Under review as a conference paper at ICLR 2025

REVISIT SELF-DEBUGGING WITH SELF-GENERATED
TESTS FOR CODE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown significant advancements in code
generation, but still face challenges on tasks beyond their basic capabilities. Re-
cently, the notion of self-debugging has been proposed to boost the performance of
code generation by leveraging execution feedback from tests. Despite its promise,
the availability of high-quality tests in real-world scenarios is limited. In this con-
text, self-debugging with self-generated tests is a promising solution but lacks a
full exploration of its limitations and practical potential. Therefore, we investigate
its efficacy on diverse programming problems. To deepen our understanding, we
propose two distinct paradigms for the process: post-execution and in-execution
self-debugging. Within the scope of self-contained Python programming tasks,
we find that post-execution self-debugging struggles on basic problems but shows
potential for improvement on competitive ones, due to the bias introduced by eval-
uation on self-generated tests. On the other hand, in-execution self-debugging en-
ables LLMs to mitigate the bias by solely leveraging intermediate states during
execution, thereby enhancing code generation.

1 INTRODUCTION

Large language models (LLMs) have demonstrated considerable progress in code generation, but
still face challenges to perform complex programming tasks beyond their basic capabilities. The
tasks require LL.Ms to understand the given natural language specifications and generate programs
capable of passing all the private tests. Recently, self-debugging has emerged as a promising ap-
proach to boost the performance of LLMs in code generation (Chen et al.| 2023} |Jiang et al., [2023}
Zhong et al.l|2024). This approach enables models to debug and repair their own output through an
iteration of generation and execution for the programs utilizing pre-existing oracle tests. However,
in real-world scenarios of software development, oracle tests are not available for each code snippet.

To address this challenge, recent studies have introduced self-generated tests into self-debugging
process (Shinn et al., |2024; Huang et al., 2023 |Ridnik et al.| [2024)). As illustrated in Figure E], in
this framework, the model first writes an initial program and a suite of tests based on the natural
language specifications of the problem. The program is then executed on the self-generated tests
with an executor (e.g. code interpreter). If it raises any error, the signal or message will be col-
lected as execution feedback, which the model uses to generate a revised version of the program. It
helps reduce the reliance on external feedback from humans or stronger models and thus holds the
potential to be generally applied in various code generation tasks.

Nonetheless, the efficacy of self-debugging with self-generated tests remains underexplored. Reflex-
ion (Shinn et al., [2024)) debugs the code with self-generated tests but evaluates it with oracle hidden
tests. AlphaCodium (Ridnik et al.| 2024]) first iterates on public tests and then on Al-generated tests
with a technique of test anchors. The improvements observed using oracle tests do not accurately
demonstrate the true self-debugging capabilities of LLMs. This highlights the need for more trans-
parent evaluation to better understand the inherent debugging potential with self-generated tests. To
study this, we first clarify the concept of self-debugging in practice, a scenario wherein the model
attempts to debug and repair its own programs without reliance on human supervision or guidance
from stronger models. Beyond leveraging the model’s intrinsic capabilities, execution feedback from
self-generated tests also serves as additional signals to help LLMs identify bugs in its programs ac-
cording to specifications. Depending on the execution stage, there are different kinds of information

Under review as a conference paper at ICLR 2025

1
! I
! I
i | > o=] i
! i Test Input Test Output !
! i) Tests (2) Q]-)Match?:
1
: i & (Eerwron ov] |
' == (D) (2) » :
Ve messy (1) = (2) o | . o
! g o —— fee)) s B -@@--,
Q) = sk U :
1
| [|
E Problem Pr*ig:am Executor E E Test output Correct? E
| | w o
! (3) L : : E‘ Runtime d 5 :
: B 1

Execution Feedback

Figure 1: Overview of self-debugging with execution feedback from self-generated tests. (1) The
model generates an initial program along with a suite of tests, based on the specifications of the
problem. (2) The program is executed by an executor on the self-generated tests. (3) The feedback
from execution is then utilized by the model to produce a revised version of the program.

that we can utilize. We propose two paradigms for doing this: post-execution and in-execution
self-debugging, as shown in Figure [I] Post-execution self-debugging directly validates correct-
ness by checking whether the output after execution matches the test output or not. In-execution
self-debugging allows LLMs to analyze the intermediate runtime states during program execution
without knowing the results from post-execution.

Contributions: In this paper, we investigate the efficacy of self-debugging with self-generated tests
applied to four advanced LLMs: GPT-40 (2024-05-1 3 Claude-S.S-Sonne Llama-3-70B-
Intruct (Dubey et al.| [2024) and Qwen2.5-Coder-7B-Instruct (Hui et al., |2024)) for self-contained
python programming problems taken from HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021)) and LiveCodeBench (Jain et al.,[2024)). Specifically, we evaluate the models’ ability to reflect
upon and debug code using information obtained from post-execution and in-execution respectively.
We summarize our observations as follows:

* In the context of self-contained Python programming tasks, post-execution self-debugging strug-
gles with relatively basic problems, such as those in HumanEval and MBPP. However, it shows
potential for improvement on more challenging programming problems in LiveCodeBench.

* This discrepancy is attributed to the bias introduced by self-generated tests, which refers to the
misalignment between self-evaluation labels and true labels for the programs. In addition to the
impact of the bias, the efficacy of post-execution self-debugging relies not only on the model’s
ability to reflect upon feedback but also on the ability to recognize faulty feedback.

* Instead of using unreliable post-execution results, in-execution self-debugging minimizes the bias
by solely focusing on the intermediate states during the program execution. The experimental
results demonstrate promising improvements for both basic and competitive tasks.

Through our study, we aim to shed light on the practicality of self-debugging with self-generated
tests, contributing valuable insights into the future development of LLMs in code generation tasks.

2 RELATED WORK

Code Generation. Code generation is the automatic production of source code based on natural
language descriptions. Large pre-trained language models like the GPT-4 series have shown impres-
sive capabilities in code generation. Researchers have proposed various approaches to enhance the
quality of code generated by these models. Some works, like LLaMA series (Touvron et al.,[2023azbj
Dubey et al., [2024), focus on optimizing model training, while others aim to improve code quality
through post-processing techniques. For example, CodeT (Chen et al.,|2022) generates a large num-
ber of code and test cases, using validation to filter the most promising code candidates. Other

"https://openai.com/index/hello-gpt-4o/
Zhttps://www.anthropic.com/news/claude-3-5-sonnet

Under review as a conference paper at ICLR 2025

methods, such as coder-reviewer (Zhang et al., 2023b) and code-ranker (Inala et al., 2022)), apply
ranking metrics to select optimal code from multiple candidates. Among these post-processing tech-
niques, methods that involve self-debugging have gained considerable attention. Through feedback
from execution results, self-debugging allows models to autonomously debug and refine previously
generated code, enhancing the final output. Self-debugging does not require increasing the sample
budget, making it a cost-effective solution for improving inference efficiency (Zhang et al., 2023aj).
As a result, self-debugging has been integrated into various LLM-based code generation methods
(Yang et al., 2024; Zhang et al., |2024; [Dong et al., 2023} [Huang et al., 2023). In this work, we
revisit these techniques and assess the effectiveness of self-debugging with self-generated tests on
both basic and competitive programming benchmarks.

Self-Debug with LLMs. As large language models (LLMs) have evolved, the idea of using mod-
els to refine their own output has become more popular. In code generation, several techniques have
explored how LLMs can refine the code they generate. Most of these methods rely on prompting
LLMs with execution results to improve the code. These methods often rely on pre-existing or
generated test cases to execute the code, capturing execution information that is then used to re-
fine the output code (Olausson et al.| (2023)); Wang et al.| (2024); [Dong et al.| (2023); Madaan et al.
(2023)); |[Zhang et al.|(2023a))). Self-Debugging (Chen et al., [2023)) introduces a framework in which
LLMs iteratively debug their own generated code by utilizing execution results and self-generated
explanations. Self-Edit (Chen et al.| 2023) builds on the example test cases provided in program-
ming problems for execution to help the model correct its own output. LDB (Zhong et al., [2024)
uses runtime execution information to help debug generated programs. Jiang et al.| (2024)) enhance
LLM self-debugging by training on an automatically collected dataset for code refinement and ex-
planation. Madaan et al.| (2023)) conducts a broad evaluation of self-debugging in code models,
highlighting that performance can be improved with higher-quality feedback or human intervention.
In this work, we aim to explore the potential as well as limits of execution-based self-debugging
methods. We provide a detailed analysis of these methods and propose a unified framework in the
following Section [3]

3 SELF-DEBUGGING WITH SELF-GENERATED TESTS

We focus on evaluating the self-debugging capabilities of large language models (LLMs) through
execution on self-generated tests. Figure [1| provides a comprehensive overview of this process.
Given a problem with a natural language specification, the LLM (denoted as M) first generates an
initial program C along with a suite of test cases, denoted as {(X;,Y;)}¥ ,, where X; represents
the input and Y; represents the expected output for the ¢-th test. To enhance the model’s debug-
ging performance beyond its intrinsic reasoning capabilities, we utilize execution feedback as an
additional signal to help the model identify bugs in its generated program according to the problem
specification. Specifically, we employ an executor (denoted as E) to run the generated program on
the suite of tests and collect execution traces and outcomes as feedback.

There are various implementations for utilizing execution feedback, which we categorize into two
distinct paradigms: Post-Execution and In-Execution self-debugging. These paradigms reflect
the type of information employed in the self-debugging process. Post-execution information refers
to content obtained after the program’s execution, such as execution outputs or error messages. In
contrast, in-execution information refers to intermediate states observed during execution, providing
finer-grained insights into the program’s behavior. We now formally define these paradigms.

Post-Execution Self-Debugging. The paradigm leverages information obtained after the actual
execution of the program. A widely adopted implementation involves comparing the actual execu-
tion output with the expected output (Olausson et al., 2023; [Wang et al., 2024; |Dong et al., 2023;
Madaan et al., 2023} [Zhang et al.,|2023a; |Chen et al.l 2023} Jiang et al., 2024]), as shown in Figure
Consider an initial program C' and a generated test set {(X;, Y;)}* ;. An executor, denoted as
E, processes each input X, yielding the corresponding execution output Y; = E(C, X;),i € [1, N].
The executor then assesses whether the execution output Y; aligns with the expected output Y; to
determine if the test is passed. If a discrepancy occurs, the test is marked as failed. The system then
utilizes the failed test case (X, Y;), the actual output Y;, and any related error messages to refine the

Under review as a conference paper at ICLR 2025

program. This process encourages the model to generate a revised version of the program, denoted
as C = M(Cv Xi7)/’iv }/1)

In-Execution Self-Debugging. Post-execution self-debugging typically overlooks the intermedi-
ate states of the program, which can provide valuable insights for program refinement. To address
this limitation, in-execution self-debugging leverages feedback from the intermediate states during
program execution (Zhong et al.,[2024; N1 et al., 2024} |[Bouzenia et al.,|2023). Formally, a program
C can be divided into multiple basic blocks, denoted as C' = [BY, B2, ..., BX], where B* represents
the k-th basic block and K is the total number of blocks in the execution trace. Each basic block is
defined as a linear sequence of program statements with a single entry and a single exit point.

Given a test input X;, ¢ € [1, N], the executor E initializes the input as the initial variable set
V! and executes it through the first block B!. The execution updates the variable set to V> =
E(B', V;!), where V2 denotes the set of variables after executing block B'. This process is repeated
iteratively, with the executor processing V;*™! = E(B*, V}¥) for each subsequent block B* until the
program execution is complete. The sequence of intermediate states represented as the execution
trace T = [B1, Vil, ..., BE, ViK], provides a detailed view of how the program behaves over time.
By analyzing this trace, the LLM M identifies potential issues within specific blocks and refines the
program accordingly, resulting in the updated version C = M(C, X;, T).

4 EXPERIMENTS

In this section, we evaluate self-debugging capabilities of advanced LLMs using self-generated tests
on self-contained python programming tasks. We carry out experiments to answer the following
research questions: (1) When self-debugging with post-execution information from self-generated
tests, what would the performance be like on basic programming problems? (2) Is the performance
of post-execution self-debugging consistent across different programming tasks? If not, what is the
reason behind it? (3) How does in-execution self-debugging perform when considering the settings
above? What is the difference between post-execution and in-execution self-debugging?

4.1 EXPERIMENTAL SETUP

Benchmarks. We select three popular code generation benchmarks covering basic and competi-
tiveE] programming problems to comprehensively evaluate the efficacy of self-debugging, including:

* HumanEval and MBPP HumanEval (Chen et al.,|2021) consists of 164 programming problems
written by humans. Each problem provides a Python function signature and a docstring as its spec-
ification. MBPP (Austin et al.,2021) includes 974 programming problems written by contributors
through crowdsourcing. Each of these problems features a problem statement, a function signa-
ture, and three example tests. To enhance the reliability and accuracy of evaluations, EvalPlus
(Liu et al.} 2024) extends HumanEval into a more comprehensive version known as HumanEval+
with 80 times more tests than the original HumanEval. Similarly, MBPP+ is an augmentation of
the original MBPP, offering 35 times more tests. In our experiments, we use the latest version of
MBPP for both base and plus set, which consists of 378 programming problems.

¢ LiveCodeBench LiveCodeBench (Jain et al.|[2024) is a contamination-free benchmark that con-
tinuously collects new problems from prominent competitive programming platforms. As of now,
LiveCodeBench features a collection of over 600 high-quality programming problems. These
problems encompass a wide range of difficulty levels and topics, providing a comprehensive eval-
uation for the coding capabilities of LLMs. In our experiments, we select 450 problems that were
published between September 2023 and September 2024.

Test Models and Setup. Generating high-quality tests poses significant challenges as it necessi-
tates a comprehensive understanding of natural language specifications as well as the capabilities of
code reasoning (Chen et al., [2024). Therefore, we investigate the research questions with four ad-
vanced chat models: LLaMA-3-70B-Instruct (Dubey et al., [2024)) and Qwen2.5-Coder-7B-Instruct

3In this work, we regard problems in HumanEval, MBPP as basic programming problems, and those in
LiveCodeBench as competitive ones according to overall complexity and difficulty.

Under review as a conference paper at ICLR 2025

Table 1: Post-execution self-debugging with oracle tests on HumanEval and MBPP.

Model Method #lteration HumanEval MBPP
Base Plus Base Plus
One-pass 0 92.1 87.8 91.5 76.5
1 93.3 89.0 92.6 80.2
GPT-40-2024-05-13 Self-debug w/ label 2 945121 902721 934719 g7
. 1 93.9 90.2 92971 81.5
Self-debug w/ detail 2 95.1+50 92,1413 926 83.1700
One-pass 0 94.5 89.0 92.6 77.0
1 95.1 92.1 93.7°1 825
Claude-3.5-Sonnet Self-debug w/ label 2 063115 927457 934 8330
. 1 97.0 92.1 91.8°%% 82.0
Self-debug w/ detail 2 076151 94555 042116 860 00
One-pass 0 79.9 73.8 84.4 71.2
. 1 81.7 77.4 85.7 74.9
LLaMA-3-70B-Instruct ~ Self-debug w/ label 2 86.0°01 81179 868721 75917
. . 1 84.1 80.5 85.4 76.5
Self-debug w/detail gy g1 7070 g0 0 7867
One-pass 0 86.0 81.7 84.7 70.6
1 86.0700 829 86.8 73.8
Qwen?2.5-Coder-7B-Instruct ~ Self-debug w/ label 2 86.0700 82.9 86.8 73.8
. 1 86.6 83.5 85.4 73.8
Self-debug w/ detail 2 872412 8A1°21 860715 74357

(Hui et al.;|2024) with publicly accessible weights, API-served GPT-40-2024-05-13 and Claude-3.5-
Sonnet. We employ a greedy decoding strategy (a temperature of zero) across all generation phases
of self-debugging. We design prompts for the initial program generation to ensure that no additional
information is introduced by subsequent prompts for program repair. This premise is crucial for
us to concentrate on investigating the true self-debugging ability. To generate a test suite for each
problem, we prompt the model to write ten diverse and extensive tests with its corresponding natural
language specification in a zero-shot manner. For a detailed overview of the prompts used, please
refer to the Appendix [A]

4.2 RQ1: POST-EXECUTION SELF-DEBUGGING STRUGGLES ON BASIC PROBLEMS

In this subsection, we examine the performance of self-debugging techniques using self-generated
tests on basic programming problems and evaluate how it compares to self-debugging with oracle
tests. Consistent with implementations in most existing literature, we perform self-debugging by uti-
lizing post-execution information. In this process, program correctness is determined by comparing
the actual output with the expected output for a given test case. If the generated program successfully
passes all tests, the iterative process terminates, and no further self-debugging is conducted.

Feedback. To provide a comprehensive assessment, we consider two different types of feedback
that can be utilized from post-execution results. The first type is the correct label, which indicates
whether the model’s previous program was correct or not. If the program is incorrect, an instruction
for repair will be provided to the model. The second type is the detail of the failure, including the
test input, expected output, and execution output. In cases where the program raises an exception
during execution, the error message is incorporated into the detail in place of the execution output.

Results. We conduct experiments on problems from HumanEval and MBPP using self-generated
tests and compare the results to those obtained with oracle tests. Table [T|summarizes the accuracies
achieved through self-debugging with oracle tests, showcasing significant improvements as itera-
tions progress. On the other hand, Table [2] presents the results when using self-generated tests. We
noted a decline across all benchmarks for Llama-3-70b-instruct. For other models, it shows a con-
sistent decrease on HumanEval. The performance may improve on MBPP initially, but with more
detailed feedback and iterations, it will eventually become worse than the baseline.

Analysis on generated tests. To better understand the reliability of tests generated by the model
itself, we employ program contracts and canonical solutions provided by the benchmarks to evaluate

Under review as a conference paper at ICLR 2025

Table 2: Post-execution self-debugging with self-generated tests on HumanEval and MBPP.

Model Method #lteration HumanEval MBPP
Base Plus Base Plus
One-pass 0 92.1 87.8 91.5 76.5
1 91.5°%6 8727096 921 76.7

GPT-40-2024-05-13 Self-debug w/ label 5 01506 86612 929714 775010
. 1 89.07%1 84.1°37 92971t 775710
Self-debug w/ detail 2 91,506 854724 913702 762709

One-pass 0 94.5 89.0 92.6 77.0

. 1 93.9700 884796 929 77.8

Claude-3.5-Sonnet Self-debug w/ label > 03312 86624 91511 76208
. . 1 872773 81.177 905721 72.87%2
Self-debug w/detail 5 g7575 99397 905 75410

One-pass 0 79.9 73.8 84.4 71.2
1 744757 652756 825719 683720
LLaMA-3-70B-Instruct Self-debug w/ label 2 75617 69513 83608 683 29
. 1 744755 665773 82372 648 04
Self-debug w/ detail 2 738761 67.1°67 802712 3.8

One-pass 0 86.0 81.7 84.7 70.6
. 1 829731 78.07%7 849 69.870¢
Qwen2.5-Coder-7B-Instruct ~ Self-debug w/ label 2 84119 79324 83908 ggg08
. . 1 84.1719 762757 847700 68,0726
Seli-debug w/detail 5 g3505 95661 g54:07 69,016

Table 3: Accuracy of self-generated tests on HumanEval and MBPP. Test Input & Output are
evaluated case-by-case; A test Suite is deemed valid if all outputs within the suite are correct.

HumanEval MBPP
Input Output Suite Input Output Suite
GPT-40-2024-05-13 97.63% 89.77% 59.15% 94.81% 85.60% 58.73%
Claude-3.5-Sonnet 97.68% 89.14% 56.71% 95.75% 871.37% 58.47%

LLaMA-3-70B-Instruct 94.53% 84.69% 49.39% 90.81% 82.08% 51.85%
Qwen2.5-Coder-7B-Instruct 97.19% 84.85% 44.50% 94.35% 77.33% 44.44%

Model

the validity of test inputs and outputs respectively. Program contracts consist of assertions that spec-
ify conditions necessary for a valid input. We place these contracts at the beginning of the function
and pass the generated test input to it. If there is no assertion error, the test input is considered valid.
For test output validation, we collect the actual execution output using canonical solutions, given a
valid input, to confirm if the output aligns with the expected output. Furthermore, we calculate the
overall accuracy for the entire test suite. A test suite is deemed valid if all generated test outputs are
correct for a given problem.

Table 3] summarizes the results. GPT-40 and Claude-3.5-Sonnet demonstrates superior capability in
producing high-quality tests compared to others, yet it remains prone to generating unreliable tests
when relying solely on natural language specifications. For all the models, predicting test outputs
proves to be a more challenging task than generating test inputs. In post-execution settings, incorrect
test outputs introduce ambiguity into the self-debugging process. Specifically, when a test fails, the
model is expected to determine whether the failure is due to bugs in the program or errors in the test.

Figure2]illustrates an example of when GPT-40 performs post-execution self-debugging by utilizing
detailed feedback. The completion for the has_close_elements function is initially correct;
however, it is assessed using an incorrect test that should return False instead of True according
to the specification. This makes the model alter the originally correct interpretation of the condition
in the problem, thereby leading to a wrongly revised program. This uncertainty complicates the
debugging process and necessitates further investigation into the impact of testing on self-generated
tests in the following Section &3]

Our experiments reveal that post-execution self-debugging struggles with basic programming tasks
like HumanEval and MBPP. While post-execution information with self-generated tests is leveraged,
self-debugging remains a bottleneck, limiting improvements beyond initial generation.

Under review as a conference paper at ICLR 2025

def has_close_elements(numbers: List[float], threshold: float) But it failed in the following test case: 6-0. q-o)
-> bool: # Real Execution Output: Fal =
" Check if in given list of numbers, are any two numbers —> ea xecurion Hutput: Fa.se

Please fix the bug in the “has_close_elements™ function and
make sure that the fixed code matches the specification and
passes all tests. ..

closer to each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True l
Please complete the "has_close_elements® function and make The issue arises from the interpretation of the threshold
sure that it matches the specification and passes all tests. .. condition. The test case expects that if two elements are
exactly at the threshold, the function should return ~True™.
However, the current implementation checks if the difference
is strictly less than the threshold.

def has_close_elements(numbers: List[float], threshold: float)

-> bool: def has_close_elements(numbers: List[float], threshold: float)
Sort the list to make the comparison easier -> bool:
numbers.sort() # Sort the list to make the comparison easier

numbers.sort()

Iterate through the sorted list and check the difference
between consecutive elements — # Iterate through the sorted list and check the difference
for iin range(len(numbers) -_1): between consecutive elements

return True
If no such pair is found, return False
return False # If no such pair is found, return False

return False

Figure 2: An example case when GPT-40 performing post-execution self-debug with detail on Hu-
manEval. The feedback containing an incorrect test output biases the model away from the specifi-
cation of the problem.

Table 4: Post-execution self-debugging with self-generated tests on LiveCodeBench

Model Method #lteration Easy Medium Hard Overall
One-pass 0 89.3 33.1 6.0 46.0
1 89.9°00 411150 60100 493+
GPT-40-2024-05-13 Self-debug w/ label 5 80.9°06 400100 69109 4915
. 1 85.57%% 360777 8.6 464"
Self-debug w/ detail 2 87419 383152 8620 480120
One-pass 0 93.1 48.0 16.4 55.8
1 89.9732 49.1° 17.270% 553705
Claude-3.5-Sonnet Self-debug w/ label 2 912719 497717 164400 55800
. 1 89.9732 49.1""1 13.87%0 544712
Self-debug w/ detail 2 85.5-76 43347 8675 49305
One-pass 0 72.3 10.3 2.6 30.2
1 66.0°%% 91712 3408 2782
LLaMA-3-70B-Instruct Self-debug w/ label 5 64875 109700 2.6H00 27824
. 1 56.6°17 109700 43717 253749
Self-debug w/ detail 5 63555 120117 26100 782
One-pass 0 74.8 234 8.6 35.8
1 69.8770 240100 86100 342716
Qwen2.5-Coder-7B-Instruct ~ Self-debug w/ label 2 T17-31 23.4%00 g EH00 34711
N . 1 69.2—“\.6 20'0—3.4 8.6+0‘0 32.4—3.1
Self-debug w/ detail 5 66751 21123 86100 32038

4.3 RQ2: BIAS FROM SELF-TESTING LEADS TO INCONSISTENCY ACROSS TASKS

To comprehensively evaluate the performance of self-debugging on diverse programming tasks, we
conducted post-execution self-debugging experiments using problems from LiveCodeBench. The
problems in LiveCodeBench are classified into three distinct difficulty levels: easy, medium, and
hard. We report the accuracy achieved at each level of difficulty, as well as the overall performance.

Results. Table] summarizes the results of self-debugging with self-generated tests on Live-
CodeBench. We observed that for GPT-4o, self-debugging using label feedback leads to improve-
ments across problems of all difficulty levels. This is notably in contrast to the performance on
HumanEval and MBPP. When detailed feedback is provided, there is a decline in performance on
easier problems, although there is an overall improvement across all difficulties. However, other

Under review as a conference paper at ICLR 2025

GPT-40-2024-05-13 s Claude-3.5-Sonnet S LLaMA-3-70B-Instruct ~ HEEE Qwen2.5-Coder-7B-Instruct
70

60 532

43.4
36.0
283
222235 249243,

20 15.315.1
10 7474 ¢ 56
0 |

Percentage (%)
Percentage(%)

TP TN FP FN TP TN FP FN
HumanEval MBPP
20 68.4 .
& 60 518
o
sn 50
s 43.3 02
3 40 324 302
5 30 24.4
~
20 | 154!56
10 58 5.6
0 . 220015 1
TP TN FP FN
LiveCodeBench

Figure 3: The label changes when evaluating the programs with self-generated tests on HumanEval,
MBPP and LiveCodeBench. True Positive (TP): correct programs pass tests; True Negative (TN):
incorrect programs fail tests; False Positive (FP): incorrect programs pass tests; False Negative (FN):
correct programs fail tests.

models including Claude-3.5-Sonnet show an overall performance decrease due to significant de-
clines on easy problems. Moreover, despite incorporating more post-execution information, the
performance with detailed feedback remains inferior to that achieved with label feedback.

Analysis. To investigate the reasons behind the inconsistent results on basic and competitive pro-
gramming problems, we delve into the impact on testing programs with self-generated tests. We
acknowledge that the models even advanced LLMs are likely to generate inaccurate tests. There-
fore, a program that is actually correct might fail some of the generated tests, resulting in a false
negative (FN) label. On the other hand, a flawed program might pass all the test cases, leading to
a false positive (FP) label. This could prevent necessary updates and prematurely present a buggy
program. The misalignment between self-testing labels and true labels highlights the bias introduced
by self-generated tests for program evaluation.

We present an analysis of label changes with generated tests after the first iteration of self-debugging,
as illustrated in Figure[3] Given the implementation of self-debugging, only programs identified with
negative labels during the iteration would perform further repair. Therefore, our focus is primarily
on the distribution of different negative labels. We observed that testing on self-generated tests is
more likely to result in false negative labels than true negative ones on both HumanEval and MBPP.
However, a different pattern emerges on LiveCodeBench, where false negatives account for 60.1%
and true negatives for 28.4% on average. This discrepancy is primarily due to lower performance
on more challenging programming tasks, where false labels generated during self-testing are more
likely to align with the actual labels of the generated programs. Relying solely on labels during self-
debugging inadvertently reduces the bias introduced by the self-generated tests, thereby increasing
the prevalence of true negative labels. However, when incorrect details are included in feedback, the
performance declines compared to using only the label for self-debugging.

Generating high-quality tests from natural language specifications continues to present a substantial
challenge in the field. When self-testing results in a false negative due to invalid tests, it is crucial
for the model to accurately identify the errors within the feedback and keep the original programs
intact. The efficacy of post-execution self-debugging, depends not only on the model’s ability to
identify the defects in its own programs when presented with true negative labels but also on its
ability to recognize the faulty execution feedback given false negatives.

4.4 RQ3: IN-EXECUTION REASONING HELPS SELF-DEBUGGING

In this subsection, we examine the efficacy of in-execution self-debugging across programming
benchmarks. Drawing inspiration from the implementation presented in LDB (Zhong et al.| 2024),

Under review as a conference paper at ICLR 2025

Table 5: In-execution self-debugging on self-generated tests on HumanEval and MBPP.

Model Method #lteration HumanEval MBPP
Base Plus Base Plus
One-pass 92.1 87.8 91.5 76.5
GPT-40-2024-05-13 1.2
93.3 89.0 92.1 77.8
Self-debug w/ trace 03,3 884 929 79.1+2:6
One-pass 93.1 48.0 16.4 55.8

Claude-3.5-Sonnet 9500 4917 172 571713

0
1
2
0
Self-debug w/ tr !
cli-debug witrace 2 93.7 48.6 17.2 56.4
0
1
2
0
1
2

79.9 73.8 84.4 71.2

81.1 70.1737 847 69.6°16
83.57%0 744 84.4700 69,616

86.0 81.7 84.7 70.6

86.6 82.3 84.9 71.4
86.6 823 85.270% 72,071

One-pass

LLaMA-3-70B-Instruct
Self-debug w/ trace

One-pass

Qwen2.5-Coder-7B-Instruct
Self-debug w/ trace

Table 6: In-execution self-debugging on self-generated tests on LiveCodeBench.

Model Method #Iteration Easy = Medium Hard Overall
One-pass 0 89.3 33.1 6.0 46.0
GPT-40-2024-05-13 Self-debug w trace 1 91.2 » 34.9 6.0700 473
2 91.87%% 349 6.0700 476710
One-pass 0 93.1 48.0 16.4 55.8
N T
One-pass 0 72.3 10.3 2.6 30.2
LLaMA-3-70B-Instruct Self-debug w/ trace ; ;?? B iég‘ ; gi g[l); 0.9
One-pass 0 74.8 234 8.6 35.8
Qwen2.5-Coder-7B-Instruct Self-debug w trace 1 75.5 24.0 86100 362
2 76.171% 24,0 8.6700 364700

we divide a program into basic blocks based on nodes in its control flow graph (CFG). Then we
collect the intermediate runtime states before and after these basic blocks during program execution
to facilitate in-execution self-debugging. However, the labels (whether the program is correct or
not) and details of the execution results, which we regard as post-execution information illustrated
in Section are not accessible for the models. Therefore, the models must determine program
correctness based solely on the test input and corresponding intermediate states, analyzing each
block individually.

Results. The results of in-execution self-debugging on HumanEval and MBPP are detailed in Table
[l We observe that self-debugging gains notable improvement for GPT-40 and Qwen2.5-coder-7b-
instruct when utilizing in-execution information. Specifically, GPT-40’s accuracy increases continu-
ously from 76.5% to 79.1% after two iterations of self-debugging on MBPP. For Claude-3.5-Sonnet,
the performance improves initially but drops in the second iteration due to ambiguities in the speci-
fications. For Llama-3-70b-instruct, the accuracy declines on HumanEval-Plus in the first iteration.
However, performance surpasses the baseline in the second iteration; on MBPP-Plus, there is a
slight degradation in performance in both iterations compared to the baseline. Furthermore, Ta-
ble[6] summarizes the results on LiveCodeBench, which shows the effectiveness of the in-execution
self-debugging for both models on competitive problems.

Analysis. Experimental results indicate that in-execution self-debug is a potentially effective way by
leveraging runtime execution information on both basic and competitive programming problems. It
segments a program into basic blocks and allows LLMs to delve into the precise intermediate states
during the execution process. The intermediate states serve as additional cues for program repair and
enhancement, significantly mitigating the bias introduced by self-generated tests. Nonetheless, self-
debugging with in-execution information depends heavily on the LLMs’ code reasoning capabilities
and lacks formal guarantees of success, as the accuracy drops for Llama-3-70b-instruct on MBPP.
We expect that improvements in LLM capabilities will enhance the efficacy of this paradigm.

Under review as a conference paper at ICLR 2025

To conclude, post-execution self-debugging utilizes final execution results to reflect upon and debug
programs. However, the unreliability of the self-generated tests could bias the model away from the
correct answer. Although this can provide some relief on challenging tasks, it is not a long-term so-
lution, especially when those competitive programming problems can also be solved well over time.
On the contrary, in-execution self-debugging allows the models to perform fine-grained feedback
solely on the intermediate states during the execution process, without knowing the information
from biased self-testing. It shows the potential to better align the programs with the requirements in
real-world scenarios.

5 DISCUSSION

Directions for future work. Effective self-debugging with self-generated tests hinges on several
core capabilities of LLMs. On the training side, it requires enhanced code and test generation abil-
ities to mitigate generation bias. In terms of refinement, the model must be capable of accurately
recognizing and localizing faults within the program. Additionally, more advanced reasoning ca-
pabilities are needed to analyze execution feedback thoroughly. The model should comprehend the
relationship between the code logic and the feedback, thereby deducing the runtime structure of
program statements and variables.

On the inference side, leveraging enriched runtime information during self-debugging is a promis-
ing avenue for improvement. In particular, In-Execution self-debugging has shown superior perfor-
mance compared to Post-Execution in certain tasks, suggesting that more nuanced feedback leads
to better outcomes. This observation aligns with findings from the ol modeﬂ where the costs asso-
ciated with critique and inference scale proportionally with performance improvements. Although
increased computation incurs additional cost, designing more sophisticated feedback mechanisms is
a promising direction for further enhancing self-debugging capabilities.

Applications. Self-debugging opens up possibilities for developing more advanced LLMs without
reliance on human supervision or guidance from stronger models (Burns et al., [2023)). Traditionally,
human-generated test cases serve as a strong supervisory signal for aligning code generation, but
the collection of such tests is labor-intensive, leading to a sparsity of labeled data for effective
code refinement. Self-generated tests, by contrast, offer a viable path for self-improvement (Tao
et al.| [2024). They alleviate the burden of manual test generation and pave the way toward truly
autonomous self-correcting code generation systems (Chen et al., 2023).

6 CONCLUSION

This paper investigates the concept of self-debugging in large language models (LLMs) for code
generation tasks, with a focus on leveraging self-generated tests. We establish a structured frame-
work for self-debugging which is essential for real-world applications where high-quality annota-
tions and human supervision are often limited or unavailable. We introduce and formalize two dis-
tinct paradigms within the execution-then-feedback process: post-execution and in-execution self-
debugging. Through comprehensive experiments on both levels of basic and competitive code gen-
eration tasks, our findings highlight the unique strengths and weaknesses. Specifically, we observe
that: 1) post-execution self-debugging encounters difficulties in basic tasks; 2) biases from self-
generated tests can lead to inconsistency across different levels of problems; and 3) in-execution
self-debugging, which leverages intermediate runtime information, consistently outperforms post-
execution approaches on both basic and competitive tasks, indicating significant potential for future
development. Overall, our work provides valuable insights into the mechanics of self-debugging us-
ing self-generated tests, paving the way toward more autonomous and self-evolving code generation
systems.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language

*https://openai.com/o1/

10

Under review as a conference paper at ICLR 2025

models. arXiv preprint arXiv:2108.07732, 2021.

Islem Bouzenia, Yangruibo Ding, Kexin Pei, Baishakhi Ray, and Michael Pradel. Tracefixer: Exe-
cution trace-driven program repair. arXiv preprint arXiv:2304.12743, 2023.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbren-
ner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong general-
ization: Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390,
2023.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. In The Eleventh International Conference on
Learning Representations, 2022.

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, and Xin Xia. Evaluating large language
models with runtime behavior of program execution. arXiv preprint arXiv:2403.16437,2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2023.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt. CoRR,
abs/2304.07590, 2023. doi: 10.48550/ARXIV.2304.07590. URL https://doi.org/10.
48550/arXiv.2304.07590!

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. Agentcoder: Multi-agent-
based code generation with iterative testing and optimisation. arXiv preprint arXiv:2312.13010,
2023.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen?2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Jeevana Priya Inala, Chenglong Wang, Mei Yang, Andrés Codas, Mark Encarnacién, Shuvendu K.
Lahiri, Madanlal Musuvathi, and Jianfeng Gao. Fault-aware neural code rankers. In Ad-
vances in Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
5762c579d09811b76390e238903d07be-Abstract-Conference.html.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Nan Jiang, Xiaopeng Li, Shiqi Wang, Qiang Zhou, Soneya Binta Hossain, Baishakhi Ray, Varun
Kumar, Xiaofei Ma, and Anoop Deoras. Training llms to better self-debug and explain code.
arXiv preprint arXiv:2405.18649, 2024.

Shuyang Jiang, Yuhao Wang, and Yu Wang. Selfevolve: A code evolution framework via large
language models. arXiv preprint arXiv:2306.02907, 2023.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-

gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024.

11

https://doi.org/10.48550/arXiv.2304.07590
https://doi.org/10.48550/arXiv.2304.07590
http://papers.nips.cc/paper_files/paper/2022/hash/5762c579d09811b7639be2389b3d07be-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5762c579d09811b7639be2389b3d07be-Abstract-Conference.html

Under review as a conference paper at ICLR 2025

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-refine: Iterative refinement with self-feedback. In Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL hhttp://papers.nips.cc/paper_files/paper/2023/hash/
91edff07232fbl1b55a505a9%9e9f6c0ff3-Abstract-Conference.htmll

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and
Pengcheng Yin. NExt: Teaching large language models to reason about code execution. In Forty-
first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=B1W712hMBi.

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Demystifying GPT self-repair for code generation. CoRR, abs/2306.09896, 2023.
doi: 10.48550/ARXIV.2306.09896. URL https://doi.org/10.48550/arXiv.2306.
09896.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint arXiv:2401.08500, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei
Huang, Dacheng Tao, and Jingren Zhou. A survey on self-evolution of large language models.
arXiv preprint arXiv:2404.14387, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023a. doi: 10.48550/ARXIV.2302.13971. URL
https://doi.org/10.48550/arXiv.2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya
Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288, 2023b. doi: 10.48550/ARXIV.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

Hanbin Wang, Zhenghao Liu, Shuo Wang, Ganqu Cui, Ning Ding, Zhiyuan Liu, and Ge Yu.
INTERVENOR: prompting the coding ability of large language models with the interactive
chain of repair. In Findings of the Association for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-16, 2024, pp. 2081-2107, 2024. doi: 10.
18653/V1/2024. FINDINGS-ACL.124. URL https://doi.org/10.18653/v1/2024.
findings—acl.124,

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
CoRR, abs/2405.15793, 2024. doi: 10.48550/ARXIV.2405.15793. URL https://doi.org/
10.48550/arXiv.2405.15793\

12

http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://openreview.net/forum?id=B1W712hMBi
https://openreview.net/forum?id=B1W712hMBi
https://doi.org/10.48550/arXiv.2306.09896
https://doi.org/10.48550/arXiv.2306.09896
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/2024.findings-acl.124
https://doi.org/10.18653/v1/2024.findings-acl.124
https://doi.org/10.48550/arXiv.2405.15793
https://doi.org/10.48550/arXiv.2405.15793

Under review as a conference paper at ICLR 2025

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-edit: Fault-aware code editor for code
generation. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 769-787,
2023a. doi: 10.18653/V1/2023.ACL-LONG.45. URL https://doi.org/10.18653/v1/
2023.acl-1long.45.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation with
tool-integrated agent systems for real-world repo-level coding challenges. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 13643-13658, 2024. doi: 10.18653/
V1/2024.ACL-LONG.737. URL https://doi.org/10.18653/v1/2024.acl-1long.
137k

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike Lewis, Wen-Tau Yih, Daniel Fried, and Sida
Wang. Coder reviewer reranking for code generation. In International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, pp. 41832-41846, 2023b. URL
https://proceedings.mlr.press/v202/zhang23av.html.

Li Zhong, Zilong Wang, and Jingbo Shang. Debug like a human: A large language model debugger
via verifying runtime execution step by step. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 851-870, 2024.

13

https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
https://proceedings.mlr.press/v202/zhang23av.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

PROMPTS

Here is the given code to do completion:
*python
{prompt}

Please complete the “{entry_point} " function and make sure that it matches the
specification and passes all tests. You are not allowed to modify the given function
signature. Think step by step and provide all completed codes in one code block.

Figure 4: Code generation prompt for HumanEval.

Here is the given problem to solve:
*“python
{prompt}

Please implement the " {entry_point}" function and make sure that it matches the
specification and passes all tests. You are not allowed to modify the given function
name and arguments in the test examples. Think step by step and provide all completed
codes in one code block.

Figure 5: Code generation prompt for MBPP.

Here is the given programming problem to solve:
{content}

Please generate a correct python program that matches the specification and passes all
tests. Think step by step. You will use the following starter code to write the
solution to the problem and enclose your code within delimiters.

" python
{starter_code}

Figure 6: Code generation prompt for functional-input question in LiveCodeBench.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Here is the given programming problem to solve:
{content}

Please generate a correct python program that matches the specification and passes all
tests. Read the inputs from stdin solve the problem and write the answer to stdout (do
not directly test on the sample inputs). Think step by step and enclose your code
within delimiters as follows:

" python
YOUR CODE HERE

Figure 7: Code generation prompt for stdin-input question in LiveCodeBench.

Here is the given code to do completion:
" python
{prompt}

Please provide ten comprehensive and valid test cases to verify whether the
“{entry_point}" function correctly solves the problem. You are not allowed to
implement the function. Think step by step and provide all test cases in one code
block.

The format of test cases should be:

*“python
assert {entry_point}(input) == expected_output, "Test Case Description”
\ A
Figure 8: Test generation prompt for HumanEval.
4 N\
Here is the given problem to solve:
" python
{prompt}

Please provide ten comprehensive and valid test cases to verify whether the
“{entry_point}" function correctly solves the problem. You are not allowed to
implement the function. Think step by step and provide all test cases in one code
block.

The format of test cases should be:
*“python
assert {entry_point}(input) == expected_output, "Test Case Description"

Figure 9: Test generation prompt for MBPP.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
81
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

.

Here is the given programming problem to solve:
{content}

Please provide ten comprehensive test samples based on the specification and follow
the format of the given sample.

Your response should be organized like below and no extra information is allowed
(including explanation):

[Input]

<your input here>

[Output]

<your output here>

[Input]

Figure 10: Test generation prompt for LiveCodeBench.

{error}Please fix the bug in the "“{entry_point}" function and make sure that the fixed
code matches the specification and passes all tests. You are not allowed to modify the
given function signature. Think step by step and provide the fixed code in one code
block.

Figure 11: Debugging prompt for HumanEval.

{error}Please fix the bug in the ~{entry_point}" function and make sure that the fixed
code matches the specification and passes all tests. You are not allowed to modify the
given function name and arguments in the test examples. Think step by step and provide
the fixed code in one code block.

Figure 12: Debugging prompt for MBPP.

{error}Please fix the bug in the code and make sure that the fixed code matches the
specification and passes all tests.

You will use the following starter code to write the solution to the problem and
enclose your code within delimiters.

* " T python

{starter_code}

Figure 13: Debugging prompt for functional-input question in LiveCodeBench.

{error}Please fix the bug in the code and make sure that the fixed code matches the
specification and passes all tests.

Read the inputs from stdin solve the problem and write the answer to stdout (do not
directly test on the sample inputs). Enclose your code within delimiters as follows.
* T python

YOUR CODE HERE

Figure 14: Debugging prompt for stdin-input question in LiveCodeBench.

16

Under review as a conference paper at ICLR 2025

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886 -

887 Given an input for the function "{test} , here is the code execution trace block by
888 block with the intermediate variable values as reference:

889 {trace}

890 Please explain the execution FOR EACH BLOCK and answer whether this program is correct
891 or not based on the specifications and given samples in the problem. If the program is
892 correct, please restate it in one python code block. If it is incorrect, please fix
893 the bug and provide the fixed code in a code block.

894
895
896 Figure 15: Prompt for in-execution self-debugging.
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

17

	Introduction
	Related Work
	Self-Debugging with Self-Generated tests
	Experiments
	Experimental Setup
	RQ1: Post-execution Self-Debugging Struggles on Basic Problems
	RQ2: Bias from Self-Testing Leads to Inconsistency across Tasks
	RQ3: In-Execution Reasoning Helps Self-Debugging

	Discussion
	Conclusion
	Appendix
	Prompts

