
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INTERPRETABLE BRAIN-INSPIRED REPRESENTATIONS
IMPROVE RL PERFORMANCE ON VISUAL NAVIGATION
TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Visual navigation requires a wide range of capabilities in an agent. A crucial one
is the ability to determine the agent’s own location and heading in an environ-
ment. However, existing navigation approaches either assume this information
is given, or use methods that lack a suitable inductive bias and accumulate error
over time. Inspired by neuroscience research, the method of slow feature analysis
(SFA) overcomes these limitations and extracts agent location and heading from a
visual data stream, but has not been combined with modern, deep reinforcement
learning agents. In this paper, we compare SFA representations with those learned
by convolutional neural networks in deep RL agents. We also demonstrate how
using SFA representations can improve navigation performance. Lastly, we em-
pirically and conceptually investigate the limitations of SFA and discuss how they
currently prevent it from being used more widely for visual navigation in RL.

1 INTRODUCTION

Visual navigation is a complex and increasingly relevant task in robotics and in machine learning
(ML). Research in this field touches on a wide range of agent capabilities, including the parsing
of tasks (Wang et al., 2021), locating objects to interact with (Lyu et al., 2022), mapping out the
environment (Chaplot et al., 2020) and planning (Gupta et al., 2017). A basic necessity in navigation,
however, is that the agent has to find and move along a path to its target. Finding a path to some
location, crucially, requires awareness of one’s own location and heading. Unsurprisingly, it has
been found that an agent’s ability of self-localization is important for navigation and especially
long-term planning in ML (Zhu et al., 2021).

In computational neuroscience, slow feature analysis (SFA) (Wiskott & Sejnowski, 2002) is a
method modeled on the human visual system that has long been known for its ability to extract
position and head direction from a visual stream. In fact, the representations it generates have been
related to place cells and head-direction cells, among others (Franzius et al., 2007). This paper il-
lustrates the potential of using SFA representations for deep reinforcement learning (RL) agents on
visual navigation tasks.

The contributions of this paper are threefold:

• We explain how SFA representations conceptually differ significantly from current ap-
proaches to localization for visual navigation in RL. Other methods either require integra-
tion of information over time or lack a suitable inductive bias for extracting interpretable
location and heading information from images. SFA addresses both weaknesses.

• We show empirically that SFA representations are not only capable of extracting location
and heading, they also make navigation more efficient than representations which do not
contain such information. In particular, we show that regular convolutional neural networks
in deep RL agents do not learn to extract this information.

• We explain limitations which currently prevent SFA from seamless integration into RL
agents, in particular a lack of gradient-based training procedures and the requirements on
environment coverage in training data.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

This paper aims to present SFA as a suitable and underdeveloped representation learning method for
visual navigation, while also investigating its current limitations for this purpose.

2 RELATED WORK

Localization for Navigation Representation learning in the context of RL and navigation is often
approached through auxiliary tasks (Lange et al., 2023; Jaderberg et al., 2017; Ye et al., 2021a;
Mirowski et al., 2017), often without explicitly considering position, orientation or pose of an agent.
The works that do use these features, however, can broadly be split into three categories.

The first approach is to just assume the agent is provided with ground truth information on its cur-
rent absolute location and heading (Ye et al., 2021a;b). The second approach can be called location
through integration. It assumes that current changes in position and direction can either be inferred
or are provided to the agent. These are then integrated over time (Mirowski et al., 2017). Simulta-
neous localization and mapping (SLAM) methods are a particularly prominent algorithm class that
relies on this approach (Chaplot et al., 2020; Campos et al., 2021). The third approach employs
neural networks (commonly convolutional neural networks (CNNs) combined with recurrent neural
networks (RNNs)) to learn representations from visual input (Mousavian et al., 2019). These net-
works do not have any inductive bias towards learning position or heading in particular, although
they might be trained in a supervised way directly on this information (Wang et al., 2017; Datta
et al., 2021). Both these papers, additionally, still implicitly integrate changes in location. As a
consequence, they share the main weakness of the second approach: accumulation of errors over
time, which is nicely demonstrated in Figures 4, 6 and 8 of (Wang et al., 2017).

Navigation with Slow Feature Analysis First introduced by Wiskott (Wiskott, 1998; Wiskott &
Sejnowski, 2002), SFA was extended to hierarchical networks – not unsimilar to CNNs – in Wiskott
(2000). Franzius et al. Franzius et al. (2007) show how hierarchical SFA (hSFA) can be used with
independent component analysis (ICA) to extract location and head direction (resembling the neu-
roscientific concepts of place cells and head direction cells) in a neurologically plausible way from
the visual input stream of a simulated animal. Beyond first-person visual input, and potentially also
interesting for navigation, the same authors have also used hSFA for object recognition (Franzius
et al., 2011). Based on this work, Legenstein et al. (2010) have first applied hSFA to RL: Using
hSFA-generated representations, they learn a simple Q-function to make a fish in a tank, seen from
above, move to a target. The most recent inspiration for this paper, finally, comes from Schönfeld
& Wiskott (2013) who have designed a virtual maze for a virtual rat and use this to extract location
and head direction from visual input. Since 2013, the fields of deep learning, reinforcement learning
and visual navigation have come a long way. Yet, to the best of our knowledge, there have been no
works on visual navigation with hSFA representations since. A gradient-based approach to SFA has
been used in the context of RL (Hakenes & Glasmachers, 2019), but not for navigation.

3 LEARNING SLOW FEATURES

Figure 1: Illustration of the architecture of a hierarchical slow feature analysis model. The input
image is perceived in patches by receptive fields with certain strides. These patches are stacked and
passed as batches through an hSFA layer.

Slow Feature Analysis Slow feature analysis is based on the slowness principle: Invariant or
slowly varying features in a signal are usually of more interest than quickly varying features, which

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

are often closer to noise. In a visual stream, for instance, individual pixels will vary very quickly
while objects or an agent’s position do not. To extract slow features from a signal, SFA solves the
following optimization problem: Given a (commonly multidimensional) signal x(t), find mappings
yj(t) = gj(x(t)) such that

∆yj := ⟨ẏ2j ⟩t (1)
is minimized under the constraints

⟨yj⟩t = 0 (zero mean) (2)

⟨y2j ⟩t = 1 (unit variance) (3)

∀i < j : ⟨yiyj⟩t = 0 (decorrelation and order) . (4)

Here ⟨·⟩t denotes the temporal mean and ẏ the temporal derivative of y. The extracted signals yj(t)
are the slowest ones which can be created from x(t) given a family of mapping functions G. The
constraints guarantee that trivial solutions (a constant signal) are excluded and that output signals
are decorrelated and ordered by slowness. For linear SFA, gj ∈ G are chosen to be linear.

In practice, this results in the following algorithm: First, the signal is whitened to obtain zero mean
and identity covariance. As an approximation of the temporal derivative, subsequent data points
in the time series signal are then subtracted from each other. Lastly, principal component analysis
(PCA) is performed on the differentiated time series. The resulting linear components are already
decorrelated and ordered by variance. Since their variance now corresponds to the temporal variance
in original data, components are ordered by lowest rather than highest variance.

Non-linear SFA The family of linear functions is limited in their ability to extract interesting
information. Therefore, non-linear expansion – commonly quadratic expansion – is used on the input
signal before performing SFA. hSFA also uses this expansion as opposed to other non-linearities,
despite its downside of significantly expanding data dimensionality before processing.

Hierarchical SFA In order to deal with visual input streams, or videos, hSFA stacks layers of non-
linear SFA modules on top of each other (see Figure 1). One such layer consists of five components:
A linear SFA step first reduces the dimensionality of the data. A quadratic expansion then introduces
non-linearity and Gaussian noise is added (during training only) to increase training stability. Fi-
nally, another linear SFA extracts the slow features. These features are then clipped, commonly and
also in this paper to [−4, 4], to avoid propagation of extreme values. Altogether, this whole hSFA
layer is commonly referred to as a step of quadratic SFA.

Each but the top-most layer operates on receptive fields with certain strides, similar to a CNN.
Moving a receptive field across the image creates image patches. These patches are flattened and
treated as batches to train a hSFA layer, similar to weight sharing in a CNN. The top-most layer in
hSFA is always a quadratic SFA layer that just works on the flattened output of the second-to-top
layer. This is comparable to a linear layer at the end of a CNN, it flattens the output and finally
allows all parts of the image to have an effect on any dimension of the output.

In contrast to neural networks, the layers of hSFA, at their core, contain singular value decompo-
sitions. The system is therefore trained layer by layer, instead of end-to-end with gradient descent
like an artificial neural network. Additional control of extracted features can be obtained by using
independent component analysis or learning rate adaptation, which are discussed in the Appendix.

4 EXPERIMENTS

This section presents the RL environments and agents that we use for our investigation. It also
describes the training of the hSFA, PCA and CNN feature extractors.

4.1 ENVIRONMENTS

We use 3D visual navigation environments of the Miniworld package (Chevalier-Boisvert et al.,
2023). Each environment contains one red cube representing the target. The task is always to reach
the target. There are no other objects present. Observations are 60 × 80 pixel RGB images which
show the current front view of the agent in the simulated world. There are three possible actions

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

available: 1) Turn left by π/12 radians; 2) Turn right by π/12 radians; 3) Move a small, fixed step
forward. We evaluate performance in terms of episode length l rather than reward r. Episode length
is a more interpretable measure and contains the same information as the reward, which is calculated
as r = 1− 0.2 l

lmax
. A reward is only made available to the agent once it reaches the box.

Exemplary observations of each environment are shown in Figure 6 in the Appendix. Top-views
of their layouts are shown when SFA representations are presented in Figure 2. Some of the listed
environments are customized, their code is available online (Anonymous, 2025b).

StarMazeArm The target in StarMazeArm is always at the end of the same arm. The initial agent
position is a random location in the center room of the maze, its initial heading is random. Maximum
episode length is 1500. The optimal policy is to turn until facing the target and then walk forward.
In theory this does not require locating the target, as it is always in the same place.

StarMazeRandom This environment is identical to StarMazeArm with the exception that the
target is placed in a completely random position each episode. The optimal policy is the same as
with StarMazeArm. As opposed to StarMazeArm, however, the agent first has to locate the target in
each episode before it can know where to walk.

WallGap The initial agent position is always in the upper room, the initial target position in the
lower room. Initial agent heading is random. Maximum episode length is 300. As opposed to the
other environments, both rooms have the same textures and thus look visually identical apart from
one distant skyscraper This introduces visual symmetries that often make it impossible to extract
position and heading from one image alone. The best policy is to walk straight to the gap between
rooms, turn to face the target and walk straight to it.

FourColoredRooms The initial agent position and heading are random, as is the target position.
Maximum episode length is 250. As opposed to the previous three environments, the wall textures
are unique for each wall. Each of the four rooms has a different color, similar to Prince Prospero’s
rooms in Edgar Allan Poe’s The Masque of the Red Death (Poe, 1842). Each wall in a room has a
different brightness so that, in contrast to WallGap, there are no visual symmetries despite the sym-
metry of the layout. The main difficulty is that the number of different rooms makes an exploration
strategy necessary to traverse rooms in search of the target.

4.2 RL AGENTS

We train PPO agents with different feature extractors (described below) to solve each navigation
task. PPO is a simple, general, state-of-the-art, on-policy, model-free policy optimization algorithm
in RL (Schulman et al., 2017). Simple here means that it does not involve any navigation capabil-
ities stated in Related work, such as mapping or planning. We use the implementation of Stable
Baselines3 (Raffin et al., 2021) to train five agents with random seeds per setup. Details and hyper-
parameters can be found in the Appendix. We made all code required to reproduce our experiments
and results available on GitHub (Anonymous, 2025a)1.

In addition to agents trained with feature extractors, we report performance of an agent following
random performance and an agent following an optimal policy for comparison. The first quantifies
the average episode length achieved by 100 random agents on each environment. The second quan-
tifies average episode length of 10 manual runs per environment when following the optimal strategy
and exploiting a top-view that includes both agent and target and is not part of the observation.

4.3 FEATURE EXTRACTORS

We use a hSFA feature extractor, two CNNs and a PCA feature extractor with PPO. They are de-
scribed below, more details can be found in the Appendix (Table 3).

hSFA The hSFA feature extractor is pre-trained individually for each environment layout, i.e. only
once for StarMaze. We use the sklearn-sfa implementation by Schüler & Lange (2023) to extract

1https://anonymous.4open.science/r/sfa-for-navigation-6222

4

https://anonymous.4open.science/r/sfa-for-navigation-6222

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

representations with 32 features. The pretraining is done on 80,000 data points collected by an
agent following a random policy. While 80,000 is a high number, such an amount of data is cheap
to collect and in this work we focus on demonstrating the capabilities of hSFA rather than exploring
the limits of its hyperparameters. Our experience indicates that far fewer points should be sufficient
if collecting them were to be expensive. It is however important that they cover a representative
sample of combinations of all locations and headings that the agent might later experience.

Training data is collected on empty environments, i.e. we remove the target cube in order to cover
all locations and headings, even those that would otherwise be blocked by the target. The hSFA
representations are thus not trained on observations with targets; however the results indicate that
the visual cue of a target might still end up being encoded within representations during inference.

Regular resets at maximum episode length of each environment ensure a uniform coverage of the
environment, which we found to benefit representations. They do, however, also introduce disconti-
nuities and therefore quick changes in location and heading. We found that these discontinuities do
not influence learned representations noticeably if episodes are sufficiently long. While we do not
use learning rate adaptation in this work, it could be employed in order to reduce the influence of dis-
continuities on the representation (see Appendix). During the training of PPO agents, the pre-trained
hSFA feature extractor is used to pre-process the observations fed into the PPO algorithm.

CNNs We train two CNN architectures to compare hSFA against. They are prepended to the PPO
agent and trained jointly with the agent, i.e. on the RL learning task. The first is NatureCNN (Mnih
et al., 2015), the default for processing visual observations in Stable Baselines3. Its purpose is
to compare hSFA representations with those that do not have an inductive bias towards encoding
location and heading. Additionally, we employ a CustomCNN which mimics the architecture of
hSFA. This is to show that the advantage of hSFA comes not from its architecture but from its
optimization target.

PCA Finally, we train a basic PCA feature extractor. Like hSFA it is also pre-trained, on the same
data as hSFA, and then used to pre-process observations when training PPO. We use the scikit-
learn implementation (Pedregosa et al., 2011). The PCA representations consist of 32 features and
explain a surprising cumulative amount of variance: 81.9% for the StarMaze environments, 92.2%
for WallGap and 91.0% for FourColoredRooms. The purpose of PCA is to show what PPO itself,
without any ability to learn complex features, is able to achieve.

5 RESULTS

This section presents and describes the hSFA representations in comparison to those learned by PCA
and CNNs, as well as agent performance and behavior.

5.1 REPRESENTATIONS

The representations learned by hSFA are analysed on test sets of 80,000 points, sampled for each
environment in the same way as the training data for hSFA was sampled. Information in individual
hSFA features is visualized by plotting a top view of the agent’s positions and coloring each point
by the value of a given feature. Images are shown in Figure 2 for the first 6 out of 32 hSFA features.
Since the train and test set were sampled in the same way, these images additionally provide an
intuition on the environment coverage provided by the train set.

In Figures 7 and 9 of the Appendix we also show the representations learned by PCA and Na-
tureCNN for comparison. These were obtained using the same procedure as with hSFA, only the
512 dimensions of the NatureCNN output were additionally passed through a PCA dimensionality
reduction to be able to order and display them.

Location Figure 2 shows that location information is encoded in hSFA features. A feature might
activate at different locations, for instance feature 1 of FourColoredRooms has a different but con-
stant value inside each room and feature 5 for StarMaze is only positive in the center of the maze.
Different components encode different information about location. Earlier components tend to en-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) First 6 hSFA features for StarMaze

(b) First 6 hSFA features for WallGap. Feature 4 is also shown for separate agent headings (green arrow).

(c) First 6 hSFA features for FourColoredRooms

Figure 2: Analysis of hSFA representations in different environments (top view). Figures 2a, 2b, 2c
show activations of the first 6 hSFA feature dimensions for different positions and orientations in the
room. The points are generated by a random agent moving for 80,000 steps without reset. Colors
fade from deep red for large positive values into white for zero into deep blue for large negative
values. Figure 2b additionally shows the 4th feature of WallGap for separate agent headings.

Figure 3: Reconstruction of heading angles. The angle is reconstructed from sine and cosine, which
are provided by two linear models trained on all 32 hSFA features. Points are transparent to indicate
density. The top left and bottom right corners contain points because of the heading’s circularity.

code global information, later components tend to encode local information. The more components
are used, the finer the resulting resolution of location can become.

We also find that components are robust: Even in the StarMaze environment, the maze arms can be
confidently differentiated although the only visual information that breaks symmetry is the checker-
board pattern of the floor texture being intersected by walls at different angles (see Figure 6 in the
Appendix). If, however, observations in different positions look exactly identical, this symmetry
cannot be resolved by hSFA. WallGap illustrates this issue in Figure 2b, where representations are
the same in each room. In FourColoredRooms this problem does not arise despite the symmetry of
its layout, because each wall has a different color.

Both PCA and NatureCNN are also able to resolve some location information. Their representations
however are much more limited in their interpretability. A seemingly meaningful representation of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Agent StarMazeArm StarMazeRandom WallGap FourColoredRooms
hSFA 69 (52, 82) 147 (92, 227) 277 (184, 300) 232 (225, 239)

NatureCNN 415 (270, 592) 309 (226, 430) 266 (233, 300) 187 (178, 201)

CustomCNN 652 (288, 1487) 364 (194, 443) 300 (299, 300) 237 (211, 250)

PCA 773 (621, 1069) 1005 (911, 1099) 179 (168, 191) 222 (212, 233)

Random 1134 (53, 1500) 1073 (1, 1500) 300 (300, 300) 231 (9, 250)

Optimal 36 16 76 53

Table 1: Average episode lengths achieved by agents with different feature extractors on the different
Miniworld environments, at the end of their training. Minimum and maximum of five agents (100
agents for the random policy) are reported in brackets. Best performance is marked in bold. The
reported optimal performance is also an average.

location information is only present in few dimensions and these are considerably noisier than those
produced by hSFA.

Heading The heading information encoded in a hSFA feature becomes a pile of intermingled lines
of different colors in our visualization. The feature takes different values for different headings, and
the lines arise because even a random agent often walks a couple of subsequent steps into the same
direction. To illustrate the heading information, we disentangle these lines for the fourth hSFA
feature of WallGap, shown in Figure 2b. To do this, we divide a full circle into 6 angle sections
(the arrow indicates the center of each angle section). Each image in the lower row only shows the
values where the agent’s heading falls into a given angle section. The illustration shows that feature
values are negative when the agent looks south-west, positive when it looks north-east, and undergo
a transition phase between these.

In the case of PCA, this same kind of pattern for heading information is also present (see Figure 7b in
the Appendix), although it is less obvious. In the NatureCNN representations, however, Figure 9b in
the Appendix shows that the noise does not in any way seem to encode heading. For hSFA, heading
generally tends to be encoded in later features (for an explanation, see the ICA and LRA section
in the Appendix or (Franzius et al., 2007)). Heading information is thus not visible in many of the
images of Figure 2. Still, the angle can be reconstructed well from the first 32 hSFA features, as
Figure 3 shows. This reconstruction, based on linear regression, is accurate to within a few degrees.

To reconstruct heading as in Figure 3 and Figures 8 and 10 of the Appendix, we learn two linear
regressions that map the features to sin(φ−π) and to cos(φ−π), where φ is the heading. Its value is
then reconstructed from the sine and cosine values. Regressions are trained on the first 40,000 steps
of our test data and evaluated on the remaining 40,000 steps. It is necessary to use sine and cosine
here because heading is a circular variable with a discontinuity from 2π to 0. Circular variables
(not only angles) are always encoded by their sine and cosine by hSFA, as these do not contain
discontinuities and thus vary slowly. The circular nature of the heading is also directly visible in
the transition phases for different headings in Figure 2b. Despite PCA not relying on slowness, the
same reconstruction technique leads to similar results regarding heading for PCA (Figure 8), even
though it effectively returns noise for NatureCNN representations (Figure 10).

5.2 RL AGENTS

The average episode lengths achieved by trained agents are reported in Table 1, the performance
throughout training is reported in Figure 4 in the Appendix. hSFA agents are more successful than
other agents on the StarMaze environments, but not on WallGap or FourColoredRooms. In the latter
two, no agent performs close to optimal, although the PCA agent outperforms others on WallGap
and the NatureCNN agent has a lead in FourColoredRooms.

In the following, we describe observed behavior for the best out of five agents in each setup. These
observations provide a deeper insight than the values in Table 1. Since CustomCNN is consistently
outperformed by NatureCNN, we only investigate the more successful behavior of NatureCNN. Ad-
ditionally, we analyze the performance of baseline agents as well as agents trained on combinations
of representations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

StarMazeArm The hSFA agent immediately turns in the right direction towards the target and
then walks straight to it, even if the target is not immediately visible. Non-optimal performance
is explained by the agent sometimes getting stuck at a protruding corner, which is something that
regularly happens to all agents across all environments. The PCA agent walks to the target when it
is visible, otherwise it wanders into a random direction until it gets stuck in a wall. The NatureCNN
agent also walks to the target when visible and walks in circles otherwise.

StarMazeRandom The hSFA agent walks in circles around the center room until it sees the target,
then walks straight to it. In contrast to this, the NatureCNN agent only spins around itself until it
sees the target. If it spawned in a location from which it cannot see the target, it spins until the
episode ends. The PCA agent displays the same behavior as in StarMazeArm.

WallGap The hSFA agent sometimes manages to walk directly to the gap connecting both rooms,
but it often seems confused about the correct direction and ends up walking the wrong direction. If
it makes it to the gap, it spins around until it sees the target. If it sees the target it walks towards it.
In most cases, it never reaches this last step. The NatureCNN agent walks around randomly until
it happens to see the target and then walks straight to it. In many cases the episode ends before it
found the target. The PCA agent walks around randomly until it sees the gap. Then it walks straight
to the gap. Then it wanders randomly until it sees the cube and walks straight to the cube.

FourColoredRooms The hSFA agent walks around almost randomly, often making some distance
and covering most of the room it is in. It makes no effort to search for the target in other rooms. If
the target becomes visible, the agent does not react to it. Instead the agent seems to rely on hitting
the target by walking around. The NatureCNN agent also walks around randomly, however it turns
more and covers significantly smaller distances. While it does not actively seem to search for the
target, it does walk straight to the target when it becomes visible. The PCA agent walks around
randomly and covers as much ground as the hSFA agent, albeit in a seemingly more random way.
It does however tend to walk to gaps between rooms or to the target when either becomes visible.
It does so in a less directed and straightforward way than the NatureCNN agent so that the episode
often ends before the target is reached.

Baselines In addition to the primary hSFA, CNN and PCA feature extractors we introduce some
baselines for comparison and report these results in Figure 5 in the Appendix. The ground truth
baseline provides location and heading φ (in the form of cos(φ) and sin(φ)) directly from the envi-
ronment to the agent. The integrated noisy baseline cumulatively adds Gaussian noise to the ground
truth at each step of an episode, simulating related work that integrates changes in location over
time. The noise has a variance of 1/250th of the value range of the respective variables, which is
calibrated to approximately match the deviations in Wang et al. (2017). Because both these baselines
are unable to visually locate the randomly placed goal in the other environments, they can only work
well in StarMazeArm. Here however, both baselines interestingly perform worse than hSFA – likely
because the hSFA representations structure location and heading information in a way that is easier
to process for an agent: They calculate more features, each of which encodes the information at a
different level of coarseness. In comparison to the pure ground truth and also to hSFA, the integrated
noisy representation is less reliable and can vary strongly from run to run. This is indicated by the
shaded areas in Figure 5 that illustrate best and worst agent performance.

Combined representations Finally, Figure 5 in the Appendix also presents agents that are trained
on combinations of visual information as well as location and heading. Visual information is pro-
cessed by the NatureCNN and combined with either the location and heading ground truth or with
the learned hSFA representations. In WallGap and FourColoredRooms, these baselines fail to learn
reliably. In WallGap this is likely because the narrow gap prevents reaching the goal often enough
that the agent does not get sufficient learning feedback. In FourColoredRooms, these agents still lack
the memory required for targeted exploration. Interestingly, the combinations of representations are
not able to outperform hSFA in the StarMaze environments. As with the baselines, this points to a
favorable structure of hSFA representations. In addition, the agents with combined representations
experience a decrease in performance after a certain amount of training on StarMazeRandom, which
happens later for hSFA representations than for ground truth representations. The agents using hSFA
representations also perform better than those with location and heading ground truth.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 DISCUSSION & CONCLUSION

This section discusses how the hSFA representations compare to CNN and PCA representations
and how useful they are for visual navigation. It also states current limitations of using hSFA for
navigation in RL.

Representations Our results show that hSFA is consistently able to extract information about both
location and heading of the agent, unless there are visual symmetries as in WallGap. We stress again
that these symmetries are unlikely outside simple simulated environments. It is important to note
that because the hSFA algorithm directly calculates the solution to a mathematical optimization
problem, it is imperative that its outputs are the slowest signals that can be extracted from the input,
given the function family G that its architecture is restricted to. This stands in contrast to neural
networks, where the quality of representations often depends on random seed and initialization (Lo-
catello et al., 2019). Furthermore, it implies that if hSFA representations do not encode location
and heading, then these are not the slowest signals contained in the visual input stream. Such a
thing can happen for various reasons, for instance due to boundary conditions of an environment
that result in discontinuities in heading or location. We conclude that the slowness principle is a
valid and powerful inductive bias for extracting location and heading in the visual input stream of
an agent. Furthermore, the hSFA algorithm is a suitable architecture to obtain such representations
and thus obtains more interpretable representations than those produced by PCA or a CNN. A com-
parison to passing ground truth location and heading into the agent additionally suggests that hSFA
presents location and heading information in a particularly accessible way, likely because its indi-
vidual decorrelated features contain different granularity levels of location and heading, based on
their respective slowness from the perspective of the moving agent.

Navigation with hSFA The StarMazeArm environment shows that hSFA representations with an
explicit and interpretable encoding of location and heading make visual navigation simpler for an
RL agent. The agent’s movements across all environments except WallGap, in fact, become more
purposeful and confident due to the agent’s increased awareness of its presence in relation to its
surroundings. In addition, the success on StarMazeRandom illustrates that hSFA representations are
able to retain information about the visual scene – in this case whether the target cube is visible –
in addition to location and heading. The fact that the target cube is ignored by the hSFA agent in
FourColoredRooms, on the other hand, suggests that extraction of visual cues with current imple-
mentations of hSFA has its limit. It has however been shown before that positions of slowly moving
objects can be extracted if hSFA is trained on such data (Franzius et al., 2008). The question is how
slow these features are compared to agent location and heading, and thus how many hSFA features
are required to obtain this information. Although this work does not explicitly examine robustness
to environmental perturbations such as lighting changes, we refer the reader to Berkes & Wiskott
(2005), who demonstrate that hSFA’s lower layers learn generally robust, generic visual features
and to Schönfeld & Wiskott (2015), who study the effect of environmental layout changes such as
morphing and scaling on hSFA performance and find it to be relatively robust to such changes, too.

PCA and CNN are both better at extracting visual cues from an image, as proven by the fact that
agents using them walk straight to the target, and sometimes towards gaps, as soon as these become
visible. On the other hand, PCA and CNN representations do not or barely encode location and
heading significantly worse if at all, as indicated by their comparatively bad performance and inef-
ficient behavior in StarMazeArm. This is true even for CustomCNN, which supports our claim that
the slowness bias rather than the particular architecture of an hSFA feature extractor is responsible
for learning location and heading.

In general, the results show that PPO is able to solve simple navigation problems when given suffi-
cient representations. The necessity of such representations is illustrated by the comparatively bad
performance on simple StarMaze environments with PCA representations, which only compress im-
ages into the same dimensionality provided by hSFA. For more complex tasks and environments,
such as FourColoredRooms, navigation with a simple RL agent reaches its limits even with mean-
ingful representations. Here, additional capabilities such as planning or mapping become important.

Limitations The main limitation of hSFA is that it always only considers the current observation
without any context. It shares this limitation with all other approaches we consider in this work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Likewise, PPO only learns a direct policy and has no inherent planning capacity. The combination
of representation learning and planning approaches however has the potential to improve perfor-
mance also on environments with symmetries (such as WallGap) or partial observability (such as
FourColoredRooms).

A disadvantage of hSFA compared to neural networks is its training procedure. Layer-wise training
is slow because it is not as optimized as gradient descent. Additionally, its quadratic expansion slows
hSFA further. Training an RL agent with hSFA feature extractor is about half as fast as training an
agent with prepended CNN feature extractor. A gradient-based SFA version with the potential to
address both issues has been proposed by Schüler et al. (2019).

Finally, the data used to train hSFA has to provide a reasonable coverage of positions and headings
in an environment. While this is usually easy to obtain by moving around in a random manner for
a short while, the algorithm could be improved by introducing the ability of online learning, during
exploration of a new area. This is currently not possible.

REFERENCES

Anonymous. sfa-for-navigation. https://anonymous.4open.science/r/
sfa-for-navigation-6222, 2025a.

Anonymous. Miniworld, fork. https://anonymous.4open.science/r/
Miniworld-9515, 2025b.

Pietro Berkes and Laurenz Wiskott. Slow feature analysis yields a rich repertoire of complex cell
properties. Journal of vision, 5(6):9–9, 2005.

Carlos Campos, Richard Elvira, Juan J Gómez Rodrı́guez, José MM Montiel, and Juan D Tardós.
Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE
transactions on robotics, 37(6):1874–1890, 2021.

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Ruslan Salakhutdi-
nov. Learning to explore using active neural slam. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HklXn1BKDH.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

Samyak Datta, Oleksandr Maksymets, Judy Hoffman, Stefan Lee, Dhruv Batra, and Devi Parikh.
Integrating egocentric localization for more realistic point-goal navigation agents. In Conference
on Robot Learning, pp. 313–328. PMLR, 2021.

Alberto N. Escalante-B. and Laurenz Wiskott. Slow Feature Analysis: perspectives for tech-
nical applications of a versatile learning algorithm. Künstliche Intelligenz [Artificial Intelli-
gence], 26(4):341–348, November 2012. doi: 10.1007/s13218-012-0190-7. URL http:
//www.springerlink.com/content/vk3738325250162k/.

Mathias Franzius, Henning Sprekeler, and Laurenz Wiskott. Slowness and sparseness lead to place,
head-direction, and spatial-view cells. PLoS computational biology, 3(8):e166, 2007.

Mathias Franzius, Niko Wilbert, and Laurenz Wiskott. Invariant object recognition with slow feature
analysis. In International Conference on Artificial Neural Networks, pp. 961–970. Springer, 2008.

Mathias Franzius, Niko Wilbert, and Laurenz Wiskott. Invariant object recognition and pose esti-
mation with slow feature analysis. Neural computation, 23(9):2289–2323, 2011.

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive
mapping and planning for visual navigation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2616–2625, 2017.

10

https://anonymous.4open.science/r/sfa-for-navigation-6222
https://anonymous.4open.science/r/sfa-for-navigation-6222
https://anonymous.4open.science/r/Miniworld-9515
https://anonymous.4open.science/r/Miniworld-9515
https://openreview.net/forum?id=HklXn1BKDH
http://www.springerlink.com/content/vk3738325250162k/
http://www.springerlink.com/content/vk3738325250162k/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Simon Hakenes and Tobias Glasmachers. Boosting reinforcement learning with unsupervised fea-
ture extraction. In Artificial Neural Networks and Machine Learning–ICANN 2019: Theoretical
Neural Computation: 28th International Conference on Artificial Neural Networks, Munich, Ger-
many, September 17–19, 2019, Proceedings, Part I 28, pp. 555–566. Springer, 2019.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJ6yPD5xg.

Moritz Lange, Noah Krystiniak, Raphael C. Engelhardt, Wolfgang Konen, and Laurenz Wiskott.
Improving reinforcement learning efficiency with auxiliary tasks in non-visual environments: A
comparison, 2023.

Robert Legenstein, Niko Wilbert, and Laurenz Wiskott. Reinforcement learning on slow features of
high-dimensional input streams. PLoS computational biology, 6(8):e1000894, 2010.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning
of disentangled representations. In international conference on machine learning, pp. 4114–4124.
PMLR, 2019.

Yunlian Lyu, Yimin Shi, and Xianggang Zhang. Improving target-driven visual navigation with
attention on 3d spatial relationships. Neural Processing Letters, 54(5):3979–3998, 2022.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andy Ballard, Andrea Banino, Misha
Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran, and Raia Had-
sell. Learning to navigate in complex environments. In International Conference on Learning
Representations, 2017. URL https://openreview.net/forum?id=SJMGPrcle.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Arsalan Mousavian, Alexander Toshev, Marek Fišer, Jana Košecká, Ayzaan Wahid, and James
Davidson. Visual representations for semantic target driven navigation. In 2019 International
Conference on Robotics and Automation (ICRA), pp. 8846–8852. IEEE, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Edgar Allen Poe. The masque of the red death. 1842.

George R Price. Extension of covariance selection mathematics. Annals of human genetics, 35(4):
485–490, 1972.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Fabian Schönfeld and Laurenz Wiskott. Ratlab: an easy to use tool for place code simulations.
Frontiers in Computational Neuroscience, 7:104, 2013.

Fabian Schönfeld and Laurenz Wiskott. Modeling place field activity with hierarchical slow feature
analysis. Frontiers in computational neuroscience, 9:51, 2015.

Merlin Schüler, Hlynur Davı́ Hlynsson, and Laurenz Wiskott. Gradient-based training of slow fea-
ture analysis by differentiable approximate whitening. In Asian Conference on Machine Learning,
pp. 316–331. PMLR, 2019.

11

https://openreview.net/forum?id=SJ6yPD5xg
https://openreview.net/forum?id=SJ6yPD5xg
https://openreview.net/forum?id=SJMGPrcle
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Merlin Schüler and Moritz Lange. sklearn-sfa. https://github.com/wiskott-lab/
sklearn-sfa, 2023.

Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni. Deepvo: Towards end-to-end visual
odometry with deep recurrent convolutional neural networks. In 2017 IEEE international confer-
ence on robotics and automation (ICRA), pp. 2043–2050. IEEE, 2017.

Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan-Fang Wang,
William Yang Wang, and Lei Zhang. Vision-language navigation policy learning and adapta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(12):4205–4216, 2021.
doi: 10.1109/TPAMI.2020.2972281.

Laurenz Wiskott. Learning invariance manifolds. In L. Niklasson, M. Bodén, and T. Ziemke (eds.),
Proc. 8th Intl. Conf. on Artificial Neural Networks (ICANN’98), Skövde, Sweden, Perspectives
in Neural Computing, pp. 555–560, London, September 1998. Springer. ISBN 3-540-76263-9.
doi: 10.1007/978-1-4471-1599-1 83. URL https://link.springer.com/chapter/
10.1007/978-1-4471-1599-1_83.

Laurenz Wiskott. Unsupervised learning of invariances in a simple model of the visual system. In
Proc. 9th Annual Computational Neuroscience Meeting (CNS’00), Jul 16–20, Brugge, Belgium,
pp. 157, 2000.

Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised learning of invari-
ances. Neural computation, 14(4):715–770, 2002.

Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans. Auxiliary tasks and exploration enable
objectgoal navigation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 16117–16126, 2021a.

Joel Ye, Dhruv Batra, Erik Wijmans, and Abhishek Das. Auxiliary tasks speed up learning point
goal navigation. In Conference on Robot Learning, pp. 498–516. PMLR, 2021b.

Fengda Zhu, Yi Zhu, Vincent Lee, Xiaodan Liang, and Xiaojun Chang. Deep learning for embodied
vision navigation: A survey. arXiv preprint arXiv:2108.04097, 2021.

A APPENDIX

A.1 AGENT TRAINING

To train our agents, we use the PPO implementation provided by Stable Baselines3 (Raffin et al.,
2021). Parameters which are different from default are reported in Table 2. In addition to the
reported parameters, we use the CnnPolicy for the NatureCNN feature extractor and the MlpPolicy
for the other ones. We train for 1,000,000 steps on the StarMazeArm environment and for 2,000,000
steps on the remaining environments.

The layer specifications of the hSFA, NatureCNN and CustomCNN feature extractors are listed in
Table 3. The number of learnable parameters for hSFA, NatureCNN, CustomCNN and PCA are
listed in Table 4. hSFA and PCA are pre-trained, and when training the PPO agent they are only
used to transform observations into a 32-dimensional feature space. NatureCNN and CustomCNN
are trained end-to-end together with the PPO agent on the RL task. Representations by hSFA, PCA
and CustomCNN are fed through two fully connected layers of a neural network, as is common for
PPO in Stable Baselines3. These layers are identical for all three, trained together with the PPO
agent on the RL task, and are listed in Table 3. NatureCNN, on the other hand, is already an internal
feature extractor of Stable Baselines3 and its representations are directly used for policy learning. In
addition to the results in Table 1 of the main paper, we show the training curves for all agents on all
environments in Figures 4 and 5. The combined representations are obtained as follows: The ground
truth or hSFA representation, respectively, are expanded by a single linear layer to match the output
dimensionality of the NatureCNN output (512). Then both vectors are concatenated and passed into
PPO’s policy network.

12

https://github.com/wiskott-lab/sklearn-sfa
https://github.com/wiskott-lab/sklearn-sfa
https://link.springer.com/chapter/10.1007/978-1-4471-1599-1_83
https://link.springer.com/chapter/10.1007/978-1-4471-1599-1_83

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Parameter Value
n steps 128
learning rate 0.00025
ent coef 0.01
clip range 0.1
batch size 128

Table 2: Parameters used with the PPO model of Stable Baselines3. Only parameters that were not
left at their default setting are listed.

Layer Type Receptive
field Stride Exp.

deg.
Channels

out
hSFA layer 1 Quadratic SFA (10, 10) (5, 5) 2 32
hSFA layer 2 Quadratic SFA (3, 3) (2, 3) 2 32

hSFA layer 3 Quadratic SFA
(fully connected) – – 2 32

hSFA MLP 1 Fully connected – – – 64
hSFA MLP 2 Fully connected – – – 64
PCA MLP 1 Fully connected – – – 64
PCA MLP 2 Fully connected – – – 64
NatureCNN layer 1 Convolution (8, 8) (4, 4) – 32
NatureCNN layer 2 Convolution (4, 4) (2, 2) – 64
NatureCNN layer 3 Convolution (3, 3) (1, 1) – 64
NatureCNN layer 4 Fully connected – – – 512
CustomCNN layer 1 Convolution (10, 10) (5, 5) – 32
CustomCNN layer 2 Convolution (3, 3) (2, 2) – 32
CustomCNN layer 3 Convolution (1, 1) (1, 1) – 32
CustomCNN MLP 1 Fully connected – – – 64
CustomCNN MLP 2 Fully connected – – – 64

Table 3: Parameters used for the hSFA and CNN networks. The MLP layers used with hSFA, PCA
and CustomCNN are those introduced by the MlpPolicy in Stable Baselines3. They are automati-
cally appended to the hSFA and CustomCNN feature extractors. In the sklearn-sfa package (Schüler
& Lange, 2023), the hSFA layer 3 does not have to be specified. Exp. deg. refers to the degree of
expansion, a parameter used in hSFA layers.

Feature Extractor # Parameters
hSFA 101,600
PCA 481,472
NatureCNN 862,880
CustomCNN 26,208

Table 4: Number of learnable parameters of the different feature extractors.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 4: Performance of agents with various feature extractors on the different Miniworld envi-
ronments. Shaded areas indicate the minimum and maximum of five agents trained with different
random seeds. Curves have been smoothed slightly for clearer presentation.

Figure 5: Performance of agents with baseline features (ground truth and integrated noisy, which
is ground truth with noise that accumulates over episodes), as well as combined feature extractors,
on the different Miniworld environments. Shaded areas indicate the minimum and maximum of
three agents trained with different random seeds. Curves have been smoothed slightly for clearer
presentation.

Figure 6: Exemplary observations rendered from the different environments. In this observation of
StarMaze, a red target cube is visible. There is no shade from illumination, so the different wall
texture colors in FourColoredRooms are in fact textures of different colors.

A.2 ICA AND LRA

In addition to the base hSFA algorithm, various extensions have been proposed (Escalante-B. &
Wiskott, 2012). Two of these can be used to affect the kind of representations extracted from the
input. Both have been used to extract location and heading.

The first is a final layer of sparse coding achieved through independent component analysis (ICA),
which is attached to the top of the hSFA model by (Franzius et al., 2007; Schönfeld & Wiskott,
2013). The reason for its use is that only this step of sparse coding transforms location information
into neuro-plausible place fields. Additionally, (Schönfeld & Wiskott, 2013) claim that the use of
ICA was required to disentangle head directions. We find, however, that we can obtain head direction
and location information without ICA in this work.

The second is learning rate adaptation (LRA) (Franzius et al., 2007). By weighing data points,
their influence on the SFA results can be controlled. In practice, this is achieved by including

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

weights for the differentiated time series when calculating the covariance matrix that is used for
singular value decomposition within SFA (Price, 1972). To calculate weights for the differences
between two points, LRA requires an aggregation method. Geometric mean is a good choice, as the
arithmetic mean has a tendency to smooth weights out. LRA should be used if there are sudden, fast
and unnatural changes in a signal. Two prominent examples are a suddenly mirrored or reflected
heading when bouncing into the wall of a simulated environment or an interval of missing data
in a time series. These discontinuities would artificially make signals, such as the heading in this
example, change faster than they actually do. Such large differences then effectively act similar
to how an outlier would in PCA. They strongly affect the whole representation, unless they are
mitigated by a small weight. In some cases, it might be practical to apply LRA to certain movements,
in particular fast rotations, since rotation of an agent typically changes faster than location when they
are normalized by 2π and size of the environment, respectively. This is proven in (Franzius et al.,
2007).

LRA is difficult to use if there are only few discrete actions, as is the case in this work. Larger
weights for rotations and smaller weights for moving ahead average each other out for almost all
differences of data points collected by a random policy as one action is very often followed by a
different one. Additionally, we find that we do not need to use LRA under the conditions examined
in this work to obtain good representations.

A.3 REPRESENTATIONS LEARNED BY PCA AND CNN

Here, we present the representations learned by the PCA feature extractor (Figures 7 for location
and 8 for heading) and the NatureCNN feature extractor (Figures 9 for location and 10 for heading).
As in the Discussion in the main paper, we omit CustomCNN here due to its inferior performance.
Since the dimensionality of the NatureCNN representations is 512, and these have no natural order,
we apply a PCA dimensionality reduction to make information contained in the representations
more concise and also ordered. For StarMaze, WallGap and FourColoredRooms the first six PCA
components capture a cumulative variance ratio of 68%, 89% and 75%, respectively. Since the
NatureCNN representations are trained together with the RL algorithm instead of independently, the
representations in Figure 9 are those obtained by the best performing RL agent on each environment.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) First 6 PCA features for StarMaze

(b) First 6 PCA features for WallGap. Feature 2 is also shown for separate agent headings (green arrow).

(c) First 6 PCA features for FourColoredRooms

Figure 7: Analysis of PCA representations in different environments (top view). Figures 7a, 7b, 7c
show activations of the first 6 PCA feature dimensions for different positions and orientations in the
room. The points are generated by a random agent moving for 80,000 steps without reset. Colors
fade from deep red for large positive values into white for zero into deep blue for large negative
values. Figure 7b additionally shows the 2nd feature of WallGap for separate agent headings.

Figure 8: Reconstruction of heading angles for PCA. The angle is reconstructed from sine and
cosine, which are provided by two linear models trained on all 32 PCA features. In order to see
density, points have a high transparency. The top left and bottom right corners contain points because
of the heading’s circularity.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) First 6 NatureCNN features for StarMaze

(b) First 6 NatureCNN features for WallGap. Feature 4 is also shown for separate agent headings (green arrow).

(c) First 6 NatureCNN features for FourColoredRooms

Figure 9: Analysis of NatureCNN representations in different environments (top view). The raw
unordered 512 NatureCNN features are additionally passed through a PCA dimensionality reduc-
tion to obtain more meaningful and ordered visualizations, so these Figures do not show the raw
representations returned by NatureCNN. Figures 9a, 9b, 9c show activations of the first 6 PCA com-
ponents for different positions and orientations in the room. The points are generated by a random
agent moving for 80,000 steps without reset. Colors fade from deep red for large positive values into
white for zero into deep blue for large negative values. Figure 9b additionally shows the 4th feature
of WallGap for separate agent headings.

Figure 10: Reconstruction of heading angles for NatureCNN. The angle is reconstructed from sine
and cosine, which are provided by two linear models trained on the first 32 dimensions of the output
of a PCA dimensionality reduction of the 512-dimensional NatureCNN representations. In order to
see density, points have a high transparency.

17

	Introduction
	Related work
	Learning Slow Features
	Experiments
	Environments
	RL Agents
	Feature Extractors

	Results
	Representations
	RL Agents

	Discussion & Conclusion
	Appendix
	Agent Training
	ICA and LRA
	Representations Learned by PCA and CNN

