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Abstract

Neural processes (NPs) are models for transfer learning with properties reminiscent of Gaussian
Processes (GPs). They are adept at modelling data consisting of few observations of many related
functions on the same input space and are trained by minimizing a variational objective, which is
computationally much less expensive than the Bayesian updating required by GPs. So far, most
studies of NPs have focused on low-dimensional datasets which are not representative of realistic
transfer learning tasks. Drug discovery is one application area that is characterized by datasets
consisting of many chemical properties or functions which are sparsely observed, yet depend on
shared features or representations of the molecular inputs. This paper applies the conditional neural
process (CNP) to DOCKSTRING, a dataset of docking scores for benchmarking ML models. CNPs
show competitive performance in few-shot learning tasks relative to supervised learning baselines
common in chemoinformatics, as well as an alternative model for transfer learning based on pre-
training and refining neural network regressors. We present a Bayesian optimization experiment which
showcases the probabilistic nature of CNPs and discuss shortcomings of the model in uncertainty
quantification.

1 Introduction

1.1 Learning from sparse chemical datasets

Recent years have seen an explosion of novel machine learning (ML) methods for molecular tasks, often relying on
large neural networks that require vast amounts of labelled data. The development of these models has been fueled
by an expectation that ML will greatly accelerate drug discovery [1, 2]. Unfortunately, their real-world applicability
is hindered by the sparsity of chemical datasets, which comprise many molecular functions with a few observations
each. It is estimated that in-house datasets in the pharmaceutical industry are less than 1% complete, whereas ChEMBL
is only 0.05% complete [3]. In order to take advantage real-world chemical datasets, we require models that are able
to transfer information across separate functions, even if annotated on non-overlapping molecules, and can make
predictions on new functions with very few observed labels. This setting, known as meta-learning, could be used to
frame and make an impact on problems in many areas of computer-aided drug design, including virtual screening, data
imputation, quantitative structure-activity relationships (QSAR), Bayesian optimization or bioactivity fingerprinting,
among others.

Neural processes are a novel family of models that show promise in meta-learning but have so far only been tested on
toy low-dimensional datasets. In this paper, we evaluate the performance of the CNP in several molecular tasks using
high-dimensional molecular representations.

1.2 Conditional Neural Processes (CNPs)

Consider a dataset consisting of observations of real-valued functions f1, . . . , fn on the same input space X . Each
function fi is observed at a set of oi input points xiO ∈ X oi ; we define yiO = (f(xiO,1), . . . , f(x

i
O,oi

)). Let f be a
test function, (xC , yC) be a vector of c context points and the values of f on these inputs, and (xT , yT ) be a vector
of t target points and the values of f on these inputs. A neural process (NP) [4, 5] aims to describe the predictive
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distribution p(yT | xT , xC , yC). This is done by mapping (xC , yC , xT ) through a parametric function, which is trained
on the data (xiO, y

i
O)i=1,...,n. In particular, we model the predictive distribution with a product measure:

qθ(yT | xT , xC , yC) =
t∏

j=1

N (yT,j ;µθ(xT,j), σ
2
θ(xT,j)).

The mean and variance, µθ(x) and σ2
θ(x), of the predictive distribution at target input x are obtained through the

following mapping:

rj = hθ(xC,j , yC,j) for j = 1, . . . , c (encoding)
r = r1 ⊕ · · · ⊕ rc (aggregation)

(µθ(x), σ
2
θ(x)) = gθ(x, r) for all x ∈ X (decoding)

where hθ and gθ are neural networks, ⊕ is a commutative operation and r is a global representation for the entire
context data.This architecture ensures that the predictive distribution is invariant to permutations of the context and
target points, respectively. The parameters θ of the encoder and decoder are trained by backpropagation using the data
(xiO, y

i
O)i=1,...,n. Conditional NPs (CNPs) [4] minimise a particularly simple objective:

−E

[
1

n

n∑
i=1

log qθ(y
i
T | xiT , xiC , yiC)

]
,

where the expectation is taken with respect to a random partition of the observations (xiO, y
i
O) for function fi into a

set of context points (xiC , y
i
C) and target points (xiT , y

i
T ). This objective function does not explicitly regularize the

predictive distribution qθ, so when the model is overparametrized, the objective can diverge and the variance parameters
σ2(·, r) can underestimate uncertainty. Latent NPs (LNPs) [5] avoid this problem by maximizing an approximate
Evidence Lower Bound, derived through a more conventional variational inference approach.

So far NP models have been evaluated on low-dimensional settings, where they excel at few-shot learning. Here, we
will analyze their performance on molecules represented by high-dimensional chemical fingerprints.

1.3 The DOCKSTRING dataset

The DOCKSTRING dataset [6] is a molecular dataset for benchmarking of ML models. It comprises more than 15
million docking scores for 58 protein targets and 260k molecules. Targets were chosen to be medically relevant and
represent a variety of protein families, and molecules were curated from PubChem and ChEMBL to be representative
of chemical series in drug discovery projects.

Each molecule in the DOCKSTRING dataset is annotated with all 58 protein target scores, which makes it especially
suitable to design benchmark tasks in transfer learning. In this paper, we sample a small subset of it to evaluate
regression and transfer learning by CNPs in the low-data regime.

2 Methods

2.1 Dataset and split

NPs are able to learn across different datapoints within the same function, and across different functions within the
same input space. Therefore, the dataset was split across both the datapoint dimension and the function dimension. We
refer to these splits as dtrain, dtest and ftrain, ftest respectively (Figure 1).

To emulate learning in a low-data regime, we took a small sample of the train and test sets defined in the DOCKSTRING
package. The dtrain set consisted of 2500 molecules from the original train set, and the dtest set consisted of 2500
molecules from the original test set. DOCKSTRING original sets were split by clusters, which prevented data leakage
from chemical analogues in dtrain and dtest. Our function split was derived from the DOCKSTRING regression task,
using the 5 task targets (ESR2, KIT, PARP1, PGR, F2) as ftest and the other 53 targets as ftrain.

2.2 CNP and benchmark models

A simple CNP was implemented with 3 linear layers in the encoder network, a mean aggregator function and 3
linear layers in the decoder network. We include four benchmarks commonly used in ML for chemoinformatics: a
feed-forward neural network with the same number of layers as the CNP (NN), k-nearest neighbours with k = 5 (KNN)
and k = 1 (FSS, known as fingerprint similarity search in chemoinformatics [7]), and a random forest regressor with
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Figure 1: Split across the function and datapoint dimensions of the DOCKSTRING sample. dtrain was sampled from the
DOCKSTRING training set and dtest was sampled from the DOCKSTRING test set, which were split by cluster similarity
[6]. ftrain and ftest were derived from the DOCKSTRING regression tassk

200 estimators (RF). As these benchmarks are only trained on ftest functions, we include a further benchmark for
transfer learning (fine-tuned NN). This consists of pre-training the previous NN with 53 outputs on ftrain observations,
and fine-tuning the model on each ftest function. The input to all models were Morgan molecular fingerprints of radius
3 and length 1024. The CNP and NN models were implemented in Pytorch [8], and the rest were implemented in
scikit-learn [9].

3 Experiments

3.1 Probabilistic regression and calibration

The CNP is an overparameterized neural model that outputs a predictive distribution. Similarly to neural networks
trained by maximum likelihood, the CNP is trained by maximizing the conditional probability of the target points
given the context points. However, unlike most neural models, the CNP performs uncertainty quantification. Since the
conditional probability of the target points could be made arbitrarily large by making the predicted variance smaller, the
CNP is at risk of overfitting and producing unreliable uncertainty estimates.

To evaluate this phenomenon, we analyzed the regression performance and the conditional probability of CNP
predictions as the number of training epochs increased (Figure 2, Appendix A). Figure 2 shows an example ftest
protein target that is comparatively easier to predict (PARP1) and an example ftest target that is challenging (ESR2).
We observed that prediction performance improved monotonically or stayed on a similar range as the training length
increased, but uncertainty estimates first improved and then worsened dramatically. Based on these results, we selected
the CNP trained for 1000 epochs for subsequent experiments.

Figure 2: CNP performance on two ftest function using different training lengths in different training runs. Regression
performance on docking scores was comparable of that previously reported for Vina docking scores [6].

We hypothesize that the LNP, whose ELBO-like objective includes a KL regularization term [5], may be more robust to
overfitting and degradation of its uncertainty estimates. Analysis of the LNP is left for future work.
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3.2 Few-shot learning

We evaluated the performance of the CNP in few-shot learning and compared it against benchmarks popular in
chemoinformatics (Figure 3, Appendix B). The CNP was trained on ftrain, dtrain, used context points in ftest, dtrain
and was tested on the target points ftest, dtest. Other models were trained on ftest, dtrain and tested on ftest, dtest.
In spite of the CNP not seeing the functions in ftest during training, it outperformed all other models in the low-data
regime. This was the case even for the transfer learning benchmark, fine-tuned NN, which was pre-trained on ftrain,
dtrain and fine-tuned on ftest, dtrain.

Figure 3: Few-shot performance of CNP and benchmark models on two ftest functions, an easy case (PARP1) and a
hard case (ESR2). The x-axis shows the number of points in ftest, dtrain used as context by the CNP or as training
points by the benchmarks. Benchmark error bars were derived from different training runs, whereas CNP error bars
originated from using different context points.

3.3 Generalization to unseen functions

In previous sections, we analyzed the ability of the CNP to generalize to unseen functions in ftest. However, ftrain and
ftest were all part of the same class of Vina docking scores. The question remained whether similar generalization would
be observed for molecular functions from very different classes. To investigate this, we created a new type of score that
linearly combines docking scores with the quantitative estimate of drug-likeness (QED) (Appendix C) [10]. We trained
CNP models either on plain scores or on plain scores and QED-modified scores, and tested either on plain scores or on
QED-modified scores (Table 1). We observed that the CNP was unable to generalize to functions of different classes,
but performance could be easily recovered by including functions from those classes in the training set.

Table 1: R2 of CNP trained (row) and tested (columns) on plain and QED-modified scores from PARP1, KIT and F2.

Plain scores QED-modified scores

Plain scores 0.57 ± 0.08 -6.42 ± 3.14
Plain and QED-modified scores 0.54 ± 0.08 0.34 ± 0.03

3.4 Bayesian optimization with CNPs

Finally, we evaluated whether the CNP predictive distribution is useful for Bayesian optimization (BO). Plain scores
or QED-modifed scores were minimized starting from five context molecules in ftest, dtrain ∪ ftest, dtest, selecting
one molecule per iteration for 4995 iterations. Three acquisition strategies to select the next optimal molecule were
compared: random, for a baseline; greedy, where only the mean of the distribution was considered; and lower confidence
bound (LCB, β = 1), which attempted to benefit from uncertainty estimates (Figure 4, Appendix D). As expected,
greedy and LCB greatly surpassed the random acquisition function. In addition, greedy and LCB exhibited very similar
performance, which suggests that the uncertainty estimates of CNPs did not offer a competitive advantage for molecular
optimization. However, both methods found the best molecule in the dataset quickly, making it difficult to draw strong
conclusions. A more challenging optimization task within a larger molecular library is left for future work.
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Figure 4: Bayesian optimization of plain and QED-modified scores of F2, a protein target in ftest.

4 Discussion

Our results demonstrate that CNPs have outstanding performance in few-shot learning of complex molecular properties
such as docking scores. The application of CNPs to impute sparse chemical datasets could be highly impactful, even
if one had confidence in only a small fraction of the imputations. However, the correct way to calibrate uncertainty
estimates in CNPs is a question that requires further study, as is the potential to generalise to more diverse function
classes. Applying similar models for probabilistic prediction, such as LNPs, in more complex imputation and molecular
optimization tasks is an exciting area for future work.
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Appendices
A Probabilistic regression and calibration

Figure A1: Performance of the CNP on the different data splits as the number of training epochs increases. Error bars
indicate the standard deviation across protein targets in the same group ftrain or ftest.
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B Low data

Figure A2: Few-shot performance of the CNP and benchmark models on three test functions in ftest, ranging in difficulty
from easy (F2), medium (KIT), and hard (PGR). The x-axis shows the number of datapoints in ftest, dtrain used as
context by the CNP or as training points by the benchmarks. Performance was evaluated on ftest, dtest.

C QED-modified docking scores

The quantitative estimate of drug-likeness (QED) of a molecule is a coefficient between 0 and 1 that attempts to quantify
the molecule’s similarity to approved drugs. In some experiments, we combine docking scores and QED values to create
a new artificial score. QED-modified scores are expected to be more challenging to predict and to reflect drug-likeness.

Given a molecule m with docking score s(m, t) for protein target t, we define its QED-modified score s′ as

s′(m, t) := s(m, t) + 10(1− QED(m)).
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D Bayesian optimization with CNPs
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