

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTERPRETABLE BRAIN-INSPIRED REPRESENTATIONS IMPROVE RL PERFORMANCE ON VISUAL NAVIGATION TASKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Visual navigation requires a wide range of capabilities in an agent. A crucial one is the ability to determine the agent’s own location and heading in an environment. However, existing navigation approaches either assume this information is given, or use methods that lack a suitable inductive bias and accumulate error over time. Inspired by neuroscience research, the method of slow feature analysis (SFA) overcomes these limitations and extracts agent location and heading from a visual data stream, but has not been combined with modern, deep reinforcement learning agents. In this paper, we compare SFA representations with those learned by convolutional neural networks in deep RL agents. We also demonstrate how using SFA representations can improve navigation performance. Lastly, we empirically and conceptually investigate the limitations of SFA and discuss how they currently prevent it from being used more widely for visual navigation in RL.

1 INTRODUCTION

Visual navigation is a complex and increasingly relevant task in robotics and in machine learning (ML). Research in this field touches on a wide range of agent capabilities, including the parsing of tasks (Wang et al., 2021), locating objects to interact with (Lyu et al., 2022), mapping out the environment (Chaplot et al., 2020) and planning (Gupta et al., 2017). A basic necessity in navigation, however, is that the agent has to find and move along a path to its target. Finding a path to some location, crucially, requires awareness of one’s own location and heading. Unsurprisingly, it has been found that an agent’s ability of self-localization is important for navigation and especially long-term planning in ML (Zhu et al., 2021).

In computational neuroscience, slow feature analysis (SFA) (Wiskott & Sejnowski, 2002) is a method modeled on the human visual system that has long been known for its ability to extract position and head direction from a visual stream. In fact, the representations it generates have been related to place cells and head-direction cells, among others (Franzus et al., 2007). This paper illustrates the potential of using SFA representations for deep reinforcement learning (RL) agents on visual navigation tasks.

The contributions of this paper are threefold:

- We explain how SFA representations conceptually differ significantly from current approaches to localization for visual navigation in RL. Other methods either require integration of information over time or lack a suitable inductive bias for extracting interpretable location and heading information from images. SFA addresses both weaknesses.
- We show empirically that SFA representations are not only capable of extracting location and heading, they also make navigation more efficient than representations which do not contain such information. In particular, we show that regular convolutional neural networks in deep RL agents do not learn to extract this information.
- We explain limitations which currently prevent SFA from seamless integration into RL agents, in particular a lack of gradient-based training procedures and the requirements on environment coverage in training data.

054 This paper aims to present SFA as a suitable and underdeveloped representation learning method for
 055 visual navigation, while also investigating its current limitations for this purpose.
 056

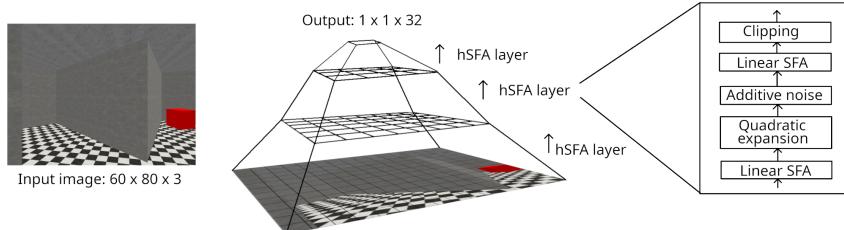
057 2 RELATED WORK

059 **Localization for Navigation** Representation learning in the context of RL and navigation is often
 060 approached through auxiliary tasks (Lange et al., 2023; Jaderberg et al., 2017; Ye et al., 2021a;
 061 Mirowski et al., 2017), often without explicitly considering position, orientation or pose of an agent.
 062 The works that do use these features, however, can broadly be split into three categories.
 063

064 The first approach is to just assume the agent is provided with ground truth information on its cur-
 065 rent absolute location and heading (Ye et al., 2021a;b). The second approach can be called location
 066 through integration. It assumes that current changes in position and direction can either be inferred
 067 or are provided to the agent. These are then integrated over time (Mirowski et al., 2017). **Simulta-**
 068 **neous localization and mapping (SLAM) methods are a particularly prominent algorithm class that**
 069 **relies on this approach (Chaplot et al., 2020; Campos et al., 2021)**. The third approach employs
 070 neural networks (commonly convolutional neural networks (CNNs) combined with recurrent neural
 071 networks (RNNs)) to learn representations from visual input (Mousavian et al., 2019). These net-
 072 works do not have any inductive bias towards learning position or heading in particular, although
 073 they might be trained in a supervised way directly on this information (Wang et al., 2017; Datta
 074 et al., 2021). Both these papers, additionally, still implicitly integrate changes in location. As a
 075 consequence, they share the main weakness of the second approach: accumulation of errors over
 076 time, which is nicely demonstrated in Figures 4, 6 and 8 of (Wang et al., 2017).

077 **Navigation with Slow Feature Analysis** First introduced by Wiskott (Wiskott, 1998; Wiskott &
 078 Sejnowski, 2002), SFA was extended to hierarchical networks – not unsimilar to CNNs – in Wiskott
 079 (2000). Franzius et al. Franzius et al. (2007) show how hierarchical SFA (hSFA) can be used with
 080 independent component analysis (ICA) to extract location and head direction (resembling the neu-
 081 roscientific concepts of place cells and head direction cells) in a neurologically plausible way from
 082 the visual input stream of a simulated animal. Beyond first-person visual input, and potentially also
 083 interesting for navigation, the same authors have also used hSFA for object recognition (Franzius
 084 et al., 2011). Based on this work, Legenstein et al. (2010) have first applied hSFA to RL: Using
 085 hSFA-generated representations, they learn a simple Q-function to make a fish in a tank, seen from
 086 above, move to a target. The most recent inspiration for this paper, finally, comes from Schönfeld
 087 & Wiskott (2013) who have designed a virtual maze for a virtual rat and use this to extract location
 088 and head direction from visual input. Since 2013, the fields of deep learning, reinforcement learning
 089 and visual navigation have come a long way. Yet, to the best of our knowledge, there have been no
 090 works on visual navigation with hSFA representations since. A gradient-based approach to SFA has
 091 been used in the context of RL (Hakenes & Glasmachers, 2019), but not for navigation.

092 3 LEARNING SLOW FEATURES



102 Figure 1: Illustration of the architecture of a hierarchical slow feature analysis model. The input
 103 image is perceived in patches by receptive fields with certain strides. These patches are stacked and
 104 passed as batches through an hSFA layer.

105 **Slow Feature Analysis** Slow feature analysis is based on the slowness principle: Invariant or
 106 slowly varying features in a signal are usually of more interest than quickly varying features, which

108 are often closer to noise. In a visual stream, for instance, individual pixels will vary very quickly
 109 while objects or an agent’s position do not. To extract slow features from a signal, SFA solves the
 110 following optimization problem: Given a (commonly multidimensional) signal $x(t)$, find mappings
 111 $y_j(t) = g_j(x(t))$ such that

$$\Delta y_j := \langle \dot{y}_j^2 \rangle_t \quad (1)$$

113 is minimized under the constraints

$$\langle y_j \rangle_t = 0 \quad (\text{zero mean}) \quad (2)$$

$$\langle y_j^2 \rangle_t = 1 \quad (\text{unit variance}) \quad (3)$$

$$\forall i < j : \langle y_i y_j \rangle_t = 0 \quad (\text{decorrelation and order}) . \quad (4)$$

119 Here $\langle \cdot \rangle_t$ denotes the temporal mean and \dot{y} the temporal derivative of y . The extracted signals $y_j(t)$
 120 are the slowest ones which can be created from $x(t)$ given a family of mapping functions \mathcal{G} . The
 121 constraints guarantee that trivial solutions (a constant signal) are excluded and that output signals
 122 are decorrelated and ordered by slowness. For linear SFA, $g_j \in \mathcal{G}$ are chosen to be linear.

123 In practice, this results in the following algorithm: First, the signal is whitened to obtain zero mean
 124 and identity covariance. As an approximation of the temporal derivative, subsequent data points
 125 in the time series signal are then subtracted from each other. Lastly, principal component analysis
 126 (PCA) is performed on the differentiated time series. The resulting linear components are already
 127 decorrelated and ordered by variance. Since their variance now corresponds to the temporal variance
 128 in original data, components are ordered by lowest rather than highest variance.

129 **Non-linear SFA** The family of linear functions is limited in their ability to extract interesting
 130 information. Therefore, non-linear expansion – commonly quadratic expansion – is used on the input
 131 signal before performing SFA. hSFA also uses this expansion as opposed to other non-linearities,
 132 despite its downside of significantly expanding data dimensionality before processing.

134 **Hierarchical SFA** In order to deal with visual input streams, or videos, hSFA stacks layers of non-
 135 linear SFA modules on top of each other (see Figure 1). One such layer consists of five components:
 136 A linear SFA step first reduces the dimensionality of the data. A quadratic expansion then introduces
 137 non-linearity and Gaussian noise is added (during training only) to increase training stability. Fi-
 138 nally, another linear SFA extracts the slow features. These features are then clipped, commonly and
 139 also in this paper to $[-4, 4]$, to avoid propagation of extreme values. Altogether, this whole hSFA
 140 layer is commonly referred to as a step of quadratic SFA.

141 Each but the top-most layer operates on receptive fields with certain strides, similar to a CNN.
 142 Moving a receptive field across the image creates image patches. These patches are flattened and
 143 treated as batches to train a hSFA layer, similar to weight sharing in a CNN. The top-most layer in
 144 hSFA is always a quadratic SFA layer that just works on the flattened output of the second-to-top
 145 layer. This is comparable to a linear layer at the end of a CNN, it flattens the output and finally
 146 allows all parts of the image to have an effect on any dimension of the output.

147 In contrast to neural networks, the layers of hSFA, at their core, contain singular value decompo-
 148 sitions. The system is therefore trained layer by layer, instead of end-to-end with gradient descent
 149 like an artificial neural network. Additional control of extracted features can be obtained by using
 150 independent component analysis or learning rate adaptation, which are discussed in the Appendix.

152 4 EXPERIMENTS

154 This section presents the RL environments and agents that we use for our investigation. It also
 155 describes the training of the hSFA, PCA and CNN feature extractors.

157 4.1 ENVIRONMENTS

159 We use 3D visual navigation environments of the Miniworld package (Chevalier-Boisvert et al.,
 160 2023). Each environment contains one red cube representing the target. The task is always to reach
 161 the target. There are no other objects present. Observations are 60×80 pixel RGB images which
 show the current front view of the agent in the simulated world. There are three possible actions

162 available: 1) Turn left by $\pi/12$ radians; 2) Turn right by $\pi/12$ radians; 3) Move a small, fixed step
 163 forward. We evaluate performance in terms of episode length l rather than reward r . Episode length
 164 is a more interpretable measure and contains the same information as the reward, which is calculated
 165 as $r = 1 - 0.2 \frac{l}{l_{\max}}$. A reward is only made available to the agent once it reaches the box.
 166

167 Exemplary observations of each environment are shown in Figure 6 in the Appendix. Top-views
 168 of their layouts are shown when SFA representations are presented in Figure 2. Some of the listed
 169 environments are customized, their code is available online (Anonymous, 2025b).
 170

StarMazeArm The target in StarMazeArm is always at the end of the same arm. The initial agent
 171 position is a random location in the center room of the maze, its initial heading is random. Maximum
 172 episode length is 1500. The optimal policy is to turn until facing the target and then walk forward.
 173 In theory this does not require locating the target, as it is always in the same place.
 174

175 **StarMazeRandom** This environment is identical to StarMazeArm with the exception that the
 176 target is placed in a completely random position each episode. The optimal policy is the same as
 177 with StarMazeArm. As opposed to StarMazeArm, however, the agent first has to locate the target in
 178 each episode before it can know where to walk.
 179

180 **WallGap** The initial agent position is always in the upper room, the initial target position in the
 181 lower room. Initial agent heading is random. Maximum episode length is 300. As opposed to the
 182 other environments, both rooms have the same textures and thus look visually identical apart from
 183 one distant skyscraper. This introduces visual symmetries that often make it impossible to extract
 184 position and heading from one image alone. The best policy is to walk straight to the gap between
 185 rooms, turn to face the target and walk straight to it.
 186

FourColoredRooms The initial agent position and heading are random, as is the target position.
 187 Maximum episode length is 250. As opposed to the previous three environments, the wall textures
 188 are unique for each wall. Each of the four rooms has a different color, similar to Prince Prospero's
 189 rooms in Edgar Allan Poe's The Masque of the Red Death (Poe, 1842). Each wall in a room has a
 190 different brightness so that, in contrast to WallGap, there are no visual symmetries despite the sym-
 191 metry of the layout. The main difficulty is that the number of different rooms makes an exploration
 192 strategy necessary to traverse rooms in search of the target.
 193

194 4.2 RL AGENTS

195 We train PPO agents with different feature extractors (described below) to solve each navigation
 196 task. PPO is a simple, general, state-of-the-art, on-policy, model-free policy optimization algorithm
 197 in RL (Schulman et al., 2017). Simple here means that it does not involve any navigation capabili-
 198 ties stated in Related work, such as mapping or planning. We use the implementation of Stable
 199 Baselines3 (Raffin et al., 2021) to train five agents with random seeds per setup. Details and hyper-
 200 parameters can be found in the Appendix. We made all code required to reproduce our experiments
 201 and results available on GitHub (Anonymous, 2025a)¹.
 202

203 In addition to agents trained with feature extractors, we report performance of an agent following
 204 random performance and an agent following an optimal policy for comparison. The first quantifies
 205 the average episode length achieved by 100 random agents on each environment. The second quan-
 206 tifies average episode length of 10 manual runs per environment when following the optimal strategy
 207 and exploiting a top-view that includes both agent and target and is not part of the observation.
 208

209 4.3 FEATURE EXTRACTORS

210 We use a hSFA feature extractor, two CNNs and a PCA feature extractor with PPO. They are de-
 211 scribed below, more details can be found in the Appendix (Table 3).
 212

hSFA The hSFA feature extractor is pre-trained individually for each environment layout, i.e. only
 213 once for StarMaze. We use the sklearn-sfa implementation by Schüller & Lange (2023) to extract
 214

¹<https://anonymous.4open.science/r/sfa-for-navigation-6222>

216 representations with 32 features. The pretraining is done on 80,000 data points collected by an
 217 agent following a random policy. While 80,000 is a high number, such an amount of data is cheap
 218 to collect and in this work we focus on demonstrating the capabilities of hSFA rather than exploring
 219 the limits of its hyperparameters. Our experience indicates that far fewer points should be sufficient
 220 if collecting them were to be expensive. It is however important that they cover a representative
 221 sample of combinations of all locations and headings that the agent might later experience.

222 Training data is collected on empty environments, i.e. we remove the target cube in order to cover
 223 all locations and headings, even those that would otherwise be blocked by the target. The hSFA
 224 representations are thus not trained on observations with targets; however the results indicate that
 225 the visual cue of a target might still end up being encoded within representations during inference.
 226

227 Regular resets at maximum episode length of each environment ensure a uniform coverage of the
 228 environment, which we found to benefit representations. They do, however, also introduce discontinuities
 229 and therefore quick changes in location and heading. We found that these discontinuities do
 230 not influence learned representations noticeably if episodes are sufficiently long. While we do not
 231 use learning rate adaptation in this work, it could be employed in order to reduce the influence of dis-
 232 continuities on the representation (see Appendix). During the training of PPO agents, the pre-trained
 233 hSFA feature extractor is used to pre-process the observations fed into the PPO algorithm.
 234

235 **CNNs** We train two CNN architectures to compare hSFA against. They are prepended to the PPO
 236 agent and trained jointly with the agent, i.e. on the RL learning task. The first is NatureCNN (Mnih
 237 et al., 2015), the default for processing visual observations in Stable Baselines3. Its purpose is
 238 to compare hSFA representations with those that do not have an inductive bias towards encoding
 239 location and heading. Additionally, we employ a CustomCNN which mimics the architecture of
 240 hSFA. This is to show that the advantage of hSFA comes not from its architecture but from its
 241 optimization target.

242 **PCA** Finally, we train a basic PCA feature extractor. Like hSFA it is also pre-trained, on the same
 243 data as hSFA, and then used to pre-process observations when training PPO. We use the scikit-
 244 learn implementation (Pedregosa et al., 2011). The PCA representations consist of 32 features and
 245 explain a surprising cumulative amount of variance: 81.9% for the StarMaze environments, 92.2%
 246 for WallGap and 91.0% for FourColoredRooms. The purpose of PCA is to show what PPO itself,
 247 without any ability to learn complex features, is able to achieve.
 248

249 5 RESULTS

251 This section presents and describes the hSFA representations in comparison to those learned by PCA
 252 and CNNs, as well as agent performance and behavior.
 253

254 5.1 REPRESENTATIONS

255 The representations learned by hSFA are analysed on test sets of 80,000 points, sampled for each
 256 environment in the same way as the training data for hSFA was sampled. Information in individual
 257 hSFA features is visualized by plotting a top view of the agent’s positions and coloring each point
 258 by the value of a given feature. Images are shown in Figure 2 for the first 6 out of 32 hSFA features.
 259 Since the train and test set were sampled in the same way, these images additionally provide an
 260 intuition on the environment coverage provided by the train set.
 261

262 In Figures 7 and 9 of the Appendix we also show the representations learned by PCA and Na-
 263 tureCNN for comparison. These were obtained using the same procedure as with hSFA, only the
 264 512 dimensions of the NatureCNN output were additionally passed through a PCA dimensionality
 265 reduction to be able to order and display them.
 266

267 **Location** Figure 2 shows that location information is encoded in hSFA features. A feature might
 268 activate at different locations, for instance feature 1 of FourColoredRooms has a different but con-
 269 stant value inside each room and feature 5 for StarMaze is only positive in the center of the maze.
 270 Different components encode different information about location. Earlier components tend to en-

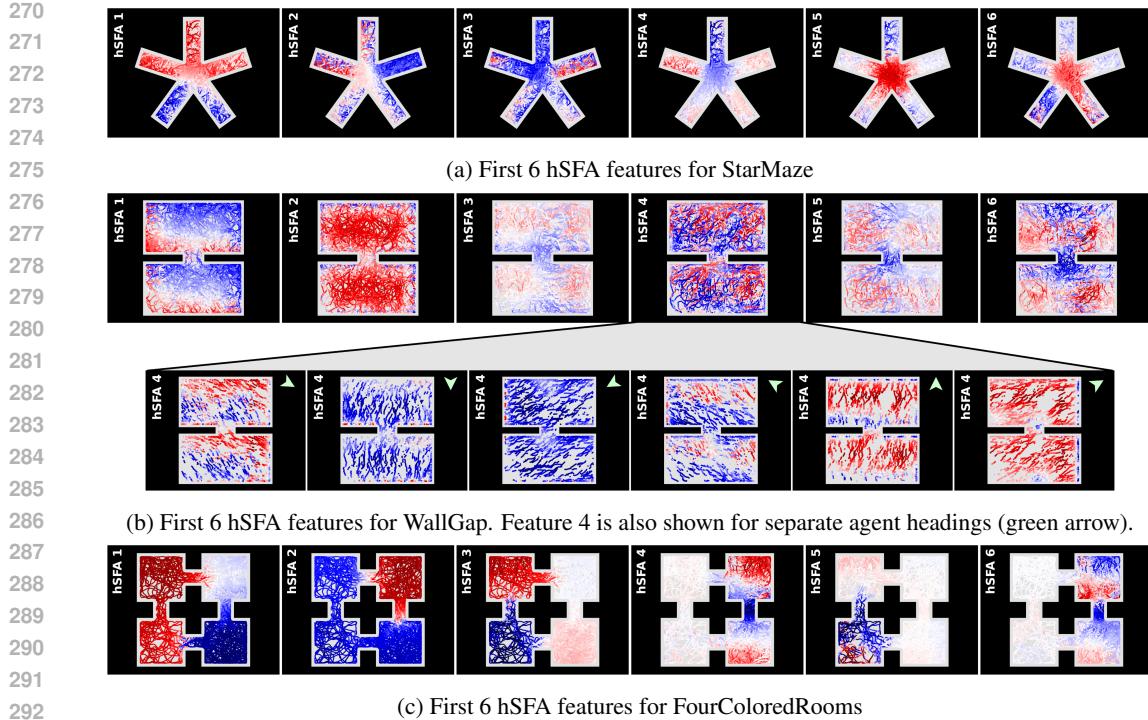


Figure 2: Analysis of hSFA representations in different environments (top view). Figures 2a, 2b, 2c show activations of the first 6 hSFA feature dimensions for different positions and orientations in the room. The points are generated by a random agent moving for 80,000 steps without reset. Colors fade from deep red for large positive values into white for zero into deep blue for large negative values. Figure 2b additionally shows the 4th feature of WallGap for separate agent headings.

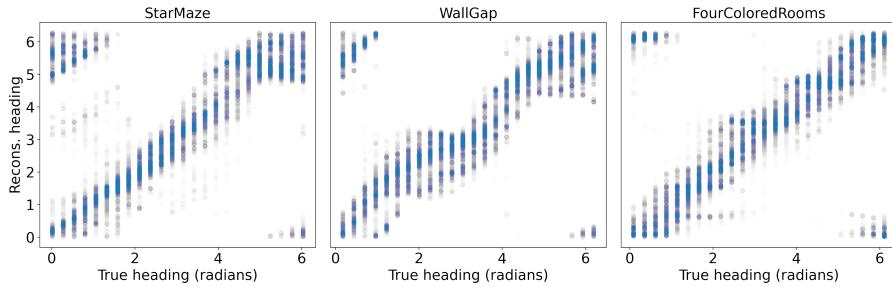


Figure 3: Reconstruction of heading angles. The angle is reconstructed from sine and cosine, which are provided by two linear models trained on all 32 hSFA features. Points are transparent to indicate density. The top left and bottom right corners contain points because of the heading's circularity.

code global information, later components tend to encode local information. The more components are used, the finer the resulting resolution of location can become.

We also find that components are robust: Even in the StarMaze environment, the maze arms can be confidently differentiated although the only visual information that breaks symmetry is the checkerboard pattern of the floor texture being intersected by walls at different angles (see Figure 6 in the Appendix). If, however, observations in different positions look exactly identical, this symmetry cannot be resolved by hSFA. WallGap illustrates this issue in Figure 2b, where representations are the same in each room. In FourColoredRooms this problem does not arise despite the symmetry of its layout, because each wall has a different color.

Both PCA and NatureCNN are also able to resolve some location information. Their representations however are much more limited in their interpretability. A seemingly meaningful representation of

Agent	StarMazeArm	StarMazeRandom	WallGap	FourColoredRooms
hSFA	69 (52, 82)	147 (92, 227)	277 (184, 300)	232 (225, 239)
NatureCNN	415 (270, 592)	309 (226, 430)	266 (233, 300)	187 (178, 201)
CustomCNN	652 (288, 1487)	364 (194, 443)	300 (299, 300)	237 (211, 250)
PCA	773 (621, 1069)	1005 (911, 1099)	179 (168, 191)	222 (212, 233)
Random	1134 (53, 1500)	1073 (1, 1500)	300 (300, 300)	231 (9, 250)
Optimal	36	16	76	53

Table 1: Average episode lengths achieved by agents with different feature extractors on the different Miniworld environments, at the end of their training. Minimum and maximum of five agents (100 agents for the random policy) are reported in brackets. Best performance is marked in bold. The reported optimal performance is also an average.

location information is only present in few dimensions and these are considerably noisier than those produced by hSFA.

Heading The heading information encoded in a hSFA feature becomes a pile of intermingled lines of different colors in our visualization. The feature takes different values for different headings, and the lines arise because even a random agent often walks a couple of subsequent steps into the same direction. To illustrate the heading information, we disentangle these lines for the fourth hSFA feature of WallGap, shown in Figure 2b. To do this, we divide a full circle into 6 angle sections (the arrow indicates the center of each angle section). Each image in the lower row only shows the values where the agent’s heading falls into a given angle section. The illustration shows that feature values are negative when the agent looks south-west, positive when it looks north-east, and undergo a transition phase between these.

In the case of PCA, this same kind of pattern for heading information is also present (see Figure 7b in the Appendix), although it is less obvious. In the NatureCNN representations, however, Figure 9b in the Appendix shows that the noise does not in any way seem to encode heading. For hSFA, heading generally tends to be encoded in later features (for an explanation, see the ICA and LRA section in the Appendix or (Franzius et al., 2007)). Heading information is thus not visible in many of the images of Figure 2. Still, the angle can be reconstructed well from the first 32 hSFA features, as Figure 3 shows. This reconstruction, based on linear regression, is accurate to within a few degrees.

To reconstruct heading as in Figure 3 and Figures 8 and 10 of the Appendix, we learn two linear regressions that map the features to $\sin(\varphi - \pi)$ and to $\cos(\varphi - \pi)$, where φ is the heading. Its value is then reconstructed from the sine and cosine values. Regressions are trained on the first 40,000 steps of our test data and evaluated on the remaining 40,000 steps. It is necessary to use sine and cosine here because heading is a circular variable with a discontinuity from 2π to 0. Circular variables (not only angles) are always encoded by their sine and cosine by hSFA, as these do not contain discontinuities and thus vary slowly. The circular nature of the heading is also directly visible in the transition phases for different headings in Figure 2b. Despite PCA not relying on slowness, the same reconstruction technique leads to similar results regarding heading for PCA (Figure 8), even though it effectively returns noise for NatureCNN representations (Figure 10).

5.2 RL AGENTS

The average episode lengths achieved by trained agents are reported in Table 1, the performance throughout training is reported in Figure 4 in the Appendix. hSFA agents are more successful than other agents on the StarMaze environments, but not on WallGap or FourColoredRooms. In the latter two, no agent performs close to optimal, although the PCA agent outperforms others on WallGap and the NatureCNN agent has a lead in FourColoredRooms.

In the following, we describe observed behavior for the best out of five agents in each setup. These observations provide a deeper insight than the values in Table 1. Since CustomCNN is consistently outperformed by NatureCNN, we only investigate the more successful behavior of NatureCNN. **Additionally, we analyze the performance of baseline agents as well as agents trained on combinations of representations.**

378 **StarMazeArm** The hSFA agent immediately turns in the right direction towards the target and
 379 then walks straight to it, even if the target is not immediately visible. Non-optimal performance
 380 is explained by the agent sometimes getting stuck at a protruding corner, which is something that
 381 regularly happens to all agents across all environments. The PCA agent walks to the target when it
 382 is visible, otherwise it wanders into a random direction until it gets stuck in a wall. The NatureCNN
 383 agent also walks to the target when visible and walks in circles otherwise.

384
 385 **StarMazeRandom** The hSFA agent walks in circles around the center room until it sees the target,
 386 then walks straight to it. In contrast to this, the NatureCNN agent only spins around itself until it
 387 sees the target. If it spawned in a location from which it cannot see the target, it spins until the
 388 episode ends. The PCA agent displays the same behavior as in StarMazeArm.

389
 390 **WallGap** The hSFA agent sometimes manages to walk directly to the gap connecting both rooms,
 391 but it often seems confused about the correct direction and ends up walking the wrong direction. If
 392 it makes it to the gap, it spins around until it sees the target. If it sees the target it walks towards it.
 393 In most cases, it never reaches this last step. The NatureCNN agent walks around randomly until
 394 it happens to see the target and then walks straight to it. In many cases the episode ends before it
 395 found the target. The PCA agent walks around randomly until it sees the gap. Then it walks straight
 396 to the gap. Then it wanders randomly until it sees the cube and walks straight to the cube.

397
 398 **FourColoredRooms** The hSFA agent walks around almost randomly, often making some distance
 399 and covering most of the room it is in. It makes no effort to search for the target in other rooms. If
 400 the target becomes visible, the agent does not react to it. Instead the agent seems to rely on hitting
 401 the target by walking around. The NatureCNN agent also walks around randomly, however it turns
 402 more and covers significantly smaller distances. While it does not actively seem to search for the
 403 target, it does walk straight to the target when it becomes visible. The PCA agent walks around
 404 randomly and covers as much ground as the hSFA agent, albeit in a seemingly more random way.
 405 It does however tend to walk to gaps between rooms or to the target when either becomes visible.
 406 It does so in a less directed and straightforward way than the NatureCNN agent so that the episode
 407 often ends before the target is reached.

408 **Baselines** In addition to the primary hSFA, CNN and PCA feature extractors we introduce some
 409 baselines for comparison and report these results in Figure 5 in the Appendix. The ground truth
 410 baseline provides location and heading φ (in the form of $\cos(\varphi)$ and $\sin(\varphi)$) directly from the
 411 environment to the agent. The integrated noisy baseline cumulatively adds Gaussian noise to the ground
 412 truth at each step of an episode, simulating related work that integrates changes in location over
 413 time. The noise has a variance of 1/250th of the value range of the respective variables, which is
 414 calibrated to approximately match the deviations in Wang et al. (2017). Because both these baselines
 415 are unable to visually locate the randomly placed goal in the other environments, they can only work
 416 well in StarMazeArm. Here however, both baselines interestingly perform worse than hSFA – likely
 417 because the hSFA representations structure location and heading information in a way that is easier
 418 to process for an agent: They calculate more features, each of which encodes the information at a
 419 different level of coarseness. In comparison to the pure ground truth and also to hSFA, the integrated
 420 noisy representation is less reliable and can vary strongly from run to run. This is indicated by the
 421 shaded areas in Figure 5 that illustrate best and worst agent performance.

422 **Combined representations** Finally, Figure 5 in the Appendix also presents agents that are trained
 423 on combinations of visual information as well as location and heading. Visual information is pro-
 424 cessed by the NatureCNN and combined with either the location and heading ground truth or with
 425 the learned hSFA representations. In WallGap and FourColoredRooms, these baselines fail to learn
 426 reliably. In WallGap this is likely because the narrow gap prevents reaching the goal often enough
 427 that the agent does not get sufficient learning feedback. In FourColoredRooms, these agents still lack
 428 the memory required for targeted exploration. Interestingly, the combinations of representations are
 429 not able to outperform hSFA in the StarMaze environments. As with the baselines, this points to a
 430 favorable structure of hSFA representations. In addition, the agents with combined representations
 431 experience a decrease in performance after a certain amount of training on StarMazeRandom, which
 432 happens later for hSFA representations than for ground truth representations. The agents using hSFA
 433 representations also perform better than those with location and heading ground truth.

432 6 DISCUSSION & CONCLUSION

434 This section discusses how the hSFA representations compare to CNN and PCA representations
 435 and how useful they are for visual navigation. It also states current limitations of using hSFA for
 436 navigation in RL.

437 **Representations** Our results show that hSFA is consistently able to extract information about both
 438 location and heading of the agent, unless there are visual symmetries as in WallGap. We stress again
 439 that these symmetries are unlikely outside simple simulated environments. It is important to note
 440 that because the hSFA algorithm directly calculates the solution to a mathematical optimization
 441 problem, it is imperative that its outputs are the slowest signals that can be extracted from the input,
 442 given the function family \mathcal{G} that its architecture is restricted to. This stands in contrast to neural
 443 networks, where the quality of representations often depends on random seed and initialization (Locatello
 444 et al., 2019). Furthermore, it implies that if hSFA representations do not encode location
 445 and heading, then these are not the slowest signals contained in the visual input stream. Such a
 446 thing can happen for various reasons, for instance due to boundary conditions of an environment
 447 that result in discontinuities in heading or location. We conclude that the slowness principle is a
 448 valid and powerful inductive bias for extracting location and heading in the visual input stream of
 449 an agent. Furthermore, the hSFA algorithm is a suitable architecture to obtain such representations
 450 and thus obtains more interpretable representations than those produced by PCA or a CNN. **A com-
 451 parison to passing ground truth location and heading into the agent additionally suggests that hSFA
 452 presents location and heading information in a particularly accessible way, likely because its indi-
 453 vidual decorrelated features contain different granularity levels of location and heading, based on
 454 their respective slowness from the perspective of the moving agent.**

455 **Navigation with hSFA** The StarMazeArm environment shows that hSFA representations with an
 456 explicit and interpretable encoding of location and heading make visual navigation simpler for an
 457 RL agent. The agent’s movements across all environments except WallGap, in fact, become more
 458 purposeful and confident due to the agent’s increased awareness of its presence in relation to its
 459 surroundings. In addition, the success on StarMazeRandom illustrates that hSFA representations are
 460 able to retain information about the visual scene – in this case whether the target cube is visible –
 461 in addition to location and heading. The fact that the target cube is ignored by the hSFA agent in
 462 FourColoredRooms, on the other hand, suggests that extraction of visual cues with current imple-
 463 mentations of hSFA has its limit. It has however been shown before that positions of slowly moving
 464 objects can be extracted if hSFA is trained on such data (Franzius et al., 2008). The question is how
 465 slow these features are compared to agent location and heading, and thus how many hSFA features
 466 are required to obtain this information. **Although this work does not explicitly examine robustness
 467 to environmental perturbations such as lighting changes, we refer the reader to Berkes & Wiskott
 468 (2005), who demonstrate that hSFA’s lower layers learn generally robust, generic visual features
 469 and to Schönfeld & Wiskott (2015), who study the effect of environmental layout changes such as
 470 morphing and scaling on hSFA performance and find it to be relatively robust to such changes, too.**

471 PCA and CNN are both better at extracting visual cues from an image, as proven by the fact that
 472 agents using them walk straight to the target, and sometimes towards gaps, as soon as these become
 473 visible. On the other hand, PCA and CNN representations do not or barely encode location and
 474 heading significantly worse if at all, as indicated by their comparatively bad performance and inef-
 475 ficient behavior in StarMazeArm. This is true even for CustomCNN, which supports our claim that
 476 the slowness bias rather than the particular architecture of an hSFA feature extractor is responsible
 477 for learning location and heading.

478 In general, the results show that PPO is able to solve simple navigation problems when given suffi-
 479 cient representations. The necessity of such representations is illustrated by the comparatively bad
 480 performance on simple StarMaze environments with PCA representations, which only compress im-
 481 ages into the same dimensionality provided by hSFA. For more complex tasks and environments,
 482 such as FourColoredRooms, navigation with a simple RL agent reaches its limits even with mean-
 483 ingful representations. Here, additional capabilities such as planning or mapping become important.

484 **Limitations** The main limitation of hSFA is that it always only considers the current observation
 485 without any context. It shares this limitation with all other approaches we consider in this work.

486 Likewise, PPO only learns a direct policy and has no inherent planning capacity. The combination
 487 of representation learning and planning approaches however has the potential to improve perfor-
 488 mance also on environments with symmetries (such as WallGap) or partial observability (such as
 489 FourColoredRooms).

490 A disadvantage of hSFA compared to neural networks is its training procedure. Layer-wise training
 491 is slow because it is not as optimized as gradient descent. Additionally, its quadratic expansion slows
 492 hSFA further. Training an RL agent with hSFA feature extractor is about half as fast as training an
 493 agent with prepended CNN feature extractor. A gradient-based SFA version with the potential to
 494 address both issues has been proposed by Schüller et al. (2019).

495 Finally, the data used to train hSFA has to provide a reasonable coverage of positions and headings
 496 in an environment. While this is usually easy to obtain by moving around in a random manner for
 497 a short while, the algorithm could be improved by introducing the ability of online learning, during
 498 exploration of a new area. This is currently not possible.

500 REFERENCES

502 Anonymous. sfa-for-navigation. [https://anonymous.4open.science/r/
 503 sfa-for-navigation-6222](https://anonymous.4open.science/r/sfa-for-navigation-6222), 2025a.

504

505 Anonymous. Miniworld, fork. [https://anonymous.4open.science/r/
 506 Miniworld-9515](https://anonymous.4open.science/r/Miniworld-9515), 2025b.

507

508 Pietro Berkes and Laurenz Wiskott. Slow feature analysis yields a rich repertoire of complex cell
 509 properties. *Journal of vision*, 5(6):9–9, 2005.

510

511 Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel, and Juan D Tardós.
 512 Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. *IEEE
 513 transactions on robotics*, 37(6):1874–1890, 2021.

514

515 Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Ruslan Salakhutdinov.
 516 Learning to explore using active neural slam. In *International Conference on Learning
 517 Representations*, 2020. URL <https://openreview.net/forum?id=Hk1Xn1BKDH>.

518

519 Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
 520 Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
 521 Modular & customizable reinforcement learning environments for goal-oriented tasks. *CoRR*,
 522 abs/2306.13831, 2023.

523

524 Samyak Datta, Oleksandr Maksymets, Judy Hoffman, Stefan Lee, Dhruv Batra, and Devi Parikh.
 525 Integrating egocentric localization for more realistic point-goal navigation agents. In *Conference
 526 on Robot Learning*, pp. 313–328. PMLR, 2021.

527

528 Alberto N. Escalante-B. and Laurenz Wiskott. Slow Feature Analysis: perspectives for tech-
 529 nical applications of a versatile learning algorithm. *Künstliche Intelligenz [Artificial Intelli-
 530 gence]*, 26(4):341–348, November 2012. doi: 10.1007/s13218-012-0190-7. URL <http://www.springerlink.com/content/vk3738325250162k/>.

531

532 Mathias Franzius, Henning Sprekeler, and Laurenz Wiskott. Slowness and sparseness lead to place,
 533 head-direction, and spatial-view cells. *PLoS computational biology*, 3(8):e166, 2007.

534

535 Mathias Franzius, Niko Wilbert, and Laurenz Wiskott. Invariant object recognition with slow feature
 536 analysis. In *International Conference on Artificial Neural Networks*, pp. 961–970. Springer, 2008.

537

538 Mathias Franzius, Niko Wilbert, and Laurenz Wiskott. Invariant object recognition and pose esti-
 539 mation with slow feature analysis. *Neural computation*, 23(9):2289–2323, 2011.

540

541 Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive
 542 mapping and planning for visual navigation. In *Proceedings of the IEEE conference on computer
 543 vision and pattern recognition*, pp. 2616–2625, 2017.

540 Simon Hakenes and Tobias Glasmachers. Boosting reinforcement learning with unsupervised fea-
 541 ture extraction. In *Artificial Neural Networks and Machine Learning—ICANN 2019: Theoretical*
 542 *Neural Computation: 28th International Conference on Artificial Neural Networks, Munich, Ger-*
 543 *many, September 17–19, 2019, Proceedings, Part I* 28, pp. 555–566. Springer, 2019.

544

545 Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
 546 Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
 547 *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=SJ6yPD5xg>.

548

549 Moritz Lange, Noah Krystiniak, Raphael C. Engelhardt, Wolfgang Konen, and Laurenz Wiskott.
 550 Improving reinforcement learning efficiency with auxiliary tasks in non-visual environments: A
 551 comparison, 2023.

552

553 Robert Legenstein, Niko Wilbert, and Laurenz Wiskott. Reinforcement learning on slow features of
 554 high-dimensional input streams. *PLoS computational biology*, 6(8):e1000894, 2010.

555

556 Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
 557 Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning
 558 of disentangled representations. In *international conference on machine learning*, pp. 4114–4124.
 559 PMLR, 2019.

560

561 Yunlian Lyu, Yimin Shi, and Xianggang Zhang. Improving target-driven visual navigation with
 562 attention on 3d spatial relationships. *Neural Processing Letters*, 54(5):3979–3998, 2022.

563

564 Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andy Ballard, Andrea Banino, Misha
 565 Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dhruvish Kumar, and Raia Had-
 566 sell. Learning to navigate in complex environments. In *International Conference on Learning*
 567 *Representations*, 2017. URL <https://openreview.net/forum?id=SJMGPrcl>.

568

569 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
 570 mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
 571 control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

572

573 Arsalan Mousavian, Alexander Toshev, Marek Fišer, Jana Košecká, Ayzaan Wahid, and James
 574 Davidson. Visual representations for semantic target driven navigation. In *2019 International*
 575 *Conference on Robotics and Automation (ICRA)*, pp. 8846–8852. IEEE, 2019.

576

577 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 578 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
 579 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
 580 12:2825–2830, 2011.

581

582 Edgar Allen Poe. The masque of the red death. 1842.

583

584 George R Price. Extension of covariance selection mathematics. *Annals of human genetics*, 35(4):
 585 485–490, 1972.

586

587 Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
 588 Dormann. Stable-baselines3: Reliable reinforcement learning implementations. *Journal of*
 589 *Machine Learning Research*, 22(268):1–8, 2021. URL <http://jmlr.org/papers/v22/20-1364.html>.

590

591 Fabian Schönfeld and Laurenz Wiskott. Ratlab: an easy to use tool for place code simulations.
 592 *Frontiers in Computational Neuroscience*, 7:104, 2013.

593

594 Fabian Schönfeld and Laurenz Wiskott. Modeling place field activity with hierarchical slow feature
 595 analysis. *Frontiers in computational neuroscience*, 9:51, 2015.

596

597 Merlin Schüler, Hlynur Davíð Hlynsson, and Laurenz Wiskott. Gradient-based training of slow fea-
 598 ture analysis by differentiable approximate whitening. In *Asian Conference on Machine Learning*,
 599 pp. 316–331. PMLR, 2019.

594 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 595 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

596

597 Merlin Schüler and Moritz Lange. sklearn-sfa. <https://github.com/wiskott-lab/sklearn-sfa>, 2023.

598

599 Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni. Deepvo: Towards end-to-end visual
 600 odometry with deep recurrent convolutional neural networks. In *2017 IEEE international conference*
 601 *on robotics and automation (ICRA)*, pp. 2043–2050. IEEE, 2017.

602

603 Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan-Fang Wang,
 604 William Yang Wang, and Lei Zhang. Vision-language navigation policy learning and adapta-
 605 tion. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(12):4205–4216, 2021.
 606 doi: 10.1109/TPAMI.2020.2972281.

607

608 Laurenz Wiskott. Learning invariance manifolds. In L. Niklasson, M. Bodén, and T. Ziemke (eds.),
 609 *Proc. 8th Intl. Conf. on Artificial Neural Networks (ICANN'98), Skövde, Sweden, Perspectives*
 610 *in Neural Computing*, pp. 555–560, London, September 1998. Springer. ISBN 3-540-76263-9.
 611 doi: 10.1007/978-1-4471-1599-1_83. URL https://link.springer.com/chapter/10.1007/978-1-4471-1599-1_83.

612 Laurenz Wiskott. Unsupervised learning of invariances in a simple model of the visual system. In
 613 *Proc. 9th Annual Computational Neuroscience Meeting (CNS'00), Jul 16–20, Brugge, Belgium*,
 614 pp. 157, 2000.

615 Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised learning of invari-
 616 ances. *Neural computation*, 14(4):715–770, 2002.

617

618 Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans. Auxiliary tasks and exploration enable
 619 objectgoal navigation. In *Proceedings of the IEEE/CVF International Conference on Computer*
 620 *Vision*, pp. 16117–16126, 2021a.

621 Joel Ye, Dhruv Batra, Erik Wijmans, and Abhishek Das. Auxiliary tasks speed up learning point
 622 goal navigation. In *Conference on Robot Learning*, pp. 498–516. PMLR, 2021b.

623 Fengda Zhu, Yi Zhu, Vincent Lee, Xiaodan Liang, and Xiaojun Chang. Deep learning for embodied
 624 vision navigation: A survey. *arXiv preprint arXiv:2108.04097*, 2021.

625

A APPENDIX

A.1 AGENT TRAINING

631 To train our agents, we use the PPO implementation provided by Stable Baselines3 (Raffin et al.,
 632 2021). Parameters which are different from default are reported in Table 2. In addition to the
 633 reported parameters, we use the CnnPolicy for the NatureCNN feature extractor and the MlpPolicy
 634 for the other ones. We train for 1,000,000 steps on the StarMazeArm environment and for 2,000,000
 635 steps on the remaining environments.

636 The layer specifications of the hSFA, NatureCNN and CustomCNN feature extractors are listed in
 637 Table 3. The number of learnable parameters for hSFA, NatureCNN, CustomCNN and PCA are
 638 listed in Table 4. hSFA and PCA are pre-trained, and when training the PPO agent they are only
 639 used to transform observations into a 32-dimensional feature space. NatureCNN and CustomCNN
 640 are trained end-to-end together with the PPO agent on the RL task. Representations by hSFA, PCA
 641 and CustomCNN are fed through two fully connected layers of a neural network, as is common for
 642 PPO in Stable Baselines3. These layers are identical for all three, trained together with the PPO
 643 agent on the RL task, and are listed in Table 3. NatureCNN, on the other hand, is already an internal
 644 feature extractor of Stable Baselines3 and its representations are directly used for policy learning. In
 645 addition to the results in Table 1 of the main paper, we show the training curves for all agents on all
 646 environments in Figures 4 and 5. The combined representations are obtained as follows: The ground
 647 truth or hSFA representation, respectively, are expanded by a single linear layer to match the output
 648 dimensionality of the NatureCNN output (512). Then both vectors are concatenated and passed into
 649 PPO’s policy network.

648
649
650
651
652
653
654
655
656

Parameter	Value
n_steps	128
learning_rate	0.00025
ent_coef	0.01
clip_range	0.1
batch_size	128

657 Table 2: Parameters used with the PPO model of Stable Baselines3. Only parameters that were not
658 left at their default setting are listed.

659
660
661
662
663
664

Layer	Type	Receptive field	Stride	Exp. deg.	# Channels out
hSFA layer 1	Quadratic SFA	(10, 10)	(5, 5)	2	32
hSFA layer 2	Quadratic SFA	(3, 3)	(2, 3)	2	32
hSFA layer 3	Quadratic SFA (fully connected)	–	–	2	32
hSFA MLP 1	Fully connected	–	–	–	64
hSFA MLP 2	Fully connected	–	–	–	64
PCA MLP 1	Fully connected	–	–	–	64
PCA MLP 2	Fully connected	–	–	–	64
NatureCNN layer 1	Convolution	(8, 8)	(4, 4)	–	32
NatureCNN layer 2	Convolution	(4, 4)	(2, 2)	–	64
NatureCNN layer 3	Convolution	(3, 3)	(1, 1)	–	64
NatureCNN layer 4	Fully connected	–	–	–	512
CustomCNN layer 1	Convolution	(10, 10)	(5, 5)	–	32
CustomCNN layer 2	Convolution	(3, 3)	(2, 2)	–	32
CustomCNN layer 3	Convolution	(1, 1)	(1, 1)	–	32
CustomCNN MLP 1	Fully connected	–	–	–	64
CustomCNN MLP 2	Fully connected	–	–	–	64

674 Table 3: Parameters used for the hSFA and CNN networks. The MLP layers used with hSFA, PCA
675 and CustomCNN are those introduced by the MlpPolicy in Stable Baselines3. They are automati-
676 cally appended to the hSFA and CustomCNN feature extractors. In the sklearn-sfa package (Schüler
677 & Lange, 2023), the hSFA layer 3 does not have to be specified. Exp. deg. refers to the degree of
678 expansion, a parameter used in hSFA layers.

688
689
690
691
692

Feature Extractor	# Parameters
hSFA	101,600
PCA	481,472
NatureCNN	862,880
CustomCNN	26,208

693
694
695
696
697
698
699
700
701

Table 4: Number of learnable parameters of the different feature extractors.

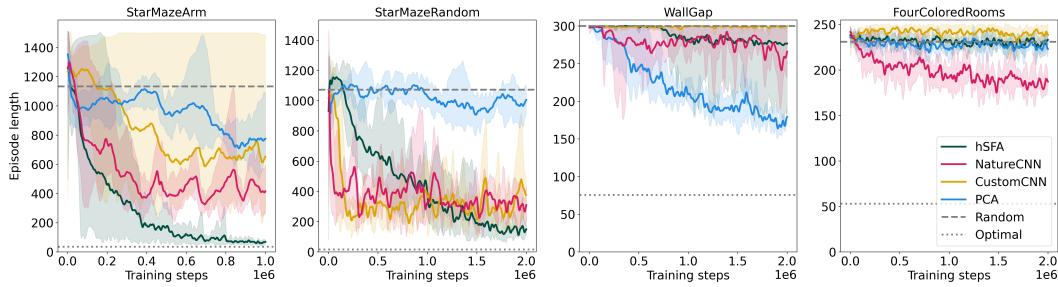


Figure 4: Performance of agents with various feature extractors on the different Miniworld environments. Shaded areas indicate the minimum and maximum of five agents trained with different random seeds. Curves have been smoothed slightly for clearer presentation.

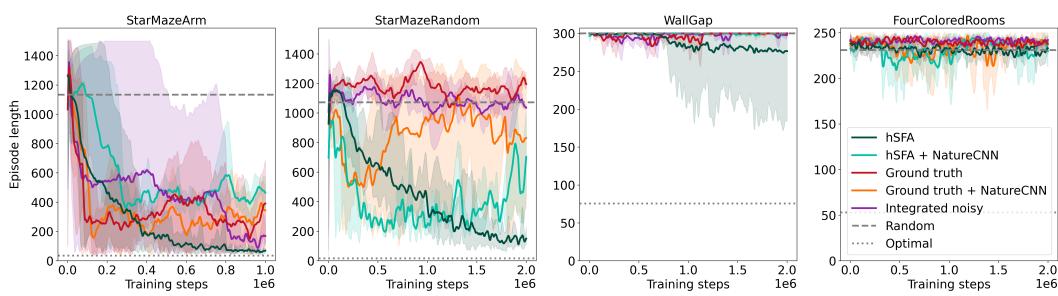


Figure 5: Performance of agents with baseline features (ground truth and integrated noisy, which is ground truth with noise that accumulates over episodes), as well as combined feature extractors, on the different Miniworld environments. Shaded areas indicate the minimum and maximum of three agents trained with different random seeds. Curves have been smoothed slightly for clearer presentation.

739
740
741

Figure 6: Exemplary observations rendered from the different environments. In this observation of StarMaze, a red target cube is visible. There is no shade from illumination, so the different wall texture colors in FourColoredRooms are in fact textures of different colors.

A.2 ICA AND LRA

745
746
747
748

In addition to the base hSFA algorithm, various extensions have been proposed (Escalante-B. & Wiskott, 2012). Two of these can be used to affect the kind of representations extracted from the input. Both have been used to extract location and heading.

749
750
751
752
753
754

The first is a final layer of sparse coding achieved through independent component analysis (ICA), which is attached to the top of the hSFA model by (Franzius et al., 2007; Schönfeld & Wiskott, 2013). The reason for its use is that only this step of sparse coding transforms location information into neuro-plausible place fields. Additionally, (Schönfeld & Wiskott, 2013) claim that the use of ICA was required to disentangle head directions. We find, however, that we can obtain head direction and location information without ICA in this work.

755

The second is learning rate adaptation (LRA) (Franzius et al., 2007). By weighing data points, their influence on the SFA results can be controlled. In practice, this is achieved by including

756 weights for the differentiated time series when calculating the covariance matrix that is used for
 757 singular value decomposition within SFA (Price, 1972). To calculate weights for the differences
 758 between two points, LRA requires an aggregation method. Geometric mean is a good choice, as the
 759 arithmetic mean has a tendency to smooth weights out. LRA should be used if there are sudden, fast
 760 and unnatural changes in a signal. Two prominent examples are a suddenly mirrored or reflected
 761 heading when bouncing into the wall of a simulated environment or an interval of missing data
 762 in a time series. These discontinuities would artificially make signals, such as the heading in this
 763 example, change faster than they actually do. Such large differences then effectively act similar
 764 to how an outlier would in PCA. They strongly affect the whole representation, unless they are
 765 mitigated by a small weight. In some cases, it might be practical to apply LRA to certain movements,
 766 in particular fast rotations, since rotation of an agent typically changes faster than location when they
 767 are normalized by 2π and size of the environment, respectively. This is proven in (Franzius et al.,
 768 2007).
 769

770 LRA is difficult to use if there are only few discrete actions, as is the case in this work. Larger
 771 weights for rotations and smaller weights for moving ahead average each other out for almost all
 772 differences of data points collected by a random policy as one action is very often followed by a
 773 different one. Additionally, we find that we do not need to use LRA under the conditions examined
 774 in this work to obtain good representations.
 775

A.3 REPRESENTATIONS LEARNED BY PCA AND CNN

776 Here, we present the representations learned by the PCA feature extractor (Figures 7 for location
 777 and 8 for heading) and the NatureCNN feature extractor (Figures 9 for location and 10 for heading).
 778 As in the Discussion in the main paper, we omit CustomCNN here due to its inferior performance.
 779 Since the dimensionality of the NatureCNN representations is 512, and these have no natural order,
 780 we apply a PCA dimensionality reduction to make information contained in the representations
 781 more concise and also ordered. For StarMaze, WallGap and FourColoredRooms the first six PCA
 782 components capture a cumulative variance ratio of 68%, 89% and 75%, respectively. Since the
 783 NatureCNN representations are trained together with the RL algorithm instead of independently, the
 784 representations in Figure 9 are those obtained by the best performing RL agent on each environment.
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

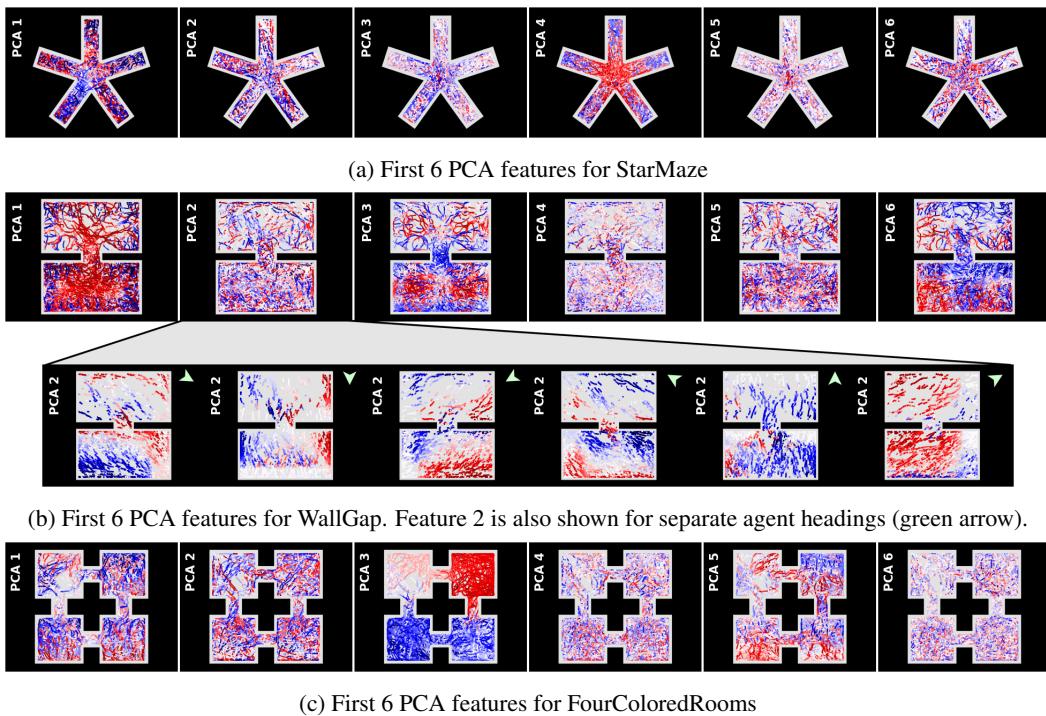


Figure 7: Analysis of PCA representations in different environments (top view). Figures 7a, 7b, 7c show activations of the first 6 PCA feature dimensions for different positions and orientations in the room. The points are generated by a random agent moving for 80,000 steps without reset. Colors fade from deep red for large positive values into white for zero into deep blue for large negative values. Figure 7b additionally shows the 2nd feature of WallGap for separate agent headings.

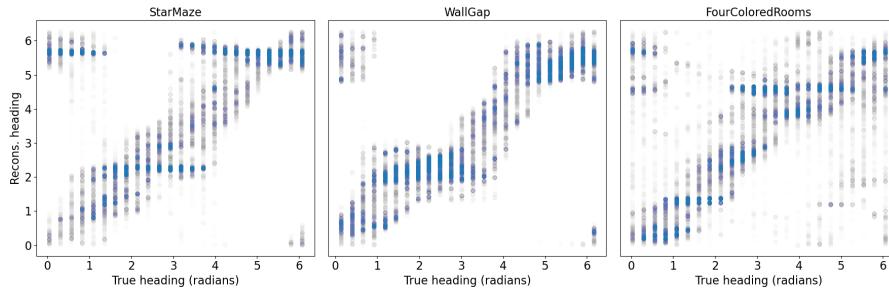


Figure 8: Reconstruction of heading angles for PCA. The angle is reconstructed from sine and cosine, which are provided by two linear models trained on all 32 PCA features. In order to see density, points have a high transparency. The top left and bottom right corners contain points because of the heading's circularity.

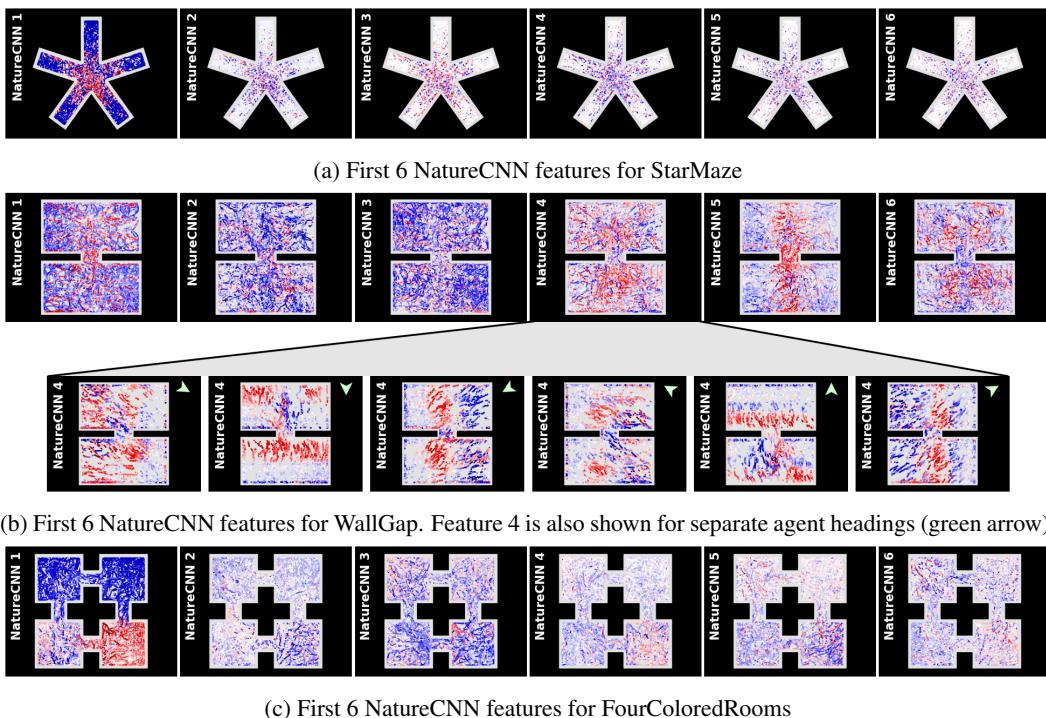


Figure 9: Analysis of NatureCNN representations in different environments (top view). The raw unordered 512 NatureCNN features are additionally passed through a PCA dimensionality reduction to obtain more meaningful and ordered visualizations, so these Figures do not show the raw representations returned by NatureCNN. Figures 9a, 9b, 9c show activations of the first 6 PCA components for different positions and orientations in the room. The points are generated by a random agent moving for 80,000 steps without reset. Colors fade from deep red for large positive values into white for zero into deep blue for large negative values. Figure 9b additionally shows the 4th feature of WallGap for separate agent headings.

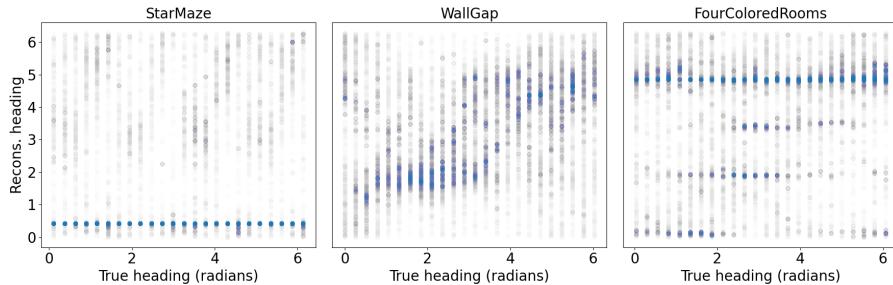


Figure 10: Reconstruction of heading angles for NatureCNN. The angle is reconstructed from sine and cosine, which are provided by two linear models trained on the first 32 dimensions of the output of a PCA dimensionality reduction of the 512-dimensional NatureCNN representations. In order to see density, points have a high transparency.