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Abstract
Transformer networks have achieved remarkable
success across diverse domains, leveraging a vari-
ety of architectural innovations, including resid-
ual connections. However, traditional residual
connections, which simply sum the outputs of
previous layers, can dilute crucial information.
This work introduces DeepCrossAttention (DCA),
an approach that enhances residual learning in
transformers. DCA employs learnable, input-
dependent weights to dynamically combine layer
outputs, enabling the model to selectively focus
on the most relevant information in any of the
previous layers. Furthermore, DCA incorporates
depth-wise cross-attention, allowing for richer in-
teractions between layers at different depths. Our
language modeling experiments show that DCA
achieves improved perplexity for a given training
time. Moreover, DCA obtains the same model
quality up to 3x faster while adding a negligible
number of parameters. Theoretical analysis con-
firms that DCA provides an improved trade-off
between accuracy and model size when the ratio
of collective layer ranks to the ambient dimension
falls below a critical threshold.

1. Introduction
Residual connections play an important role in modern neu-
ral network architectures because they stabilize the training
of deep neural networks and improve model convergence
and quality. Since their usage in the ResNet architecture (He
et al., 2016), residual connections have been widely adopted
in both convolutional neural networks and transformer archi-
tectures across various domains, including natural language
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processing (Vaswani, 2017), audio recognition (Gong et al.,
2021), and computer vision (Dosovitskiy et al., 2021).

A residual neural network (ResNet) is constructed by stack-
ing layers known as residual blocks. Each residual block is
characterized by the recursive equation xt+1 = f(xt) +xt,
which contains a residual function f along with an identity
shortcut (also called an identity loop or skip connection).
The residual functions typically used in these blocks include
multi-layer perceptrons (MLPs), convolutional neural net-
works (CNNs), and attention. By unrolling the recursion,
we equivalently see that each layer’s input is the sum of all
its previous layers’ outputs (including the model’s input).
Figure 2 provides a schematic illustration of this concept.

Information dilution in residual networks. Residual con-
nections increase the flow of information across the neural
network. However, they also come with a potential lim-
itation: Taking a straight sum of previous layer outputs
implicitly treats all previous layers as equally important.
This can dilute useful information present in a select few
layers (including the model’s input) with potentially less
useful information. We hypothesize that, because of this
dilution, even though residual networks mitigate the prob-
lem of neural network bottlenecks, they do not sufficiently
resolve it. One way to resolve the issue of dilution would
be to allow each layer to choose its inputs.

In order to confirm the existence and significance of the di-
lution phenomenon we ask a simple question: Can residual
networks easily learn to recover the input? This should be a
basic task expected of any generative model — otherwise
there would be information loss. However, if our dilution
hypothesis is true, the answer would be negative. To test
this, we create a neural network consisting of a number
of low-rank layers, and add residual connections in order
to mitigate the bottlenecks introduced by the low ranks.
The resulting model is full-rank. We compare this model
with another model that employs learnable residual connec-
tions, as in DenseFormer (Pagliardini et al., 2024), which
we later also call GRN-v1, since it is the starting point of
our generalizations. In Figure 1 we see the results of the
two models on two tasks: learning the identity transforma-
tion and learning a random linear transformation. Perhaps
surprisingly, we observe that the residual network is unable
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(a) Learning the identity transformation by minimizing
‖f(x)− x‖22, where x is a 100-dimensional i.i.d. normal input
and f is a low-rank linear network.
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(b) Minimizing the loss ‖f(x)− y‖22, where x is a 100-d i.i.d.
normal input, f is a low-rank linear network, and y = Ax+ b,
where A, b have i.i.d. standard normal entries.

Figure 1. Training low-rank linear models to learn the identity and a random transformation. Each model consists of 10 linear layers, each
of rank 3, and is trained using mini-batch SGD.

to fully reconstruct the input even after seeing 103 batches
(105 examples), while the model with learnable residual
weights is able to reach extremely small loss values, even
with 100x fewer examples. This confirms that ResNet does
not address neural network bottlenecks in a satisfactory way,
even though it learns a full-rank transformation, and under-
scores the importance of using learnable residual weights to
increase model capacity.

Our contribution. In this work, we propose DeepCrossAt-
tention (DCA), a new transformer architecture that gen-
eralizes residual networks by employing learnable, input-
dependent weights to dynamically combine layer outputs,
enabling the model to selectively focus on the most relevant
information in any of the previous layers and thereby pre-
vent dilution of information in the hidden representations.
Furthermore, DCA incorporates depth-wise cross-attention
by enabling the queries, keys, and values in each transformer
block to independently combine layer outputs, allowing for
richer interactions between layers at different depths. This
is all achieved with a negligible number of additional pa-
rameters, making DCA more effective than increasing the
model size (for instance by increasing its width or depth).

DCA can be viewed as a mechanism to adapt the model ar-
chitecture dynamically for each input token. By optimizing
the added parameters, DCA learns to effectively combine
the outputs of earlier residual blocks. This allows the model
to rearrange the residual blocks from purely sequential to
fully parallel and any intermediate combination, without the
need for explicit architectural design choices.

We analyse our generalization of the residual network theo-
retically by focusing on a linear low-rank model. We show
that DCA achieves a better trade-off between accuracy and
model size when the ratio of the collective ranks of the lay-

ers to the ambient dimension is below a threshold, which
depends on the complexity of the target task. In addition,
the improvement in this trade-off can itself be characterized
as a function of the collective ranks of the layers, ambient
dimension and the complexity of the target task. We extend
this insight to nonlinear models by working with the notion
of bottleneck rank, proposed by Jacot (2023).

We additionally provide empirical results to support the the-
oretical findings and demonstrate the effectiveness of DCA.
Experiments on language modeling and image classifica-
tion tasks demonstrate that DCA consistently outperforms
the standard transformer architectures in terms of perplex-
ity, accuracy and training efficiency. DCA achieves lower
perplexity for a given parameter budget and training time.
Furthermore, DCA exhibits improved training stability, mit-
igating the occurrence of loss spikes frequently observed
while training large models.

2. Related Work
Highway networks enable each layer to interpolate dynami-
cally between its output f(x) and its input x using a gating
mechanism (Srivastava et al., 2015). Residual connections
(He et al., 2016) popularized the direct flow of information
from earlier to later layers using identity shortcuts. These in-
novations proved crucial in stabilizing training and allowing
for the construction of significantly deeper networks. Build-
ing upon this concept, DenseNet (Huang et al., 2017) further
enhanced information flow by concatenating the outputs of
all preceding layers to each layer’s input.

The following methods are the ones most similar to ours.
They all build on the idea of DenseNet but apply an effi-
cient aggregation of the previous layer outputs instead of
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concatenating them. DenseFormer (Pagliardini et al., 2024)
performs the aggregation as a learned linear combination
of the previous layer outputs. To reduce the computational
load, they propose to apply their method only on a subset of
the possible layer connections. Building on DenseFormer,
LAuReL (Menghani et al., 2024) presents three aggrega-
tion functions, the best performing one applies a learned
low-rank transformation to the previous layer outputs before
the learned linear combination. Zhu et al. (2024) take a
different approach with Hyper-Connections, they consider a
fixed-size stack where layer outputs are added into with a
learned weight for every slot of the stack. Before each layer,
the stack is mixed by a matrix multiplication with a learned
weight matrix. The input to a layer is then obtained by a
learned linear combination of the stack, instead of access-
ing the previous layer outputs directly. They also present
a dynamic version of their method where the weights are
derived from the inputs.

3. Method
We start with a detailed exposition of our proposed gener-
alizations to the residual network architecture. We present
three distinct proposals, each incrementally augmenting the
complexity of the network structure. Building upon these
proposals, we subsequently introduce DeepCrossAttention
(DCA), a novel approach to enhance residual learning capa-
bilities of the transformer architecture.

Notation. We denote a residual function by ft : Rd → Rd,
where t is the layer index and d the feature dimension. As an
example, in a multi-layer perceptron residual network (MLP-
ResNet), we have ft(x) = Vtσ(Wtx) with Wt ∈ Rk×d,
Vt ∈ Rd×k and σ is a nonlinear function, such as sigmoid
or ReLU, that is applied component-wise. Then, the t-th
residual block outputs gt+1(x), are defined recursively as

gt+1(x) = ft(gt(x)) + gt(x) .

Using this recursion, the output of the T -th residual block
is given by

gT+1(x) =

T∑
t=0

ft(gt(x)) ,

with the conventions that g0(x) = 0 and f0(g0(x)) = x.
We refer to Figure 2 for a schematic illustration.

An alternative description, which we will use to introduce
our generalizations, is the following. For every t, define the
stack of layer outputs Gt ∈ Rd×t as

Gt :=
[
ft−1(gt−1(x)), . . . , f0(g0(x))

]
∈ Rd×t .

We then have gt(x) = Gt1 and y = GT1 in the standard
residual network, where 1 denotes the all ones vector.

Figure 2. Two alternative schematic representations of standard
ResNet. The top represents the recursive form, the bottom repre-
sents the explicit sum.

Figure 3. Computation diagram of GRN-v3.

3.1. Generalized Residual Networks (GRN)

We propose three generalizations of ResNets by consider-
ing weighted linear combinations of previous layer outputs.
The parameters of the modules and the generalizations are
all optimized during training using the AdamW optimizer
(Loshchilov & Hutter, 2017).

Dimension-independent weights (GRN-v1). We consider
simple linear combinations as

gt(x) = Gtbt, y = GT+1bT+1

with bt ∈ Rt×1 which is initialized as all ones and opti-
mized with the rest of the model parameters during training.
This setting has been previously explored in the Dense-
Former paper (Pagliardini et al., 2024).

Dimension-dependent weights (GRN-v2). In this pro-
posal, we allow bt ∈ Rd×t and consider

gt(x) = (Gt � bt)1, y = (GT+1 � bT+1)1 ,

where� indicates the entry-wise (Hadamard) product. Note
that in GRN-v1 the same weight vector bt is used for each of
the d features. GRN-v2 generalizes this by using different
weight vectors for different features, which are all stacked
together in a matrix bt ∈ Rd×t.

Input-dependent weights (GRN-v3). In the next general-
ization, we allow the weights to be input dependent. Specifi-
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cally, the weights are given by bt + w̄t with bt, w̄t ∈ Rd×t.
The first component acts similar to the weights in GRN-
v2, it puts different weights on different dimensions of the
input. The second component w̄t is a nonlinear mapping
of the input features vector x, but is the same for all the d
dimensions. This combination gives us flexibility to have
both dimension-dependent and input-dependent weights for
a slight increase in the number of parameters. GRN-v3 is
expressed as

gt(x) = (Gt � (bt + w̄t))1 , w̄t = 1σ(wT
t Gt) ,

y = (GT+1 � (bT+1 + w̄T+1))1

where wt : Rd×1 is initialized as all zeros and optimized
with the rest of the model parameters during training and
σ : R→ R is a non-linearity which is applied entry-wise. In
this proposal we consider σ to be the ReLU activation. The
computation diagram of GRN-v3 is illustrated in Figure 3.

Reducing memory and computation. Since the stack of
layer outputs Gt grows linearly with the depth of the model,
this could lead to significant memory and computational
overhead for deep models. Our experiments reveal that
GRNs tend to weight inputs and the last few layer outputs
the most. An example weight distribution is provided in
Appendix H. Therefore, to increase efficiency, we propose
to include only the first and last-k layers explicitly in Gt.
On the intermediate layers we apply standard ResNet, only
involving simple addition. For example, if we set k =
2, then Gt contains at most 4 vectors: the model inputs,
the sum of the intermediate layers’ outputs, and the last
two layers’ outputs ft−1(gt−1(x)) and ft−2(gt−2(x)). The
GRNs then take this modified Gt as their input.

3.2. DeepCrossAttention

The generalizations introduced thus far are generally appli-
cable to any ResNet. We now describe our main method
which is specific to the transformer architecture. Deep-
CrossAttention (DCA) generalizes self-attention by adding
three independent instances of a GRN in each decoder block.
In this proposal we consider the GRN to be GRN-v3. These
three GRN instances are given the same stack of previous
layer outputs as their input but return the queries, keys, and
values for the attention module, respectively. This enables
richer interactions between layers at different depths. Fig-
ure 4 shows the computation diagram of a DCA decoder
block inside a transformer, where the remaining skip con-
nections ensure that the inputs are not added to the outputs
of the decoder block, but are included in the inputs of both
the attention and the feed forward module. Notably, DCA
does not modify the underlying attention mechanism, but
instead uses GRNs to dynamically compose attention inputs.

Figure 4. Computation diagram of a DCA decoder block.

4. Theoretical analysis
Motivated by language modeling tasks, we focus on the
regime where the size of the training set (n) significantly
exceeds the input dimension (n� d). As we increase the
number of model parameters, the representation capacity of
the network improves, which helps with reducing the test
error. We will be focusing on the the trade-off between the
test error and the number of parameters, and argue that our
proposed generalizations achieve a better trade-off than the
standard ResNet.

We will first study a “stylized” low-rank linear model for
which we characterize the test error-model complexity trade-
off and demonstrate the benefits of our proposed generaliza-
tions. Our analysis elucidates the role of various factors on
this trade-off, such as collective widths of layers, complexity
of the target task, and input dimension. We then discuss how
some of these results can be extended to non-linear models
and empirically demonstrate that the insights gained from
our analysis are applicable to more complex models.

Due to space constraint, proof of theorems are deferred to
the supplementary material.

4.1. Low-rank linear model

Consider the setting where for each sample the response
y ∈ Rd is given by

y = Ax + ε

with ε ∈ Rd representing the noise. Here A ∈ Rd×d is a
full rank matrix.

We consider a network with T layers where ft(z) = Vt
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(there is no activation). We let rt := rank(Vt) and define
the collective rank r∗ :=

∑T
t=1 rt. We assume r∗ < d,

i.e., the collective rank of all layers still is lower than the
ambient dimension d.

We next focus on four architectures: Baseline (where there
is no residual connection), ResNet, GRN-v1 and GRN-v2
and characterize the class of models which can be expressed
by each of these architectures. We assume each architecture
to have T layers.

Baseline. In this architecture, there is no residual connec-
tion and so the model is given by ŷ =

∏T
t=1 Vtx. We de-

note by Cbase the class of functions that can be represented
by such architecture.

ResNets. In this case, we have ŷ =
∏T
t=1(I + Vt)x. De-

note by Cres as the class of functions that can be represented
by such architecture.

GRN-v1. In this case, we have ŷ = GT+1bT+1, with
bT+1 a (T + 1)-dimensional vector as described in Sec-
tion 3. Denote by CGRN−v1 the class of functions that can
be represented by such architecture.

GRN-v2. In this case, we have ŷ = (GT+1 � bT+1)1,
where bT+1 is d× (T + 1) matrix as described in Section 3.
We denote by CGRN−v2 the class of functions that can be
represented by such architecture.

GRN-v3. In this case, we have ŷ = (GT+1 � (bT+1 +
w̄T+1))1, where bT+1 is d× (T + 1) matrix and w̄T+1 is
d dimensional vector as described in Section 3. We denote
by CGRN−v3 the class of functions that can be represented
by such architecture.

Theorem 4.1. For the low rank linear model we have:

• Cbase = {x 7→Mx : rank(M) ≤ min(rt)
T
t=1}.

• Cres = {x 7→ (I + M)x : rank(M) ≤ r∗}.

• CGRN−v1 = {x 7→ (αI + M)x : rank(M) ≤ r∗}.

• CGRN−v2 = {x 7→ (D + M)x : rank(M) ≤
r∗,D is diagonal}.

• CGRN−v3 ⊃ {x 7→ (D + M)x + σ(wTx)x :
rank(M) ≤ r∗,D is diagonal,w ∈ Rd×1}.

4.2. Trade-off between test error and model complexity

In the previous section, we characterized the class of models
that can be expressed by each architecture. Next, we study
the trade-off between the optimal test error achievable by
each model and the model complexity, defined as the number
of its parameters.

Note that all the classes of models characterized in Theo-
rem 4.1 are linear functions. For a linear model x 7→ Âx,

its test error (model risk) is given by

Risk(Â) = E[(y − ŷ)2]

= E
[∥∥∥(A− Â)x

∥∥∥2

`2

]
+ σ2

= E[trace{(A− Â)xxT(A− Â)T}] + σ2

=
∥∥∥A− Â

∥∥∥2

F
+ σ2 ,

where we assumes that E[xxT] = I (isotropic features).
Since the term σ2 is constant (independent of model Â) we
will drop it in sequel without effecting our discussion and
focus on the excess risk. For a class of models C we use
the notation ER∗(C) to indicate the minimum excess risk
achievable over the class C:

ER∗(C) := min
Â∈C

∥∥∥A− Â
∥∥∥2

F
.

Note that ER∗(Cbase(T )) is obtained by the best r-rank ap-
proximation to A and ER∗(Cres) is obtained by the best
rT -rank approximation to A− I , both of which have sim-
ple characterization in terms of the singular values of A
and A− I , by using the celebrated Eckart–Young–Mirsky
theorem. Deriving ER∗(CGRN−v1(T )) and ER∗(CGenB(T))
are more complicated. In the next theorem, we establish
upper bounds on them.

Theorem 4.2. Consider the singular value decomposition
A− I = UΣV T. For a given m ∈ [d], let Um, Σm, Vm
be the topm singular vectors and singular values and define
∆ := A−I−Ur∗Σr∗V

T
r∗, where r∗ :=

∑T
`=1 r`. We then

have

Err∗(Cres) = ‖∆‖2F ,

Err∗(CGRN−v1) ≤ ‖∆‖2F −
1

d− r∗
trace(∆)2 ,

Err∗(CGRN−v2) ≤ ‖∆‖2F

−max

{
d∑
i=1

∆2
ii,

1

d− r∗
trace(∆)2

}
,

where {∆ii}di=1 are the diagonal entries of ∆. In addition,

Err∗(CGRN−v3) ≤ ‖∆‖2F −max{T1, T2} ,

T1 :=
1

d− r∗
trace(∆)2 +

ν2
max

π(d+ 1)
,

T2 :=

d∑
i=1

∆2
ii +

ν̃2
max

π(d+ 1)
.

Here νmax denotes the maximum eigenvalue of ∆+∆T

2 −
1

d−r∗ trace(∆)Ur∗,⊥U
T
r∗,⊥ and ν̃max denotes the maximum

eigenvalue of ∆+∆T

2 − diag(∆).
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Figure 5. Gain in the model performance achieved by GRN-v1 and GRN-v2 over ResNet. The plots represents the lower bounds for G1

and G2 given in Theorem 4.3(ii). Observe that the gain at larger dimension d is higher. Left panel shows that the gain decreases as the
collective rank r∗ of ResNet increases (λmin = 5, λmax = 10). Right panel shows that the gain increases as the complexity of the target
task (κ = λmin/λmax) increases (λmax = 10 and r∗ = 50 ).

We proceed by discussing the model complexity for each
of the architectures, in terms of model size. The number
of parameters for ResNet is given by 2dr∗, for GRN-v1 is
given by 2dr∗ + T (T − 1)/2, and for GRN-v2 is given by
2dr∗+dT (T −1)/2. Note that by Theorem 4.2, if GRN-v1
and GRN-v2 achieve better Excess risk-model size trade-off
compared to ResNet, then we can make this improvement
arbitrarily strong by scaling A− I (and so ∆).

In the next theorem, we focus on GRN-v1 and GRN-v2 and
provide sufficient conditions under which they achieve a
better excess risk-model size trade-off. In the second part
of the theorem, we also lower bound the improvement that
GRN-v1 and GRN-v2 achieve in excess risk compared to
ResNet, with using the same number of parameters.

Theorem 4.3. Assume that A − I � 0 and let λmax and
λmin > 0 respectively denote the maximum and the min-
imum eigenvalues of A − I . Define κ := λmin/λmax ≤
1. Consider a ResNet model with collective rank r∗ :=∑T

t=1 rt.

(i) If

r∗
d
≤ (1 + κ(

√
κ2 + 1− κ))2 − 1, (4.1)

then GRN-v1 achieves a better excess risk-model size trade-
off compared to ResNet. In addition, if

r∗ ≤ (1 + κ(
√
κ2 + d− κ))2 − 1, (4.2)

then GRN-v2 achieves a better trade-off compared to
ResNet.

Also, GRN-v3 achieves a better trade-off compared to
ResNet, if

r∗ ≤ (1 + η(
√
η2 + d− η))2 − 1.6 , (4.3)

where η =
√

(κ(1+ξ0)−ξ0)2+ξ0
1+ξ0

and ξ0 = 1
π(d2−1) .

(ii) Consider CGRN−v1 and CGRN−v2, the class of mod-
els that can be expressed by the GRN-v1 and GRN-v2
architectures with the same number of parameters as a
ResNet model with T layers and collective rank r∗. Define
G1 := ER∗(Cres)−ER∗(CGRN−v1) andG2 := ER∗(Cres)−
ER∗(CGRN−v2) as the reduction in the optimal excess risk
achievable by these classes compared to the optimal excess
risk of ResNet. We have

G1 ≥ (d− r∗)λ2
min − (

√
d+ r∗ −

√
d)2(λ2

max − λ2
min) ,

G2 ≥ (d− r∗)λ2
min − (

√
1 + r∗ − 1)2(λ2

max − λ2
min) ,

G3 ≥
(
d− 1

π(d+ 1)
− r∗

)
λ2

min +
1

2π(d+ 1)
λ2

max

− (
√

1.6 + r∗ − 1)2(λ2
max − λ2

min) .

Our next result quantitatively shows the reduction in the
collective rank one can achieve by GRNs, while maintaining
the same test error as ResNet.
Proposition 4.4. Consider a ResNet with collective rank
r∗ =

∑T
t=1 rt < d. A GRN-v1 or GRN-v2 model

can achieve a smaller test error with collective rank r′∗,
where r′∗ := r∗−dκ2

1−κ2 < r∗. Likewise, a GRN-v3 model
achieve a smaller test error with collective rank r̃∗, where

r̃′∗ := r∗−dη2
1−η2 < r∗, with η =

√
(κ(1+ξ0)−ξ0)2+ξ0

1+ξ0
and

ξ0 = 1
π(d2−1) .

4.3. Insights from the analysis

Theorem 4.3 allows us to elucidate the role of different
factors on the gain achieved by GRNs.

Role of target task complexity. Note that κ =
λmin/λmax ∈ [0, 1] is a measure of complexity of the target
task. Specifically, as κ decreases, the matrix A becomes
closer to a low rank matrix, and hence learning it with low
rank models becomes easier. Observe that the thresholds
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given by the right hand side of (4.1)-(4.3) are increasing in
κ, i.e., for more complex tasks we see a wider range of col-
lective rank where GRNs outperforms the trade-off achieved
by ResNet. Another way to interpret Theorem 4.3(i) is that
for a fixed target task (and so fixed κ), if the collective rank
r∗ is above this threshold, the ResNet is already rich enough
that it is hard to improve upon its trade-off.

Role of collective rank. Observe that the lower bound on
the gains G1, G2, G3 given by Theorem 4.3(ii) are decreas-
ing in r∗. In other words, when the collective rank r∗ of
ResNet becomes smaller, the level of information dilution
occurring in ResNet increases, giving GRNs a better lever-
age to improve model perplexity with the same number of
parameters.

Role of input dimension. Note that the upper bounds on
r∗ given by (4.1) to (4.3) increase with the input dimension
d. Furthermore, the lower bounds on the gains G1, G2, G3

given in Theorem 4.3(ii) also increase with d. Therefore, for
larger input dimensions, we have both a wider range for r∗
where GRNs outperforms the trade-off achieved by ResNet,
and moreover, we obtain a larger gain in reducing model
error.

We refer to Figure 5 for an illustration of these trends.

4.4. Extension to nonlinear models

We recall the definition of Bottleneck rank from (Jacot,
2023). For a function f : Ω 7→ Rd, its Bottleneck rank,
denoted by rankBN (f,Ω) is the smallest integer k such
that f can be factorized as f = h ◦ g with inner di-
mension k (i,e, g : Ω 7→ Rk and h : Rk 7→ Rd) It is
also closely related to the Jacobian rank of a function de-
fined as rankJ (f) = maxx∈Ω rank[Jf(x)]. In general,
rankJ (f) ≤ rankBN (f), but for functions of the form
f = ψ ◦A ◦φ (for a linear map A and two bijections ψ and
φ), we have rankJ (f) = rankBN (f) = rank(A). These
two notions of rank satisfy the following properties (Jacot,
2023):

• rank(f ◦ g) ≤ min{rank(f), rank(g)}

• rank(f + g) ≤ rank(f) + rank(g)

Proposition 4.5. Consider an MLP with ft(z) =
Vtϕ(Utz) with Ut ∈ Rrt×d, Vt ∈ Rd×rt . Denote by
r∗ :=

∑T
t=1 rt the collective rank of the network. We have

• Cbase ⊆
{
f : rankBN (f) ≤ min(rt)

T
t=1

}
.

• Cres ⊆ {id+ f : rankBN (f) ≤ r∗}.

• CGRN−v1 ⊆ {α · id+ f : rankBN (f) ≤ r∗}.

• CGRN−v2 ⊆ {g : g(x) = Dx+f(x) : rankBN (f) ≤
r∗, D is diagonal}.

5. Experiments
We conduct experiments on language modeling and image
classification tasks to evaluate the effectiveness of DCA and
to validate our theoretical insights. For the language model-
ing tasks, the performance of DCA is compared against the
standard transformer (Vaswani, 2017) on the LM1B (Chelba
et al., 2013) and C4 (Raffel et al., 2020a) datasets. Unless
stated otherwise, each model has an embedding dimension
of 512 and an MLP dimension of four times the embedding
dimension. By default, DCA uses a stack of all the previous
layer outputs as input to the GRNs. When DCA includes
only the first and last-k layer outputs explicitly in the input
stack (see Section 3.1), then this is denoted as k-DCA.

Each model is trained with a sequence length of 128 and
a batch size of 2048 over 64 TPUs for 500k steps, totaling
131B tokens. We use the AdamW optimizer (Loshchilov &
Hutter, 2017) with β1 = 0.9, β2 = 0.98, a weight decay of
0.1, and a learning rate of 0.0016 with 1000 warmup steps
and an inverse square root schedule (Raffel et al., 2020b).

Model depth scaling. For the first experiment, we pre-train
a transformer and DCA on LM1B. We increase the model
depth from 6 to 42 layers and show the relation between
perplexity (Jelinek et al., 1977) and model size in Figure 6.
The figure shows that DCA obtains a lower perplexity for a
given parameter budget. Notably, the 30-layer DCA model
obtains a better perplexity than the 42-layer transformer,
making DCA more parameter-efficient than adding layers.

0.6 0.8 1.0 1.2 1.4 1.6
Number of parameters 1e8
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16

17

18

19
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xi

ty

Transformer
DCA

Figure 6. Perplexity on LM1B with 6, 12, 18, 24, 30, 36, and 42
layer transformer and DCA models.

First and last-k. DCA can be made more efficient by in-
cluding only the first and last-k layer outputs explicitly in
the input stack to the GRNs (see Section 3.1). In this ex-
periment, we study the effect of k on a 24-layer model’s
efficiency and quality. Table 1 shows that reducing k speeds
up training while only slightly increasing the perplexity.
Either small or large k obtain good training efficiency, as
DCA then obtains the final perplexity of the transformer in a
third of the time. Setting k = 2 results in a model with 48%
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lower inference latency compared to k = 24, thus setting k
to be small results in efficient training and fast inference.

Table 1. Training speed in batches per second, normalized time for
a method to reach the perplexity of the transformer, and the final
perplexity (PPL) of the transformer and DCA with varying k.

METHOD SPEED TIME PPL

TRANSFORMER 8.14±0.18 1.00 15.14±0.06
1-DCA 5.62±0.04 0.33 14.48±0.05
2-DCA 5.39±0.06 0.33 14.41±0.04
4-DCA 5.01±0.12 0.37 14.50±0.03
8-DCA 4.35±0.14 0.47 14.49±0.02
16-DCA 3.86±0.08 0.40 14.35±0.07
24-DCA 3.72±0.08 0.39 14.35±0.00

Training time. The effectiveness of a model architecture
heavily depends on its training efficiency. Figure 7 shows
the training time-perplexity trade-off for 24, 36, and 42
layer transformer and 2-DCA models. The figure shows that
2-DCA achieves better perplexity for a given training time,
highlighting the training efficiency of DCA. The training
time versus perplexity results when DCA uses all previous
layer outputs in the GRNs are provided in Appendix F.
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Figure 7. Perplexity on LM1B versus the training time with trans-
former and 2-DCA models of various depths.

Model width scaling. Our theoretical results indicate that
the benefit of GRN is inversely related to the rank of the
model. With this experiment, we validate whether the theo-
retical results carry over to the transformer architecture by
varying the model width. Table 2 shows the final perplexity
of a 12-layer model with an embedding dimension ranging
from 64 till 1024, pre-trained on LM1B. The delta col-
umn, with the difference between the transformer and DCA,
shows that the benefit of DCA is reduced as the width of
the model increases, which is consistent with our theoretical
results. These results are in contrast with the depth scaling
results, where the improvement of DCA is maintained for
deeper models.

Model scaling. For this experiment, we train transformer

Table 2. Perplexity on LM1B for models of varying widths.

WIDTH TRANSFORMER DCA DELTA

64 45.75±0.06 42.94±0.07 -2.82
192 25.49±0.15 23.92±0.04 -1.57
384 18.86±0.04 17.83±0.04 -1.03
768 14.70±0.04 14.11±0.07 -0.59

1024 13.61±0.01 13.22±0.06 -0.39

and 8-DCA models of increasing size on the C4 dataset. The
results in Table 3 show that DCA consistently outperforms
the standard transformer model. The absolute improvement
in perplexity decreases for large models, which is consistent
with the width scaling results. The perplexity throughout
training is provided in Appendix G.

Table 3. Perplexity on C4 for models of varying depths and widths.

D W PARAMS TRANSF. 8-DCA DELTA

9 771 75M 27.876 26.443 -1.443
18 771 124M 23.013 21.810 -1.203
13 1111 179M 21.570 20.461 -1.109
18 1111 234M 19.756 18.824 -0.932
18 1600 449M 17.166 16.764 -0.402

Retrofitting pre-trained models. Since our method is iden-
tical to a standard residual network at initialization, adding
DCA to a pre-trained model does not alter its function. In
Table 4, we compare continuing training the pre-trained
model with adding DCA to the pre-trained model. Incor-
porating DCA results in a perplexity improvement of 0.19
after 60k extra training steps, compared to just 0.02 for
the transformer. Thus, pre-trained models with a residual
architecture can also benefit from incorporating DCA.

Table 4. Perplexity on LM1B for extended training of 6-layer mod-
els. DCA is added to a 500k steps pre-trained transformer.

STEPS TRANSFORMER DCA DELTA

500K 18.98±0.01 18.98±0.01 0.00
500K + 20K 18.96±0.02 18.81±0.01 -0.15
500K + 40K 18.96±0.01 18.79±0.03 -0.17
500K + 60K 18.96±0.01 18.79±0.04 -0.17

Training stability. The occurrence of loss spikes is a prob-
lem when training large models as they can disrupt an ex-
pensive training run (Chowdhery et al., 2023). In Figures 7
and 8, we indeed observe clear loss spikes with the trans-
former model. Interestingly, training DCA is more stable,
showing no significant loss spikes even for large models.
This constitutes an important benefit of DCA.

Comparison with related work. We compare the perplex-
ity of DCA with those obtained by the recent related works
LAuReL (Menghani et al., 2024), DenseFormer (Pagliardini
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et al., 2024), and Hyper-Connections (dynamic) (Zhu et al.,
2024) in Table 5. DCA improves upon the prior best method,
hyper-connections, with a difference in perplexity of 0.59,
which is the biggest improvement among the methods.

Table 5. Perplexity (PPL) and parameter count on LM1B using a
6-layer model, comparing DCA with related work.

METHOD PARAMS PPL

TRANSFORMER 49.65M 18.98±0.01
LAUREL-PA 49.75M 18.99±0.05
1X1-DENSEFORMER 49.65M 18.80±0.11
HYPER-CONNECTIONS 49.68M 18.65±0.03

DCA (OURS) 49.73M 18.06±0.01

Table 6. Perplexity (PPL) on C4 using a 13-layer model and em-
bedding dimension 1111, comparing DCA with related work. The
baseline model has roughly 179M parameters.

METHOD PPL

TRANSFORMER 21.534
LAUREL-PA 20.951
1X1-DENSEFORMER 21.168
HYPER-CONNECTIONS (STACK SIZE=4) 21.077
HYPER-CONNECTIONS (STACK SIZE=10) 20.718

8-DCA (OURS) 20.392

Ablation study. To determine the relative gain of each of
the proposed generalizations, in Table 7 we show the per-
plexity obtained by each method described in Section 3.
The GRN versions use one GRN instance per decoder block.
DCA, in contrast, uses three independent instances of GRN-
v3 per decoder block. The biggest improvement in perplex-
ity comes from GRN-v1, followed by DCA and GRN-v2.

Table 7. Ablation study of DCA, showing the parameter count and
the perplexity (PPL) on LM1B with a 6-layer model.

ABLATION PARAMS PPL

TRANSFORMER 49.65M 18.98±0.02
GRN-V1 49.65M 18.80±0.11
GRN-V2 49.66M 18.43±0.04
GRN-V3 49.68M 18.41±0.10
DCA 49.73M 18.06±0.01

ImageNet classification. In addition to the language mod-
elling experiments, we also experiment with image classifi-
cation using the ImageNet dataset and the vision transformer
(ViT) model (Dosovitskiy et al., 2021). Since the ViT model
is transformer-based, DCA can be incorporate in the same
way as for the language models presented earlier. In Ta-
ble 8, we present the results on the ViT-S/16 model (22M
parameters) and follow the experimental setup by Beyer
et al. (2022). The results show a 0.7% improvement in

classification accuracy, demonstrating that DCA effectively
generalizes to the vision domain.

Table 8. Loss and Accuracy on ImageNet classification.

METHOD LOSS ACCURACY

VIT 0.5698 76.4
VIT + DCA (OURS) 0.5284 77.1

6. Conclusion
This paper introduces DeepCrossAttention (DCA), a novel
transformer architecture that enhances the flow of informa-
tion across layers. It achieves lower perplexity for a given
parameter budget and training time for a minimal increase
in model parameters. DCA enables dynamic interactions
between layer outputs by building on three generalizations
of the standard residual network (GRN). We showed theoret-
ically that GRN obtains a better test error-model complexity
trade-off. In our DCA experiments we observe significant
improvements in model stability, convergence, and quality.
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A. Proof of Theorem 4.1
We restate each of the claims in the theorem statement, followed by its proof.

• Cbase = {x 7→Mx : rank(M) ≤ min(rt)
T
t=1}.

Note that by the inequality rank(AB) ≤ min{rank(A), rank(B)}, if M is of the form
∏T
t=1 Vt then rank(M) ≤

min(rt)
T
t=1. For the other direction consider any matrix M with rank(M) = r0 ≤ min(rt)

T
t=1, and its SVD as M =

PSQT with P ,Q ∈ Rd×r0 with full column ranks. By setting, V1 = PSQT and V2 = . . . = VT = QQT we have
M =

∏T
t=1 Vt, because QTQ = I and also rank(Vt) = r0 ≤ min(rt)

T
t=1 ≤ rt.

• Cres = {x 7→ (I + M)x : rank(M) ≤ r∗}

We have
T∏
t=1

(I + Vt) = V1

T∏
t=2

(I + Vt) +

T∏
t=2

(I + Vt)

= V1

T∏
t=2

(I + Vt) + V2

T∏
t=3

(I + Vt) +

T∏
t=3

(I + Vt)

= . . .

= I + VT +

T−1∑
t=1

Vt

T∏
τ=t+1

(I + Vτ )

Note that each of the summand is of rank at most rt, so it can be written as I + M with rank(M) ≤
∑T
t=1 rt. Hence∏T

t=1(I + Vt)x ∈ Cres.

We next show that any I + M with rank(M) := r ≤
∑T
t=1 rt can be written as

∏T
t=1(I + Vt) with rank(Vt) ≤ rt for

t ∈ [T ]. We show this claim by induction. For the basis (T = 1), we can take V1 = M . To complete the induction step, we
need to find V ∈ Rd×d such that rank(V ) = rT and (I + V )−1(I + M)− I is of rank at most

∑T−1
t=1 rt. Then by the

induction hypothesis, we can write

(I + V )−1(I + M) =

T−1∏
t=1

(I + Vt) ,

with rank(Vt) ≤ rt, which completes the proof. Without loss of generality, we assume rT ≤ r; otherwise we can take
VT = M and Vt = 0 for t ≤ T − 1.

To find such V we write M = PQT with P ,Q ∈ Rd×r having full column rank. Define P1,Q1 ∈ Rd×rT obtaining by
considering the first rT columns of P and Q. Additionally, define

B := P1(I + QT
1P1)−1, C = Q1(I + P T

1 Q1) . (A.1)

We next construct V by setting V := BCT. Clearly, rank(V ) = rT . We also have

(I + V )−1(I + M)− I = (I + BCT)−1M + (I + BCT)−1 − I

= (I + BCT)−1M + I −B(I + CTB)−1CT − I

= (I + BCT)−1(P1Q
T
1 + P∼1Q

T
∼1)−B(I + CTB)−1CT .

Here we consider the notation P = [P1|P∼1] and Q = [Q1|Q∼1]. The second step above follows from the Woodbury
matrix identity. Rearranging the terms we have

(I + V )−1(I + M)− I = (I + BCT)−1P∼1Q
T
∼1 + (I + BCT)−1P1Q

T
1 −B(I + CTB)−1CT . (A.2)

The first term above is of rank at most rank(P∼1) = r − rT ≤
∑T−1
t=1 rt. We next show that the second and the third term

cancel each other. Equivalently, we show that

P1Q
T
1 = (I + BCT)B(I + CTB)−1CT . (A.3)
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To do this, we next show that

P1 = (I + BCT)B, QT
1 = (I + CTB)−1CT . (A.4)

Recalling (A.1) we have P1 = B(I + QT
1P1). Also

CTB = (I + QT
1P1)QT

1P1(I + QT
1P1)−1

= (I + QT
1P1)(I + QT

1P1 − I)(I + QT
1P1)−1

= (I + QT
1P1)(I − (I + QT

1P1)−1) (A.5)

= I + QT
1P1 − I

= QT
1P1 (A.6)

Therefore, P1 = B(I + CTB) = (I + BCT)B. Likewise, recalling (A.1) we have Q1 = C(I + P T
1 Q1)−1. Hence,

QT
1 = (I + QT

1P1)−1CT = (I + CTB)−1CT,

using (A.6). This completes the proof of (A.4) and so (A.3).

Invoking (A.2) we get
(I + V )−1(I + M)− I = (I + BCT)−1P∼1Q

T
∼1 ,

which is of rank at most r − rT ≤
∑T−1
t=1 rt, which completes the proof of the induction step.

• CGRN−v1 = {x 7→ (αI + M)x : rank(M) ≤ r∗}.

We prove this claim by induction. The induction basis (T = 0) follows readily since G1b1 = b1x. Assume the induction

hypothesis for t. We have ft(gt(x)) = VtGtbt and so Gt+1 = [VtGtbt | Gt]. Writing bt+1 =

[
b1
b∼1

]
we obtain

Gt+1bt+1 = VtGtbtb1 + Gtb∼1 .

By induction hypothesis, Gtb∼1 is the set of functions of the form (αI + M)x with rank(M) ≤
∑t−1
`=1 r`.

Since rank(Vt) ≤ rt the set of functions that can be represented as Gt+1bt+1 is a subset of (αI + M)x with rank(M) ≤∑t
`=1 r`. Conversely, any given M of rank

∑t
`=1 r` can be written as M = M1 + V with rank(M1) =

∑t−1
`=1 r` and

rank(V ) = rt. By induction hypothesis, (αI + M1)x can be expressed by the term Gtb∼1. In addition, V x can also be
expressed by the term VtGtbtb1, by taking Vt = V , bt = (0, 0, . . . , 1)T, b1 = 1, which is possible since they are free from
the choice of b∼1.

Hence, Gt+1bt+1 the set of functions of the form (αI + M)x with rank(M) ≤
∑t
`=1 r`, completing the induction step.

• CGRN−v2 = {x 7→ (D + M)x : rank(M) ≤ r∗,D is diagonal}.

The proof follows similar to that of GRN-v1. For the induction basis (T = 0), we have (G1�b1)1 = (x�b1)1 = diag(b1)x.
Assume the induction hypothesis for t. We have ft(gt(x)) = Vt(Gt � bt)1 and so Gt+1 = [Vt(Gt � bt)1 | Gt]. Writing
bt+1 =

[
b

(1)
t+1|b

(∼1)
t+1

]
we obtain

Gt+1 � bt+1 = diag(b
(1)
t+1)Vt(Gt � bt)1 + Gt � b

(∼1)
t+1 ,

and hence
(Gt+1 � bt+1)1 = diag(b

(1)
t+1)Vt(Gt � bt)1 + (Gt � b

(∼1)
t+1 )1 .

By induction hypothesis, (Gt � b
(∼1)
t+1 )1 is the set of functions of the form (D + M)x with rank(M) ≤

∑t−1
`=1 r`. By

varying Vt, bt and b
(1)
t , the term diag(b

(1)
t+1)Vt(Gt � bt)1 covers all functions of the form V x with V a d× d matrices

of rank rt (for given V of rank rt, take Vt = V , bt = [0|0| . . . |1], b(1)
t+1 = 1, which is possible since they are free from
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the choice of b(∼1)
t+1 ). Hence, (Gt+1 � bt+1)1 is the set of functions of the form (D + M)x with rank(M) ≤

∑t
`=1 r`,

completing the induction step.

• CGRN−v3 ⊃ {x 7→ (D + M)x + σ(wTx)x : rank(M) ≤ r∗,D is diagonal,w ∈ Rd×1}.

We prove that

CGRN−v3 ⊃

{
x 7→

T∑
t=1

Vtx + σ(wTx)x + Dx, rank(Vt) = rt, D is diagonal

}
.

we show the claim by induction on the number of layers. For the basis T = 0, we have

(G1 � (b1 + w̄1))1 = diag(b1 + w̄1)x = diag(b1)x + σ(wT
1 x)x .

Assume the induction hypothesis for t. We have ft(gt(x)) = Vt(Gt � ct)1 with ct := bt + 1σ(wT
t Gt) and so Gt+1 =

[Vt(Gt � ct)1 | Gt]. Writing ct+1 =
[
c

(1)
t+1|c

(∼1)
t+1

]
we obtain

Gt+1 � ct+1 = diag(c
(1)
t+1)Vt(Gt � ct)1 + Gt � c

(∼1)
t+1 ,

and hence
(Gt+1 � ct+1)1 = diag(c

(1)
t+1)Vt(Gt � ct)1 + (Gt � c

(∼1)
t+1 )1 .

We take bt = [0|0| . . . |1] and wt = 0, and so ct = [0|0| . . . |1]. We also take c
(1)
t+1 = 1. So,

(Gt+1 � ct+1)1 = Vtx + (Gt � c
(∼1)
t+1 )1 .

By induction hypothesis, (Gt � c
(∼1)
t+1 )1 covers all the functions of the form x 7→

∑t−1
`=1 V`x + σ(wTx)x + Dx, which

along with the above equation completes the induction step.

Finally, note that any matrix M ∈ Rd×d of rank r∗ =
∑T
t=1 rt can be written as

∑T
t=1 Vt, for some choices of matrices

Vt ∈ Rd×d of rank rt.

B. Proof of Theorem 4.2
By Eckart–Young–Mirsky theorem, Ur∗Σr∗V

T
r∗ is the best rank r∗ approximation to A−I , by which we obtain ER∗(Cres) =

‖∆‖2F .

We also have by definition,

ER∗(CGRN−v1) = min
α,rank(Ã)=r∗

∥∥∥A− αI − Ã
∥∥∥2

F
. (B.1)

Recall the SVD of A− I = UΣV T and consider the following decompositions:

U = [Ur∗ | Ur∗,⊥], V = [Vr∗ | Vr∗,⊥], Σ =

[
Σr∗ 0
0 Σr∗,⊥

]
,

with Ur∗,⊥,Vr∗,⊥ ∈ Rd×(d−r∗), and Σr∗,⊥ a diagonal matrix of size d − r∗. Since U is unitary matrix, we have
Ur∗U

T
r∗ + Ur∗,⊥U

T
r∗,⊥ = I .

We then note that for any choice of α, Ã, we have

A− αI − Ã = A− I + (1− α)I − Ã

= ∆ + Ur∗Σr∗V
T
r∗ + (1− α)I − Ã

= ∆ + Ur∗Σr∗V
T
r∗ + (1− α)Ur∗U

T
r∗ + (1− α)Ur∗,⊥U

T
r∗,⊥ − Ã .
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Next, by taking Ã = Ur∗Σr∗V
T
r∗ + (1− α)Ur∗U

T
r∗ = Ur∗[Σr∗V

T
r∗ + (1− α)UT

r∗ ] as the rank-r∗ matrix, we obtain

A− αI − Ã = ∆ + (1− α)Ur∗,⊥U
T
r∗,⊥ .

Invoking the characterization (B.1), we arrive at

ER∗(CGRN−v1) ≤ min
α

∥∥∆ + (1− α)Ur∗,⊥U
T
r∗,⊥

∥∥2

F

= min
α̃
‖∆‖2F + α̃2

∥∥Ur∗,⊥U
T
r∗,⊥

∥∥2

F
− 2α̃trace(∆TUr∗,⊥U

T
r∗,⊥)

= min
α̃
‖∆‖2F + (d− r∗)α̃2 − 2α̃trace(∆)

= ‖∆‖2F −
1

d− r∗
trace(∆)2 ,

where in the second equality, we used the fact that Ur∗,⊥ is unitary and so
∥∥∥Ur∗,⊥U

T
r∗,⊥

∥∥∥2

F
= d− r∗. In addition, observed

that
∆ = A− I −Ur∗Σr∗V

T
r∗ = UΣV T −Ur∗Σr∗V

T
r∗ = Ur∗,⊥Σr∗,⊥V

T
r∗,⊥ .

Therefore,
∆TUr∗,⊥U

T
r∗,⊥ = Vr∗,⊥Σr∗,⊥U

T
r∗,⊥Ur∗,⊥U

T
r∗,⊥ = Vr∗,⊥Σr∗,⊥U

T
r∗,⊥ = ∆T ,

and so trace(∆TUr∗,⊥U
T
r∗,⊥) = trace(∆T) = trace(∆). This completes the proof of the upper bound on ER∗(CGRN−v1).

For ER∗(CGRN−v2) we have

ER∗(CGRN−v2) ≤ min
D diagonal

∥∥A−D −Ur∗Σr∗V
T
r∗
∥∥
F

= min
D diagonal

‖∆ + I −D‖2F

= min
D̃ diagonal

∥∥∥∆− D̃
∥∥∥2

F

= ‖∆‖2F −
d∑
i=1

∆2
ii . (B.2)

In addition, since GRN-v2 optimizes over a larger class of models (using diagonals instead of scale of identity), we have

ER∗(CGRN−v2) ≤ ER∗(CGRN−v1) ≤ ‖∆‖2F −
1

d− r∗
trace(∆)2 (B.3)

Combining (B.2) and (B.3) we obtain the claimed upper bound on ER∗(CGRN−v2).

We next proceed to bound ER∗(CGRN−v3). By Theorem 4.1, this quantity is at most the optimal objective value of the
following optimization problem:

min
D,M ,w

E
[∥∥Ax−Dx−Mx− σ(wTx)x

∥∥2

`2

]
(B.4)

subject to rank(M) ≤ r∗, D is diagonal, w ∈ Rd .

We calculate the expectation in the objective over the gaussian vector x ∼ N(0, I). Define the shorthand B := A−D−M .
We write

E
[∥∥Bx− σ(wTx)x

∥∥2

`2

]
= ‖B‖2F + E[σ(wTx)2 ‖x‖2`2 − 2σ(wTx)xTBx]

= ‖B‖2F + E[σ(wTx)2 ‖x‖2`2 ]− 2trace
(
B E[σ(wTx)xxT]

)
(B.5)

These two expectations are characterized by our next lemma.

14
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Lemma B.1. Suppose that x ∼ N(0, I) and let σ(z) = z1(z ≥ 0) be the ReLu function. Then,

E[σ(wTx)2 ‖x‖2`2 ] = ‖w‖2`2
d+ 1

2
, (B.6)

E[σ(wTx)xxT] =
1√
2π

(
‖w‖`2 I +

wwT

‖w‖`2

)
. (B.7)

Using the result of Lemma B.1 in (B.5) we obtain

E
[∥∥Bx− σ(wTx)x

∥∥2

`2

]
= ‖B‖2F + ‖w‖2`2

d+ 1

2
−
√

2

π

(
‖w‖`2 trace(B) +

wTBw

‖w‖`2

)
. (B.8)

With this characterization, we next proceed to calculate the optimal objective value of (B.4). We start by minimizing
over w. To do this, we first fix ‖w‖`2 = α, and optimize over the direction of w, and then optimize over α. Note that
wTBw = wT(B + BT)/2w. Since (B + BT)/2 is symmetric, the maximum is achieved when w s in the direction of its
maximum eigenvalue. Define λBmax as the maximum eigenvalue of (B + BT)/2. We then have

min
w

E
[∥∥Bx− σ(wTx)x

∥∥2

`2

]
= min

α≥0
‖B‖2F + α2 d+ 1

2
−
√

2

π
α
(
trace(B) + λBmax

)
= ‖B‖2F −

(trace(B) + λBmax)2

π(d+ 1)
. (B.9)

We next continue with minimization over M ,D. Since we want to derive upper bound on the minimum objective value, we
consider two choices of (M ,D) motivated by the analysis of GRN-v1 and GRN-v2.

• Choice 1: Similar to the analysis of GRN-v1, we set M = Ur∗[Σr∗V
T
r∗ + (1 − α)UT

r∗ ] and D = αI with
α = 1 + 1

d−r∗ trace(∆). With these choices we have

B = A−M −D

= A− I −M + (1− α)I

= ∆− (1− α)Ur∗U
T
r∗ + (1− α)I

= ∆ + (1− α)Ur∗,⊥U
T
r∗,⊥

= ∆− 1

d− r∗
trace(∆)Ur∗,⊥U

T
r∗,⊥ .

In addition,
∥∥∥Ur∗,⊥U

T
r∗,⊥

∥∥∥2

F
= d− r∗ and trace(∆TUr∗,⊥U

T
r∗,⊥) = trace(∆). Hence,

‖B‖2F = ‖∆‖2F −
1

d− r∗
trace(∆)2 .

Furthermore, trace(B) = 0. Using these identities in (B.9) we obtain that the optimum objective value of (B.4)
satisfies the following:

OPT ≤ ‖∆‖2F −
1

d− r∗
trace(∆)2 − ν2

max

π(d+ 1)
, (B.10)

with νmax denoting the maximum eigenvalue of ∆+∆T

2 − 1
d−r∗ trace(∆)Ur∗,⊥U

T
r∗,⊥.

• Choice 2: Similar to the analysis of GRN-v2, we set Ur∗Σr∗V
T
r∗ and D = diag(I + ∆). This way we have

B = A−M −D

= A− I −M + I −D

= ∆ + I −D

= ∆− diag(∆) .

15
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Hence, ‖B‖2F = ‖∆‖2F −
∑d
i=1 ∆2

ii and trace(B) = 0. Using these identities in (B.11) we obtain that the optimum
objective value of (B.4) satisfies the following:

OPT ≤ ‖∆‖2F −
d∑
i=1

∆2
ii −

ν̃2
max

π(d+ 1)
,

with ν̃ denoting the maximum eigenvalue of ∆+∆T

2 − diag(∆).

Combining the bound from the two cases, we get

Err∗(CGRN−v3) ≤ OPT ≤ ‖∆‖2F −max

{
1

d− r∗
trace(∆)2 +

ν2
max

π(d+ 1)
,

d∑
i=1

∆2
ii +

ν̃2
max

π(d+ 1)

}
,

which completes the proof of theorem.

Proof. (Lemma B.1) Since the distribution of x is rotation invariant, without loss of generality we assume w = ‖w‖`2 e1.
We then have

E[σ(wTx)2 ‖x‖2`2 ] = ‖w‖2`2 E[σ(x1)2(x2
1 + ‖x∼1‖2`2)] (B.11)

where x∼1 = (x2, . . . , xd). We have

E[σ(x1)2x2
1] = E[x4

11(x1 ≥ 0)] =
1

2
E[x4

1] =
3

2
.

Also, since x∼1 is independent of x1 we have

E[σ(x1)2 ‖x∼1‖2`2 ] = E[σ(x1)2]E[‖x∼1‖2`2 ] =
d− 1

2
.

Combining the last three equations, we get

E[σ(wTx)2 ‖x‖2`2 ] = ‖w‖2`2
d+ 1

2
.

To show the other claim, we note that

E[σ(x1)xixj ] =


0 if i 6= j

= 1
2 E[|x1|]E[x2

i ] = 1√
2π
, if i = j 6= 1,

= 1
2 E[|x1|3] =

√
2
π if i = j = 1.

(B.12)

Therefore in matrix form we have E[σ(x1)xxT] = 1√
2π

(I + e1e
T
1 ). This completes the proof of (B.7) as by rotation

invariance of distribution of x we can assume w = ‖w‖`2 e1.

C. Proof of Theorem 4.3
Let p := 2dr∗ where we recall that r∗ =

∑T
`=1 r`. Note that p is the number of parameters for ResNet with T layers

and ranks rt for each layer t. We will compare the test error of GRN-v1 and ResNet with p number of parameters. This
corresponds to a model in GRN-v1 with T ′ layers such that 2d

∑T ′

`=1 r` + T ′(T ′ − 1)/2 = p. We set the shorthand
r′∗ :=

∑T ′

`=1 r` and let σ1 ≥ . . . ≥ σd be the singular values of A− I . By Theorem 4.2 we have

ER∗(Cres) =

d∑
i=r∗+1

σ2
i , ER∗(CGRN−v1) ≤

d∑
i=r′∗+1

σ2
i −

1

d− r′∗

( d∑
i=r′∗+1

σi

)2

16



DeepCrossAttention: Supercharging Transformer Residual Connections

Therefore, ER∗(CGRN−v1) < ER∗(Cres) if the following holds:

r∗∑
i=r′∗+1

σ2
i ≤

1

d− r′∗

( d∑
i=r′∗+1

σi

)2

(C.1)

(Note that r′∗ < r∗ since T ′ < T ). However note that the left hand side of this condition is upper bounded by

r∗∑
i=r′∗+1

σ2
i ≤ (r∗ − r′∗)λ2

max

Additionally, the right-hand side of the condition is lower bounded by

1

d− r′∗

( d∑
i=r′∗+1

σi

)2

≥ (d− r′∗)λ2
min .

So a sufficient condition for (C.1) is that

(r∗ − r′∗)λ2
max ≤ (d− r′∗)λ2

min .

Writing it in terms of κ, we need

r∗ ≤ dκ2 + r′∗(1− κ2). (C.2)

Our next lemma gives alower bound on r′∗.

Lemma C.1. Consider a standard Resnet model with collective rank r∗, and also a GRN-v1 model with collective rank r′,
a GRN-v2 model with collective rank r′′, and a GRN-v3 model with collective rank r′′′, which have the same number of
parameters as in the standard Resent model. We then have

r∗ − (
√
d+ r∗ −

√
d)2 ≤ r′∗ ≤ r∗ , (C.3)

r∗ − (
√

1 + r∗ − 1)2 ≤ r′′∗ ≤ r∗ , (C.4)

r∗ − (
√

1.6 + r∗ − 1)2 ≤ r′′′∗ ≤ r∗ . (C.5)

Using Lemma C.1, condition C.2 is satisfied provided that

r∗ ≤ dκ2 + (1− κ2)
[
r∗ − (

√
d+ r∗ −

√
d)2
]
.

Solving the above inequality for r∗/d and after some algebraic calculation, we simplify the above inequality as follows:

r∗
d
≤ (1 + κ(

√
κ2 + 1− κ))2 − 1 .

For GRN-v2, the argument goes along the same lines. Fixing number of parameters to p, this corresponds to a model
in GRN-v2 with T ′′ layers such that 2d

∑T ′′

`=1 r` + dT ′′(T ′′ − 1)/2 = p. We use the shorthand r′′∗ :=
∑T ′′

`=1 r`. By
Theorem 4.2,

ER∗(CGRN−v2) = ‖∆‖2F −
1

d− r′′∗
trace(∆)2

=

d∑
i=r′′∗+1

σ2
i −

1

d− r′′∗

( d∑
i=r′′∗+1

σi

)2

.

Following the same argument as the one for GRN-v1 (replacing r′∗ with r′′∗ ) we derive that GRN-v2 achieves a better
trade-off than standard ResNet, if

r∗ ≤ dκ2 + r′′∗ (1− κ2). (C.6)
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(Note that this is analogous to (C.2) where r′∗ is replaced by r′′∗ .)

Using Lemma C.1, condition C.6 is satisfied provided that

r∗ ≤ dκ2 + (1− κ2)
[
r∗ − (

√
1 + r∗ − 1)2

]
.

By some algebraic calculation, this inequality can be simplified to

r∗ ≤ (1 + κ(
√
κ2 + d− κ))2 − 1 .

We next proceed with the case of GRN-v3. By Theorem 4.2 we have

ER∗(CGRN−v3) ≤ ‖∆‖2F −
1

d− r∗
trace(∆)2 − ν2

max

π(d+ 1)

with νmax denoting the maximum eigenvalue of ∆+∆T

2 − 1
d−r∗ trace(∆)Ur′′′∗ ,⊥U

T
r′′′∗ ,⊥

. Rewriting this bound in terms of
eigenvalues we get

ER∗(CGRN−v3) ≤
d∑

i=r′′′∗ +1

σ2
i −

1

d− r′′′∗

 d∑
i=r′′′∗ +1

σi

2

− 1

π(d+ 1)

σr′′′∗ +1 −
1

d− r′′′∗

d∑
i=r′′′∗ +1

σi

2

.

Here we used the fact that the Ur′′′∗ ,⊥ is the eigenspace of ∆ and its eigenvalues are σr′′′∗ +1 ≥ . . . ≥ σd. To lighten the
notation, we use the shorthand σ := σr′′′∗ +1 and A :=

∑d
i=r′′′∗ +1 σi. Then in order to have ER∗(CGRN−v3) < ER∗(Cres), it

suffices to have
r∗∑

i=r′′′∗ +1

σ2
i ≤

1

d− r′′′∗
A2 − 1

π(d+ 1)
(σ − 1

d− r′′′∗
A)2 .

Note that the left-hand side is upper bounded by (r∗ − r′′′∗ )σ. In addition, this is quadratic inequality in A. Solving this
inequality for A this corresponds to the following:

A

σ
≥

1
π(d+1)(d−r′′′∗ ) +

√
r∗−r′′′∗
d−r′′′∗

+
r∗−r′′′∗

π(d+1)(d−r′′′∗ )2 −
1

π(d+1)(d−r′′′∗ )

1
d−r′′′∗

+ 1
π(d+1)(d−r′′′∗ )2

.

Define the shorthand ξ := 1
π(d+1)(d−r′′′∗ ) . Then the above can be written as

A

σ
≥
ξ +

√
r∗−r′′′∗
d−r′′′∗

(1 + ξ)− ξ
1

d−r∗ (1 + ξ)
. (C.7)

We also have A ≥ (d− r′′′∗ )λmin and σ ≤ λmax, so A/σ ≥ (d− r′′′∗ )κ. Hence, the above condition holds if

κ ≥
ξ +

√
r∗−r′′′∗
d−r′′′∗

(1 + ξ)− ξ

1 + ξ
. (C.8)

It is easy to verify that the right-hand side is decreasing in ξ. In addition, by definition of ξ and since r′′′∗ < r∗ ≤ d, we have
ξ ≥ ξ0 := 1

π(d2−1) . So a sufficient condition for (C.8) is

κ ≥
ξ0 +

√
r∗−r′′′∗
d−r′′′∗

(1 + ξ0)− ξ0
1 + ξ0

(C.9)

or equivalently,
(κ(1 + ξ0)− ξ0)2 + ξ0

1 + ξ0
≥ r∗ − r′′′∗

d− r′′′∗
.
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Define η :=
√

(κ(1+ξ0)−ξ0)2+ξ0
1+ξ0

. Rewriting the above inequality we need

r′′′∗ (1− η2) + dη2 ≥ r∗ . (C.10)

Next, by Lemma C.1, we have r∗ − r′′′∗ ≤ (
√

1.6 + r∗ − 1)2, by which a sufficient condition for (C.10) is as follows:[
r∗ − (

√
1.6 + r∗ − 1)2

]
(1− η2) + dη2 ≥ r∗ .

By some algebraic calculation, this inequality can be simplified to

r∗ ≤ (1 + η(
√
η2 + d− η))2 − 1.6

This completes the proof of the first item in the theorem statement.

To prove the second item in the theorem statement, we write

G1 := ER∗(Cres)− ER∗(CGRN−v1) ≥ 1

d− r′∗

( d∑
i=r′∗+1

σi

)2

−
r∗∑

i=r′∗+1

σ2
i

≥ (d− r′∗)λ2
min − (r∗ − r′∗)λ2

max

= dλ2
min − r∗λ2

max + r′∗(λ
2
max − λ2

min)

≥ dλ2
min − r∗λ2

max + (r∗ − (
√
d+ r∗ −

√
d)2)(λ2

max − λ2
min)

= (d− r∗)λ2
min − (

√
d+ r∗ −

√
d)2(λ2

max − λ2
min) ,

where in the last inequality we used Lemma C.1.

A similar bound can be derived for GRN-v2, replacing r′∗ with r′′∗ in the argument. Specifically, we have

G2 := ER∗(Cres)− ER∗(CGRN−v2) ≥ dλ2
min − r∗λ2

max + r′′∗ (λ
2
max − λ2

min)

≥ dλ2
min − r∗λ2

max + (r∗ − (
√

1 + r∗ − 1)2)(λ2
max − λ2

min)

= (d− r∗)λ2
min − (

√
1 + r∗ − 1)2)(λ2

max − λ2
min) ,

where in the last inequality we used the lower bound given for r′′ in Lemma C.1.

For GRN-v3, we have

G3 := ER∗(Cres)− ER∗(CGRN−v3) ≥ 1

d− r′′′∗

( d∑
i=r′′′∗ +1

σi

)2

+
λ2

max

π(d+ 1)
−

r∗∑
i=r′′′∗ +1

σ2
i

=
1

d− r′′′∗
A2 +

1

π(d+ 1)
(σ − 1

d− r′′′∗
A)2 −

r∗∑
i=r′′′∗ +1

σ2
i

≥ 1

d− r′′′∗
A2 +

1

π(d+ 1)

(
σ2

2
− 1

(d− r′′′∗ )2
A2

)
− (r∗ − r′′′∗ )σ2

≥ 1

d− r′′′∗

(
1− 1

π(d+ 1)(d− r′′′∗ )

)
A2 −

(
r∗ − r′′′∗ −

1

2π(d+ 1)

)
σ2 ,

where we recall the shorthand A :=
∑d
i=r′′′∗ +1 σi and σ := σr′′′∗ +1. In the second inequality above, we used the fact that

σr′′′∗ +1, . . . , σr∗ ≤ σr′′′∗ +1 = σ, along with the inequality (a− b)2 ≥ a2/2− b2.
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Noting that A ≥ (d− r′′′∗ )λmin and σ ≤ λmax, we continue from the above chain of inequalities, as follows:

G3 =

(
d− r′′′∗ −

1

π(d+ 1)

)
λ2

min −
(
r∗ − r′′′∗ −

1

2π(d+ 1)

)
λ2

max

≥
(
d− 1

π(d+ 1)

)
λ2

min −
(
r∗ −

1

2π(d+ 1)

)
λ2

max + r′′′∗ (λ2
max − λ2

min)

(a)

≥
(
d− 1

π(d+ 1)

)
λ2

min −
(
r∗ −

1

2π(d+ 1)

)
λ2

max + (r∗ − (
√

1.6 + r∗ − 1)2)(λ2
max − λ2

min)

=

(
d− 1

π(d+ 1)
− r∗

)
λ2

min +
1

2π(d+ 1)
λ2

max − (
√

1.6 + r∗ − 1)2(λ2
max − λ2

min) ,

where we used Lemma C.1 in step (a).

C.1. Proof of Lemma C.1

A standard Resnet model with collective rank r∗ has 2dr∗ number of parameters. A model in GRN-v1 with collective rank
r′∗ has 2dr′∗ + T ′(T ′ − 1)/2 parameters. Therefore, by assumption

2dr′∗ + T ′(T ′ − 1)/2 = 2dr∗ . (C.11)

Since each layer has rank at least one, we also have r′∗ ≥ T ′. We define the shorthand ξ =
√
T ′(T ′ − 1) (so r′ ≥ ξ).

Combining these two inequalities and writing them in terms of ξ, we get

2dξ + ξ2/2 ≤ 2dr∗ .

Solving this inequality for ξ we get ξ ≤ 2
√
d2 + dr∗ − 2d. Using this bound in (C.11) we get

2dr∗ ≤ 2dr′∗ + 2(
√
d2 + dr∗ − d)2 .

Simplifying this inequality, we arrive at
r∗ − (

√
d+ r∗ −

√
d)2 ≤ r′∗ .

The upper bound r′∗ ≤ r∗ also follows simply from (C.11).

For GRN-v2 model we follow the same argument. A model in GRN-v2 with collective rank r′′ has 2dr′′∗ + dT ′′(T ′′ − 1)/2
parameters and so

2r′′∗ + T ′′(T ′′ − 1)/2 = 2r∗ . (C.12)

Since each layer has rank at least one, we also have r′′∗ ≥ T ′′. Define the shorthand ξ′ :=
√
T ′′(T ′′ − 1). Combining the

previous two equation, we get
2ξ′ + ξ′2/2 ≤ 2r∗ .

Solving this inequality for ξ′ we get ξ′ ≤ 2
√

1 + r∗ − 2. Using this bound back in (C.12) we obtain

2r∗ ≤ 2r′′∗ + 2(
√

1 + r∗ − 1)2 .

This simplifies to r∗ − (
√

1 + r∗ − 1)2 ≤ r′′∗ .

We follow the same argument for GRN-v3. A model in GRN-v3 with collective rank r′′′ has 2dr′′′∗ +dT ′′′(T ′′′−1)/2+dT ′′′

parameters and so

2r′′′∗ + T ′′′(T ′′′ + 1)/2 = 2r∗ . (C.13)

Since each layer has rank at least one, we also have r′′′∗ ≥ T ′′′. Hence,

T ′′′2 + 5T ′′′ = 4r∗ ≤ 0 .
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Solving for T ′′′ we get T ′′′ ≤ 1/2(
√

25 + 16r∗ − 5). Using this bound in (C.13), we have

r′′′∗ ≥ r∗ −
1

16
(
√

25 + 16r∗ − 5)(
√

25 + 16r∗ − 3)

= r∗ −
1

16
(40 + 16r∗ − 8

√
25 + 16r∗)

≥ r∗ −
1

16

(√
25 + 16r∗ − 4

)2
≥ r∗ −

(√
1.6 + r∗ − 1

)2
.

The upper bound r′′′∗ < r∗ follows easily from (C.13).

D. Proof of Proposition 4.4
The result follows from conditions (C.2), (C.6) and (C.10) which respectively provide sufficient conditions for GRN-v1,
GRN-v2 and GRN-v3 to achieve smaller test error than a ResNet model, with the same number of parameters.

E. Proof of Proposition 4.5
The proof is similar to the linear case by induction on T . Note that for showing this direction (Cbase, Cres, CGRN−v1, CGRN−v2

being a subset of the rank constrained functions) we only used the following two properties of the rank function which holds
also for the Bottleneck rank: rank(f ◦ g) ≤ min{rank(f), rank(g)} and rank(f + g) ≤ rank(f) + rank(g).
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F. Training time versus perplexity on the LM1B dataset
This appendix provides additional results on training time versus perplexity for DCA models. Figure 8 shows the training
time-perplexity trade-off for 12, 24, and 36 layer transformer and DCA models trained on the LM1B dataset. The figure
shows that DCA achieves a better perplexity for a given training time (except for the first few training steps of the 36-layer
model). Thus, highlighting the training efficiency of DCA.
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Figure 8. Perplexity on LM1B pre-training versus the training time with transformer and DCA models of various depths.

G. Steps versus perplexity on the C4 dataset
This appendix provides additional results on training steps versus perplexity for 8-DCA models. Figure 9 shows the training
steps-perplexity trade-off for 75M, 179M, and 449M parameter transformer and 8-DCA models trained on the C4 dataset.
The results show the improved model convergence and quality of DCA.
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Figure 9. Perplexity on C4 pre-training versus the number of steps with transformer and 8-DCA models of various sizes.

Table 9. Perplexity (PPL) on LM1B with and without the model inputs for 6-layer GRN-v3.

METHOD PPL

TRANSFORMER 20.878
GRN-V3 (LAST 4 LAYERS) 20.301
GRN-V3 (MODEL INPUTS + LAST 3 LAYERS) 20.227
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H. Distribution of learned weights
Figure 10 shows the distribution of the learned bias values for each GRN-v3 instance of a 30-layer model. The layers
tend to weight the inputs and the last few layers the most and frequently assign a negative bias for the intermediate layers,
indicating that the layers are filtered out as a result of the ReLU activation. In Table 9, we show that indeed the GRN-v3
model perplexity improves as the model inputs are included in addition to the last few layer outputs.
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Figure 10. Distribution of learned bias values on LM1B pre-training with a 30 layer GRN-v3 transformer model. The solid line indicates
the median value and the shaded area represents the 90th percentile.
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