DIFFERENTIALLY PRIVATE RANDOM SPANNING TREE GENERATION

Anonymous authors

000

001

003 004

010 011

012

013

014

015

016

017

018

019

021

025

026027028

029

031

033

034

035

036

037

040

041

042

043

044

046

047

048

049

051

052

Paper under double-blind review

ABSTRACT

Random spanning trees (RSTs) are a fundamental object in graph theory with wide-ranging applications in network design, reliability analysis, and randomized algorithms. However, when the underlying graph encodes sensitive information, such as private user relationships or confidential communication links, directly releasing sampled spanning trees may leak critical structural details. To address this issue, we study the problem of generating random spanning trees under differential privacy constraints. We introduce DP-RST, the first algorithmic framework for differentially private random spanning tree generation. Our method perturbs edge weights by decomposing them into binary representations and applying randomized response at the bit level, then recombining the noisy weights and sampling a spanning tree from the perturbed graph. This carefully designed pipeline injects noise while preserving the essential utility of RSTs, thereby ensuring (ϵ, δ) -DP. We further demonstrate that DP-RST achieves privacy protection with comparable computational efficiency to existing non-private RST algorithms, making it suitable for large-scale graphs. This work bridges the gap between random spanning tree generation and differential privacy, opening new directions for privacypreserving graph algorithms.

1 Introduction

Random spanning trees (RSTs) are a fundamental object in graph theory with wide-ranging applications in network design, reliability analysis, and randomized algorithms (Aldous, 1990; Broder, 1989; Kelner & Madry, 2009). Given a connected graph G=(V,E), a random spanning tree is a spanning tree sampled from a specific distribution over all spanning trees of G, often uniformly at random (Aldous, 1990) or according to edge weights (Anari et al., 2021). Efficiently generating random spanning trees has been extensively studied, with classical approaches based on random walks, determinant-based methods, and more recent fast algorithms leveraging effective resistance and combinatorial graph structures (Madry et al., 2014; Durfee et al., 2017).

Beyond classical applications (Asadpour et al., 2010; Goyal et al., 2009; Gharan et al., 2011; Fung et al., 2011), random spanning trees are increasingly used in scenarios involving sensitive user or system data, including graph machine learning (Cesa-Bianchi et al., 2010; 2013), answering connectivity queries in large-scale graphs (Chen et al., 2022b; 2025b), and fast computation of Personalized PageRank (PPR) (Jeh & Widom, 2003; Liao et al., 2022). For instance, in graph machine learning, releasing random spanning trees sampled from a social network graph could reveal whether specific friendships or interactions exist between users (Lin et al., 2022b; Epasto et al., 2022). In the case of Personalized PageRank, random spanning forests could inadvertently leak a user's closest social or professional relationships (Mazloom & Gordon, 2018; Wei et al., 2024). These scenarios highlight that protecting structural information is essential, motivating the need for differentially private random spanning trees.

Therefore, in this paper, we propose to study this fundamental and timely research question:

Can we design privacy-preserving algorithms to generate random spanning trees while still preserving the utility and efficiency of the sampled trees?

This research question is technically novel and challenging, as it differs fundamentally from prior work on privacy-preserving algorithms for graph problems such as minimum spanning trees (Hladik

& Tetek, 2024; Pagh et al., 2025), shortest paths (Sealfon, 2016; Chen et al., 2023), and minimum cuts (Dalirrooyfard et al., 2023; Aamand et al., 2024). To the best of our knowledge, our work is the first to address the privacy-preserving computation of random spanning trees.

To address our key research question, we develop a differential privacy (DP) framework for generating random spanning trees, namely DP-RST. The construction of our differentially private weighted random spanning tree proceeds in four stages. First, each edge weight is decomposed into its binary representation so that privacy mechanisms can be applied independently at the bit level. Second, we apply randomized response to every bit, ensuring local privacy for each component. Third, the perturbed bits are recombined to reconstruct noisy edge weights while preserving overall differential privacy through composition. Finally, a random spanning tree is sampled from the perturbed weighted graph, yielding an output that balances privacy protection with structural utility.

The technical pipeline mentioned above results in a general DP framework for random spanning tree generation that achieves (ϵ, δ) -differential privacy while retaining the efficiency of standard RST algorithms. Our contributions can be summarized as follows:

- We present the first framework for generating differentially private random spanning trees, providing (ε, δ)-DP.
- The proposed DP-RST algorithm maintains a similar time complexity as the standard random spanning tree algorithm, making it practical for large graphs.

Roadmap. In Section 2, we provide a review of relevant works. In Section 3, we introduce the fundamental concepts and definitions that form the basis of our analysis. In Section 4, we present our proposed DP-RST algorithm and prove that it satisfies (ϵ, δ) -differential privacy. In Section 5, we analyze the utility of DP-RST. In Section 6, we provide the analysis of the algorithm's running time, highlighting its computational efficiency. Finally, in Section 7, we conclude our paper.

2 RELATED WORK

In Section 2.1, we review the related works on random spanning trees. In Section 2.2, we show the related works on differential privacy. In Section 2.3, we discuss several relevant graph problems in basic graph theory.

2.1 RANDOM SPANNING TREE

The random spanning tree (RST) is one of the most well-established probabilistic concepts in graph theory, with its earliest study tracing back to the 19th century (Kirchhoff, 1847). Early breakthroughs were achieved independently by Aldous (Aldous, 1990) and Broder (Broder, 1989), who proposed sampling methods based on simulating random walks over the graph. This approach yields exact samples but suffers from high time complexity, as it requires the walk to cover all edges of the graph. Subsequent research has focused on improving sampling efficiency. For instance, Kelner and Madry (Kelner & Madry, 2009) introduced a faster approach by exploiting connections between random walks and electrical network theory, and Madry et al. (Madry et al., 2014) achieved $O(m^{4/3+o(1)})$ expected time by combining random walks, effective resistance, and graph cut structure. Next, Durfee et al. (Durfee et al., 2017) further improved sampling for edge-weighted graphs using Gaussian elimination and approximate Schur complements, avoiding determinant- and random-walk-based techniques. More recent algorithms have reduced the sampling time for random spanning trees to nearly linear (Schild, 2018).

RSTs have a wide range of applications in theoretical computer science, including but not limited to approximating the traveling salesperson problem (Asadpour et al., 2010; Gharan et al., 2011) and graph sparsification (Goyal et al., 2009; Fung et al., 2011), as well as in graph data management (Chen et al., 2022b; Liao et al., 2022; Chen et al., 2025b) and machine learning (Cesa-Bianchi et al., 2010; 2013). In this work, we study the differentially private computation of random spanning trees for the first time, to the best of our knowledge.

2.2 DIFFERENTIAL PRIVACY

109110111112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

108

Differential Privacy (DP), first formalized in (Dwork et al., 2006), has become widely recognized as the gold standard for rigorous privacy protection, with historical roots tracing back to randomized response mechanisms from the 1960s (Warner, 1965). DP provides a more reliable and provable privacy guarantee compared with conventional anonymization techniques (Sweeney, 2002; Li et al., 2006; Machanavajjhala et al., 2007), which are vulnerable to re-identification and linkage attacks that exploit external user information.

The core intuition of DP is that for any two neighboring datasets differing in only a small part (e.g., a single record or a single edge in a graph), the output of a randomized algorithm should remain statistically indistinguishable. This ensures that the presence or absence of any individual element contributes only a limited and quantifiable amount of information leakage. Such guarantees are typically achieved by injecting carefully calibrated noise into the computation, e.g., through the Gaussian (Dwork et al., 2014; Balle & Wang, 2018) or Laplace mechanisms (Dwork et al., 2014; Geng et al., 2020). Over time, several refined formulations of DP have been developed, including Rényi Differential Privacy (RDP) (Mironov, 2017; Mironov et al., 2019) and Local Differential Privacy (LDP) (Evfimievski et al., 2003; Kasiviswanathan et al., 2011), which enable tighter analysis and more flexible trade-offs between privacy and utility. These advances have enabled numerous non-trivial applications of DP across diverse fields, such as classical algorithms (Andoni et al., 2023; Li & Li, 2023; Song et al., 2023; Feng et al., 2025) and data structures (Qin et al., 2022; Ke et al., 2025), machine learning (Chaudhuri & Monteleoni, 2008; Jayaraman & Evans, 2019; Triastcyn & Faltings, 2020), large language models (Yu et al., 2022; Du et al., 2023; Mai et al., 2024), learning on graphs (Lin et al., 2022a; Olatunji et al., 2023; Sajadmanesh et al., 2023), and computer vision (Zheng et al., 2019; Zhu et al., 2020; Luo et al., 2021). Despite the rapid development and wide adoption of DP in these areas, the problem of generating random spanning trees (RSTs) under differential privacy has not been studied before. In this work, we address this novel and technically challenging application for the first time.

134 135 136

2.3 GRAPH THEORY AND GRAPH PROBLEMS

137 138 139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157 158

159

160

161

Graph theory is a fundamental research direction in theoretical computer science, aiming to design efficient algorithms for solving a wide range of graph problems. One of the most classical and well-studied problems is the single-source shortest path (SSSP) problem, which dates back to Dijkstra's algorithm in the 1950s (Dijksta, 1959). Since then, a large body of work (Fredman & Willard, 1990; 1993; Hagerup, 2000) has focused on improving the time complexity beyond the classical $O(m + n \log n)$ bound, where n is the number of vertices and m is the number of edges. Notably, Thorup developed a linear-time algorithm for undirected graphs with positive integer weights (Thorup, 1999), and subsequent work achieved $O(m + n \log \log \min\{n, C_{\max}\})$ time for directed graphs (Thorup, 2003), where C_{max} is the maximum edge weight. Several studies have also addressed graphs with negative edge weights, leading to further improvements in time complexity (Bringmann et al., 2023; Fineman, 2024). More recently, the state-of-the-art algorithm for directed graphs with nonnegative real edge weights achieves $O(m \log^{2/3} n)$ time (Duan et al., 2025), marking the first improvement over Dijkstra's algorithm in sparse graph settings. Another important problem is the maximum flow problem, which seeks the maximum amount of flow that can be sent from a source to a sink subject to edge capacity constraints and is equivalent, by the max-flow-mincut theorem, to computing a minimum s-t cut. Three classical algorithmic paradigms have been extensively developed: augmenting paths (Dinic, 1970; Boykov & Kolmogorov, 2004), push-relabel methods (Goldberg, 2008; Goldberg et al., 2015), and pseudoflow-based approaches (Hochbaum, 2008; Chandran & Hochbaum, 2009). A breakthrough in recent years has culminated in an almostlinear-time algorithm for maximum flow computation (Chen et al., 2022a; 2025a).

These foundational graph problems have also been studied under differential privacy. In particular, there exist differentially private algorithms for shortest paths (Sealfon, 2016; Chen et al., 2023) and for minimum cuts (Dalirrooyfard et al., 2023; Aamand et al., 2024). However, to the best of our knowledge, the problem of generating random spanning trees under differential privacy has been

less explored prior to our work.

3 PRELIMINARY

163164

166

167

169 170

171

172173174

175

176

177 178

179

181

182 183

185

187

188

189

190

191

192

193

194

195

196

197

199

200

201

202203

204

205206

207

208

209

211

212213

214

215

In Section 3.1, we present the basic notations used in this paper. In Section 3.2, we show the background knowledge of the random spanning tree. In Section 3.3, we explain the basics of differential privacy.

3.1 NOTATIONS

Let n,d be positive integers. We define $[n] := \{1,2,\ldots,n\}$. We define $\binom{[n]}{d} := \{S \subseteq [n] : |S| = d\}$. We use $\Pr[\cdot]$ to denote the probability function. Let $T \subseteq E$ be a set of edges. We use |T| to denote the cardinality of T.

3.2 RANDOM SPANNING TREE

We start by recalling the classical notion of a uniformly random spanning tree, which forms the foundation for the more advanced constructions that follow.

Definition 3.1 (Uniformly Random Spanning Tree, (Aldous, 1990)). Let G = (V, E) be an undirected connected graph, and let a simple random walk start from an arbitrary vertex $s \in V$, continuing until every vertex has been visited. For each vertex $v \in V \setminus \{s\}$, let e_v denote the edge through which the walk first entered v. Then $T = \{e_v \mid v \in V \setminus \{s\}\}$ forms a spanning tree of G, and moreover T is distributed as a uniformly random spanning tree of G, see Algorithm 1.

Algorithm 1 Uniformly Random Spanning Tree

```
1: procedure UNIFORMLYRST, (ALDOUS, 1990)(G = (V, E))
        for each vertex v \in V do
 2:
 3:
            S_{v,(0)} \leftarrow \{v\}
                                                              ▶ Initialize singleton sets for each vertex
 4:
 5:
        pick an arbitrary starting vertex u_0 \in V
 6:
        u \leftarrow u_0
 7:
        T \leftarrow \emptyset
                                                             ▶ Initialize empty set of edges for the tree
        while not all vertices have been visited do
 8:
            sample the first edge e = (u, v) that the random walk starting at u uses to exit S_{u,(0)}
 9:
10:
            T \leftarrow T \cup \{e\}
                                                             ▶ Add the edge that reaches a new vertex
11:
            u \leftarrow v
                                                                               12:
        end while
13:
        return T
14: end procedure
```

We now introduce the down-up random walk, which is a Markov chain on subsets used in more general sampling procedures.

Definition 3.2 (Down-Up Random Walk, (Anari et al., 2019)). Let $\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$ be a distribution over k-subsets of [n]. The down-up random walk P is the Markov chain on $\binom{[n]}{k}$ constructed via Algorithm 2.

Algorithm 2 Down-Up Random Walk, (Anari et al., 2019)

```
    for t = 0, 1, 2, · · · do
    Let T<sub>t</sub> ∈ (<sup>S<sub>t</sub></sup><sub>k-1</sub>) be a subset of S<sub>t</sub> obtained by dropping one element of S<sub>t</sub> uniformly at random.
    Let S<sub>t+1</sub> = T<sub>t</sub> ∪ {e}, where element e is chosen with probability ∝ μ(T<sub>t</sub> ∪ {e}).
    end for
```

Finally, we introduce the polynomial-generated weighted random spanning tree, which is based on the down-up random walk and generalizes uniform spanning trees to weighted distributions with provable approximation guarantees.

217

218

219

220

221

222

223224

225

226227228

229

230

231

232

233

234

235

236

237

238

239240241242

243

244

245

246 247

248

249

250

251

252253

254

255

256

257

258259

260

261

262

263

264265

266

267

268

269

Definition 3.3 (Polynomial-generated weighted random spanning tree, (Anari et al., 2021)). Let $\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$ be a density function on size k subsets of $[n] = \{1, \ldots, n\}$, defining a distribution $\Pr[S] \propto \mu(S)$. Then Algorithm 3 takes a connected weighted graph G = (V, E) on n edges with weight function $w: E \to \mathbb{R}_{\geq 0}$ and parameter $\Delta > 0$ as input and outputs a spanning tree $T \subseteq E$ in time $O(n \log(n) \log(n/\Delta))$. The distribution of T is guaranteed to be Δ -close in total variation distance to the distribution μ over spanning trees of G defined by

$$\mu(T) \propto w^T$$
.

In particular, for w(e) = 1 for all $e \in E$, μ is the uniform distribution on spanning trees of G as Definition 3.1.

Algorithm 3 Polynomial-generated weighted random spanning tree, (Anari et al., 2021)

```
1: procedure POLYGENRST(G = (V, E), w, \Delta)
          T \leftarrow \mathsf{UNIFORMLYRST}(G)
 2:
 3:
          C \leftarrow E \setminus T
 4:
          while |\Pr[T] - \mu(T)| > \Delta do
 5:
               e \leftarrow uniformly random element of C
 6:
               T \leftarrow T \cup \{e\}
 7:
               f \in \operatorname{cycle}(T) with probability \propto 1/w_f
               T \leftarrow T \setminus \{f\}
 8:
               C \leftarrow E \setminus T
 9:
          end whilereturn T
10:
11: end procedure
```

3.3 DIFFERENTIAL PRIVACY

Definition 3.4 (Differential Privacy, (Dwork et al., 2014)). For $\epsilon > 0$, $\delta \ge 0$, a randomized function \mathcal{A} is (ϵ, δ) -differentially private $((\epsilon, \delta)$ -DP) if for any two neighboring datasets $X \sim X'$, and any possible outcome of the algorithm $S \subset \text{Range}(\mathcal{A})$, $\Pr[\mathcal{A}(X) \in S] \le e^{\epsilon} \Pr[\mathcal{A}(X') \in S] + \delta$.

To better understand differential privacy in the context of graphs, we first define what it means for two graphs to be considered neighboring.

Definition 3.5 (Edge-Neighboring Graphs). Graphs G = (V, E, w) and G' = (V, E', w') are said to be edge-neighboring if they differ in the weight of exactly one edge $uv \in V^2$, with $|w_G(uv) - w_{G'}(uv)| \le 1$, while all other edge weights remain identical.

Next, we recall an important property of differentially private mechanisms: post-processing does not compromise privacy.

Lemma 3.6 (Post-Processing Lemma for DP, (Dwork et al., 2014)). Let $\mathcal{M} := \mathbb{N}^{|\chi|} \to \mathbb{R}$ be a randomized algorithm that is (ϵ, δ) -differentially private. Let $f : \mathbb{R} \to \mathbb{R}'$ be an arbitrarily random mapping. Then is $f \circ \mathcal{M} : \mathbb{N}^{|\chi|} \to \mathbb{R}'$ (ϵ, δ) -differentially private.

We then present composition results, which describe how privacy guarantees degrade when multiple DP mechanisms are combined.

Lemma 3.7 (Basic composition (Dwork et al., 2006)). Given t algorithms executed sequentially, where the i-th algorithm is (ϵ_i, δ_i) -DP for $\epsilon_i > 0$ and $\delta_i \geq 0$, the overall mechanism obtained by composing them is $(\epsilon_1 + \cdots + \epsilon_t, \delta_1 + \cdots + \delta_t)$ -DP.

For more refined guarantees when many mechanisms are composed adaptively, we refer to the advanced composition lemma.

Lemma 3.8 (Composition lemma, (Dwork et al., 2010)). Let $\epsilon \in (0,1)$, and M_1, \dots, M_k be ϵ' -DP, adaptively chosen mechanisms, then the composition $M_1 \circ \dots \circ M_k$ is (ϵ, δ) -DP, where $\epsilon' = \frac{\epsilon}{\sqrt{8k \log(1/\delta)}}$.

Lemma 3.9 (Advanced Composition, Theorem 3.20 in page 53 of (Dwork et al., 2014)). For all $\epsilon, \delta, \delta' \geq 0$, the class of (ϵ, δ) -DP mechanisms satisfies $(\epsilon, k\delta + \delta')$ -DP under k-fold adaptive composition for:

$$\epsilon' = \sqrt{2k\ln(1/\delta')}\epsilon + k\epsilon(e^{\epsilon} - 1)$$

Finally, we introduce the formal definition of the random response mechanism, which will be used later for bit-level perturbation of edges in the spanning tree.

Definition 3.10 (Random response mechanism). Let T = (V, E) denote a tree with node set V and edge set E. For each edge $e \in E$, let $g[e] \in \{0,1\}$ denote whether edge e is present (g[e] = 1) or absent (g[e] = 0) in the tree representation.

For any $e \in E$, let $\widetilde{g}[e]$ denote the perturbed version of g[e] using the random response mechanism. Namely, for every edge e, we have

$$\Pr[\widetilde{g}[e]=y] = \begin{cases} e^{\epsilon_0}/(e^{\epsilon_0}+1), & y=g[e], \\ 1/(e^{\epsilon_0}+1), & y=1-g[e]. \end{cases}$$

Let $a=e^{\epsilon_0}/(e^{\epsilon_0}+1), b=1/(e^{\epsilon_0}+1).$ Since $a/b=e^{\epsilon_0}$, this implies random response can achieve ϵ_0 -DP.

4 DIFFERENTIAL PRIVATE WEIGHTED RANDOM SPANNING TREE

In Section 4.1, we introduce an important technique that decomposes the edge weights into binary representations. In Section 4.2, we show the bit-level privacy guarantee. In Section 4.3, we show how to reconstruct the perturbed edge weights. In Section 4.4, we show our algorithm to produce differentially private random spanning trees.

4.1 WEIGHT DECOMPOSITION

We begin by decomposing edge weights into their binary representations, which will later allow us to apply randomized response at the bit level.

Definition 4.1 (Binary Weight Decomposition). Let G = (V, E, w) be a connected weighted graph, where $w : E \to \mathbb{Z}_{\geq 0}$ assigns nonnegative integer weights to edges. Assume that all edge weights are bounded by k:

$$0 < w(e) < k$$
, for all $e \in E$.

For each edge $e \in E$, we represent its weight in binary form:

$$w(e) = \sum_{i=0}^{\lceil \log_2 k \rceil - 1} b_i(e) \cdot 2^i,$$

where $b_i(e) \in \{0,1\}$ denotes the i-th bit of w(e).

We then define a sequence of unweighted graphs:

$$G_{(i)} = (V, E_{(i)}), \quad E_{(i)} = \{e \in E \mid b_i(e) = 1\},\$$

for each bit index $i \in \{0, \dots, \lceil \log_2 k \rceil - 1\}$. That is, $G_{(i)}$ contains exactly those edges of G whose i-th bit in the weight representation is 1.

A weighted random spanning tree in G can thus be interpreted as the superposition of at most $\lceil \log_2 k \rceil$ unweighted spanning trees, each sampled from one of the $G^{(i)}$. This decomposition allows us to apply randomized response at the bit level, and later reconstruct the perturbed weighted distribution by combining the unweighted outcomes.

4.2 BIT-LEVEL DIFFERENTIAL PRIVACY

We then consider the privacy guarantees of a single bit in the binary decomposition of edge weights for the weighted random spanning tree.

Lemma 4.2 (Single Bit of Edge Weight is Private, Informal Version of Lemma A.1). *If the following conditions hold:*

• Let $\epsilon_0 \geq 0$.

• Let $\widetilde{b}_i(e) \in \{0,1\}$ be the perturbed i-th bit of the weight of edge e.

Then, we can show that, for all edges $e \in E$ and all bit positions $i \in \{0, ..., \lceil \log_2 k \rceil - 1\}$, the perturbed bit $\widetilde{b}_i(e)$ is ϵ_0 -DP.

4.3 RECONSTRUCTION OF PERTURBED WEIGHTS

Once all bits have been perturbed, the next step is to reconstruct the perturbed weights of the edges by recombining their randomized bits. Specifically, after applying bit-level randomized response on each unweighted graph $G_{(i)}$, we obtain a set of perturbed bits:

$$\widetilde{b}_i(e) \in \{0,1\}, \quad \forall i = 0, \cdots, \ell - 1, e \in E,$$

where $\ell := \lceil \log_2 k \rceil$.

Definition 4.3 (Reconstructed Perturbed Edge Weights). For each edge $e \in E$, we define the reconstructed perturbed weight as

$$\widetilde{w}(e) := \sum_{i=0}^{\ell-1} 2^i \cdot \widetilde{b}_i(e).$$

The collection $\{\widetilde{w}(e)\}_{e\in E}$ defines a perturbed weighted graph $\widetilde{G}=(V,E,\widetilde{w})$, which aggregates the bit-level perturbations into integer valued edge weights.

With this reconstruction in place, we can establish the overall privacy guarantee of the resulting perturbed weights.

Lemma 4.4 (Reconstruction Preserves Differential Privacy, Informal Version of Lemma A.2). Let $\delta \in (0,1)$, let $\ell := \lceil \log_2 k \rceil$ be the number of bit levels per edge. If each bit-level perturbed bit $\widetilde{b}_i(e)$ is ϵ_0 -DP, then the reconstructed weights $\widetilde{w}(e)$ satisfy (ϵ, δ) -DP with

$$\epsilon = \epsilon_0 \sqrt{8k \log(1/\delta)}.$$

Since $\widetilde{w}(e)$ satisfies (ϵ, δ) -DP for each edge e under the single edge neighboring definition, the entire reconstructed weight \widetilde{w} also satisfies (ϵ, δ) -DP.

Therefore, the reconstructed perturbed weights preserve differential privacy under composition, extending the bit-level guarantees to the full weighted graph.

4.4 GENERATING THE PERTURBED WEIGHTED RANDOM SPANNING TREE

After reconstructing the perturbed weights \widetilde{w} , we can generate a final random spanning tree using Algorithm 4.

5 UTILITY ANALYSIS OF DIFFERENTIAL PRIVATE WEIGHTED RANDOM SPANNING TREE

In this section, we analyze the utility of the differentially private weighted random spanning tree, quantifying how the bit-level perturbations affect the expected weights of sampled spanning trees and providing upper bounds on the deviation from the original distribution.

We begin by defining the objects and notation used throughout this section.

400

401

402

403

404 405

406 407 408

409

411 412

413

414 415

416

417

418

419 420

421

422

423

424

425

426 427

428

429

430

431

Algorithm 4 Differentially private weighted random spanning tree

```
379
              1: procedure POLYGENRST(G = (V, E), w, \Delta, \epsilon_0)
380
              2:
                        \ell \leftarrow \lceil \log_2 k \rceil
381
              3:
                        for each edge e \in E do
382
                              Decompose weight: w(e) = \sum_{i=0}^{\ell-1} b_i(e) \cdot 2^i
              4:
                              for i = 0 to \ell - 1 do
              5:
384
                                    \widetilde{b}_i(e) = b_i(e), with probability \frac{e^{\epsilon_0}}{e^{\epsilon_0} + 1}
              6:
385
                                   \widetilde{b}_i(e) = 1 - b_i(e), with probability \frac{1}{e^{\epsilon_0} + 1}
              7:
386
              8:
387
                              Reconstruct perturbed weight: \widetilde{w}(e) \leftarrow \sum_{i=0}^{\ell-1} 2^i \cdot \widetilde{b}_i(e)
              9:
             10:
                        end for
389
                        T \leftarrow \text{UNIFORMLYRST}(G)
             11:
390
                        C \leftarrow E \setminus T
             12:
391
             13:
                        while |\Pr[T] - \mu(T)| > \Delta do
392
             14:
                              e \leftarrow uniformly random element of C
                              T \leftarrow T \cup \{e\}
             15:
                              f \in \operatorname{cycle}(T) with probability \propto 1/\widetilde{w}_f
394
             16:
                              T \leftarrow T \setminus \{f\}
395
             17:
                              C \leftarrow E \setminus T
             18:
396
                         end whilereturn T
             19:
397
             20: end procedure
398
399
```

Definition 5.1 (Spanning Trees and Perturbed Weights). Let G = (V, E) be a weighted graph with original edge weights e for $e \in E$. Let $\widetilde{w}(e)$ denote the perturbed edge weights obtained via bit-level random response perturbation as in Algorithm 4.

• We use $T_* \in \mathcal{T}(G)$ to denote a spanning tree sampled w.r.t. the original weights w, where

$$\Pr[T_*] \propto \prod_{e \in T_*} w(e).$$

• We use $\widetilde{T} \in \mathcal{T}(G)$ to denote a spanning tree sampled w.r.t. the perturbed weights \widetilde{w} :

$$\Pr[\widetilde{T}] \propto \prod_{e \in \widetilde{T}} \widetilde{w}(e).$$

• For each edge e, let $t:=\frac{e^{\epsilon_0}}{e^{\epsilon_0}+1}$ denote the probability that a single bit in the decomposition remains unchanged.

Having set up the notation, we first analyze the accuracy of the reconstructed edge weights after perturbation.

Lemma 5.2 (Reconstructed Weight Accuracy, Informal Version of Lemma B.1). Let $\widetilde{w}(e) = \sum_{i=0}^{\ell-1} 2^i \cdot \widetilde{b}_i(e)$ be the reconstructed weight. Then $\Pr[\widetilde{w}(e) = w(e)] = t^{\ell}$, where $\ell = \lceil \log_2 k \rceil$.

Building on this edge-level guarantee, we next extend the analysis to the entire spanning tree.

Theorem 5.3 (Utility of DP-RST, Informal Version of Theorem B.2). Let T_* be a weighted random spanning tree sampled from true weights w, and \widetilde{T} be sampled from perturbed weights \widetilde{w} . Then, for any fixed tree T, we have

$$\Pr[\widetilde{T} = T_*] \ge t^{\ell \cdot |E(T_*)|} = t^{\ell \cdot (|V| - 1)},$$

where |V| - 1 is the number of edges in a spanning tree.

Note that this lower bound is conservative and reflects only a worst-case guarantee. In practice, the probability that \widetilde{T} coincides with T_* is usually higher, since spanning trees depend on the relative ordering of edge weights rather than their exact values. As long as the order is preserved, \widetilde{T} will still equal T_* . Thus, the bound $t^{\ell \cdot (|V|-1)}$ underestimates the actual utility of DP-RST, which is often better when perturbations are small or weight gaps are large.

6 RUNNING TIME ANALYSIS

In this section, we provide a detailed analysis of the running time for Algorithm 4. The running time can be devided into two main parts: bit-level randomized response on edge weights and the polynomial-generated weighted random spanning tree procedure.

6.1 RUNNING TIME FOR BIT-LEVEL RANDOMIZED RESPONSE

We first analyze the time complexity of bit-level randomized response on edge weights.

Lemma 6.1 (Running Time for Bit-level Perturbation). Let n := |E| denote the number of edges in the graph, and $\ell = \lceil \log_2 k \rceil$ denote the number of bits per edge weight. Then the bit-level randomized response phase takes $O(n \cdot \ell)$ time.

Proof. Step 1: Weight decomposition. Each edge weight w(e) is decomposed into ℓ bits. This requires $O(\ell)$ time per edge. For all n edges, this step takes $O(n \cdot \ell)$ time.

Step 2: Bit-level randomized response. For each bit $b_i(e)$, we apply randomized response, which is O(1) per bit. Since there are ℓ bits per edge and n edges in total, this step also takes $O(n \cdot \ell)$ time.

Step 3: Reconstruct perturbed weights. Reconstruction of $\widetilde{w}(e)$ from ℓ bits requires $O(\ell)$ per edge, resulting in $O(n \cdot \ell)$ total time.

Step 4: Combining. Combining the three steps, the total running time for bit-level perturbation is

$$O(n \cdot \ell) = O(n \log k).$$

6.2 Overall running time

By combining the results of Lemma 6.1 and the known running time of the polynomial-generated weighted random spanning tree in Definition 3.3, we obtain the overall running time of Algorithm 4:

$$O(n \cdot \ell + n \log n \log(n/\Delta)) = O(n \log k + n \log n \log(n/\Delta)),$$

where n = |E| is the number of edges, $\ell = \lceil \log_2 k \rceil$ is the number of bits per edge weight, and $\Delta > 0$ is the accuracy parameter of the polynomial-generated RST.

Remark 6.2. We conclude this section with some observations regarding the computational aspects of DP-RST. In particular, we note the following:

- The bit-level randomized response phase is fully parallelizable across edges, so its runtime can be significantly reduced in practice.
- The polynomial-generated RST dominates the computational cost for most practical graphs, since $\log k \ll \log n \log(n/\Delta)$.
- The parameter Δ controls the trade-off between the accuracy of the sampled spanning tree distribution and the number of iterations in the polynomial-generated RST.

Overall, these observations suggest that DP-RST can achieve strong privacy guarantees while maintaining comparable computational efficiency to non-private RST algorithms, making it suitable for large-scale graphs.

7 CONCLUSION

In this paper, we initiated the study of differentially private random spanning trees. To address this challenge, we proposed DP-RST, the first framework for generating random spanning trees under (ϵ, δ) -differential privacy. Our algorithm carefully introduces noise while preserving key structural properties, and it achieves comparable time complexity to standard random spanning tree generation, making it practical for large graphs. For future work, we plan to extend our results beyond uniform random spanning trees and polynomial-generated weighted random spanning trees to more general distributions. We hope this work will spark further research at the intersection of random graph algorithms and differential privacy.

ETHICS STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications. We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions, and complete proofs in the appendix. The main text states each theorem clearly and refers to the detailed proofs. No external data or software is required.

REFERENCES

- Anders Aamand, Justin Y. Chen, Mina Dalirrooyfard, Slobodan Mitrović, Yuriy Nevmyvaka, Sandeep Silwal, and Yinzhan Xu. Differentially private gomory-hu trees. *arXiv preprint arXiv:2408.01798*, 2024.
- David J Aldous. The random walk construction of uniform spanning trees and uniform labelled trees. *SIAM Journal on Discrete Mathematics*, 3(4):450–465, 1990.
- Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials ii: high-dimensional walks and an fpras for counting bases of a matroid. In *Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing*, pp. 1–12, 2019.
- Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant, and Thuy-Duong Vuong. Log-concave polynomials iv: approximate exchange, tight mixing times, and near-optimal sampling of forests. In *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing*, pp. 408–420, 2021.
- Alexandr Andoni, Piotr Indyk, Sepideh Mahabadi, and Shyam Narayanan. Differentially private approximate near neighbor counting in high dimensions. *Advances in Neural Information Processing Systems*, 36:43544–43562, 2023.
- Arash Asadpour, Michel X Goemans, Aleksander Madry, Shayan Oveis Gharan, and Amin Saberi. An $O(\log n/\log\log n)$ -approximation algorithm for the asymmetric traveling salesman problem. In *Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete algorithms*, pp. 379–389, 2010.
- Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy: Analytical calibration and optimal denoising. In *International conference on machine learning*, pp. 394–403. PMLR, 2018.
- Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(9):1124–1137, 2004. doi: 10.1109/TPAMI.2004.60.
- Karl Bringmann, Alejandro Cassis, and Nick Fischer. Negative-weight single-source shortest paths in near-linear time: Now faster! In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pp. 515–538. IEEE, 2023.
- Andrei Z Broder. Generating random spanning trees. In *FOCS*, volume 89, pp. 442–447, 1989.
- Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. Random spanning trees and the prediction of weighted graphs. In *Proceedings of the 27th International Conference on International Conference on Machine Learning*, pp. 175–182, 2010.
- Nicolo Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. Random spanning trees and the prediction of weighted graphs. *Journal of Machine Learning Research*, 14(1):1251–1284, 2013.

- Bala G. Chandran and Dorit S. Hochbaum. A computational study of the pseudoflow and push-relabel algorithms for the maximum flow problem. *Operations Research*, 57(2):358–376, 2009. doi: 10.1287/OPRE.1080.0572.
- Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. *Advances in neural information processing systems*, 21, 2008.
- Justin Y Chen, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Shyam Narayanan, Jelani Nelson, and Yinzhan Xu. Differentially private all-pairs shortest path distances: Improved algorithms and lower bounds. In *Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 5040–5067. SIAM, 2023.
- Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In *Proceedings of the 63rd Annual IEEE Symposium on Foundations of Computer Science (FOCS'22)*, 2022a.
- Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. *Journal of the ACM*, 2025a.
- Qing Chen, Oded Lachish, Sven Helmer, and Michael H Böhlen. Dynamic spanning trees for connectivity queries on fully-dynamic undirected graphs. *Proceedings of the VLDB Endowment*, 15(11):3263–3276, 2022b.
- Qing Chen, Michael H Böhlen, and Sven Helmer. An experimental comparison of tree-data structures for connectivity queries on fully-dynamic undirected graphs. *Proceedings of the ACM on Management of Data*, 3(1):1–26, 2025b.
- Mina Dalirrooyfard, Slobodan Mitrovic, and Yuriy Nevmyvaka. Nearly tight bounds for differentially private multiway cut. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- Edsger W Dijksta. A note on two problems in connexion with graphs. *Numerische mathematik*, 1 (1):269–271, 1959.
- E. A. Dinic. Algorithm for solution of a problem of maximum flow in networks with power estimation. *Soviet Mathematics Doklady*, 11:1277–1280, 1970.
- Minxin Du, Xiang Yue, Sherman SM Chow, Tianhao Wang, Chenyu Huang, and Huan Sun. Dp-forward: Fine-tuning and inference on language models with differential privacy in forward pass. In *Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security*, pp. 2665–2679, 2023.
- Ran Duan, Jiayi Mao, Xiao Mao, Xinkai Shu, and Longhui Yin. Breaking the sorting barrier for directed single-source shortest paths. In *STOC*, 2025.
- David Durfee, Rasmus Kyng, John Peebles, Anup B Rao, and Sushant Sachdeva. Sampling random spanning trees faster than matrix multiplication. In *Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing*, pp. 730–742, 2017.
- Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In *Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3*, pp. 265–284. Springer, 2006.
- Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In 2010 IEEE 51st annual symposium on foundations of computer science, pp. 51–60. IEEE, 2010.
- Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. *Foundations and Trends® in Theoretical Computer Science*, 9(3–4):211–407, 2014.
- Alessandro Epasto, Vahab Mirrokni, Bryan Perozzi, Anton Tsitsulin, and Peilin Zhong. Differentially private graph learning via sensitivity-bounded personalized pagerank. *Advances in Neural Information Processing Systems*, 35:22617–22627, 2022.

- Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy breaches in privacy preserving data mining. In *Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems*, pp. 211–222, 2003.
 - Shiyuan Feng, Ying Feng, George Zhaoqi Li, Zhao Song, David Woodruff, and Lichen Zhang. On differential privacy for adaptively solving search problems via sketching. In *ICML*, 2025.
 - Jeremy T. Fineman. Single-source shortest paths with negative real weights in $\widetilde{O}(mn^{8/9})$ time. In STOC, 2024.
 - Michael L Fredman and Dan E Willard. Trans-dichotomous algorithms for minimum spanning trees and shortest paths. In *Proceedings* [1990] 31st Annual Symposium on Foundations of Computer Science, pp. 719–725. IEEE, 1990.
 - Michael L Fredman and Dan E Willard. Surpassing the information theoretic bound with fusion trees. *Journal of computer and system sciences*, 47(3):424–436, 1993.
 - Wai Shing Fung, Ramesh Hariharan, Nicholas JA Harvey, and Debmalya Panigrahi. A general framework for graph sparsification. In *Proceedings of the forty-third annual ACM symposium on Theory of computing*, pp. 71–80, 2011.
 - Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. Tight analysis of privacy and utility tradeoff in approximate differential privacy. In *International Conference on Artificial Intelligence and Statistics*, pp. 89–99. PMLR, 2020.
 - Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding approach to the traveling salesman problem. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 550–559. IEEE, 2011.
 - Andrew V. Goldberg. The partial augment–relabel algorithm for the maximum flow problem. In *Proceedings of the 16th Annual European Symposium on Algorithms (ESA'08)*, volume 5193 of *Lecture Notes in Computer Science*, pp. 466–477. Springer, 2008. doi: 10.1007/978-3-540-87744-8_39.
 - Andrew V. Goldberg, Sagi Hed, Haim Kaplan, Pushmeet Kohli, Robert Endre Tarjan, and Renato F. Werneck. Faster and more dynamic maximum flow by incremental breadth-first search. In *Proceedings of the 23rd Annual European Symposium on Algorithms (ESA'15)*, volume 9294 of *Lecture Notes in Computer Science*, pp. 619–630. Springer, 2015. doi: 10.1007/978-3-662-48350-3_52.
 - Navin Goyal, Luis Rademacher, and Santosh Vempala. Expanders via random spanning trees. In *Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms*, pp. 576–585. SIAM, 2009.
 - Torben Hagerup. Improved shortest paths on the word ram. In *International Colloquium on Automata, Languages, and Programming*, pp. 61–72. Springer, 2000.
 - Richard Hladik and Jakub Tetek. Near-universally-optimal differentially private minimum spanning trees. *arXiv preprint arXiv:2404.15035*, 2024.
 - Dorit S. Hochbaum. The pseudoflow algorithm: A new algorithm for the maximum-flow problem. *Operations Research*, 56(4):992–1009, 2008. doi: 10.1287/OPRE.1080.0524.
 - Bargav Jayaraman and David Evans. Evaluating differentially private machine learning in practice. In 28th USENIX security symposium (USENIX security 19), pp. 1895–1912, 2019.
 - Glen Jeh and Jennifer Widom. Scaling personalized web search. In *Proceedings of the 12th international conference on World Wide Web*, pp. 271–279, 2003.
 - Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. What can we learn privately? *SIAM Journal on Computing*, 40(3):793–826, 2011.

- Yekun Ke, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Dpbloomfilter: Securing bloom filters with differential privacy, 2025. URL https://arxiv.org/abs/2502.00693.
- Jonathan A Kelner and Aleksander Madry. Faster generation of random spanning trees. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 13–21. IEEE, 2009.
- Gustav Kirchhoff. Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird. *Annalen der Physik*, 148(12):497–508, 1847.
- Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and l-diversity. In 2007 IEEE 23rd international conference on data engineering, pp. 106–115. IEEE, 2006.
- Xiaoyun Li and Ping Li. Differentially private one permutation hashing and bin-wise consistent weighted sampling. *arXiv* preprint arXiv:2306.07674, 2023.
- Meihao Liao, Rong-Hua Li, Qiangqiang Dai, and Guoren Wang. Efficient personalized pagerank computation: A spanning forests sampling based approach. In *Proceedings of the 2022 International Conference on Management of Data*, pp. 2048–2061, 2022.
- Wanyu Lin, Baochun Li, and Cong Wang. Towards private learning on decentralized graphs with local differential privacy. *IEEE Transactions on Information Forensics and Security*, 17:2936–2946, 2022a.
- Wanyu Lin, Baochun Li, and Cong Wang. Towards private learning on decentralized graphs with local differential privacy. *IEEE Transactions on Information Forensics and Security*, 17:2936–2946, 2022b.
- Zelun Luo, Daniel J Wu, Ehsan Adeli, and Fei-Fei Li. Scalable differential privacy with sparse network finetuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5059–5068, 2021.
- Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan Venkitasubramaniam. 1-diversity: Privacy beyond k-anonymity. *Acm transactions on knowledge discovery from data (tkdd)*, 1(1):3–es, 2007.
- Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast generation of random spanning trees and the effective resistance metric. In *Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms*, pp. 2019–2036. SIAM, 2014.
- Peihua Mai, Ran Yan, Zhe Huang, Youjia Yang, and Yan Pang. Split-and-denoise: Protect large language model inference with local differential privacy. In *Forty-first International Conference on Machine Learning (ICML)*, 2024.
- Sahar Mazloom and S Dov Gordon. Secure computation with differentially private access patterns. In *Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security*, pp. 490–507, 2018.
- Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations symposium (CSF), pp. 263–275. IEEE, 2017.
- Ilya Mironov, Kunal Talwar, and Li Zhang. R\'enyi differential privacy of the sampled gaussian mechanism. *arXiv preprint arXiv:1908.10530*, 2019.
- Iyiola Emmanuel Olatunji, Thorben Funke, and Megha Khosla. Releasing graph neural networks with differential privacy guarantees. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=wk8oXR0kFA.
- Rasmus Pagh, Lukas Retschmeier, Hao Wu, and Hanwen Zhang. Optimal bounds for private minimum spanning trees via input perturbation. *Proceedings of the ACM on Management of Data*, 3 (2):1–26, 2025.

- Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song, Danyang Zhuo, and Shumo Chu. Adore: Differentially oblivious relational database operators. *arXiv preprint arXiv:2212.05176*, 2022.
 - Sina Sajadmanesh, Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-Perez. {GAP}: Differentially private graph neural networks with aggregation perturbation. In *32nd USENIX Security Symposium (USENIX Security 23)*, pp. 3223–3240, 2023.
 - Aaron Schild. An almost-linear time algorithm for uniform random spanning tree generation. In *Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing*, pp. 214–227, 2018.
 - Adam Sealfon. Shortest paths and distances with differential privacy. In *Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems*, pp. 29–41, 2016.
 - Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy: fast algorithm for dynamic kronecker projection maintenance. In *ICML*, pp. 32418–32462. PMLR, 2023.
 - Latanya Sweeney. k-anonymity: A model for protecting privacy. *International journal of uncertainty, fuzziness and knowledge-based systems*, 10(05):557–570, 2002.
 - Mikkel Thorup. Undirected single-source shortest paths with positive integer weights in linear time. *Journal of the ACM (JACM)*, 46(3):362–394, 1999.
 - Mikkel Thorup. Integer priority queues with decrease key in constant time and the single source shortest paths problem. In *Proceedings of the thirty-fifth annual ACM symposium on Theory of computing*, pp. 149–158, 2003.
 - Aleksei Triastcyn and Boi Faltings. Bayesian differential privacy for machine learning. In *International Conference on Machine Learning*, pp. 9583–9592. PMLR, 2020.
 - Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer bias. *Journal of the American statistical association*, 60(309):63–69, 1965.
 - Rongzhe Wei, Eli Chien, and Pan Li. Differentially private graph diffusion with applications in personalized pageranks. *Advances in neural information processing systems*, 37:12119–12150, 2024.
 - Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, and Huishuai Zhang. Differentially private fine-tuning of language models. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=Q42f0dfjECO.
 - Yifeng Zheng, Huayi Duan, Xiaoting Tang, Cong Wang, and Jiantao Zhou. Denoising in the dark: Privacy-preserving deep neural network-based image denoising. *IEEE Transactions on Dependable and Secure Computing*, 18(3):1261–1275, 2019.
 - Yuqing Zhu, Xiang Yu, Manmohan Chandraker, and Yu-Xiang Wang. Private-knn: Practical differential privacy for computer vision. In *proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11854–11862, 2020.

757 Appendix

Roadmap. In Section A, we supplement the missing proofs for Section 4. In Section B, we show the missing proofs for Section 5.

A MISSING PROOFS IN SECTION 4

We begin by presenting the proof for Lemma 4.2.

Lemma A.1 (Single Bit of Edge Weight is Private, Formal Version of Lemma 4.2). *If the following conditions hold:*

- Let $\epsilon_0 \geq 0$.
- Let $\widetilde{b}_i(e) \in \{0,1\}$ be the perturbed i-th bit of the weight of edge e.

Then, we can show that, for all edges $e \in E$ and all bit positions $i \in \{0, ..., \lceil \log_2 k \rceil - 1\}$, the perturbed bit $\widetilde{b}_i(e)$ is ϵ_0 -DP.

Proof. For each edge $e \in E$ and bit index $i \in \{0, \dots, \lceil \log_2 k \rceil - 1\}$, $b_i(e) \in \{0, 1\}$ is the ground truth bit of the weight of edge e. For any neighboring graph G' (differing in one edge weight), denote the corresponding bit as $b_i'(e)$. Similarly, let $\widetilde{b}_i(e)$ and $\widetilde{b}_i'(e)$ denote the perturbed bits.

We consider the following two cases to prove $\widetilde{b}_i(e)$ is ϵ_0 -DP.

Case 1. Suppose $b'_i(e) = b_i(e) = u$. Then

$$\Pr[\widetilde{b}_i(e) = u] = \frac{e^{\epsilon_0}}{e^{\epsilon_0} + 1}, \quad \Pr[\widetilde{b}'_i(e) = u] = \frac{e^{\epsilon_0}}{e^{\epsilon_0} + 1}.$$

Thus,

$$\frac{\Pr[\widetilde{b}_i(e) = u]}{\Pr[\widetilde{b}'_i(e) = u]} = 1.$$

Similarly,

$$\frac{\Pr[\widetilde{b}_i(e) = 1 - u]}{\Pr[\widetilde{b}'_i(e) = 1 - u]} = 1.$$

Case 2. Suppose $b_i'(e) \neq b_i(e)$. Let $b_i(e) = u$. Then

$$\frac{\Pr[\widetilde{b}_i(e) = u]}{\Pr[\widetilde{b}'_i(e) = u]} = e^{\epsilon_0}, \quad \frac{\Pr[\widetilde{b}_i(e) = 1 - u]}{\Pr[\widetilde{b}'_i(e) = 1 - u]} = e^{-\epsilon_0}.$$

Hence, for all $v \in \{0, 1\}$,

$$e^{-\epsilon_0} \leq \frac{\Pr[\widetilde{b}_i(e) = v]}{\Pr[\widetilde{b}_i'(e) = v]} \leq e^{\epsilon_0}.$$

Therefore, for every edge e and bit index i, the perturbed bit $b_i(e)$ satisfies ϵ_0 -differential privacy.

Next, we show the proof for Lemma 4.4.

Lemma A.2 (Reconstruction Preserves Differential Privacy, Formal Version of Lemma 4.4). Let $\delta \in (0,1)$, let $\ell := \lceil \log_2 k \rceil$ be the number of bit levels per edge. If each bit-level perturbed bit $\widetilde{b}_i(e)$ is ϵ_0 -DP, then the reconstructed weights $\widetilde{w}(e)$ satisfy (ϵ, δ) -DP with

$$\epsilon = \epsilon_0 \sqrt{8k \log(1/\delta)}.$$

Proof. Since each $\widetilde{b}_i(e)$ is ϵ_0 -DP, the reconstruction corresponds to the adaptive composition of at most ℓ pure ϵ_0 -DP mechanisms. Applying the composition lemma (Lemma 3.8), we obtain that the reconstruction mechanism satisfies (ϵ, δ) -DP with $\epsilon = \epsilon_0 \sqrt{8k \log(1/\delta)}$.

B MISSING PROOFS IN SECTION 5

In this section, we first prove Lemma 5.2.

Lemma B.1 (Reconstructed Weight Accuracy, Formal Version of Lemma 5.2). Let $\widetilde{w}(e) = \sum_{i=0}^{\ell-1} 2^i \cdot \widetilde{b}_i(e)$ be the reconstructed weight. Then

$$\Pr[\widetilde{w}(e) = w(e)] = t^{\ell},$$

where $\ell = \lceil \log_2 k \rceil$.

Proof. All bits must be correctly preserved for $\widetilde{w}(e)$ to equal w(e). Since each bit is independent, then:

$$Pr[\widetilde{w}(e) = w(e)] = \prod_{i=0}^{\ell-1} \Pr[\widetilde{b}_i(e) = b_i(e)] = t^{\ell}.$$

Then, we prove our main result on the utility of DP-RST, which is Theorem 5.3.

Theorem B.2 (Utility of DP-RST, Formal Version of Theorem 5.3). Let T_* be a weighted random spanning tree sampled from true weights w, and \widetilde{T} be sampled from perturbed weights \widetilde{w} . Then, for any fixed tree T, we have

$$\Pr[\widetilde{T} = T_*] \ge t^{\ell \cdot |E(T_*)|} = t^{\ell \cdot (|V| - 1)},$$

where |V| - 1 is the number of edges in a spanning tree.

Proof. For $\widetilde{T}=T_*$ to occur, all edges in T_* must have their weights exactly reconstructed. By Lemma 5.2, each edge is correct with probability t^ℓ , and edges are independent:

$$\Pr[\widetilde{T} = T_*] = \prod_{e \in T_*} \Pr[\widetilde{w}(e) = w(e)] = t^{\ell \cdot |E(T_*)|} = t^{\ell \cdot (|V| - 1)}.$$

This calculation gives a lower bound on the probability of sampling T_* , because other configurations of perturbed weights could also lead to $\widetilde{T} = T_*$. Hence, we conclude:

$$\Pr[\widetilde{T} = T_*] \ge t^{\ell \cdot |E(T_*)|} = t^{\ell \cdot (|V| - 1)}.$$

Thus, we complete the proof.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not contribute to idea creation or writing, and the authors take full responsibility for this paper's content.