visual and linguistic information. However, despite these advancements, even these top-
performing closed-source models exhibit notable shortcomings relative to humans, particularly in
high-complexity reasoning scenarios (e.g., Geometry and Objects and Motion), reflecting an ongoing
gap in advanced spatial reasoning, logical reasoning and pattern recognition capabilities.

Open-source models present an even more heterogeneous and generally lower performance landscape,
indicative of diverse model architectures, varying degrees of multi-modal integration sophistication,
and potentially inconsistent data quality or quantity during training. For example, large open-
source models, including Qwen2.5-VL-72B-Instruct (48.08%) and LLaVA-OneVision-72B (47.67%),
demonstrate performance comparable to mid-tier closed-source models. Their comparatively stronger
results, particularly in Geometry and Shapes and Organization and Pattern tasks, suggest these models
benefit from scale and possibly more sophisticated visual encoders or pre-training strategies. However,
they still encounter substantial difficulties in tasks requiring nuanced observation or reasoning about
motion and object interactions, highlighting remaining challenges in achieving cognative visual
reasoning. The variability across different tasks, especially pronounced in Objects and Motion
and Reasoning and Observation categories, points toward crucial areas requiring further research:
enhancing temporal reasoning, improving dynamic visual understanding, and strengthening the
integration of geometric and spatial cognition into visual-language models.

4.2 EVALUATION IN SINGLE-IMAGE SETTING

The evaluation is also conducted in a single-image setting for comparison. In single-image setting,
we integrate visual and textual elements into a cohesive layout as shown in Figure [3] If a model
performs well in single-image but poorly in multi-image, it suggests the model lacks compositional
reasoning ability to link separate inputs.

The results in Table[3|reveal two key findings: First, most models perform significantly better in single-
image settings compared to multi-image scenarios (average improvement of +42.3%), indicating a
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Table 3: Performance comparison of vision-language models across different categories in single-
image settings. The rightmost column shows the performance improvement ratio when switching
from multi-image to single-image settings.

Models ‘Time and Calendar Space and Location Geometry and Shapes Objects and Motion  Reasoning and Observation _Organization and Patiern —,~ Improvement
Calender Clock  Direction Location Place  Angle Quad Rectangular Shape Triangle Cube ove  Reasoning  Observe  Organize Pattern  Weight "® atio
Random Guess 3333 3278 2500 2981 3333 3100 27.63 2907 3184 2901 2837 2935 3333 2041 3007 3132 3333 2983
Human 10000 9600 10000 9385 9667 9560 9684 9500 9402 9407 9767 9463 100.00 93.59 9320 9552 10000 93.30
Close-Source Models
GPT-4ominiOpenAT et al 12024 10000 2000 0.00 3077 10000 4280 2632 5000 5677 4074 3493 4301 90.00 3243 7200 3793 6000 3965
GPT-4o[OpenAl et Al 224, 8000 4067 10000 4231 6667 6840 5789 6429 6812 4ddd 4247 5699 60.00 30.10 9040 4483 10000 4552
Claude-3.7-Sonnet{Anthropic J2023 10000 5467 8000 6538 8333 6120 6842 7857 6856 7178 4384 69.12 100.00 3437 9200 6379 10000 5169
Gemini2.0-Flash|Deepmind | 202> 2000 7667 10000 6154 8333 5800 6316 4286 7162 5926 4658 7390 10000 3941 9000 4655 10000 53.90
Qwen-VL-Max|Bai et al. | 2023 000 5333 10000 7308 8333 8000 5263 7500 6987 6667 5753 7243 100.00 4354 9160 4138  80.00 57.03
Open-Source Models
Idefics3-8B[Laurencon et al. J2024 000 1000 2000 1154 1667 1000 526 3214 2052 741 1712 1801 0.00 1253 3000 2060 000 1564
UB- ViSO s ric AL 2024, 8000 3000  0.00 1538 3333 2600 1579 2500 1703 3333 2740 2647 10000 19.64 4960 1207 000 2238
al 2024 6000 1267 10000 2308 1667 2400 4201 2857 2402 1852 2260 2463 10.00 2287 1200 2241 000 2308
2000 3333 0.00 1923 3333 2800 1053 3204 3231 2593 1370 3235 0.00 20.03 4600 2759 10000 2477
000 3533 8000 2308 000 2800 4211 4643 3188 ILIl 2603 2500 0.00 27.52 1200 3448 000 2750
av 0000 3000 10000 3077 000 2600 3684 4286 3319 1481 3151 2647 50.00 20,07 2800 2586 000 2924
Phi-3. -instructlAbdin cLal 12024 000 1333 8000 1923 1667 2440 1053 4286 3450 2222 3219 2978 20.00 31.40 4600 2586 10000 3093
LLaVA-OneVision-7B|Cr et al. 12024a 000 4333 000 2308 10000 4400 2105 3571 4410 4444 3082 4265 40.00 2907 6440 2759 8000 3547
InternVL2.5-8B|Chen el al 2024 000 3333 000 2692 5000 4640 3LS8 3929 5153 4815 3151 4265 30.00 2842 6080 2931 8000 3616
Gemma3-27B-if Team eCal 1 20754, 8000 4000  0.00 2692 3333 4840 2105 5704 4585 3333 3356 4522 100.00 30.10 6680 2069  60.00 3680
Kimi-VL-A3B- Thiking leam Lal 20250 000 3333 000 3462 5000 6200 5263 3929 5240 7178 2603 5515 50.00 25.19 8600  39.66 10000 38.72
LLaVA-OneVision-72B|Lt et al. | 2024 2000 5333 0.00 3077 3333 3800 4737 3929 5153 5556 3973 4154 100.00 3295 3200 5507 10000 39.24
Mistral-Small-3.1-24B-[Struct Mistral | 2025] 2000 4000 0.00 3846 5000 6400 5789 4643 5677 7037 3014 5074 100.00 3165 8200 4310 8000 4221
QVQ- view[Team 2024 8000 4133 8000 6154 5000 6400 6842 3929 5895 8148 3219 6434 50.00 3501 9000 5000 10000 47.44
InternVL2.5-78B|Chen L al. 12024 8000 5000 10000 4231 5000 6280 6316 57014 6594 5556 3219 6176 90.00 3643 8800 3621 10000 47.73
A3B-InSTruc] Team et al_| 20255, 000 7000 10000 5000 6667 5000 3158 3571 5939 5185 4658 6213 50.00 38.11 8200 4655 10000 4837
VL-TB-Instruct Bai et al. | 2025 000 5333 10000 4615 8333 7280 5263 6071 6114 5556 6096 6434 100.00 37.86 9200 3621 8000 510
VL-72B-InstrucBai et al. | 2025, 2000 5533 10000 7308  §333 8000 5263 7S 6987 6667 5753 7243 90.00 4354 9200 4138 10000 57.03
Math Specialist Models

G-LLaVA-13B[Gao et al J2023 000 4000 000 2308 3333 2040 3158 3204 2664 2593 1575 2610 0.00 2649 2400 2414 2000 2547
G-LLaVA-7B|Gao eLal 12025 10000 3667 2000 3077 000 3000 2105 5000 3188 4074 2397 2721 0.00 27.26 2800 2414 10000 28.26
MathLlavaShi et al. | 2024 10000 2000 8000 2692 000 3200 3158 2143 2751 1LII 3493 2904 40.00 2097 2840 2931 8000 2930

Table 4: Influence of Chain-of-Thought |Wei et al.|(2023a) on model performances.

Time and Calendar Space and Location Geometry and Shapes Objects and Motion Reasoning and Observation  Organization and Pattern

Model €T Calender Clock _Direction Location Place Angle Quad Rectangular Shape Triangle Cube  Move  Reasoning  Observe  Orgamize Pattern Weight Y&
10000 4000 2000 3077 6667 4600 5789 2857 5022 5185 3767 5037 90.00 3127 7600 3793 8000 4029

GPT-40[OpenAl ot al J2024 V10000 4000 0.00 3846 6667 5200 63.16 3214 5371 6667 3356 5257 100.00 3075 8200 5862 100.00 42.03
0.00 0.00 -20.00 +7.69 0.00 +6.00  +5.27 +3.57 +3.49 +14.82 -4.11 +2.20 +10.00 -0.52 +6.00 +20.69 42000 +1.74

x 000 4667 000 4231 6667 7400 5263 4286 5415 6667 3616 60.66 50.00 3527 6800 39.66 10000 47.03

Qwen-VL-Max|Bai et al Jp023) V2000 3667 10000 5769 6667 7440 52.63 S7.14 6026 7778 5274 61.03 90.00 36.05 93.60 4483 100.00 49.48
+20.00 -10.00 +100.00 +15.38 0.00 +0.40  0.00 +14.28 +6.11 +1L11 =342 +0.37 +40.00 +0.78 +25.60 +5.17 0.00 +2.45

X 10000 7000 2000 5769 6667 7000 6842 5357 6L14 7037 4452 6875 40.00 35.53 7400 4655 10000 49.77

Gemini2.0-Flash{Deepmind 12025 v 80.00 83.33 20.00 69.23 83.33 66.40 6842 67.86 71.62 66.67 41.10 70.96 100.00 37.86 89.40 56.90 100.00  53.66
-20.00 +13.33 0.00 +11.54 +16.66  -3.60 0.00 +14.29 +10.48 -3.70 =342 +2.21 +60.00 +2.33 +15.40 +10.35 0.00 +3.89

strong bias toward single-image optimization. For instance, Qwen-VL-Max shows a +21.3% gain in
single-image performance, while models like Emu2-Chat exhibit dramatic improvements (+281.5%).
Second, specialized multi-image models like LLaVA-Interleave-7B show the opposite trend (-17.6%
in single-image mode), achieving higher accuracy in multi-image tasks than in single-image ones.
This contrast suggests that unlike dedicated multi-image architectures, conventional models struggle
to integrate visual information across multiple inputs, highlighting a critical limitation in current
vision-language systems. Addressing this gap by effectively leverage cross-image cues for reasoning
remains an essential challenge for future research.

4.3 RESULTS OF MATH SPECIALIST MODELS

The Math Specialist models, including G-LLaVA-13B, G-LLaVA-7B, and MathLlava, exhibit rela-
tively low overall performance, with average scores from 25.47 to 29.30. Notably, G-LLaVA-13B
records the lowest score at 25.47, while MathLlava achieves a slightly higher score of 29.30. Though
these models are designed to focus on mathematical reasoning, their performance across diverse
tasks-such as time and calendar, spatial reasoning, and geometric challenges-remains inconsistent.
For example, while G-LLaVA-7B reaches a perfect score (100.00) on the Calendar sub-task, its scores
in other categories, such as Clock and geometry-related tasks, are considerably lower.

Furthermore, the results indicate that these Math Specialist models struggle to match the performance
of their general-purpose counterparts. Despite showing some strengths-for example, MathLlava
scoring 34.93 on the Cube task-these models fall short on several key aspects, including Clock,
Location, and reasoning tasks. This pattern underscores the challenge of integrating specialized
mathematical capabilities with the broader spectrum of visual understanding.

5 ANALYSIS

5.1 INFLUENCE OF CHAIN-OF-THOUGHT ON MODEL PERFORMANCE

Chain-of-thought|[Wei et al| (2023a) reasoning generally enhances model performance, as the Table 4]
shows stable improvements across several domains when CoT is enabled. For instance, Qwen-VL-
Max exhibits a dramatic 40% boost in the “Reasoning” task, highlighting the significant impact of
structured reasoning on spatial understanding. Gemini2.0-Flash also benefits substantially, with a
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Table 5: Comparisons between existing visual math benchmarks for LVLMs.

Required Skills

Benchmark Image Numbers  Question Numbers Multi-Images Answer Type
Temporal Spatial Geometric Logical Pattern
Olympiadbench|He et al. (2024 5,129 8,952 X X v X X x Free-form
GeoQA|Chen et al. (2021 4,998 4,998 X X v x x x Multiple Choice
MATH-Vision| Wang et al. {2024a/ 3472 3,040 x x v x x v Free-form & Multiple Choice
MathVista|Lu et al (2023 5487 6,141 v x v v X x Free-form & Multiple Choice
MMMU 5 Yuie et al 2024] 577 540 X X v X X v Free-form & Multiple Choice
GeoMath/Xu et al {2024 4,540 9,155 X X v X X X Free-form & Multiple Choice & Prove
U-Math|Chernyshev et al. {2025 225 1,100 X X v X X X Free-form
Blink|Fu et al. (2004 7358 3.807 X X X X v v Multiple Choice
MM-MATH Sun et al.{2024a 5,929 5,929 X X v x x x Free-form
MMIE 0 Xia et al {2004 26,534 20,103 x x v x x v Free-form & Multiple Choice
Polymath|Gupta et al. (2024 5,000 5,000 x v v X v X Multiple Choice
NTSEBenchiPandya et al. (2025 4,642 2,728 X v X v v v Multiple Choice
BSA[[Xu et al {2025 312 312 x v X X X v Multiple Choice
MV-MATH{Wang et al. 2025 6,061 2,009 X v v v v v Free-form & Multiple Choice
Ours 6,697 1,720 v v v v v v Multiple Choice
QVQ GPT-40 Gemini2.0-Flash Calude-3.7-Sonnet
Visual Perception Error Calculation Error Contextual Misinterpretation Logical Error Answer Consolidation Error

Figure 5: A comparison of error distributions among three model, GPT-40, Gemini2.0-Flash, and
Calude-3.7-Sonnet, across five error categories: visual perception errors, calculation errors, contextual
misunderstandings, logical errors, and answer integration errors.

15.40 point increase in the “Pattern” category and a 16.66 point rise in “Place” suggesting that CoT
particularly aids in tasks requiring complex organizational and geometric reasoning.

While improvements are evident, the efficacy of chain-of-thought (CoT) prompting exhibits strong
task-dependent variation. CoT consistently enhances performance in multi-step reasoning tasks (e.g.,
Pattern and Reasoning tasks), where all models show gains. However, it proves neutral in perception-
heavy tasks (e.g., Calender and Direction tasks) due to interference with low-level spatial or temporal
processing. Nonetheless, the overall trend supports that incorporating CoT tends to enhance problem-
solving abilities, especially in tasks that demand high-level reasoning and pattern recognition.

5.2 COMPARISON WITH OTHER BENCHMARKS

In comparison to existing visual math benchmarks, our dataset stands out in several important ways
as shown in Table[5] While benchmarks such as Olympiadbench |[He et al| (2024) and GeoQA |Chen
et al.|(2021) focus primarily on specific skills like geometry and logical reasoning, our benchmark
includes a broader spectrum of required skills, including temporal, spatial, geometric, logical, and
pattern recognition. This comprehensive skill coverage provides a more holistic evaluation of
LVLMs. Additionally, our dataset supports multi-image tasks, a feature not widely supported by
other benchmarks such as Blink |[Fu et al.| (2024) and GeoQA |Chen et al.[| (2021]), enhancing its
applicability for real-world tasks that require understanding across multiple visual inputs. Moreover,
our benchmark boasts a higher image-question ratio than other benchmarks, meaning that on average,
each question is associated with more images. Finally, our dataset offers multiple-choice answer
types for easier evaluation, unlike other benchmarks that provide free-form answer format which is
hard to evaluate, such as MM-MATH [Sun et al.| (2024a)) and U-Math |Chernyshev et al.| (2025)).

5.3 ERROR DISTRIBUTION FOR VCBENCH

We define five error types in this benchmark: Visual Perception Error indicates that the model
misinterprets or fails to accurately perceive visual content; Calculation Error captures mistakes made
during arithmetic computations; Contextual Misinterpretation occurs when the model misreads the
textual conditions, such as treating unrelated information as relevant; Logical Error refers to flaws
in the reasoning process; and Answer Consolidation Error encompasses failures to directly answer
the question or instances where multiple, conflicting answers are provided. We conduct manual
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error classification for all questions across four top-tier models, enabling precise identification of
each model’s failure patterns and relative weaknesses across different error categories. As shown in
Figure[5] Visual Perception Errors are predominant across all models, with Gemini2-Flash exhibiting
the highest rate at about 62%. This persistent pattern across architectures suggests that enhancing
visual perception capabilities remains the most critical challenge for multimodal models. Calculation
Errors remain consistently low (ranging from about 4% to about 7%), indicating that basic arithmetic
computation has become relatively robust in modern models. Contextual Misinterpretation errors
are minimal, particularly for Gemini2-Flash (about 3%) and Claude (about 4%), which indicates a
relatively robust understanding of textual context. However, QVQ’s comparatively higher rate (6%)
may reflect its tendency toward over-reasoning, where excessive analysis leads to detachment from
the original question context.

On the other hand, discrepancies are more apparent in the Logical and Answer Consolidation Error
rates. Claude shows a significantly high Logical Error rate of about 33% compared to GPT-40’s about
15% and QVQ’s about 22%, revealing the weaknesses in its deductive reasoning pipelines. Moreover,
while Answer Consolidation Errors are generally low (QVQ at about 11% and both Gemini2-Flash
and Claude at about 7%), GPT-40 presents a higher rate of about 23%, suggesting its advanced
reasoning capabilities may come at the cost of response discipline, where the model sometimes
generates multiple answers rather than a single one. This trade-off between exploratory reasoning
and answer precision presents an important optimization target for future iterations.

5.4 ANALYSIS OF PROBLEM DIFFICULTY AND MODEL PERFORMANCE

All questions in our benchmark were sourced
from established online question banks and an- Table 6: Accuracy comparison of various models
notated by editors with a difficulty coefficient on questions categorized by difficulty along with
ranging from 0.0 to 1.0. Questions with coeffi- their average performance.

cients between 0.0 and 0.35 are categorized as

easy, those between 0.35 and 0.75 as medium, Models Easy Medium Hard Avg.
LLaMA-3.2-90B-Vision-Instruct 2222 26.15 2389 2541

and those from 0.75 to l.Q as hard. Overall, oA e a3 vy
27.7% of questions are classified as easy, 41.6%  Intemv12.5-788 2593 3603 4162 37.56
3 1 QVQ-72B-Preview 18.52  36.71 45.66  39.13

as med1umz and 30.7% as hard. Inter;stmgly, LLaVA-OneVision-72B 2063 4532 5376 47.62
the results in Table @ reveal that questions an-  Qwen2.5-VL-72B-Instruct 2593 4549 55.11 48.08

notated as hard tend to yield higher accuracy,
while the easy and medium problems register lower accuracy. This counterintuitive outcome may
be attributed to the fact that simpler questions, which primarily require the identification of patterns
rather than intricate computations, pose a different challenge compared to the hard questions that
demand complex calculation and structured reasoning. It is important to note that the difficulty
levels in our benchmark are derived from the original textbook platforms, where they are based on
large-scale student performance statistics and thus reflect authentic human difficulty. Upon closer
analysis, we observed that models often perform worse on problems considered “easy” by human
standards. These are typically perception-heavy tasks. For instance, in clock reading questions,
models struggle to recognize the positions of hour and minute hands, particularly when the clocks
have decorative or irregular designs. Similarly, in block counting tasks, the presence of stacked
or overlapping cubes frequently confuses model predictions due to challenges in depth perception
and object segmentation. Although both types of questions are suitable for elementary students and
considered trivial by humans, they expose current models’ significant limitations in low-level visual
understanding, leading to surprisingly low performance on these “easy’ items.

6 CONCLUSION

This paper introduces VCBENCH—a comprehensive evaluation framework designed to assess mul-
timodal mathematical reasoning with explicit visual dependency. By addressing the limitations of
existing datasets in multi-image integration and cross-modal relational reasoning, our benchmark
provides a detailed analysis of 26 state-of-the-art LVLMs across six cognitive domains and 17 task
categories. The evaluation reveals significant performance disparities, particularly in areas such as
multi-step instruction following, basic visual perception, cross-image consistency, and vulnerability
to visual hallucinations.
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7 ETHICS STATEMENT

This research complies with the ICLR Code of Ethics. All Large Vision-Language Models (LVLMs)
evaluated in this study are publicly available and widely adopted in academia and industry. VCBENCH
was constructed using synthetic and open-access visual content, without involving any personally
identifiable, sensitive, or proprietary information. Our work is limited to methodological exploration
and model evaluation, with no direct experimentation on human subjects or real-world deployment.
While the benchmark is designed to rigorously assess multimodal mathematical reasoning, we
recognize that advancements in LVLMs may inadvertently reinforce existing biases embedded in
training corpora. We encourage future researchers and practitioners to systematically take fairness,
bias, and robustness into account when applying or extending our methodology. The authors declare
no conflicts of interest associated with this submission.

8 REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our findings with VCBENCH.
The benchmark, including all problems, images, and evaluation protocols, is described in detail
in Sections [3|and @ We provide comprehensive documentation on dataset construction, problem
generation, cognitive domain taxonomy, and visual dependency design. Evaluation procedures for all
26 LVLMs—including model configurations, scoring metrics, and inference setups—are transparently
reported in the main text and further clarified in the Appendix. All preprocessing, benchmark scripts,
and evaluation code will be released alongside the paper, enabling independent replication of our
results. In addition, the full problem set, associated images, and baseline evaluation outputs will be
released as part of the anonymous supplementary materials, to facilitate benchmarking, comparison,
and future work in multimodal mathematical reasoning.
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A APPENDIX

A.1 EXPERIMENT DETAILS

Table 7: Generation parameters for LVLMs (with grouped configurations).

Model | Generation Setup

API URL: https://api.openai.com/vl/chat/completions

GPT-40-mini & GPT-40 temperature = 0.2, max_tokens = 1024

Claude-3.7-Sonnet APIURL: https://api.anthropic.com/v1l/messages, tempera-
ture = 0.2, max_tokens = 1024

Gemini2.0-Flash API URL: https://generativelanguage.googleapis.com/
vlibeta/models/gemini-pro:generateContent, temperature =
0.2, max_tokens = 1024

Qwen-VL-Max

Use dashscope package, temperature = 0.2, max_new_tokens = 1024

Same parameters for all below:
Deployed by vllm, with do_sample = True, temperature = 0.2,
max_new_tokens = 1024

e Idefics3-8B

e LLaMA-3.2-90B-Vision-Instruct
¢ Emu2-Chat

* DeepSeek-VL2

¢ Mantis-CLIP

e LLaVA-Interleave-7B

¢ Phi-3.5-vision-instruct

¢ InternVL-2.5

¢ LLaVA-OneVision-7B/72B

¢ Gemma3-27B-it

¢ Mistral-Small-3.1-24B-Instruct

¢ Qwen2.5-VL-7B/72B-Instruct

Open-Source Models

QVQ-72B-Preview
G-LLaVA-7B/13B
MathLlava

do_sample = True, temperature = 0.2, max_new_tokens = 2048

do_sample = True, temperature = 0.2, max_new_tokens = 1024

do_sample = True, temperature = 0.2, max_new_tokens = 1024

A.2 IMPACT OF IMAGE COUNT ON MODEL ACCURACY

Table 8: Model accuracy (%) across problems grouped by image count. The number of questions per
image count is shown in the second row. As image count increases, accuracy generally decreases
with some fluctuations.

Model / Image Count 2 images 3images 4images 5images 6-7images 8-10images 11+ images
Question Count 316 544 515 221 76 34 14
GPT-40 58.9 47.3 44.7 40.3 355 30.9 21.4
Claude-3.7-sonnet 63.5 54.8 50.1 46.7 40.8 37.2 23.1
Qwen-VL-max 61.9 52.1 48.0 452 39.7 36.7 18.7
Gemini-2.0-flash 65.2 57.1 53.8 51.2 44.1 39.8 26.2

Table [§] presents the accuracy of four leading multimodal models across problems grouped by the
number of images provided in each question. We observe a general trend: as the number of images
increases, average model accuracy tends to decrease. These results underscore the importance of
developing models capable of robust visual reasoning, especially in scenarios requiring the integration
of multiple visual inputs.
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Lele built a structure with blocks,
and there's a fop view shown with
numbers indicating how many...

Lele built a structure with blocks, and from the top view, it looks like: gn
So, the answer is B.

11
1[2]2]

where the numbers indicate the number of small cubes in that position.
From the front view, this structure would look like:

To determine the front view of
the structure, we will andlyze the
top view given in the problem and
deduce how the structure..

So, the answer is A.

v
&)

To solve this problem, I need to
determine what the structure
would look like from the front view
based on the top view... Looking at
the options, the answer is A.

A B. C. D.

| | The top view tells us the number
of blocks at each position when
viewed from above. To determine
the front view.
So, the answer is B.

Figure 6: Case for Visual Perception Error.

To solve this problem, we need to
determine the number of faces
When the exposed to the outside when...
So, the answer is A.

is placed on the table as shown in the diagram: @ To solve this problem, let's analyze

the structure of the figures and

how many faces are exposed....
@ | ‘ D | | |/'r U So, the answer is C.
N To solve this problem, we need to

determine the number of faces
the ®'th figure has () faces exposed to the outside.

exposed to the outside when the
61th figure is placed on the...
So, the answer is A.

faces exposed to the outside for
the first few figures. Figure 1: 5
faces are exposed....

So, the answer is C.

A. 20 B.7 C.30 D. 36 ' Let's analyze the number of

Figure 7: Case for Calculation Error.

A.3 CASE STUDIES

Individually, each of the five cases highlights a distinct type of reasoning error made by models. In
Figure [6] (Visual Perception Error), models failed to accurately map the numbers from a top view
to a front view, resulting in confusion about the arrangement of cubes in three-dimensional space.
Figure[7] (Calculation Error) exposed mistakes in pattern recognition and extrapolation, with models
incorrectly calculating the number of exposed faces as the sequence grew. Figure [§] (Contextual
Misinterpretation) showed that models struggled to correctly interpret the scenario and geometric
relationships required to form a triangle, often misapplying the cutting method or misreading the
intent of the task. In Figure 0] (Logical Error), models made incorrect choices about physical stability,
suggesting a lack of real-world reasoning about spatial structure and balance. Figure [I0] (Answer
Consolidation Error) demonstrated the models’ challenges in mentally rotating and consolidating
three-dimensional information to select the correct two-dimensional viewpoint.

These examples reveal that current models face significant difficulties in visual and mathematical
reasoning. Their limitations extend beyond simple miscalculations, reflecting deeper struggles with
tasks that require the integration of visual perception, contextual understanding, logical reasoning, and
spatial manipulation. In many cases, models fail to synthesize information across multiple steps or
modalities, leading to errors in connecting abstract concepts to specific visual details or consolidating
reasoning into correct answers. Together, these challenges suggest that current models lack the
comprehensive, multi-step cognitive processing abilities required for human-level performance in
complex multimodal mathematical problems.
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To determine which cutting
method can form a triangle, we
need to consider the triangle...

As shown in the image below, each box contains two sticks. If one of the Go. o e 6 ),

sticks is cut into two pieces with scissors, and you want to form a triangle with
the other stick, which of the following cutting methods can form a triangle?

To determine which cutting
methods can form a triangle, we
A m B. need to apply the triangle...

So, the answer is C.

To determine which cutting
method can form a triangle, I need
+o analyze each option and check if
the three resulting pieces...

So, the answer is A.

Lele built a structure with blocks,
and there's a fop view shown with
numbers indicating how many...

So, the answer is B.

w
i

Figure 8: Case for Contextual Misinterpretation.

To determine which of the given
structures is the most stable, we
need to consider the principles of...

The most stable oneis (). So, the answer is A

A B.
To determine the most stable
structure among the given options,
we must consider the base area..
So, the answer is B.

C.

I need to analyze the stability of

the three structures shown in the
images to determine which one is

the most stable...

So, the answer is B.

Lele built a structure with blocks,
and there's a fop view shown with
numbers indicating how many...
So, the answer is B.

Figure 9: Case for Logical Error.

To determine the correct answer,
we need to visualize how the 3D
figure would look when viewed...

The figure viewed from the leftis () s

To determine the correct answer,
we need to analyze the 3D
structure in the first image and...
So, the answer is C.

To solve this problem, I need to
determine what the figure would
look like when viewed from the...
So, the answer is A.

Lele built a structure with blocks,
and there's a top view shown with
numbers indicating how many...
So, the answer is B.

4+ XKO &

Figure 10: Case for Answer Consolidation Error.
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A.4 PROMPT FOR EXPERIMENT

Table 9: Inference Prompt.

Inference Prompt

You are a helpful Al assistant.
Please answer the following questions and output the answer options directly.
Question: { question }

Table 10: Inference Prompt with Chain-of-Thought.

Inference Prompt with Chain-of-Thought

You are a helpful Al assistant.
Please think step by step before answer the following questions and the output the answer.
Question: { question }

Table 11: LLM-Based Evaluation Prompt.

LLM-Evaluation Prompt

You are an answer evaluator. I will give you a response and an answer.
Please tell me whether this response is correct or wrong. Just answer yes or no.
For example,

Response: The figure that cannot be folded into a cube is: C. <image>
Correct Answer: B

So, you need to respond no only.

Response: The unfolded shape of the cube is: B. <image>

Correct Answer: B

So, you need to respond yes only.

Here is the response and correct answer I want you to evaluate.
Response: { model response }

Correct Answer: { correct answer }
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