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“The person is standing straight as she
puts the piece of clothing on the hanger.”

Figure 1: We propose EgoLM, a multi-modal language model that unifies egocentric motion track-
ing and understanding from wearable sensor data, i.e., sparse motion sensors and egocentric videos.

ABSTRACT

As wearable devices become more prevalent, understanding the user’s motion is
crucial for improving contextual Al systems. We introduce EgoLM, a versatile
framework designed for egocentric motion understanding using multi-modal data.
EgoLM integrates the rich contextual information from egocentric videos and mo-
tion sensors afforded by wearable devices. It also combines dense supervision
signals from motion and language, leveraging the vast knowledge encoded in pre-
trained large language models (LLMs). EgoLM models the joint distribution of
egocentric motions and natural language using LLMs, conditioned on observa-
tions from egocentric videos and motion sensors. It unifies a range of motion
understanding tasks, including motion narration from video or motion data, as
well as motion generation from text or sparse sensor data. Unique to wearable
devices, it also enables a novel task to generate text descriptions from sparse sen-
sors. Through extensive experiments, we validate the effectiveness of EgoLM in
addressing the challenges of under-constrained egocentric motion learning, and
demonstrate its capability as a generalist model through a variety of applications.

1 INTRODUCTION

Smart wearable devices, such as Ray-Ban Meta 2024) and Spectacles (Snap| 2024), offer

new opportunities for developing personal Al assistants by capturing the world from the user’s per-
spective. They provide real-time egocentric observations about the user’s environment, interactions,
and actions. On the other hand, large language models (LLMs) (Brown et all 2020; [Touvron et al,
encode such context through text in their latent space, which can be leveraged for common-
sense reasoning and human understanding. The fusion of egocentric perception and common-sense
reasoning presents a unique and exciting opportunity for advancing contextual Al research, among
which, egocentric motion understanding is an essential task (Plizzari et al.,[2023).

However, a key challenge in utilizing egocentric perception is the lack of direct observations of the
wearer. Two types of observations are available from wearable devices, i.e., 1) egocentric videos
and 2) sparse motion sensors. Egocentric videos, captured by cameras mounted on smart glasses,
provide rich contextual information of the wearer’s environment and interactions. But the wearer’s
body is rarely visible in the video, due to constrained camera mounting position and angle. Sparse
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motion sensors provide low-level kinematic motion of a few important body parts, i.e., head motions
from glasses and wrists movements from smart watches. However, they are insufficient to inform
the full body pose, especially lacking information of the lower body.

Our insight is that these two types of indirect observations are complementary to each other.
Egocentric videos can provide strong clues of the environment, and help disambiguate the lower
body motion. For example, a laptop placed on an office table is a strong indication that the wearer
is sitting rather than squatting. Sparse motion sensors, on the other hand, offer precise tracking of
important body parts, such as hand movements, which can help in scenarios where no body part is
visible in the video. For example, sparse motion sensors can differentiate between jumping jacks
and simple jumps, where egocentric video may appear identical.

Another key challenge in egocentric human understanding is aligning motion and language rep-
resentations, so that we can leverage the vast contextual knowledge embedded in LLMs to describe
motion. While motion signals are continuous, low-level kinematic representations, natural language
consists of unstructured and discrete tokens. To bridge this gap, we treat motion as a form of lan-
guage. By tokenizing motion and repurposing a pre-trained LLM to model the joint distribution of
motion and language, we facilitate an effective alignment between these two distinct representations.

With the above insights, we introduce EgoLM, a versatile framework for egocentric motion under-
standing that leverages rich sensor observations and strong contextual understanding from LLMs.
As shown in Fig. |1} EgoLLM takes sparse motion sensor data and egocentric videos as inputs, and is
capable of generating motion and natural language as output. The framework unifies a range of mo-
tion understanding tasks, at both the kinematic and semantic levels. At the kinematic level, EgoLM
can perform motion tracking from three-point (Jiang et al., 2022) or one-point (Li et al.,2023) sensor
data, incorporating egocentric videos for disambiguation. At the semantic level, EgoLLM can gener-
ate motion narration from various combinations of input modalities. More importantly, we highlight
a novel task of motion narration from three-points and egocentric videos, unique to AR use cases.

Compared with recent VLMs (Liu et al., 2023bza), our approach tackles a more complex and chal-
lenging problem involving more modalities and tasks with greater disparities. In particular, both
our input modalities and output tasks encode information at varying levels of granularity. To tackle
it, we employ multi-modal multi-task joint training through instruction tuning. Multiple input
modalities are aligned to LLM latent space with rich contextual information, and interleaved be-
tween text instructions. Multi-task training exploits connections between tasks and benefits each
other. For instance, three-points motion tracking bridges the gap between sparse motion sensors and
natural languages, improving the performance of motion narration from three-points and videos.

To validate the proposed framework, we perform extensive experiments on a large-scale motion
dataset, Nymeria (Ma et al.| 2024). Compared with previous dedicated motion tracking and under-
standing models, we show better performance in both tasks, under different combinations of input
modalities, proving EgoLM as a generalist model. Our contributions are summarized below.

1) We introduce a egocentric motion generalist model EgoLLM, which integrates a variety of
motion understanding tasks at both kinematic and semantic levels. By leveraging large language
models (LLMs), we aim to enhance egocentric perception, thereby contributing to the advancement
of contextual Al research. 2) We address the challenge of under-constrained egocentric motion
learning by combining two complementary modalities, i.e., sparse motion sensors and egocentric
videos. This new paradigm enables two unique applications for AR use cases: motion tracking
and narration from sparse motion sensors and egocentric videos. 3) We employ multi-modal
multi-task joint training to bridge substantial gaps between modalities and tasks. Extensive
experiments validate the effectiveness of this training strategy.

2 RELATED WORK

Motion Regression. Many efforts are devoted to regress 2D or 3D keypoints from human images or
videos (Toshev & Szegedyl [2014} Martinez et al.,[2017} Pavllo et al.,|2019; |Loper et al.|, 2023). Wear-
able motion sensors are also used for motion capture (Ponton et al.,|2023; Mollyn et al.,|2023}; [Milef]
et al., 2023} Y1 et al} 2023} Jiang et al., 2023). Recent advancements in VR/AR have developed
a new setup for motion tracking (Du et al., |2023} Jiang et al., 2022; |Castillo et al.| 2023} L1 et al.,
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Table 1: Comparison with Related Works. EgoLLM uses novel techniques to effectively unify a
wide range of multi-modal motion understanding tasks. “Vid.”: egocentric videos. “Mot.”: motions.

Motion .. . . Modalities
Method ‘ Tokenizer ‘ LM Type ‘ Pre-Training ‘ Instruction Tuning ‘ 3pts Ipt Mot. Vid.
LLaVA N/A Decoder-Only N/A Image Understanding v
MotionGPT Vanilla VQ-VAE | Encoder-Decoder | Motion-Text Pairs Motion-Text Translation 4

Product Quantization
Motion VQ-VAE

3pts/1pt/Vid. Motion Tracking

EgoLM (Ours) 3pts/Mot./Vid. Motion Narration

v v v

Decoder-Only ‘ Motion Only ‘

2023)), i.e., three-points and one-point body tracking. In this work, we target motion tracking from
sparse sensors and rich semantics in egocentric videos to disambiguate under-constrained cases.

Motion Generation. There have been many efforts in generating motions from various conditions,
i.e., action labels (Petrovich et al., 2021} (Guo et al., 2020), natural languages (Zhang et al., [2024;
Tevet et al., 2022; |[Punnakkal et al., {2021} |Guo et al., 2022a;|Zhang et al., [2023b; |Guo et al., 2022b)).
Recently, researchers use powerful LLMs to model the joint motion-language distribution for text-
to-motion generation (Zhang et al.,[2023c} Zhou et al.| [2023). In EgoLM, we also adopt the similar
idea. But in comparison with MotionGPT (Jiang et al., [2024), as listed in Tab. |l EgoLM improve
the motion tokenizer, employ the more scalable decoder-only LM, does not rely on paired data for
pre-training and support more egocentric motion tasks and modalities.

Motion Understanding. There have been many setups in motion understanding. From the input
side, human videos, either from third-person view (Soomro et al., 2012; |Kuehne et al.| 2011} |Tran
et al.| 2015 Wang et al.| 2016} [Yan et al., [2018) or first-person view (Damen et al.| 2021} 2022
2018)), are used for this task. From the output side, action recognition has been a classic task (Soomro
et al., 2012 |Damen et al., 2018). More recently, with the development of LLMs, some researches
also propose to use natural languages as output (Jia et al.| [2022; Xu et al.l |2024; Grauman et al.,
20225 Xue et al., [2023} (Chen et al., [2023)). In EgoLM, we highlight a new setup of motion narration
from sparse motion sensors and egocentric videos, that is unique to AR use cases.

Language Models. LLMs have been a huge success in recent years with the large-scale pre-
training (Radford et al., [2019} | Brown et al., [2020)) and alignment (cha} [2022; |Achiam et al., [2023)).
To exploit the powerful text generation ability, image (Liu et al.| 2023bza) or video understand-
ing (Zhang et al., |2023a) are defined as conditional text generation. LLaVA (Liu et al.| 2023b)
proposes to encode images with pre-trained vision encoders (Radford et al., [2021]) and perform in-
struction tuning with LLMs (Touvron et al., [2023). EgoLM adopts the similar idea to tackle the
challenge of large modality and task gaps. As shown in Tab. [T} compared with LLaVA, EgoLM
handles a more complex egocentric setup, with more modalities and tasks with larger disparities.

3 METHOD

The overview of EgoLM is demonstrated in Fig.[2] There are three key steps in EgoLM training.
In the first step, we train a motion VQ-VAE as the motion tokenizer (Sec. [3.2). The second step is
motion pre-training for motion distribution learning (Sec. [3.3)). The last step is multi-modal multi-
task joint training to guide the model to perform various egocentric motion tasks (Sec. [3.4).

3.1 PRELIMINARIES

Language Model. Language models (LMs) model the distribution of natural languages. Recent
breakthroughs in LMs suggest the effectiveness of the transformer-based architecture (Vaswani et al.,
2017). A normal LM consists of three parts. The first is a codebook that stores the embeddings for
each text token. The second part is the transformer backbone that takes text embeddings as inputs.
Output features are mapped to probabilities of the next tokens by the third part, LM head.

Motion Representation. Human motions are represented as sequences of poses, global translations
and rotations defined on the root joint. Each frame of pose is represented by joint angles, defined
on a kinematic tree. For better learning of motion dynamics, we also include joint angle velocity in
the representation. To avoid the normalization of global translation, we use the translation velocity
V" € R3 for each frame, which can be integrated back to global translations. To ease the regression
difficulty of rotation angles, we use 6D rotation representations (Hempel et al.| 2022) for the root

rotation R7 € RS, root rotation velocity R7 € RS, joint angles R/ € R22*6, and joint angle
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Figure 2: Overview of EgoLM. Three steps are designed for the training of EgoLM, i.e., motion
tokenizer training, motion pre-training and multi-modal instruction tuning.

velocity RI" € R?2%6, Formally, we represent human motions with 7' frames as M = {P;}7_,,
where P; = [V/"; RY; RIV; R7; R]"] € R2™. Forward kinematics (FK) together with integration of
root velocity can be used to recover the joint positions J = FK(M) € R23%3,

3.2 MOTION TOKENIZER

To treat the motion as a form of a language and train with LMs, we first need a motion tokenizer,
which can be realized by VQ-VAE (Oord et al.| 2017). As shown in Fig. |3| a), the motion VQ-VAE
consists of a fully convolutional encoder £ and decoder D. The fully convolutional design enables
processing motions with arbitrary lengths. The encoder embeds raw motion representation to latent
features f™ = £(M), where f™ € RT/7*¢, M € RT*2™_ r is the down-sample rate.

Then, codebooks are learned to quantize the motion latent features. To ensure high-fidelity mo-
tion tokenization, we use three quantization techniques, which are 1) exponential moving average
(EMA), 2) codebook reset (Dhariwal et al.,[2020)), 3) product quantization (Jegou et al., 2010;|Lucas
et al., 2022)). The first two techniques increase the usage rate of codebooks. Product quantization
increases the codebook expressiveness by decomposing the latent space into a Cartesian product of
sub-spaces with lower dimensions. Specifically, the latent feature ™ is split equally into N trucks
{fm}N_,, which are quantized separately by N codebooks {7, }/\_,. Each codebook with K en-
tries is defined as Z,, = {z;}/<,, where z; € R®/N. The quantization process for feature f; at
frame ¢ and trunk n is formulated as

in = Q(ffn) = arg min [ f77 = zill2. (1

The resulting indices i, are flattened and used as motion token sequences W = {[(i,,)2_;]; ,tT:/I ,

which has the length of Ly = N x (T'/r). After quantization, we obtain the corresponding code-
book entry for the motion latent feature /™ = { ftm}tT:/I = {zzt}tT:/I It is input into the decoder D

to decode raw motion representation M = D( f ™).

For the training of VQ-VAE, two types of training losses are used. The first is the commitment loss

Le=|f™ — f™||2 for the codebook learning. The second is motion reconstruction loss £,, which
consists of raw representation loss £,,, joint position loss £;, rotation velocity loss £,,, which are

defined as
Ly = AL + NLj+ ALy = A |M — M||1 4 N;|[FK(M) — FK(M) |, -
+ Mol Ry — (Rip_) ' Roplly + Ml Ry — (Rp_ 1) "Ryl

We define the smoothed L1 loss as || - ||;. In summary, the training loss of the motion VQ-VAE is
Ly = AL + MLy, where A, are manually adjusted weights.

3.3 MOTION PRE-TRAINING

EgoLM aims to empower egocentric motion learning with strong prior in pre-trained LMs. However,
the pre-trained LM only models the distribution of natural languages. Therefore, to facilitate motion
generation, we perform motion pre-training with LM to learn motion distributions.
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Figure 3: Details of a) Motion Tokenizer (VQ-VAE) and b) Motion Pre-Training. Product quan-
tization provides high-fidelity motion tokenization. It is used for motion pre-training with a decoder-
only LM, where codebook and LM head extension are in need.

Before pre-training LM with motion tokens, two modifications are in need, as shown in Fig. @
Firstly, since the pre-trained LM only contains embeddings for text tokens, we expand the LM code-
book in accordance with the size of motion codebook. Secondly, the output shape of the LM head is
also expanded accordingly. Using the motion tokenizer described above, motion representations M
can be encoded and flattened to a sequence of motion tokens W = {wl}ZLZV{ They are fed into the
LM to learn the motion distribution by conducting the next-token prediction (Radford et al.,[2019).
Specifically, we maximize the log-likelihood of the next-token probability given the previous token
inputs and network parameter ©. The loss function £,,. is formulated as

Lw
Epre = — Z P(wi\wl...wi_l; @) (3)
1=2

As the by-product of this stage training, we obtain an auto-regressive motion generator. Given a
leading motion sequence as the prompt, it can sample an arbitrary length of human motions that
continues the given motion. More importantly, the LM learns human motion distributions and has
the ability of sampling plausible human motions, which lays a solid foundation for the next stage.

3.4 MULTI-MODAL MULTI-TASK JOINT TRAINING

As previously discussed, EgoLM addresses a more complex and challenging problem, involving
multiple modalities and tasks with significant disparities. On the modality side, in addition to motion
and natural languages, we need to integrate data from sparse motion sensors and egocentric videos,
which capture information at varying levels of granularity. Furthermore, EgoLM approaches ego-
centric motion understanding tasks from both kinematic and semantic perspectives. To tackle the
challenge, we propose to employ multi-modal multi-task joint training to bridge the gaps between
modalities and uncover the inherent connections between tasks.

Recent research on multi-modal LLMs has demonstrated that instruction tuning (Liu et al., [2023b;
Achiam et al., 2023} [chal 2022; Zheng et al., 2023)) effectively aligns different modalities and in-
tegrates multiple tasks. In our approach, various modalities are encoded differently. For motions
and natural languages, both serve as inputs and outputs; thus, they are tokenized for auto-regressive
modeling. Sparse motion sensors and egocentric videos are used exclusively as inputs. It is more
efficient to encode these into continuous features that align with the LM latent space. Different
tasks are differentiated by text instructions. Specifically, the instruction template typically includes:
1) text instructions specifying the tasks to perform; 2) inputs relevant to the task; and 3) expected
outputs. Below, we provide two instruction examples for motion tracking and narration.

Task: Motion Tracking Task: Motion Narration

Instruction: Perform motion tracking based on | | Instruction: Describe the human motion based on
the given three-points and CLIP embeddings. the given three-points and CLIP embeddings.
Input: Input CLIP embeddings: | | Input: Input CLIP embeddings:
<CLIP_Placeholder>. Input  three- | | <CLIP_Placeholder>. Input  three-points
points feature: <TP_Placeholder> feature: <TP_Placeholder>

Output: <Motion_Placeholder> Output: <Narration_Placeholder>

The encoded three-points 6-DoF poses would replace <TP_Placeholder>. The placeholder for
egocentric video features is <CLIP_Placeholder>. Motions are encoded to tokens and filled in
<Motion_Placeholder>. <Narration_Placeholder> is the placeholder for correspond-
ing motion narration. A detailed illustration of how we organize different modalities of data is shown
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Figure 4: Details of Multi-Modal Instruction Tuning. Different modalities are encoded separately.
Their features are concatenated in the order of the instruction template and input into the transformer
layers of the language model.

in Fig. [ Texts are tokenized and embedded to feature vectors through LM embedding. Egocentric
videos are sampled to sequences of frames and encoded by CLIP image encoder (Radford et al.,
2021)), which are further projected by linear layers to the LM feature space. Similarly, sparse mo-
tion sensor data, e.g., sequences of three-points 6-DoF poses, is encoded by a fully convolutional
encoder. Lastly, all the encoded features are concatenated in an interleaved way and input into the
transformer layers of the LM.

With instruction templates established for each task, we can facilitate joint training across the fol-
lowing tasks: a) motion tracking with three-points and egocentric videos, b) motion narration using
three-points and egocentric videos, c) text-to-motion generation, and d) motion-to-text generation.
During training, these four tasks are randomly sampled with equal probability. The loss function
utilized is the next-token prediction loss, as defined in Eq.

During inference, natural language is sampled in the same manner as LMs for motion narration
tasks. For motion tracking, our auto-regressive modeling offers the advantage of online inference.
At each new time step, the incoming data is concatenated with historical data and fed into EgoLM.
A single feed-forward inference is then performed to obtain the motion token for the current time
step. For further details, please refer to the appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We use the Nymeria dataset (Ma et al., 2024) to train and validate our method. The dataset
includes: a) full-body motions captured by the Xsens Mocap system (Roetenberg et al., [2009), b)
egocentric videos recorded with Aria glasses (Somasundaram et al.||2023), and ¢) motion narrations
by human annotators. Three-point 6-DoF poses are derived from ground truth joints for comparison
with prior work. The motion tracking training set comprises 147.89 hours of data, with a test set of
41.93 hours. For motion understanding, the training set includes 16, 673 segments (totaling 15.77
hours), while the test set contains 7, 468 segments (totaling 6.76 hours).

Training Details. Motion VQ-VAE utilizes two codebooks, each containing 8,192 entries with a
code dimension of 64. The down-sample rate is set to » = 4. For motion tracking, all experiments
use a window size of 60 frames (equivalent to 1 second), with random rotation augmentation applied
to the motions. We employ GPT-2 Medium (Radford et al.,2019) as the language backbone.

Evaluation Protocols. For motion tracking, we calculate joint position errors (for full, upper and
lower body), joint angle errors (for full body and root joint). For motion narration, the outputs
are natural languages. Therefore, we adopt NLP metrics, including BERT (Zhang et al.l 2019),
BLEU (Papineni et al.,2002), and ROUGE (Lin, |[2004) scores. For more details about the evaluation
protocols, please kindly refer to the appendix.

4.2 MOTION TRACKING

Quantitative Results. We present th quantitative results of motion tracking in Tab.[2] All methods
are evaluated using batch inference, where every 60 frames are processed independently. We assess
various input combinations from three modalities, i.e., three-points 6-DoF poses (‘“3pts”), one-point
6-DoF poses (“1pt”) and egocentric videos (“Vid”). In the 3pts-only and 1pt-only settings, EgoLM
demonstrates performance comparable to task-specific algorithms, highlighting the effectiveness of
LM:s for precise motion tracking. Additionally, we incorporate egocentric videos to provide contex-
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Table 2: Quantitative Results of Motion Tracking. EgoLM performs comparably with task-
specific algorithms. Incorporating video input can outperform methods without. “Full”, “Upper”,
“Lower” are joint position errors in mm. “J.A.”, “Root” are joint angle errors for full body and root
joint in degree. TWe directly replace three-points with one-point to train AvatarPoser.

Input Modality

Method 3pts 1pt Video

Full Upper Lower J.A.  Root

AvatarPoser (Jiang et al.| [2022) v 85.89 52.78 165.18 1241 14.78
Bodiffusion (Castillo et al.,|2023) v 79.80 5279 152.68 12.74 13.09
Ours v 83.88  54.06 14837 13.31 14.13
Ours \ v v \ 73.38  49.67 124.58 1248 13.23
AvatarPoser’ (Jiang et al.| 2022) v 129.23  94.19 192.34 16.55 21.60
EgoEgo (Li et al.| [2023) v 132.16 100.02 190.32 18.90 21.80
Ours v 127.45 97.87 17492 1697 20.57
Ours \ v v \ 106.95 83.73 141.26 14.67 19.04

\ \ [ ) ) ; ' Omm

BoDiffusion AvatarPoser

GT Ours

Egocentric
Video

Figure 5: Qualitative Results of Three-Points Motion Tracking. Skeletons are color-coded by the
joint position errors. Baseline methods use 3pts as inputs. Ours uses 3pts and videos as inputs.

tual information for motion tracking. For three-points tracking, this additional modality results in
a 10 mm improvement in full-body joint error. For one-point tracking, the inclusion of egocentric
videos leads to a 20 mm reduction in joint error, underscoring their effectiveness in disambiguating
the ill-posed problem.

Qualitative Results. The results and comparisons for three-point motion tracking are presented in
Fig.[5} Due to the inherent ambiguity, AvatarPoser incorrectly generates standing poses for squat-
ting sequences (right example). BoDiffusion, while capable of producing correct results in some
instances (e.g., the squatting example), also faces ambiguity issues, as demonstrated in the bending-
down sequence (left example). These examples highlight the importance of contextual consideration
in motion tracking for effective disambiguation. Our full model reliably performs three-point body
tracking in these challenging scenarios.

The results for one-point motion tracking are presented in Fig. [6} This task is particularly chal-
lenging for upper body tracking. As in left example, the upper body motions generated by EgoEgo
significantly diverge from the ground truth. In the right example, EgoEgo mistakenly produces sit-
ting poses for standing frames and vice versa, illustrating the ambiguity issue. In contrast, egocentric
videos not only help to resolve this ambiguity but also provide clues about hand positions. In the
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Figure 6: Qualitative Results of One-Point Motion Tracking. Skeletons are color-coded by joint
position errors. EgoEgo only uses one-point as inputs. Ours includes egocentric videos as inputs.

left example, when hands are visible in the frames, our model leverages vision clues to capture this
information and generate accurate arm movements. More visual results are provided in appendix.

4.3 MOTION NARRATION

Quantitative Results. We report the quantitative results of motion narration in Tab. [3] This task
involves three input modalities, i.e., three-points (‘“3pts”), motions, and egocentric videos (“Vid”).
with various combinations evaluated. We first compare EgoLM with two existing motion narration
methods that utilize motion as their sole input, i.e., TM2T (Guo et al.,|2022b) and MotionGPT (Jiang
et al.| 2024). TM2T trains language generation from scratch and consequently exhibits poor perfor-
mance. MotionGPT leverages a pre-trained T5 model (Raffel et al., |2020). EgoLM(M2T&T2M)
outperforms these methods, benefiting from the scalability of its decoder-only architecture. When
we combine egocentric videos with motion inputs (MV2T&T2M), we achieve the best overall per-
formance, as this combination offers comprehensive information for motion narration.

Using motion as input requires precise motion tracking, which is not always feasible, prompting us
to explore sensor inputs instead. We tested two variants: three-points-only (TP2T) and egocentric
videos only (V2T). The TP2T variant demonstrated a noticeable drop in performance compared to
the motion-only version, as three-points provide limited information about body motion. Conversely,
the V2T variant outperformed the motion-only version because egocentric videos capture relevant
environmental context for our motion narrations. This underscores the significance of egocentric
videos in understanding motion.

We then evaluate our highlighted setup of combining three-points and egocentric videos for motion
narration. There are three approaches to achieve this. The first involves integrating two existing
setups: 1) three-points motion tracking and 2) motion-to-text generation (TPV2M + MV2T). This
variant shows a slight performance drop compared to MV2T due to error accumulation and requires
a time-consuming two-pass inference. The second approach directly trains a three-points plus ego-
centric videos to text generation model (TPV2T) using our proposed multi-modal instruction tuning.
While this outperforms using only egocentric videos or motions, it still lags behind the MV2T vari-
ant due to missing lower body information. To address this, we propose joint training of four tasks
to establish connections between three-point poses and motion narrations, achieving optimal perfor-
mance in a single forward pass for this new task.

Qualitative Results. We show four examples of motion narration in Fig.[/}| TM2T and MotionGPT
use full body motions as inputs, while our model incorporates three-points and egocentric videos.
TM2T’s language generation is trained from scratch, leading to frequent errors and nonsensical
outputs. MotionGPT generates reasonable descriptions; for instance, in the lower left example,
it correctly identifies the motion as “removing a piece of clothing from the hanger”. However,
our target motion narration is closely tied to environmental context, which TM2T and MotionGPT
struggle with due to the absence of visual signals. In contrast, although EgoLLM does not directly use
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Table 3: Quantitative Results of Motion Narration. Different input modality combinations are

tested. All metrics are higher the better.

Method

3pts  Motion

Input Modality
Video

Bertt Bleu@11t Bleu@41 RougelL

TM2T (Guo et al,[2022b
MotionGPT (Jiang et al.}[2024)
Ours M2T&

Ours (MV2T&T2M)

SENENEN

11.08
14.09
15.90
20.32

40.11
42.22
42.68
45.33

8.99
10.31
11.06
12.80

30.70
32.33
33.71
35.31

(\

Ours (TP2T)
Ours (V2T)
Ours (TPV2M + MV2T)
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TM2T: The person is sitting at the table as he lays her body on the sofa then leans
backwards while talking and looking at her colleague. The person is resting both of her
arms on her lap, lifts and bends both of her arms as she sits down on the sofa. The
person is sitting on the sofa with both legs bent and slightly spread apart.

MotionGPT: The person is standing still in front of the sofa while holding a piece of
clothing. The human's left arm is bent and raised upward with his left hand holding a
piece of clothing. The human is standing with both legs apart and both feet resting on
the floor.

Ours: The human is standing in the bedroom to fold the piece of clothing. The human is
folding the piece of clothing with his left and right hand. The person is resting his left
and right foot on the floor.
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TM2T: the person stands up straight as she holds the pillow and place them on the
table. the person then arrange the pillow in the middle of the room with her right hand
and places it on the table, while her left arm is slightly bent in front as she holds and
arrange the pillow in the direction of the table.

-

MotionGPT: The person stands in front of the cabinet to remove the clothes from the
hanger: the human raises both of his arms to remove a piece of clothing from the
hanger. the human stands with both feet fixed on the floor.

Ours: The person is standing by the refrigerator while putting the pack of food inside
the freezer. The human puts the pack of food inside the freezer with her right hand as
her left hand holds the refrigerator door. The human is standing with both feed fixed on
the floor.

TM2T: The person is standing still in front of the cabinet while making a hanger. The
person bends and raises her left hand then lays the hanger on her side of her chest then
spreads both arms on her side below her chest. The person stands with both legs
stretched upright and both feet fixed on the floor.

MotionGPT: The person is standing straight at the living room ... The human has both
arms naturally hanging at her sides then she bends, extends and raises her right arm
and throws the object on the living room with her right hand. ... The human has both
feet fixed on the floor with both legs stretched upright then she slightly bends and
spreads both of her legs widely apart.

Ours: The person is standing still in the living room while talking to her peer. The
human lifts both of his arms and then moves both hands in circular motion as she
gesticulates. The human rests both of his feet on the ground.
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TM2T: The person lowers her thigh as she lays down on the floor while kneeling on the
floor. The person extends both her arms as she moves her right elbow on the floor to
support her body.

MotionGPT: The human bends down while kneeling in the living area. The person
extends both of her arms on the floor to support her body. The human extends both of
her legs on the ground.

Ours: The person bends down as she planks on the floor. The human extends both of her
arms on the floor to support her body. The person extends both of her legs while
tiptoeing both of her feet.

Figure 7: Qualitative Results of Motion Narration. We use green to highlight correct parts and

red for mistakes.

motions as inputs, it jointly models the distributions of different modalities, enabling it to generate
accurate narrations based on varying scenarios. Please kindly refer to appendix for more qualitative

results results.

4.4 ABLATION STUDY

Window Size of Motion Tracking. As shown in Tab.[] increasing the window size for three-points
motion tracking from 60 to 120 frames results in an improvement of 4.2 mm in joint position errors.
This enhancement is expected, as a larger window size provides more context, aiding disambigua-
tion. When egocentric videos are included, further improvements are observed. Notably, using
60 frames with egocentric video outperforms using 120 frames alone, suggesting that the context
provided by egocentric videos is more effective than simply increasing the window size.
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Table 4:  Ablation Study Table 5: Ablation Study on Recon- Table 6: Ablation on
on Window Size for Motion struction Results of Motion VQ- the LM size. Medium:

Tracking. VAE. [mm] 345M; Large: 1.5B

Win Vid | Full Upper Lower J.A. PQ CB Dim|MPIPE PA-MPJPE ACCEL GPT-2 Size | Medium Large
60 83.88 54.06 148.37 13.31 1 2048 512| 5160 3755 1.09 Bertf" 1838 19.56
120 79.61 52.66 138.87 13.01 2 2048 512 | 39.63  29.77 0.71 Bleu@1] | 44.55 44.48
60 v |7338 49.67 12458 1248 2 16384 256 | 39.13  29.78 1.08 Bleu@4t | 12.12 1249
120 v 7276 4920 123.09 12.52 2 16384 64 | 3449 2683 0.67 RougeLt | 33.80 3521

Input Prompt:

The human leans
forward and then
turns right while
walking towards the
kitchen sink. The
person holds and
close the kitchen
drawer with her lefi |
hand while the right
arm rest beside her.
The person bends
her both legs and
then steps backward.

Input Prompt:

The person walks
toward the kitchen
S o0 range and then
grabs the fork while
& Jer lefi arm rest
beside her: The
person is walking
forward to kitchen
gas range with her
both feet and then
steps sideward with
her right and left
foot respectively.

a) Text-to-Motion Generation Results b) Motion Prediction Results

Figure 8: More Analysis on EgoLM. a) Qualitative results of text-to-motion generation. b) Quali-
tative results of motion prediction.

Motion VQ-VAE. Ablation studies on motion VQ-VAE are reported in Tab. El “PQ” denotes the
number of codebooks. “CB” denotes the number of codebook entries. The first two lines indicate
that significant improvements can be achieved simply by using product quantization. Additionally,
increasing the number of codes and reducing code dimensions yields further enhancements.

Larger Language Model. We use GPT-2 Medium (345M) for most of our experiments to maintain
efficiency. To further assess the potential of EgoLM in scaling up to larger LMs, we train with GPT-
2 Large (1.5B) and report performance on TPV2T in Tab. [] The improved scores indicate EgoLM
is a scalable and versatile framework.

4.5 MORE APPLICATIONS

Text-to-Motion Generation. As part of our joint training, EgoLLM is capable of generating motions
from texts, as shown in Fig.[8]a). Even with lengthy prompts describing the upper and lower body
separately, our model successfully generates motions that align with the inputs.

Motion Prediction. As a by-product of the motion pre-training, EgoLLM can function as a motion
predictor. As shown in Fig. [§] b), given motion prompts (the red skeleton in the left), subsequent
motions can be randomly sampled. We show three different samples in different colors.

5 DISCUSSION

We propose EgoLM, an egocentric motion generalist model, that empowers egocentric motion un-
derstanding using LLMs. To address the challenge of limited wearer observation in egocentric per-
ception, EgoLM integrates two complementary modalities to disambiguate the under-constrained
scenarios. We also introduce multi-modal multi-task joint training to bridge gaps between differ-
ent modalities and tasks, thereby implicitly connecting them and improving individual task perfor-
mance. We hope our exploration of the fusion between egocentric perception and LLMs will inspire
future research in contextual Al

Limitations. Firstly, our motion tokenizer uses VQ-VAE, which introduces reconstruction errors
and sets an upper bound for motion tracking performance. Additionally, during motion tracking
training, the loss is calculated on discrete motion tokens rather than raw representations, which
may further impact performance. Secondly, for motion narration, each egocentric video frame is
compressed by the CLIP encoder into a one-dimensional vector, making it difficult for the model to
accurately identify the objects the person is interacting with. Furthermore, as commonly observed
in language models 2023)), EgoLM also experiences the hallucination problem.

Potential Societal Impact. While contextual Al presents opportunities for efficiency and societal
advancement, the collection and analysis of human data may raise privacy concerns for users and
those around them.

10
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REPRODUCIBILITY STATEMENT

We have thuroughly introduced our method in Sec.[3]as well as inference and experiment details in
Appendix, which ensures the reproducibility. Moreover, the dataset used in this work is also publicly
available at https://www.projectaria.com/datasets/nymeria/.
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APPENDIX

We provide more implementation details (Sec.|A]) and qualitative results (Sec.[B)) in this supplemen-
tary material. To better showcase our results, we also provide supplementary videos.
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Figure 9: Online Motion Tracking Inference. For the new time step of ¢ + 1 with new data coming
in, last motion tokens are combined with the new input tokens to decode the next motion token ¢+ 1.

A IMPLEMENTATION DETAILS

A.1 AUTO-REGRESSIVE INFERENCE FOR MOTION TRACKING

At inference time, motion understanding is the same as the language model inference. For motion
tracking, it usually requires online inference over a long period. With a language model, which is an
auto-regressive model, it is straight-forward to perform online motion tracking. As shown in Fig.[9]
firstly, an initialization over the first ¢ frames of data is required. When the new data frame ¢ + 1
comes in, the input conditions are updated accordingly. Then, it is not necessary to predict all the
motion tokens from frame 2 to frame ¢ 4+ 1. We take the previously generated motion tokens from
frame 2 to frame ¢ as inputs and prompt the network to generate one more token for frame ¢ + 1.

A.2 EVALUATION METRICS

For motion tracking, we use joint position errors and joint angle errors to evaluate the performance.
Specifically, for the joint position errors, we first align ground truth skeletons and generated skele-
tons by the head positions only by translation. Then full body, upper body and lower body joint po-
sition errors are calculated separately. Joint angle errors are calculated on full body and root joints.
For the evaluation of motion VQ-VAE in main paper Tab. 4, we apply widely adopted metrics for
motion regression, i.e., Mean Per-Joint Position Error (MPJPE) (lonescu et al., |2013)), Procrustes-
Aligned (PA-)MPIJPE (Kanazawa et al.,|2018)), and joint position acceleration (ACCL) error. For the
motion understanding, we use standard NLP metrics, please kindly refer to corresponding papers
for more details.

B MORE QUALITATIVE RESULTS

B.1 THREE-POINTS MOTION TRACKING

We show four more visual examples of three-points motion tracking in Fig.[10] Fig.[TT]and Fig.
AvatarPoser (Jiang et al.l[2022)) and BoDiffusion (Castillo et al.| [2023)) are solid baselines that per-
form well on easy walking cases, e.g., upper example in Fig. [IT} For the workout sequence, i.e.,
lower example in Fig. even only given three points of upper body, the distribution of lower body
motion can be collapsed and generate reasonable motions that matches the ground truth. In Fig.[12]
we demonstrate the effectiveness of including egocentric videos as inputs. Without any environment
context, AvatarPoser and BoDiffusion often fail to distinguish standing and sitting down. We do not
assume the knowledge of the head height over the floor, meaning that the three-points positions are
normalized to the local coordinates of the first frame. Therefore, it is hard for baseline methods to
disambiguate certain scenarios. We propose to introduce contexts using egocentric videos, which
contains rich information about the environment and how the person is interacting with it. There-
fore, our model can generate the most accurate motions by utilizing these information. For more
visualization of three-points motion tracking, please kindly refer to our supplementary videos.
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Figure 10: Qualitative Results of Three-Points Motion Tracking. Skeletons are color-coded by
joint position errors.
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Figure 11: Qualitative Results of Three-Points Motion Tracking. Skeletons are color-coded by
joint position errors.
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Figure 12: Qualitative Results of Three-Points Motion Tracking. Skeletons are color-coded by

joint position errors.
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Figure 13: Qualitative Results of One-Point Motion Tracking. Skeletons are color-coded by joint
position errors.

B.2 ONE-POINT MOTION TRACKING

We show four more examples of one-point motion tracking in Fig.[T3|and Fig.[T4] The introduction
of egocentric videos has two advantages. Firstly, similar to the case in three-points body tracking,
the environment contexts in egocentric videos can disambiguate cases like standing and sitting. Sec-
ondly, specifically for one-point motion tracking, egocentric videos provide clues of hand positions.
As shown in all four examples, when the person raises the arms in front of the body, hands would be
visible in the egocentric videos, which helps the hand position tracking. Admittedly, high-level se-
mantic information provided by CLIP (Radford et al.,2021) encoders cannot accurately track hand
positions. Therefore, as shown in the lower example in Fig.[I3] our method correctly generates arms
moving in the air, but lacks accuracy. For more visual examples of one-point motion tracking, please
kindly refer to our supplementary video.




Under review as a conference paper at ICLR 2025

Omm I 00
g | \ K‘E\.\( S
L%D l { } \J [\ ‘Il< [ TZ‘: lll'
Eb AR A R AU AN SRR [ O [ /r I I
R VJJQ‘IV\!_V \\“,vvy{'v (/s it S
v
1 7 e
y ‘ ‘ " |
g ' ' ! I "‘\\‘;I‘/ ! o ) ! SN PR R |
oug‘g\uun\,uvvvu,urmwu,hhu
VVV\'!\\V\”“ T T S A B A A/ { r('.
H
(@]
2
£8
Tl
=
5o
o
°
)
53]
S
S0
o
4]
5
o
H
O
2
=
= 8
[Th=!
+
0
53]

Figure 14: Qualitative Results of One-Point Motion Tracking. Skeletons are color-coded by joint

position errors.
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Figure 15: Three Random Samples of One-Point Motion Tracking with Egocentric Videos as
Inputs. Since we use language models as our backbone, EgoLLM has the ability to randomly sample
outputs given the same inputs. Egocentric videos provide strong clues for hand positions, leading to
less diversity as shown in the highlighted areas.

B.2.1 MULTIPLE SAMPLES.

Note that EgoLLM is essentially a generative model. Therefore, our model is capable of generating
different samples with the same inputs. In Fig.[I5] we show three random samplings on the same
input one-point and egocentric video. When hands are not visible in the frame, i.e., the left high-
lighted frame, hand positions are not constrained, and therefore shows high diversity across different
samples. For the other highlighted frames, hands are visible in the egocentric videos, which helps to
collapse the distribution of possible positions of hands. But as discussed above, our way of encoding
egocentric videos cannot accurately track the hand positions. Therefore, our model also shows some
diversity of hand positions in these cases.

To further demonstrate the diversity of our model, we also show three random samples from our
one-point motion tracking model that does not take egocentric videos as inputs in Fig.[T6 Lack of
any indication of the hand positions, the upper body generation is even less constrained than that of
the lower body and shows high diversity across three samples.
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Figure 16: Three Random Samples of One-Point Motion Tracking without Egocentric Videos
as Inputs. With only head poses as inputs, the generation of full body motion, especially upper

body motions, is less constrained.
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TM2T: The person still marches in place while facing his peers. The person still swings
both of his hands up and down. The person still marches in place with his left foot and
right foot alternately. The person still repeatedly bends both of his legs alternately. The
person still marches in place with his left foot and right foot alternately.

MotionGPT: The human swings his body to the right and swings back to the left while
standing, hunching his back and doing some exercise in the living area with his
colleagues. The human slightly swings both of his arms back and forth on his side. The
human raises his right leg to his waist level then stretches and lowers it while his left
foot is fixed on the floor.

V2T: The human is standing in the living room while watching the television. The
person is resting both arms on his sides. The human has both feet fixed on the floor:
Ours: The person is swaying her body side to side while exercising in the living area.
The person repeatedly swings and bends both of her arms in front of her then lowers it
down on her side. The person repeatedly raises both of her feet in front of her then
lowers them down on the floor alternately.

GT: The person is walking in place in front of the laptop. The human repeatedly bends
both of her arm in front of her them lowers them down on her side. The human
repeatedly steps both of her feet alternately.

TM2T: The person walks towards the cabinet then bends forward to pick up and reach
for the clothes. The person extends his right arm to pick up the clothes from the cabinet
then bends his left arm to hold the clothes.

MotionGPT: The person bends forward while standing in the living room. The person
extends her right arm to open the cabinet and extends her left arm to grab the keys on the
right. The person slightly bends both of her legs then steps her right foot forward while
her left foot is fixed on the floor.

V2T: The human walks towards the couch and bends down while putting down the piece
of clothing. The person extends both of her arms to pick up and put down the piece of
clothing with her right hand while holding the clothes with her left hand. The human
steps both of her feet forward alternately.

Ours: The human walks towards the sofa then slightly leans forward to put down the
Jfolded piece of clothing. The person extends her right arm to put down the folded piece of
clothing on the sofa, then extends her left arm to pick up another piece of clothing on the
sofa. The human is stepping both of her feet forward alternately then bends both of her
legs to support her body.

GT: The person bends his body to get another clothes on the sofa. The person extends his
right arm to get the clothes with his right hand then raises his left arm to hold the clothes
with his left hand. The person steps both feet forward towards the sofa.

TM2T: The person is sitting on a chair and leaning backward on the table while talking
to her peers. The person is resting both of her arms on the table, lifts and bends her left
arm as she touches the table with her left hand. The person is sitting with both legs bent
and with both feet flat on the floor widely apart.

MotionGPT: The person is still sitting on the chair with a hunched back while playing
arcade and eating some chips. The person's both arms are bent forward while holding
and sliding the joystick with his left hand to the left then his right hand is on top of the
buttons and clicks them with his right fingers. The person's both legs are still bent while
sitting on the chair with both feet flat on the floor and slightly apart.

V2T: The human is sitting on the sofa and leaning forward while arranging the chess
pieces on the chessboard. The person has both of her arms extended forward while
picking up the chess pieces with her left hand and puts down the chess piece with her
right hand on the chess board. The human is sitting with both feet fixed on the floor and
shoulder-width apart.

Ours: The person is sitting in front of the checkerboard. The person is extending his right
arm toward the checkerboard while keeping his left arm on top of his leg. The human is
bending both of his knees while keeping both of his feet flat on the floor.

GT: The human is sitting in front of the table as he plays chess. The person is moving the
knight with his right hand while his left hand remains resting on his leg. The human is
bending both of his knees while keeping both of his feet flat on the floor:

TM2T: The person is still standing straight in front of the table while playing the board
game with his peer: The person's both arms are still bent forward while both hands are
still holding the edge of the knife.

MotionGPT: The human still stands near the closet. the human still holds the hanger
with his left hand and his right hand holding the hanger. The person still stands with his
feet slightly apart.

V2T: The person is standing straight in the living area with his colleagues while doing
some exercise. The person raises both of his arms straight above his head from the back
then lowers them in front and rests them on his side. The person is standing with both feet
apart and fixed on the floor:

Ours: The person is standing in the living area. The human repeatedly swings both of his
arms in front of him and in front of his stomach. The person is standing with both feet
fixed on the floor:

GT: The human is standing still in front of his colleagues in the living room while
playing charades. The person is slightly raising and lowering both of his arms to
gesticulate. The human is resting both of his legs fixed to the floor.

Figure 17: Qualitative Results of Motion Narration. We use green to highlight correct parts in the

answers while red for wrong ones.

B.3 MOTION NARRATION

We show eight more examples of motion narration in Fig.[T7]and Fig.[I8] Similar to the main paper,
we use green to highlight correct parts in the answers and red for wrong answers. Similar to the
observation made in the main paper, even though TM2T 2022b) and MotionGPT
have access to the full body motion, the generated narrations are reasonable but com-
pletely wrong if consider the environment context. For example, in the upper right example in
Fig.[I8] given the simple walking sequence, both TM2T and MotionGPT can correctly understand-
ing that the person is walking forward. But they all give the wrong answers about the places the
person is walking in. Thanks to the egocentric videos, our model successfully produces the correct
description as “walking towards the beds”.
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TM2T: The person walks out of the bedroom then turns to the left to enter another
bedroom. The person rests both her arms on her sides. the person is stepping forward
with her right and left legs alternately. The person is stepping forward with her right and
left legs alternately. The person then steps forward with her right feet.

MotionGPT: The person walks in the garage. the person sways his hands on the sides.
The human extends both legs forward alternately.

V2T: The human walks towards the bedroom. The human slightly sways her hands on
her sides. The human takes four steps towards the bedroom.

Ours: The human walks towards the door. The human puts down her right arm and sways
both hands on the side. The person extends both legs forward alternately.

GT: The person walks towards the door. The person walks towards the door. The person
rests his left arm on the side and he raises his right arm while holding the hanger with his
right hand. The human extends both legs forward alternately.

b

CIGIER Hl

TM2T: The person walks towards the door then leans forward as he tucks in the chair and
stands in front of the door to open it. The person’s right arm is swinging back and forth on
his side while his left arm is bent and his left hand holding the top railings then pushes the
door open with his left hand.

MotionGPT: The person is walking forward towards the shower room, pauses on the
shower room and then leans forward to put down the towel on the shower curtain holder:
The person is bending both of his arms and then extends his left arm forward to put down
the towel on the shower curtain holder. The person is alternately stepping both of his feet
Sforward.

V2T: The person straightens up as she slightly turns to the left while walking towards the
closet. The person keeps holding the clothes with her bent left arm as she lowers down and
slightly raises her right arm and then she bends it back. The person steps both of her feet
Jforward alternately.

Ours: The human turns clockwise as she walks towards the closet to put the clothes on the
top shelf in the bedroom. The human is holding the clothes hanger with both of her bent
arms in front of her then she extends her lefi arm froward and grabs the clothes hanger with
her left hand. The human turns her right foot to the right, steps her left foot forward then
slightly moves her right foot forward.

GT: The human walks towards the closet. The human raises his left arm to grab the clothes
while he holds the hanger with his right hand. The person extends both legs forward
alternately.

‘,‘J\?\”ﬁ/ |
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TM2T: The person is walking forward in the pathway then she slightly leans forward as
she sits on the pathway. The person alternately swings both hands on her sides while
both arms hang naturally at her sides.

MotionGPT: The human is walking forward while looking at the office surrounding. The
human has her both arms swaying them back and forth. The human extends both legs
Jforward alternately.

V2T: The person is walking forward towards the bed. the person rests both arms on her
sides. The person is extending both her legs forward alternately.

Ours: The human is walking towards the bed. The person is resting both of her arms
beside her. The person is extending both of her legs forward alternately.

GT: The person walks towards the bed. The person slightly swings both of her arms back
and forth. The person steps both of her legs forward alternately.

TM2T: The person is standing in front of the door: the person is raising his left arm and
is resting his right arm on his side. The person bends both of his legs while resting on the
Sloor:

MotionGPT: The person stands in the bedroom while talking to her colleague. The
human is resting and bending her lefi arm in front while she lowers down her right hand
before touching the wall with her right hand. The person stands with both feet fixed on
the floor:

V2T: The human is standing straight while picking a condiment jar in the hanging
cabinet. The human grabs a condiment jar with her right hand and flips up the other
condiment jar in front of her with right hand and then she bends and slightly lowers
down her right arm. The person is standing with both feet fixed on the ground.

Ours: The person is standing in front of the hanging cabinet and slightly leaning forward
while picking up a condiment jar. The person is extending her right hand forward, picks
up the condiment jar cover then puts it down again on the top of the hanging cabinet
while resting her left arm on her side. The human is standing with both of her legs
parallel to each other and both of her feet spread slightly apart.

GT: The person is standing on tiptoes while checking inside the cupboard. The human
grabs and places the bottle down on the countertop with her right hand while her left
hand is resting on the countertop. The human is standing on tiptoes with both feet as she
reaches inside the cupboard.

Figure 18: Qualitative Results of Motion Narration. We use green to highlight correct parts in the

answers while red for wrong ones.
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Figure 19: Qualitative Results of Motion Prediction. The first skeletons in red are input motion
prompts. The following motions are randomly sampled auto-regressively from our motion pre-
training network.

B.4 MOTION PREDICTION

As a by-product of the second stage of our training pipeline, motion pre-training, we build a motion
prediction network. Given leading motions as the prompts, our model is capable of auto-regressively
sample motions that complete the motion prompts. As shown in Fig. [T9] the first three samples
show three different samples given the same motion prompt. We can increase the intensity of the
generated motions by increasing the temperature. The last three samples show three random samples
given various motion prompts, e.g., bending forward, sitting down and standing.
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