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ABSTRACT

Random spanning trees (RSTs) are a fundamental object in graph theory with
wide-ranging applications in network design, reliability analysis, and randomized
algorithms. However, when the underlying graph encodes sensitive information,
such as private user relationships or confidential communication links, directly re-
leasing sampled spanning trees may leak critical structural details. To address this
issue, we study the problem of generating random spanning trees under differential
privacy constraints. We introduce DP-RST, the first algorithmic framework for
differentially private random spanning tree generation. Our method perturbs edge
weights by decomposing them into binary representations and applying random-
ized response at the bit level, then recombining the noisy weights and sampling a
spanning tree from the perturbed graph. This carefully designed pipeline injects
noise while preserving the essential utility of RSTs, thereby ensuring (ϵ, δ)-DP.
We further demonstrate that DP-RST achieves privacy protection with compa-
rable computational efficiency to existing non-private RST algorithms, making it
suitable for large-scale graphs. This work bridges the gap between random span-
ning tree generation and differential privacy, opening new directions for privacy-
preserving graph algorithms.

1 INTRODUCTION

Random spanning trees (RSTs) are a fundamental object in graph theory with wide-ranging appli-
cations in network design, reliability analysis, and randomized algorithms (Aldous, 1990; Broder,
1989; Kelner & Madry, 2009). Given a connected graph G = (V,E), a random spanning tree is
a spanning tree sampled from a specific distribution over all spanning trees of G, often uniformly
at random (Aldous, 1990) or according to edge weights (Anari et al., 2021). Efficiently generating
random spanning trees has been extensively studied, with classical approaches based on random
walks, determinant-based methods, and more recent fast algorithms leveraging effective resistance
and combinatorial graph structures (Madry et al., 2014; Durfee et al., 2017).

Beyond classical applications (Asadpour et al., 2010; Goyal et al., 2009; Gharan et al., 2011; Fung
et al., 2011), random spanning trees are increasingly used in scenarios involving sensitive user or
system data, including graph machine learning (Cesa-Bianchi et al., 2010; 2013), answering connec-
tivity queries in large-scale graphs (Chen et al., 2022b; 2025b), and fast computation of Personalized
PageRank (PPR) (Jeh & Widom, 2003; Liao et al., 2022). For instance, in graph machine learning,
releasing random spanning trees sampled from a social network graph could reveal whether specific
friendships or interactions exist between users (Lin et al., 2022b; Epasto et al., 2022). In the case
of Personalized PageRank, random spanning forests could inadvertently leak a user’s closest social
or professional relationships (Mazloom & Gordon, 2018; Wei et al., 2024). These scenarios high-
light that protecting structural information is essential, motivating the need for differentially private
random spanning trees.

Therefore, in this paper, we propose to study this fundamental and timely research question:

Can we design privacy-preserving algorithms to generate random spanning trees while still
preserving the utility and efficiency of the sampled trees?

This research question is technically novel and challenging, as it differs fundamentally from prior
work on privacy-preserving algorithms for graph problems such as minimum spanning trees (Hladik
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& Tetek, 2024; Pagh et al., 2025), shortest paths (Sealfon, 2016; Chen et al., 2023), and minimum
cuts (Dalirrooyfard et al., 2023; Aamand et al., 2024). To the best of our knowledge, our work is the
first to address the privacy-preserving computation of random spanning trees.

To address our key research question, we develop a differential privacy (DP) framework for generat-
ing random spanning trees, namely DP-RST. The construction of our differentially private weighted
random spanning tree proceeds in four stages. First, each edge weight is decomposed into its binary
representation so that privacy mechanisms can be applied independently at the bit level. Second,
we apply randomized response to every bit, ensuring local privacy for each component. Third, the
perturbed bits are recombined to reconstruct noisy edge weights while preserving overall differen-
tial privacy through composition. Finally, a random spanning tree is sampled from the perturbed
weighted graph, yielding an output that balances privacy protection with structural utility.

The technical pipeline mentioned above results in a general DP framework for random spanning
tree generation that achieves (ϵ, δ)-differential privacy while retaining the efficiency of standard
RST algorithms. Our contributions can be summarized as follows:

• We present the first framework for generating differentially private random spanning trees,
providing (ϵ, δ)-DP.

• The proposed DP-RST algorithm maintains a similar time complexity as the standard ran-
dom spanning tree algorithm, making it practical for large graphs.

Roadmap. In Section 2, we provide a review of relevant works. In Section 3, we introduce the
fundamental concepts and definitions that form the basis of our analysis. In Section 4, we present
our proposed DP-RST algorithm and prove that it satisfies (ϵ, δ)-differential privacy. In Section 5,
we analyze the utility of DP-RST. In Section 6, we provide the analysis of the algorithm’s running
time, highlighting its computational efficiency. Finally, in Section 7, we conclude our paper.

2 RELATED WORK

In Section 2.1, we review the related works on random spanning trees. In Section 2.2, we show the
related works on differential privacy. In Section 2.3, we discuss several relevant graph problems in
basic graph theory.

2.1 RANDOM SPANNING TREE

The random spanning tree (RST) is one of the most well-established probabilistic concepts in graph
theory, with its earliest study tracing back to the 19th century (Kirchhoff, 1847). Early break-
throughs were achieved independently by Aldous (Aldous, 1990) and Broder (Broder, 1989), who
proposed sampling methods based on simulating random walks over the graph. This approach yields
exact samples but suffers from high time complexity, as it requires the walk to cover all edges
of the graph. Subsequent research has focused on improving sampling efficiency. For instance,
Kelner and Madry (Kelner & Madry, 2009) introduced a faster approach by exploiting connec-
tions between random walks and electrical network theory, and Madry et al. (Madry et al., 2014)
achieved O(m4/3+o(1)) expected time by combining random walks, effective resistance, and graph
cut structure. Next, Durfee et al. (Durfee et al., 2017) further improved sampling for edge-weighted
graphs using Gaussian elimination and approximate Schur complements, avoiding determinant- and
random-walk-based techniques. More recent algorithms have reduced the sampling time for random
spanning trees to nearly linear (Schild, 2018).

RSTs have a wide range of applications in theoretical computer science, including but not limited
to approximating the traveling salesperson problem (Asadpour et al., 2010; Gharan et al., 2011)
and graph sparsification (Goyal et al., 2009; Fung et al., 2011), as well as in graph data manage-
ment (Chen et al., 2022b; Liao et al., 2022; Chen et al., 2025b) and machine learning (Cesa-Bianchi
et al., 2010; 2013). In this work, we study the differentially private computation of random spanning
trees for the first time, to the best of our knowledge.
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2.2 DIFFERENTIAL PRIVACY

Differential Privacy (DP), first formalized in (Dwork et al., 2006), has become widely recognized as
the gold standard for rigorous privacy protection, with historical roots tracing back to randomized
response mechanisms from the 1960s (Warner, 1965). DP provides a more reliable and provable
privacy guarantee compared with conventional anonymization techniques (Sweeney, 2002; Li et al.,
2006; Machanavajjhala et al., 2007), which are vulnerable to re-identification and linkage attacks
that exploit external user information.

The core intuition of DP is that for any two neighboring datasets differing in only a small part (e.g.,
a single record or a single edge in a graph), the output of a randomized algorithm should remain
statistically indistinguishable. This ensures that the presence or absence of any individual element
contributes only a limited and quantifiable amount of information leakage. Such guarantees are
typically achieved by injecting carefully calibrated noise into the computation, e.g., through the
Gaussian (Dwork et al., 2014; Balle & Wang, 2018) or Laplace mechanisms (Dwork et al., 2014;
Geng et al., 2020). Over time, several refined formulations of DP have been developed, including
Rényi Differential Privacy (RDP) (Mironov, 2017; Mironov et al., 2019) and Local Differential
Privacy (LDP) (Evfimievski et al., 2003; Kasiviswanathan et al., 2011), which enable tighter analysis
and more flexible trade-offs between privacy and utility. These advances have enabled numerous
non-trivial applications of DP across diverse fields, such as classical algorithms (Andoni et al.,
2023; Li & Li, 2023; Song et al., 2023; Feng et al., 2025) and data structures (Qin et al., 2022;
Ke et al., 2025), machine learning (Chaudhuri & Monteleoni, 2008; Jayaraman & Evans, 2019;
Triastcyn & Faltings, 2020), large language models (Yu et al., 2022; Du et al., 2023; Mai et al., 2024),
learning on graphs (Lin et al., 2022a; Olatunji et al., 2023; Sajadmanesh et al., 2023), and computer
vision (Zheng et al., 2019; Zhu et al., 2020; Luo et al., 2021). Despite the rapid development and
wide adoption of DP in these areas, the problem of generating random spanning trees (RSTs) under
differential privacy has not been studied before. In this work, we address this novel and technically
challenging application for the first time.

2.3 GRAPH THEORY AND GRAPH PROBLEMS

Graph theory is a fundamental research direction in theoretical computer science, aiming to de-
sign efficient algorithms for solving a wide range of graph problems. One of the most classical
and well-studied problems is the single-source shortest path (SSSP) problem, which dates back
to Dijkstra’s algorithm in the 1950s (Dijksta, 1959). Since then, a large body of work (Fredman
& Willard, 1990; 1993; Hagerup, 2000) has focused on improving the time complexity beyond
the classical O(m + n log n) bound, where n is the number of vertices and m is the number of
edges. Notably, Thorup developed a linear-time algorithm for undirected graphs with positive inte-
ger weights (Thorup, 1999), and subsequent work achieved O(m + n log logmin{n,Cmax}) time
for directed graphs (Thorup, 2003), where Cmax is the maximum edge weight. Several studies have
also addressed graphs with negative edge weights, leading to further improvements in time com-
plexity (Bringmann et al., 2023; Fineman, 2024). More recently, the state-of-the-art algorithm for
directed graphs with nonnegative real edge weights achieves O(m log2/3 n) time (Duan et al., 2025),
marking the first improvement over Dijkstra’s algorithm in sparse graph settings. Another important
problem is the maximum flow problem, which seeks the maximum amount of flow that can be sent
from a source to a sink subject to edge capacity constraints and is equivalent, by the max-flow–min-
cut theorem, to computing a minimum s–t cut. Three classical algorithmic paradigms have been ex-
tensively developed: augmenting paths (Dinic, 1970; Boykov & Kolmogorov, 2004), push–relabel
methods (Goldberg, 2008; Goldberg et al., 2015), and pseudoflow-based approaches (Hochbaum,
2008; Chandran & Hochbaum, 2009). A breakthrough in recent years has culminated in an almost-
linear-time algorithm for maximum flow computation (Chen et al., 2022a; 2025a).

These foundational graph problems have also been studied under differential privacy. In particular,
there exist differentially private algorithms for shortest paths (Sealfon, 2016; Chen et al., 2023) and
for minimum cuts (Dalirrooyfard et al., 2023; Aamand et al., 2024). However, to the best of our
knowledge, the problem of generating random spanning trees under differential privacy has been
less explored prior to our work.
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3 PRELIMINARY

In Section 3.1, we present the basic notations used in this paper. In Section 3.2, we show the back-
ground knowledge of the random spanning tree. In Section 3.3, we explain the basics of differential
privacy.

3.1 NOTATIONS

Let n, d be positive integers. We define [n] := {1, 2, . . . , n}. We define
(
[n]
d

)
:= {S ⊆ [n] : |S| =

d}. We use Pr[·] to denote the probability function. Let T ⊆ E be a set of edges. We use |T |to
denote the cardinality of T .

3.2 RANDOM SPANNING TREE

We start by recalling the classical notion of a uniformly random spanning tree, which forms the
foundation for the more advanced constructions that follow.

Definition 3.1 (Uniformly Random Spanning Tree, (Aldous, 1990)). Let G = (V,E) be an undi-
rected connected graph, and let a simple random walk start from an arbitrary vertex s ∈ V , contin-
uing until every vertex has been visited. For each vertex v ∈ V \ {s}, let ev denote the edge through
which the walk first entered v. Then T = {ev | v ∈ V \ {s}} forms a spanning tree of G, and
moreover T is distributed as a uniformly random spanning tree of G, see Algorithm 1.

Algorithm 1 Uniformly Random Spannning Tree

1: procedure UNIFORMLYRST, (ALDOUS, 1990)(G = (V,E))
2: for each vertex v ∈ V do
3: Sv,(0) ← {v} ▷ Initialize singleton sets for each vertex
4: end for
5: pick an arbitrary starting vertex u0 ∈ V
6: u← u0

7: T ← ∅ ▷ Initialize empty set of edges for the tree
8: while not all vertices have been visited do
9: sample the first edge e = (u, v) that the random walk starting at u uses to exit Su,(0)

10: T ← T ∪ {e} ▷ Add the edge that reaches a new vertex
11: u← v ▷ Move to the new vertex
12: end while
13: return T
14: end procedure

We now introduce the down-up random walk, which is a Markov chain on subsets used in more
general sampling procedures.

Definition 3.2 (Down-Up Random Walk, (Anari et al., 2019)). Let µ :
(
[n]
k

)
→ R≥0 be a distribution

over k-subsets of [n]. The down-up random walk P is the Markov chain on
(
[n]
k

)
constructed via

Algorithm 2.

Algorithm 2 Down-Up Random Walk, (Anari et al., 2019)

1: for t = 0, 1, 2, · · · do
2: Let Tt ∈

(
St

k−1

)
be a subset of St obtained by dropping one element of St uniformly at

random.
3: Let St+1 = Tt ∪ {e}, where element e is chosen with probability ∝ µ(Tt ∪ {e}).
4: end for

Finally, we introduce the polynomial-generated weighted random spanning tree, which is based on
the down-up random walk and generalizes uniform spanning trees to weighted distributions with
provable approximation guarantees.

4
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Definition 3.3 (Polynomial-generated weighted random spanning tree, (Anari et al., 2021)). Let
µ :

(
[n]
k

)
→ R≥0 be a density function on size k subsets of [n] = {1, . . . , n}, defining a distribution

Pr[S] ∝ µ(S). Then Algorithm 3 takes a connected weighted graph G = (V,E) on n edges with
weight function w : E → R≥0 and parameter ∆ > 0 as input and outputs a spanning tree T ⊆ E
in time O(n log(n) log(n/∆)). The distribution of T is guaranteed to be ∆-close in total variation
distance to the distribution µ over spanning trees of G defined by

µ(T ) ∝ wT .

In particular, for w(e) = 1 for all e ∈ E, µ is the uniform distribution on spanning trees of G as
Definition 3.1.

Algorithm 3 Polynomial-generated weighted random spanning tree, (Anari et al., 2021)

1: procedure POLYGENRST(G = (V,E), w,∆)
2: T ← UNIFORMLYRST(G)
3: C ← E \ T
4: while |Pr[T ]− µ(T )| > ∆ do
5: e← uniformly random element of C
6: T ← T ∪ {e}
7: f ∈ cycle(T ) with probability ∝ 1/wf

8: T ← T \ {f}
9: C ← E \ T

10: end whilereturn T
11: end procedure

3.3 DIFFERENTIAL PRIVACY

Definition 3.4 (Differential Privacy, (Dwork et al., 2014)). For ϵ > 0, δ ≥ 0, a randomized function
A is (ϵ, δ)-differentially private ((ϵ, δ)-DP) if for any two neighboring datasets X ∼ X ′, and any
possible outcome of the algorithm S ⊂ Range(A), Pr[A(X) ∈ S] ≤ eϵ Pr[A(X ′) ∈ S] + δ.

To better understand differential privacy in the context of graphs, we first define what it means for
two graphs to be considered neighboring.

Definition 3.5 (Edge-Neighboring Graphs). Graphs G = (V,E,w) and G′ = (V,E′, w′) are said
to be edge-neighboring if they differ in the weight of exactly one edge uv ∈ V 2, with |wG(uv) −
wG′(uv)| ≤ 1, while all other edge weights remain identical.

Next, we recall an important property of differentially private mechanisms: post-processing does
not compromise privacy.

Lemma 3.6 (Post-Processing Lemma for DP, (Dwork et al., 2014)). Let M := N|χ| → R be a
randomized algorithm that is (ϵ, δ)-differentially private. Let f : R→ R′ be an arbitrarily random
mapping. Then is f ◦M : N|χ| → R′ (ϵ, δ)-differentially private.

We then present composition results, which describe how privacy guarantees degrade when multiple
DP mechanisms are combined.

Lemma 3.7 (Basic composition (Dwork et al., 2006)). Given t algorithms executed sequentially,
where the i-th algorithm is (ϵi, δi)-DP for ϵi > 0 and δi ≥ 0, the overall mechanism obtained by
composing them is (ϵ1 + · · ·+ ϵt, δ1 + · · ·+ δt)-DP.

For more refined guarantees when many mechanisms are composed adaptively, we refer to the ad-
vanced composition lemma.

Lemma 3.8 (Composition lemma, (Dwork et al., 2010)). Let ϵ ∈ (0, 1), and M1, · · · ,Mk be ϵ′-
DP, adaptively chosen mechanisms, then the composition M1 ◦ · · · ◦Mk is (ϵ, δ)-DP, where ϵ′ =

ϵ√
8k log(1/δ)

.
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Lemma 3.9 (Advanced Composition, Theorem 3.20 in page 53 of (Dwork et al., 2014)). For all
ϵ, δ, δ′ ≥ 0, the class of (ϵ, δ)-DP mechanisms satisfies (ϵ, kδ + δ′)-DP under k-fold adaptive com-
position for:

ϵ′ =
√
2k ln(1/δ′)ϵ+ kϵ(eϵ − 1)

Finally, we introduce the formal definition of the random response mechanism, which will be used
later for bit-level perturbation of edges in the spanning tree.

Definition 3.10 (Random response mechanism). Let T = (V,E) denote a tree with node set V and
edge set E. For each edge e ∈ E, let g[e] ∈ {0, 1} denote whether edge e is present (g[e] = 1) or
absent (g[e] = 0) in the tree representation.

For any e ∈ E, let g̃[e] denote the perturbed version of g[e] using the random response mechanism.
Namely, for every edge e, we have

Pr[g̃[e] = y] =

{
eϵ0/(eϵ0 + 1), y = g[e],

1/(eϵ0 + 1), y = 1− g[e].

Let a = eϵ0/(eϵ0 +1), b = 1/(eϵ0 +1). Since a/b = eϵ0 , this implies random response can achieve
ϵ0-DP.

4 DIFFERENTIAL PRIVATE WEIGHTED RANDOM SPANNING TREE

In Section 4.1, we introduce an important technique that decomposes the edge weights into binary
representations. In Section 4.2, we show the bit-level privacy guarantee. In Section 4.3, we show
how to reconstruct the perturbed edge weights. In Section 4.4, we show our algorithm to produce
differentially private random spanning trees.

4.1 WEIGHT DECOMPOSITION

We begin by decomposing edge weights into their binary representations, which will later allow us
to apply randomized response at the bit level.

Definition 4.1 (Binary Weight Decomposition). Let G = (V,E,w) be a connected weighted graph,
where w : E → Z≥0 assigns nonnegative integer weights to edges. Assume that all edge weights
are bounded by k:

0 ≤ w(e) ≤ k, for all e ∈ E.

For each edge e ∈ E, we represent its weight in binary form:

w(e) =

⌈log2 k⌉−1∑
i=0

bi(e) · 2i,

where bi(e) ∈ {0, 1} denotes the i-th bit of w(e).

We then define a sequence of unweighted graphs:

G(i) = (V,E(i)), E(i) = {e ∈ E | bi(e) = 1},

for each bit index i ∈ {0, · · · , ⌈log2 k⌉ − 1}. That is, G(i) contains exactly those edges of G whose
i-th bit in the weight representation is 1.

A weighted random spanning tree in G can thus be interpreted as the superposition of at most
⌈log2 k⌉ unweighted spanning trees, each sampled from one of the G(i). This decomposition al-
lows us to apply randomized response at the bit level, and later reconstruct the perturbed weighted
distribution by combining the unweighted outcomes.

6
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4.2 BIT-LEVEL DIFFERENTIAL PRIVACY

We then consider the privacy guarantees of a single bit in the binary decomposition of edge weights
for the weighted random spanning tree.
Lemma 4.2 (Single Bit of Edge Weight is Private, Informal Version of Lemma A.1). If the following
conditions hold:

• Let ϵ0 ≥ 0.

• Let b̃i(e) ∈ {0, 1} be the perturbed i-th bit of the weight of edge e.

Then, we can show that, for all edges e ∈ E and all bit positions i ∈ {0, . . . , ⌈log2 k⌉ − 1}, the
perturbed bit b̃i(e) is ϵ0-DP.

4.3 RECONSTRUCTION OF PERTURBED WEIGHTS

Once all bits have been perturbed, the next step is to reconstruct the perturbed weights of the edges
by recombining their randomized bits. Specifically, after applying bit-level randomized response on
each unweighted graph G(i), we obtain a set of perturbed bits:

b̃i(e) ∈ {0, 1}, ∀i = 0, · · · , ℓ− 1, e ∈ E,

where ℓ := ⌈log2 k⌉.
Definition 4.3 (Reconstructed Perturbed Edge Weights). For each edge e ∈ E, we define the recon-
structed perturbed weight as

w̃(e) :=

ℓ−1∑
i=0

2i · b̃i(e).

The collection {w̃(e)}e∈E defines a perturbed weighted graph G̃ = (V,E, w̃), which aggregates
the bit-level perturbations into integer valued edge weights.

With this reconstruction in place, we can establish the overall privacy guarantee of the resulting
perturbed weights.
Lemma 4.4 (Reconstruction Preserves Differential Privacy, Informal Version of Lemma A.2). Let
δ ∈ (0, 1), let ℓ := ⌈log2 k⌉ be the number of bit levels per edge. If each bit-level perturbed bit b̃i(e)
is ϵ0-DP, then the reconstructed weights w̃(e) satisfy (ϵ, δ)-DP with

ϵ = ϵ0
√

8k log(1/δ).

Since w̃(e) satisfies (ϵ, δ)-DP for each edge e under the single edge neighboring definition, the entire
reconstructed weight w̃ also satisfies (ϵ, δ)-DP.

Therefore, the reconstructed perturbed weights preserve differential privacy under composition, ex-
tending the bit-level guarantees to the full weighted graph.

4.4 GENERATING THE PERTURBED WEIGHTED RANDOM SPANNING TREE

After reconstructing the perturbed weights w̃, we can generate a final random spanning tree using
Algorithm 4.

5 UTILITY ANALYSIS OF DIFFERENTIAL PRIVATE WEIGHTED RANDOM
SPANNING TREE

In this section, we analyze the utility of the differentially private weighted random spanning tree,
quantifying how the bit-level perturbations affect the expected weights of sampled spanning trees
and providing upper bounds on the deviation from the original distribution.

We begin by defining the objects and notation used throughout this section.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 4 Differentially private weighted random spanning tree

1: procedure POLYGENRST(G = (V,E), w,∆, ϵ0)
2: ℓ← ⌈log2 k⌉
3: for each edge e ∈ E do
4: Decompose weight: w(e) =

∑ℓ−1
i=0 bi(e) · 2i

5: for i = 0 to ℓ− 1 do
6: b̃i(e) = bi(e), with probability eϵ0

eϵ0+1

7: b̃i(e) = 1− bi(e), with probability 1
eϵ0+1

8: end for
9: Reconstruct perturbed weight: w̃(e)←

∑ℓ−1
i=0 2

i · b̃i(e)
10: end for
11: T ← UNIFORMLYRST(G)
12: C ← E \ T
13: while |Pr[T ]− µ(T )| > ∆ do
14: e← uniformly random element of C
15: T ← T ∪ {e}
16: f ∈ cycle(T ) with probability ∝ 1/w̃f

17: T ← T \ {f}
18: C ← E \ T
19: end whilereturn T
20: end procedure

Definition 5.1 (Spanning Trees and Perturbed Weights). Let G = (V,E) be a weighted graph with
original edge weights e for e ∈ E. Let w̃(e) denote the perturbed edge weights obtained via bit-level
random response perturbation as in Algorithm 4.

• We use T∗ ∈ T (G) to denote a spanning tree sampled w.r.t. the original weights w, where

Pr[T∗] ∝
∏
e∈T∗

w(e).

• We use T̃ ∈ T (G) to denote a spanning tree sampled w.r.t. the perturbed weights w̃:

Pr[T̃ ] ∝
∏
e∈T̃

w̃(e).

• For each edge e, let t := eϵ0

eϵ0+1 denote the probability that a single bit in the decomposition
remains unchanged.

Having set up the notation, we first analyze the accuracy of the reconstructed edge weights after
perturbation.
Lemma 5.2 (Reconstructed Weight Accuracy, Informal Version of Lemma B.1). Let w̃(e) =∑ℓ−1

i=0 2
i · b̃i(e) be the reconstructed weight. Then Pr[w̃(e) = w(e)] = tℓ, where ℓ = ⌈log2 k⌉.

Building on this edge-level guarantee, we next extend the analysis to the entire spanning tree.
Theorem 5.3 (Utility of DP-RST, Informal Version of Theorem B.2). Let T∗ be a weighted random
spanning tree sampled from true weights w, and T̃ be sampled from perturbed weights w̃. Then, for
any fixed tree T , we have

Pr[T̃ = T∗] ≥ tℓ·|E(T∗)| = tℓ·(|V |−1),

where |V | − 1 is the number of edges in a spanning tree.

Note that this lower bound is conservative and reflects only a worst-case guarantee. In practice, the
probability that T̃ coincides with T∗ is usually higher, since spanning trees depend on the relative
ordering of edge weights rather than their exact values. As long as the order is preserved, T̃ will
still equal T∗. Thus, the bound tℓ·(|V |−1) underestimates the actual utility of DP-RST, which is often
better when perturbations are small or weight gaps are large.
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6 RUNNING TIME ANALYSIS

In this section, we provide a detailed analysis of the running time for Algorithm 4. The running
time can be devided into two main parts: bit-level randomized response on edge weights and the
polynomial-generated weighted random spanning tree procedure.

6.1 RUNNING TIME FOR BIT-LEVEL RANDOMIZED RESPONSE

We first analyze the time complexity of bit-level randomized response on edge weights.
Lemma 6.1 (Running Time for Bit-level Perturbation). Let n := |E| denote the number of edges
in the graph, and ℓ = ⌈log2 k⌉ denote the number of bits per edge weight. Then the bit-level
randomized response phase takes O(n · ℓ) time.

Proof. Step 1: Weight decomposition. Each edge weight w(e) is decomposed into ℓ bits. This
requires O(ℓ) time per edge. For all n edges, this step takes O(n · ℓ) time.

Step 2: Bit-level randomized response. For each bit bi(e), we apply randomized response, which
is O(1) per bit. Since there are ℓ bits per edge and n edges in total, this step also takes O(n · ℓ) time.

Step 3: Reconstruct perturbed weights. Reconstruction of w̃(e) from ℓ bits requires O(ℓ) per
edge, resulting in O(n · ℓ) total time.

Step 4: Combining. Combining the three steps, the total running time for bit-level perturbation is
O(n · ℓ) = O(n log k).

6.2 OVERALL RUNNING TIME

By combining the results of Lemma 6.1 and the known running time of the polynomial-generated
weighted random spanning tree in Definition 3.3, we obtain the overall running time of Algorithm 4:

O(n · ℓ+ n log n log(n/∆)) = O(n log k + n logn log(n/∆)),

where n = |E| is the number of edges, ℓ = ⌈log2 k⌉ is the number of bits per edge weight, and
∆ > 0 is the accuracy parameter of the polynomial-generated RST.
Remark 6.2. We conclude this section with some observations regarding the computational aspects
of DP-RST. In particular, we note the following:

• The bit-level randomized response phase is fully parallelizable across edges, so its runtime
can be significantly reduced in practice.

• The polynomial-generated RST dominates the computational cost for most practical
graphs, since log k ≪ logn log(n/∆).

• The parameter ∆ controls the trade-off between the accuracy of the sampled spanning tree
distribution and the number of iterations in the polynomial-generated RST.

Overall, these observations suggest that DP-RST can achieve strong privacy guarantees while main-
taining comparable computational efficiency to non-private RST algorithms, making it suitable for
large-scale graphs.

7 CONCLUSION

In this paper, we initiated the study of differentially private random spanning trees. To address this
challenge, we proposed DP-RST, the first framework for generating random spanning trees under
(ϵ, δ)-differential privacy. Our algorithm carefully introduces noise while preserving key structural
properties, and it achieves comparable time complexity to standard random spanning tree generation,
making it practical for large graphs. For future work, we plan to extend our results beyond uniform
random spanning trees and polynomial-generated weighted random spanning trees to more general
distributions. We hope this work will spark further research at the intersection of random graph
algorithms and differential privacy.
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Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations sympo-
sium (CSF), pp. 263–275. IEEE, 2017.

Ilya Mironov, Kunal Talwar, and Li Zhang. R\’enyi differential privacy of the sampled gaussian
mechanism. arXiv preprint arXiv:1908.10530, 2019.

Iyiola Emmanuel Olatunji, Thorben Funke, and Megha Khosla. Releasing graph neural networks
with differential privacy guarantees. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=wk8oXR0kFA.

Rasmus Pagh, Lukas Retschmeier, Hao Wu, and Hanwen Zhang. Optimal bounds for private mini-
mum spanning trees via input perturbation. Proceedings of the ACM on Management of Data, 3
(2):1–26, 2025.

13

https://arxiv.org/abs/2502.00693
https://arxiv.org/abs/2502.00693
https://openreview.net/forum?id=wk8oXR0kFA


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song, Danyang Zhuo, and Shumo Chu. Adore:
Differentially oblivious relational database operators. arXiv preprint arXiv:2212.05176, 2022.

Sina Sajadmanesh, Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-Perez. {GAP}:
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Appendix
Roadmap. In Section A, we supplement the missing proofs for Section 4. In Section B, we show
the missing proofs for Section 5.

A MISSING PROOFS IN SECTION 4

We begin by presenting the proof for Lemma 4.2.
Lemma A.1 (Single Bit of Edge Weight is Private, Formal Version of Lemma 4.2). If the following
conditions hold:

• Let ϵ0 ≥ 0.

• Let b̃i(e) ∈ {0, 1} be the perturbed i-th bit of the weight of edge e.

Then, we can show that, for all edges e ∈ E and all bit positions i ∈ {0, . . . , ⌈log2 k⌉ − 1}, the
perturbed bit b̃i(e) is ϵ0-DP.

Proof. For each edge e ∈ E and bit index i ∈ {0, . . . , ⌈log2 k⌉ − 1}, bi(e) ∈ {0, 1} is the ground
truth bit of the weight of edge e. For any neighboring graph G′ (differing in one edge weight),
denote the corresponding bit as b′i(e). Similarly, let b̃i(e) and b̃′i(e) denote the perturbed bits.

We consider the following two cases to prove b̃i(e) is ϵ0-DP.

Case 1. Suppose b′i(e) = bi(e) = u. Then

Pr[̃bi(e) = u] =
eϵ0

eϵ0 + 1
, Pr[̃b′i(e) = u] =

eϵ0

eϵ0 + 1
.

Thus,
Pr[̃bi(e) = u]

Pr[̃b′i(e) = u]
= 1.

Similarly,

Pr[̃bi(e) = 1− u]

Pr[̃b′i(e) = 1− u]
= 1.

Case 2. Suppose b′i(e) ̸= bi(e). Let bi(e) = u. Then

Pr[̃bi(e) = u]

Pr[̃b′i(e) = u]
= eϵ0 ,

Pr[̃bi(e) = 1− u]

Pr[̃b′i(e) = 1− u]
= e−ϵ0 .

Hence, for all v ∈ {0, 1},

e−ϵ0 ≤ Pr[̃bi(e) = v]

Pr[̃b′i(e) = v]
≤ eϵ0 .

Therefore, for every edge e and bit index i, the perturbed bit b̃i(e) satisfies ϵ0-differential privacy.

Next, we show the proof for Lemma 4.4.
Lemma A.2 (Reconstruction Preserves Differential Privacy, Formal Version of Lemma 4.4). Let
δ ∈ (0, 1), let ℓ := ⌈log2 k⌉ be the number of bit levels per edge. If each bit-level perturbed bit b̃i(e)
is ϵ0-DP, then the reconstructed weights w̃(e) satisfy (ϵ, δ)-DP with

ϵ = ϵ0
√
8k log(1/δ).

Proof. Since each b̃i(e) is ϵ0-DP, the reconstruction corresponds to the adaptive composition of at
most ℓ pure ϵ0-DP mechanisms. Applying the composition lemma (Lemma 3.8), we obtain that the
reconstruction mechanism satisfies (ϵ, δ)-DP with ϵ = ϵ0

√
8k log(1/δ).
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B MISSING PROOFS IN SECTION 5

In this section, we first prove Lemma 5.2.
Lemma B.1 (Reconstructed Weight Accuracy, Formal Version of Lemma 5.2). Let w̃(e) =∑ℓ−1

i=0 2
i · b̃i(e) be the reconstructed weight. Then

Pr[w̃(e) = w(e)] = tℓ,

where ℓ = ⌈log2 k⌉.

Proof. All bits must be correctly preserved for w̃(e) to equal w(e). Since each bit is independent,
then:

Pr[w̃(e) = w(e)] =

ℓ−1∏
i=0

Pr[̃bi(e) = bi(e)] = tℓ.

Then, we prove our main result on the utility of DP-RST, which is Theorem 5.3.
Theorem B.2 (Utility of DP-RST, Formal Version of Theorem 5.3). Let T∗ be a weighted random
spanning tree sampled from true weights w, and T̃ be sampled from perturbed weights w̃. Then, for
any fixed tree T , we have

Pr[T̃ = T∗] ≥ tℓ·|E(T∗)| = tℓ·(|V |−1),

where |V | − 1 is the number of edges in a spanning tree.

Proof. For T̃ = T∗ to occur, all edges in T∗ must have their weights exactly reconstructed. By
Lemma 5.2, each edge is correct with probability tℓ, and edges are independent:

Pr[T̃ = T∗] =
∏
e∈T∗

Pr[w̃(e) = w(e)] = tℓ·|E(T∗)| = tℓ·(|V |−1).

This calculation gives a lower bound on the probability of sampling T∗, because other configurations
of perturbed weights could also lead to T̃ = T∗. Hence, we conclude:

Pr[T̃ = T∗] ≥ tℓ·|E(T∗)| = tℓ·(|V |−1).

Thus, we complete the proof.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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