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ABSTRACT

Detecting small objects in video sequences is crucial, yet it poses significant chal-
lenges due to their limited visibility and dynamic nature, which complicates accu-
rate identification and localization. Traditional methods often employ a uniform
aggregation strategy across all frames, neglecting the unique spatiotemporal re-
lationships of small objects, which results in insufficient feature extraction and
diminished detection performance. This paper introduces a long short-term trans-
former network specifically designed for small object detection in videos. The
model integrates features from both long-term and short-term frames: long-term
frames capture global contextual information, enhancing the model’s ability to
represent background scenes, while short-term frames provide dynamic informa-
tion closely related to the current detection frame, thereby improving the feature
representation of small objects. A dynamic query generation module optimizes
query generation based on the implicit motion relationships of targets in short-
term frames, adapting to the current video framework. Additionally, the network
employs a progressive sampling strategy—densely sampling short-term frames
and sparsely sampling long-term frames—to effectively model video scenes. A
spatio-temporal alignment encoder further enhances pixel-level features by ac-
counting for temporal and spatial transformations. Extensive experiments on the
VisDrone-VID and UAVDT datasets demonstrate the method’s effectiveness, with
an average detection precision increase of 1.4% and 2.1%, respectively, highlight-
ing its potential in small object video detection.

1 INTRODUCTION

Video small object detection refers to the task of identifying and localizing objects of small size
within video sequences, which are often characterized by limited pixel representation and subtle vi-
sual features. This process is essential in various fields, including self-driving cars, satellite imagery,
healthcare imaging, and industrial quality control (Jiao et al., 2022; Wang et al., 2020; Jiang et al.,
2022). The challenge lies in the inherent difficulties associated with small objects, such as their
low resolution and tendency to blend into complex backgrounds. As a result, research has increas-
ingly focused on enhancing feature detection for small objects (Lim et al., 2021a; Feng et al., 2020b;
Ashraf et al., 2021b; Zhang et al., 2021). Studies have demonstrated that utilizing temporal informa-
tion across video frames is crucial for improving detection performance, as single-frame detection
often struggles with issues like motion blur, low resolution, and the diminutive size of the objects.
Leveraging information from multiple frames helps to overcome these challenges (Bertasius et al.,
2018a; Han et al., 2020; Cui et al., 2021; Ma et al., 2022).

Given the strong visual similarity and temporal continuity between adjacent frames, previous meth-
ods have leveraged temporal information through pixel-level enhancements across these frames(Zhu
et al., 2017; Bertasius et al., 2018b). Small objects, which may only occupy a few pixels in a single
frame, are particularly susceptible to pixel-level noise and environmental changes, making pixel-
level feature enhancement crucial(Xiao et al., 2023b). These methods typically employ deformable
convolutions or optical flow to align and aggregate features between adjacent frames. Although
pixel-level alignment has successfully enhanced features, it primarily focuses on single-pixel align-
ment and aggregation, neglecting the aggregation of features in adjacent pixel areas. Additionally,
some studies(Zhou et al., 2022) have attempted to aggregate features in neighboring regions of cor-
responding pixels across frames using deformable attention mechanisms. However, they have not

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

F
e
a
tu

re ex
tr

a
ctio

n
 n

etw
o
rk

S
p

a
tio

-tem
p

o
ra

l a
lig

n
m

en
t en

co
d

er

D
y

n
a
m

ic
 q

u
er

y
 g

en
er

a
tio

n
S

p
a

tio
 d

ec
o

d
er

Short-term feature 

aggregation

Long-term feature 

aggregation

Cur-frame

ST-frames

LT-frames

Spatio-temporal

decoder

Input Information ExtractionFeature Extraction Long Short-term Feature Aggregation

Detection

results

L
o
n

g
 S

h
o
rt-ter

m
 F

e
a
tu

re A
g
g
reg

a
tio

n

Object Query

LT-Frames Query

ST-Frames Query

Cur-Frame Query

Cur-Frame Feature

LT-Frame Feature

ST-Frames Feature

Enhanced Feature

Figure 1: The architecture of the proposed LSTT. The current frame (Cur-frame), short-term frames
(ST-frames) near the Cur-frame, and long-term frames (LT-frames) sampled from the whole video
first go through the feature extraction network. Initially, these frames pass through a feature extrac-
tion network. Subsequently, the features of the Cur-frame and the ST-frames are integrated using
a spatio-temporal feature alignment encoder. Long-term global information from LT-frames is ex-
tracted through a spatial decoder, while dynamic querying of ST-frames and the Cur-frame produces
target queries that better conform to the current video sequence. Finally, features are aggregated
over multiple layers, depending on whether positional encoding information is added, to effectively
combine long-term and short-term features. Best viewed in color and zoomed in.

achieved precise pixel-level feature alignment, overlooking spatial transformations between adjacent
frames.

The aggregation of temporal information from adjacent frames is often limited to a brief time win-
dow. To fully exploit the spatio-temporal information across an entire video, recent methods(Xiao
et al., 2023b) have focused on the roles of long-term and short-term frames in detection. Some ap-
proaches(He et al., 2021; Zhu et al., 2017; Bertasius et al., 2018b) use optical flow and deformable
convolutions to extract and aggregate short-term frame features; however, these are challenging to
train and costly. Other methods focus on the semantic information of long-term frames to establish
long-term dependencies(Wu et al., 2019; Fujitake & Sugimoto, 2022), often involving randomly
sampling frames from the video, which leads to unstable detection results and information loss.
Notably, some strategies(Chen et al., 2020) define long-term and short-term frames based on their
temporal distance, using attention mechanisms to aggregate features over time and space throughout
the video. However, whether aggregating long-term or short-term frames, such methods typically
employ a generic approach that fails to consider the varied information within frames concerning
small objects, resulting in suboptimal detection performance. Previous research has shown that con-
textual information is crucial for detecting small objects(Lim et al., 2021b; Xiao et al., 2023a). The
aggregation of video frames frequently lacks attention to global contextual information, particularly
for short-term frames, which tend to contain similar global context. In contrast, long-term frames,
while rich in global context, often lack effective extraction of this information.

Despite the establishment of end-to-end networks by video object detectors utilizing temporal in-
formation, their performance in detecting small-sized targets is typically suboptimal(Zhou et al.,
2022). Video small object detectors often rely on complex post-processing steps, such as establish-
ing tubelet links among targets in video frames. Consequently, there is an urgent need for a more
efficient end-to-end video small object detector.

To address these challenges, this paper proposes an end-to-end long short-term transformer (LSTT)
network. Compared to previous methods, this network avoids complex post-processing steps while
fully accounting for the information discrepancies between different video frames. It efficiently ex-
tracts and aggregates information from both long-term and short-term frames, leveraging the trans-
former architecture to enhance the detection of small objects. Given the visual similarity between
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adjacent frames, we designed a spatio-temporal alignment encoder to mitigate the effects of spa-
tial transformations between frames. This encoder uses deformable attention to sparsely sample
and aggregate features in neighboring regions of corresponding pixels across frames. Recognizing
that different frames contain diverse information, as illustrated in Figure 1, we define video frames
based on their inherent connections rather than their temporal proximity. Long-term frames provide
scene understanding, while short-term frames capture the motion and appearance characteristics of
objects. For long-term frame sampling, we use a progressive strategy: densely sampling short-term
frames and sparsely sampling long-term frames. We developed a feature aggregation module that
extracts global contextual information from long-term frames using a deformable attention decoder,
while short-term frames utilize positional encoding and texture features to aggregate motion and ap-
pearance information. To address the uneven distribution of small targets that can lead to positional
encoding errors, we designed a dynamic query generation method to obtain accurate positional in-
formation. The system differentiates queries from long-term frames containing scene information,
short-term frames containing location and appearance details, and current frames, aggregating these
to effectively extract information across the entire video. Through these targeted efforts, our LSTT
model outperforms existing methods on the Visdrones2019-VID and UAVDT datasets.

Our main contributions are summarized as follows:

• An end-to-end video small object detection network, the long short-term transformer , is
proposed, which significantly enhances feature representation and detection accuracy for
small objects.

• A spatio-temporal alignment encoder is introduced, effectively mitigating the impact of
spatial transformations between frames by using deformable attention mechanisms to
achieve precise feature alignment and aggregation.

• A novel sampling strategy is developed, dynamically balancing the extraction of global
contextual information from long-term frames and detailed motion and appearance features
from short-term frames, ensuring comprehensive temporal coverage in videos.

• A long short-term feature aggregation module is designed, combining features from vari-
ous frames to effectively aggregate global contextual information from long-term frames
and motion and appearance information from short-term frames. This module utilizes a dy-
namic query generation method to generate precise positional encodings, which, combined
with appearance features, aggregate short-term frames, and a deformable attention decoder
to extract and aggregate global information from long-term frames.

2 RELATED WORKS

Object detection from images has seen significant advancements with the introduction of several
leading detectors in recent years. Following the development of early detectors, video object de-
tection has been extensively studied as a more challenging task. Results indicate that leveraging
information from other frames can significantly improve detection in the current frame. Therefore,
temporal feature aggregation has gained increasing attention and is now a key component of video
small object detection.

Temporal feature aggregation: Video object detection necessitates the propagation of temporal
information across frames, typically achieved by aggregating features from adjacent frames to en-
hance the detection frame’s feature representation. Early methods employed optical flow warping for
feature aggregation(Zhu et al., 2017; Bertasius et al., 2018b). The DFF(Zhu et al., 2018) method uti-
lizes optical flow networks to predict flow fields, aligning keyframe features with short-term frames
to reduce redundant computations and accelerate the network. FGFA(Zhu et al., 2017) employs
optical flow to align and fuse short-term frame features with the current frame, enhancing detec-
tion accuracy. MANet(Wang et al., 2018) builds upon FGFA by implementing pixel and instance-
level feature alignment and aggregation, and employs a motion pattern reasoning module for further
feature aggregation. Some methods expand the temporal window by integrating long-term frame
features with the detection frame to establish long-range dependencies. SELSA(Wu et al., 2019)
enhances feature aggregation by calculating semantic similarity between the current and long-term
frames. STMN(Xiao & Lee, 2018) employs recurrent computation units as spatiotemporal memory
modules to convey semantic information across frames. MEGA(Chen et al., 2020) incorporates both
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global and local information from videos, utilizing long-term memory for feature enhancement. TF-
Blender(Cui et al., 2021), in contrast, employs a learnable network to predict aggregation weights,
unlike methods relying on cosine similarity.

Most approaches are based on the classical two-stage Faster R-CNN network(Ren et al., 2015),
which involves complex post-processing steps. Recently, Transformer-based object detection net-
works have optimized the process, enabling end-to-end detection in single-frame images with com-
petitive performance. However, these methods face temporal and spatial limitations when applied
to videos. TransVOD, TransVODLite, and TransVOD++(Zhou et al., 2022) incorporate spatiotem-
poral decoders and query generation across multiple video frames, balancing speed and accuracy.
PTSEFormer(Wang et al., 2022) employs a progressive strategy involving multi-scale feature extrac-
tion, focusing on temporal information and spatial transitions between frames. Sparse video object
detection employs an end-to-end trainable detector leveraging temporal information to propose re-
gion suggestions. Conversely, DAFA(Roh & Chung, 2022) emphasizes global over local temporal
features of videos. DEFA critiques FIFO memory inefficiencies, proposing a diversity-aware mem-
ory for instance-level feature retention in attention modules rather than frame-level memory. VS-
TAM(Fujitake & Sugimoto, 2022) improves feature quality element-wise through sparse aggrega-
tion before detecting object candidate regions, and utilizes external memory for long-term contextual
information.

These methods propagate temporal information through feature aggregation, performing well on
regular objects but failing to account for intrinsic connections between video frames. They use
uniform aggregation strategies across the entire temporal window of a video, struggling to extract
key information beneficial for small object detection, thus limiting performance improvements in
this area.

Video small object detection: Research indicates that video analysis can enhance small object de-
tection performance by leveraging temporal continuity. For instance, the Motion R-CNN(Feng et al.,
2020a) and DogFight(Ashraf et al., 2021a) algorithms analyze dynamic changes in video sequences,
extracting crucial information about object movement and changes, thus enhancing the accuracy
of small object detection. Algorithms like STDnet-ST++(Bosquet et al., 2021) and FANet(Cores
et al., 2023) demonstrate how constructing and optimizing spatiotemporal trajectories improve small
object recognition. These algorithms associate detection results across consecutive frames, build-
ing trajectories and further refining them to eliminate noise and improve detection signals. The
LSTFE(Xiao et al., 2023b) method extends this concept by fusing long-term and short-term video
features, aggregating diverse information from different frames, significantly improving small object
recognition capabilities and demonstrating the effectiveness of long short-term structures. However,
these two-stage network-based video small object methods often require manual refinement of com-
plex post-processing steps, impeding the realization of end-to-end object detection.

Although both short-term and long-term frame features have been used to enhance detection per-
formance, the information extracted from these features remains insufficient to establish stable con-
nections among small objects. LSTFE(Xiao et al., 2023b) indicated that distinguishing between
long-term and short-term frames in aggregation provides a clear advantage for small object features.
However, convolutional neural network-based feature extraction struggles to capture sufficient envi-
ronmental information crucial for small objects. Considering the global context modeling capability
of transformers, we applied a transformer-based detector to video small object detection for the
first time. Specifically, we considered both temporal and spatial information, performing sparse
sampling aggregation among short-term frames rather than simply aggregating weights between ad-
jacent frames like TransVOD(Zhou et al., 2022). Moreover, unlike the aforementioned methods
focusing on either short-term or long-term frame information, we defined video frames from the
perspective of intrinsic connections, fully considering the different information between short-term
and long-term frames, and aggregating object queries accordingly. By adopting these designs, our
approach is more conducive to detecting small objects in videos compared to previous works.
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3 METHODS

3.1 FRAMEWORK OVERVIEW

The architecture of LSTT, shown in Fig. 1, processes the current frame along with multiple short-
term and long-term frames sampled from the video. The feature extraction network first extracts
features from these frames. Short-term frames, adjacent to the current frame, share similar ap-
pearance information. The spatio-temporal alignment encoder uses convolutional offsets to align
features between the current and short-term frames. Additionally, a deformable attention mecha-
nism sparsely samples effective features from short-term frames, enhancing the pixel-level features
of the current frame.

For long-term frames, direct feature alignment or pixel-level fusion is impractical due to lack of
temporal continuity. Instead, global semantic information is extracted from long-term frames using
object queries and fused with short-term frame queries. Positional encoding represents the relative
positions of objects in short-term frames, while dynamic query generation learns relative motion
relationships, addressing the uneven distribution of small objects. Progressive random sampling with
exponential segmentation ensures coherent motion relationships in short-term frames and adequate
scene information from long-term frames.

3.2 PROGRESSIVE RANDOM SAMPLING STRATEGY

Short-term frames exhibit similar global contexts within a brief temporal window. To capture key
scene changes, we sample long-term frames from the entire video. Traditional sampling methods
lack sensitivity to temporal changes and fail to capture scene information effectively.

We propose a progressive random sampling strategy with two core aspects. First, exponentially
divide the video timeline, ensuring higher sampling density for segments near the current frame to
capture short-term dynamics.

Cur-frame ST-frames LT-framesST-framesLT-frames

Figure 2: Process of progressive random
sampling strategy.

For distant video segments, we apply sparser sam-
pling to expand the temporal window and capture
scene-rich long-term frames. Random sampling
within each segment adds diversity. Given video
frames {Ft}Tt=1 ∈ RH0×W0×C0 , where T is the
video length and H0, W0, and C0 are frame dimen-
sions, we sample k reference frames—densely for
short-term and sparsely for long-term frames. This
is defined as Fspace =

{
2i | 0 ≤ i < k

}
, selecting m

long-term frames Fg and n short-term frames Fs.

The reference frames include densely packed short-term frames within an extremely short time
window and long-term frames that contain extensive scene transition information. Compared to
commonly used uniform sampling, our method captures more concentrated short-term motion in-
formation and broader scene data with the same number of reference frames.

3.3 SPATIO-TEMPORAL ALIGNMENT ENCODER

In video object detection, the current frame Fc and short-term frames Fs often exhibit spatial mis-
alignment due to motion, degrading feature fusion quality. The STAE employs deformable multi-
head attention to selectively sample and align features, enhancing pixel-level feature representation.

The encoder first extracts spatial features from both Fc and Fs, producing tensors Mc and Ms.
These tensors, each with dimensions [C,H,W ], are concatenated to form Mcat. This concatenated
feature map passes through a convolutional layer to compute motion offsets mo, which are crucial
for aligning features across the frames.
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To effectively integrate features from multiple short-term frames, the encoder uses multi-head de-
formable attention. This process is described by the equation:

M ′
t+s =

L∑
l=1

K∑
k=1

Alqk ·W ′xl(ϕl(p̂q) + ρ(p̂lq) + ∆plqk) (1)

Concat

Weight

X

Temporal Aggregation Spatio Offset

offsets

Sampling Offsets

Feature Aggregation

Cur Frame Feature

Convolution Pixels

ST Frame Feature X Multiplication

Figure 3: Process of spatio-temporal alignment
encoder.

Here, W ′ represents the mapping to value vec-
tors, ϕl(p̂q) denotes the normalized sampling
reference point within the feature map coordi-
nates, ρ(p̂lq) adjusts for spatial offsets in the
l-th frame, and ∆plqk specifies the displace-
ment for the k-th sampling point in the l-th
frame. This selective sampling mechanism sig-
nificantly enhances the integration of temporal
and spatial information, optimizing feature ag-
gregation at a pixel level for improved detection
accuracy.

This mechanism allows the STAE to dynam-
ically adjust both spatially and temporally by
learning the necessary offsets to align and ef-
fectively aggregate features from the short-term
frames, thereby enhancing the pixel-level feature representation of the current frame.

3.4 LONG SHORT-TERM FEATURE AGGREGATION

Short-term frames enhance the current frame within a local temporal range, but lack sufficient global
context. Long-term frames provide diverse object features and global context crucial for small object
detection. By extending the temporal window, the model integrates scene changes and uses long-
term context for comprehensive video modeling.
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Figure 4: Process of long short-term feature ag-
gregation.

The long short-term feature aggregation
(LSTFA) module aggregates object queries
from long-term and short-term frames into
the current frame’s queries. LSTFA includes
long-term and short-term feature aggregation
stages.

Long-term feature aggregation: A weight-
sharing feature extraction network obtains im-
age features Mg and query vectors Qt from
long-term frames Fg . These inputs feed into a
spatial decoder, generating long-term frame ob-
ject queries Qg = {qg1 , q

g
2 , . . . , q

g
n}. Short-term

frame query vectors Qs = {qs1, qs2, . . . , qsm} ag-
gregate with long-term frame queries through
multi-head attention, resulting in enhanced
query features Q′

s = {qs′1 , qs
′

2 , . . . , qs
′

n }.

Queries and keys for long-term and short-term frame vectors are generated using fully connected
layers. Attention weights based on appearance similarity are calculated:

shi,j = softmax(Sim(ϕh(q
s
i ), φh(q

g
j ))) (2)

Similarity function Sim can be formulated as:

Sim(X,Y ) =
X · Y√
dim

(3)
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Outputs are aggregated and adjusted through attention head weights Wh and transformation matrix
Wh

p :

qs
′

i = qsi +

H∑
h=1

Wh

n∑
j=1

shi,j(W
h
p · qgj ), i = 1, · · · ,m (4)

The overall long-term feature aggregation function is:

Q
′

s = ζg(Qs, Qg) (5)

Short-term feature aggregation: Short-term frames maintain spatial association with the current
frame. Positional encoding models this continuity, and dynamic queries address uneven distribution.
Inputs for aggregation are the query feature vectors Qcur and positional encoding Pcur of the current
frame, and enhanced short-term frame query vectors Q′

s and positional encoding Ps:

Ps, Qs = {G(Qs,Mi)|i(1, · · · , n)} (6)

Multi-head attention and self-attention achieve interactions between targets in the current and short-
term frames:

shi,j = softmax(Sim(ϕh(q
cur
i + pcuri ), φh(q

s
j + psj))) (7)

The overall short-term feature aggregation function is:

Q
′

cur = ζs(Qcur, Qs) (8)

Through the STAE and LSTFA modules, we obtain enhanced current frame features M
′

t+s and
query vectors Q

′

cur. The deformable attention decoder processes these features, followed by a neural
network for classification and bounding box regression, yielding the detection results.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets:For a fair and convincing comparison, we chose to conduct extensive experiments on two
publicly available challenging datasets:

• VisDrone2019-VID dataset:This dataset includes 96 challenging HD video sequences from
UAV perspectives, with 56 sequences for training (24,198 frames), 7 for validation (2,648
frames), 16 for challenge testing (6,322 frames), and 17 for development testing (6,635
frames). It covers 10 object categories: pedestrians, people, cars, vans, buses, trucks,
motorcycles, bicycles, awning tricycles, and tricycles.

• UAVDT dataset:Designed for vehicle detection, this dataset comprises 50 videos captured
by drone-mounted cameras, totaling around 40,000 annotated frames. It includes 30 videos
for training and 20 for testing, with resolutions of 1080x540 pixels. The test set contains
375,884 objects across three categories: cars (361,055), trucks (7,595), and buses (7,234),
with 20.3% of the objects being small.

Implementation Details: Our model was trained and tested on four 24GB NVIDIA RTX 4090
GPUs, using ResNet101 and ResNet50 as backbones, and Deformable DETR as the base detector.
We employed ImageNet pre-trained weights, training for 10 epochs on images followed by 7 fine-
tuning epochs on videos. The input sizes were 1024x540 pixels for UAVDT and 1920x1080 pixels
for VisDrone2019-VID. Training used a learning rate of 0.0002 with AdamW optimizer, processing
one image per GPU batch. For reference frames, we sampled eight long-term and six short-term
frames relative to the current frame. The same input sizes were used during inference, and the batch
size was kept at 1 to simplify the detection pipeline for Video Small Object Detection (VSOD).

7
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Algorithm Backbone mAP AP@.5
s

Faster R-CNN(Ren et al., 2015) ResNet-101 31.80 17.60
FPN(Lin et al., 2017) ResNet-101 37.12 19.72
DFF(Zhu et al., 2018) ResNet-101 33.16 16.80

FGFA(Zhu et al., 2017) ResNet-101 35.26 17.40
RDN(Deng et al., 2019) ResNet-101 37.03 18.67
SELSA(Wu et al., 2019) ResNet-101 37.56 19.53

MEGA(Chen et al., 2020) ResNet-101 39.33 20.56
LSTFE(Xiao et al., 2023b) ResNet-101 41.86 21.79

Single Frame Baseline(Zhu et al., 2020) ResNet-101 33.62 17.90
TransVOD(Zhou et al., 2022) ResNet-101 39.69 19.62

Proposed ResNet-101 44.26 23.19

Table 1: Comparison results on VisDrones2019-VID test dev (%)

Algorithm Backbone AP@.5
s

Faster R-CNN(Ren et al., 2015) ResNet-101 28.6
FPN(Lin et al., 2017) ResNet-101 31.2

FGFA(Zhu et al., 2017) ResNet-101 24.8
RDN(Deng et al., 2019) ResNet-101 28.5

MEGA(Chen et al., 2020) ResNet-101 31.8
LSTFE(Xiao et al., 2023b) ResNet-101 34.4

Single Frame Baseline(Zhu et al., 2020) ResNet-101 29.6
TransVOD(Zhou et al., 2022) ResNet-101 30.8

Proposed ResNet-101 36.5

Table 2: Comparison results on the UAVDT dataset (%)

4.2 COMPARISON WITH STATE-OF-THE-ART

The proposed algorithm is compared with state-of-the-art methods on the UAVDT and
VisDrone2019-VID datasets to verify its effectiveness. The overall detection performance of each
algorithm model is assessed using mAP , while AP@.5

s is used to evaluate the detection performance
of each algorithm model on small objects within the datasets.

VisDrones2019-VID test dev: The comparative results of video object detection algorithms on the
VisDrones2019-VID dataset are detailed in Table 3.

Table 3 presents the comparative performance of video object detection algorithms on the
VisDrones2019-VID dataset. The proposed algorithm significantly leads with an mAP of 44.26%
and AP@.5

s of 23.19%, showing improvements of 10.64% and 5.29% respectively over the baseline.
FGFA and DFF, using optical flow, show limited gains in mAP (up to 1.64%) and marginal or no im-
provements in AP@.5

s . The FPN network achieves a 3.50% and 1.82% boost in mAP and AP@.5
s ,

benefiting from multi-scale feature fusion. MEGA, utilizing attention mechanisms, improves by
5.71% and 2.66% in both metrics, demonstrating effective long-term dependency handling. LSTFE,
specialized for small object detection, marks the highest rise among two-stage networks with in-
creases of 10.06% in mAP and 4.19% in AP@.5

s . In contrast, TransVOD, leveraging temporal
information with a transformer architecture, shows a notable mAP enhancement of 6.07% but only
a slight increase in AP@.5

s (0.72%). Overall, the proposed algorithm outshines others in effectively
detecting both general and small targets, underscoring its superior design and performance.Fig. 5
shows some qualitative comparison results of our LSTT versus other state-of-the-art works.

UAVDT dataset: This dataset is used for video object tracking and detection, with only a few image
detectors reported for the AP75 metric on this dataset. To ensure a fair comparison, this chapter repli-
cates the performance of classical algorithms on this dataset, including the optical flow-based FGFA
algorithm, attention mechanism-based MEGA algorithm, long short-term feature aggregation-based
LSTFE algorithm, and Deformable DETR-based TransVOD algorithm. Detailed comparative re-
sults of video object detection algorithms on the UAVDT dataset are reported in Table 2.

In the UAVDT dataset, our LSTT algorithm stands out with a top AP@.5
s of 36.5%, demonstrating

superior small object detection capabilities in dynamic video environments. LSTFE also performs
impressively, securing an AP@.5

s of 34.4% by effectively leveraging long short-term feature dy-
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Figure 5: Visualized comparison against the state-of-the-art methods on Visdrones-VID dataset. We
show the detection result of our method against Deformable DETR, TransVOD and LSTFE. All
models employ ResNet-101 as the backbone.

Algorithm LT Frames ST Frames AP@.5
s

Uniform Sampling ✓ 21.88
Random Sampling ✓ 21.63

Progressive Random Sampling ✓ 22.17
Uniform Sampling ✓ ✓ 22.36
Random Sampling ✓ ✓ 22.52

Progressive Random Sampling ✓ ✓ 23.19

Table 3: Ablation study of sampling strategy (%)

namics for enhanced small target accuracy. MEGA and FPN, with AP@.5
s scores of 31.8% and

31.2% respectively, show solid performance through attention mechanisms and multi-scale feature
fusion, which are crucial for detecting small objects across varying resolutions. TransVOD, achiev-
ing 30.8%, benefits from its transformer-based architecture, offering substantial improvements in
handling dynamic scenes, albeit slightly below the top performers. In contrast, FGFA, which de-
pends heavily on optical flow, trails with an AP@.5

s of 24.8%, underscoring its limitations in tracking
and detecting small, fast-moving objects.

4.3 ABLATION STUDIES

We conduct ablation studies to validate the effectiveness of each component in our model on the
Visdrones2019-VID dataset.

Progressive random sampling strategy To assess the efficacy of sampling strategies, we conducted
comparative experiments on uniform sampling, random sampling, and the progressive random sam-
pling proposed in this study, evaluating each strategy’s effectiveness based on the inclusion of long-
term and short-term frames. The results are detailed in Table 3, which presents an ablation study
of these sampling strategies. This table illustrates the impacts on the AP@.5

s metric when either
long-term or short-term frames are added across different algorithms and sampling methods.

Uniform sampling, when only short-term frames are included, performs slightly worse than the
strategy employed in this paper. This is because while it maintains consistent time intervals, it lacks
the flexibility needed to capture tightly packed motion information effectively. In contrast, random
sampling performs the worst under the same conditions, likely because its randomness complicates
the extraction of effective motion information from these frames. However, when long-term frames

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Algorithm Backbone AP@.5
s

without spatial offsets ResNet101 22.68
with spatial offsets ResNet101 23.19

ST-Frame with positional encoding ResNet101 23.19
ST-Frame without positional encoding ResNet101 21.95

LT-Frame with positional encoding ResNet101 22.86

Table 4: Ablation study of spatial offsets and positional encoding (%).

are included, the improvement in the precision (AP@.5
s ) of uniform sampling is minimal, as its

smaller time window fails to capture extensive contextual information. Random sampling’s AP@.5
s

improves, and although still random, a larger temporal window permits it to sample a greater va-
riety of changing scene information. Progressive random sampling shows the best performance,
efficiently extracting dense and coherent motion information from short-term frames and capturing
sparse yet rich scene changes in long-term frames. Using only short-term frames, it scores 22.17%,
which increases to 23.19% with the inclusion of both frame types, demonstrating its superior ability
to leverage temporal information for enhancing the detection of small objects.

Spatio-temporal alignment encoder In this module, comparative experiments were conducted to
assess the computation of spatial offsets, as detailed in Table 4. Additionally, Figure 4 depicts the
feature map representations before and after alignment aggregation, along with the sampling points
on adjacent frames. This approach not only provides a quantitative analysis of the effects of spa-
tial offset calculation but also provides qualitative insight into the impact on feature map alignment
across different frames, thereby enhancing our understanding of the encoder’s performance in han-
dling temporal and spatial variations.

According to Table 4, employing convolutional offsets for spatial alignment is essential, as it mit-
igates the impact of spatial variations between adjacent frames, thereby accurately and effectively
enhancing the pixel-level feature representation of the current frame.

Long short-term feature aggregation module In this module, positional encoding serves as an
important component by providing additional relative positioning information between objects in
short-term frames while potentially introducing misleading information into long-term frames. To
investigate the specific impact of positional encoding on the detection of small objects, a series of
comparative experiments were designed. The experiments first examined short-term frames without
positional encoding, followed by short-term and long-term frames with positional encoding, with
results presented in Table 4. According to Table 4, the AP@.5

s for short-term frames with positional
encoding is 1.24% higher than those without, confirming the effectiveness of positional encoding in
improving the model’s ability to capture dynamic spatial relationships, particularly for fast-moving
or small-sized objects. This improvement comes mainly from the additional spatial information
provided by positional encoding, allowing the model to interpret dynamic spatial changes more
accurately and make better predictions.

However, the AP@.5
s for long-term frames with positional encoding showed a slight decrease (from

23.19% to 22.86%) due to the less direct spatial relationships between long-term frames and the
current frame. Long-term frames often contain larger scene changes and background information,
and their spatial continuity may be disrupted by temporal distance, potentially introducing irrelevant
or misleading spatial details, which can hinder accurate feature interpretation.

5 CONCLUSION

This paper proposes a long short-term transformer model that leverages temporal information to
enhance features and improve small object detection in videos. A spatio-temporal alignment en-
coder is introduced to align features between adjacent frames, eliminating spatial variations and
enhancing pixel-level features using deformable attention. To capture dense motion in short-term
frames and global context in long-term frames, a progressive random sampling strategy is used to
densely sample short-term frames and sparsely sample long-term frames. A long short-term module
then incrementally aggregates scene information from long-term frames and motion and appearance
details from short-term frames into the current frame, improving small object representation. Com-
parative and ablation studies on the Visdrones2019-VID and UAVDT datasets show that our method
outperforms state-of-the-art approaches in detecting small objects in videos.
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