
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIFFERENTIALLY PRIVATE RANDOM SPANNING TREE
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Random spanning trees (RSTs) are a fundamental object in graph theory with
wide-ranging applications in network design, reliability analysis, and randomized
algorithms. However, when the underlying graph encodes sensitive information,
such as private user relationships or confidential communication links, directly re-
leasing sampled spanning trees may leak critical structural details. To address this
issue, we study the problem of generating random spanning trees under differential
privacy constraints. We introduce DP-RST, the first algorithmic framework for
differentially private random spanning tree generation. Our method perturbs edge
weights by decomposing them into binary representations and applying random-
ized response at the bit level, then recombining the noisy weights and sampling a
spanning tree from the perturbed graph. This carefully designed pipeline injects
noise while preserving the essential utility of RSTs, thereby ensuring (ϵ, δ)-DP.
We further demonstrate that DP-RST achieves privacy protection with compa-
rable computational efficiency to existing non-private RST algorithms, making it
suitable for large-scale graphs. This work bridges the gap between random span-
ning tree generation and differential privacy, opening new directions for privacy-
preserving graph algorithms.

1 INTRODUCTION

Random spanning trees (RSTs) are a fundamental object in graph theory with wide-ranging appli-
cations in network design, reliability analysis, and randomized algorithms (Aldous, 1990; Broder,
1989; Kelner & Madry, 2009). Given a connected graph G = (V,E), a random spanning tree is
a spanning tree sampled from a specific distribution over all spanning trees of G, often uniformly
at random (Aldous, 1990) or according to edge weights (Anari et al., 2021). Efficiently generating
random spanning trees has been extensively studied, with classical approaches based on random
walks, determinant-based methods, and more recent fast algorithms leveraging effective resistance
and combinatorial graph structures (Madry et al., 2014; Durfee et al., 2017).

Beyond classical applications (Asadpour et al., 2010; Goyal et al., 2009; Gharan et al., 2011; Fung
et al., 2011), random spanning trees are increasingly used in scenarios involving sensitive user or
system data, including graph machine learning (Cesa-Bianchi et al., 2010; 2013), answering connec-
tivity queries in large-scale graphs (Chen et al., 2022b; 2025b), and fast computation of Personalized
PageRank (PPR) (Jeh & Widom, 2003; Liao et al., 2022). For instance, in graph machine learning,
releasing random spanning trees sampled from a social network graph could reveal whether specific
friendships or interactions exist between users (Lin et al., 2022b; Epasto et al., 2022). In the case
of Personalized PageRank, random spanning forests could inadvertently leak a user’s closest social
or professional relationships (Mazloom & Gordon, 2018; Wei et al., 2024). These scenarios high-
light that protecting structural information is essential, motivating the need for differentially private
random spanning trees.

Therefore, in this paper, we propose to study this fundamental and timely research question:

Can we design privacy-preserving algorithms to generate random spanning trees while still
preserving the utility and efficiency of the sampled trees?

This research question is technically novel and challenging, as it differs fundamentally from prior
work on privacy-preserving algorithms for graph problems such as minimum spanning trees (Hladik

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

& Tetek, 2024; Pagh et al., 2025), shortest paths (Sealfon, 2016; Chen et al., 2023), and minimum
cuts (Dalirrooyfard et al., 2023; Aamand et al., 2024). To the best of our knowledge, our work is the
first to address the privacy-preserving computation of random spanning trees.

To address our key research question, we develop a differential privacy (DP) framework for generat-
ing random spanning trees, namely DP-RST. The construction of our differentially private weighted
random spanning tree proceeds in four stages. First, each edge weight is decomposed into its binary
representation so that privacy mechanisms can be applied independently at the bit level. Second,
we apply randomized response to every bit, ensuring local privacy for each component. Third, the
perturbed bits are recombined to reconstruct noisy edge weights while preserving overall differen-
tial privacy through composition. Finally, a random spanning tree is sampled from the perturbed
weighted graph, yielding an output that balances privacy protection with structural utility.

The technical pipeline mentioned above results in a general DP framework for random spanning
tree generation that achieves (ϵ, δ)-differential privacy while retaining the efficiency of standard
RST algorithms. Our contributions can be summarized as follows:

• We present the first framework for generating differentially private random spanning trees,
providing (ϵ, δ)-DP.

• The proposed DP-RST algorithm maintains a similar time complexity as the standard ran-
dom spanning tree algorithm, making it practical for large graphs.

Roadmap. In Section 2, we provide a review of relevant works. In Section 3, we introduce the
fundamental concepts and definitions that form the basis of our analysis. In Section 4, we present
our proposed DP-RST algorithm and prove that it satisfies (ϵ, δ)-differential privacy. In Section 5,
we analyze the utility of DP-RST. In Section 6, we provide the analysis of the algorithm’s running
time, highlighting its computational efficiency. Finally, in Section 7, we conclude our paper.

2 RELATED WORK

In Section 2.1, we review the related works on random spanning trees. In Section 2.2, we show the
related works on differential privacy. In Section 2.3, we discuss several relevant graph problems in
basic graph theory.

2.1 RANDOM SPANNING TREE

The random spanning tree (RST) is one of the most well-established probabilistic concepts in graph
theory, with its earliest study tracing back to the 19th century (Kirchhoff, 1847). Early break-
throughs were achieved independently by Aldous (Aldous, 1990) and Broder (Broder, 1989), who
proposed sampling methods based on simulating random walks over the graph. This approach yields
exact samples but suffers from high time complexity, as it requires the walk to cover all edges
of the graph. Subsequent research has focused on improving sampling efficiency. For instance,
Kelner and Madry (Kelner & Madry, 2009) introduced a faster approach by exploiting connec-
tions between random walks and electrical network theory, and Madry et al. (Madry et al., 2014)
achieved O(m4/3+o(1)) expected time by combining random walks, effective resistance, and graph
cut structure. Next, Durfee et al. (Durfee et al., 2017) further improved sampling for edge-weighted
graphs using Gaussian elimination and approximate Schur complements, avoiding determinant- and
random-walk-based techniques. More recent algorithms have reduced the sampling time for random
spanning trees to nearly linear (Schild, 2018).

RSTs have a wide range of applications in theoretical computer science, including but not limited
to approximating the traveling salesperson problem (Asadpour et al., 2010; Gharan et al., 2011)
and graph sparsification (Goyal et al., 2009; Fung et al., 2011), as well as in graph data manage-
ment (Chen et al., 2022b; Liao et al., 2022; Chen et al., 2025b) and machine learning (Cesa-Bianchi
et al., 2010; 2013). In this work, we study the differentially private computation of random spanning
trees for the first time, to the best of our knowledge.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 DIFFERENTIAL PRIVACY

Differential Privacy (DP), first formalized in (Dwork et al., 2006), has become widely recognized as
the gold standard for rigorous privacy protection, with historical roots tracing back to randomized
response mechanisms from the 1960s (Warner, 1965). DP provides a more reliable and provable
privacy guarantee compared with conventional anonymization techniques (Sweeney, 2002; Li et al.,
2006; Machanavajjhala et al., 2007), which are vulnerable to re-identification and linkage attacks
that exploit external user information.

The core intuition of DP is that for any two neighboring datasets differing in only a small part (e.g.,
a single record or a single edge in a graph), the output of a randomized algorithm should remain
statistically indistinguishable. This ensures that the presence or absence of any individual element
contributes only a limited and quantifiable amount of information leakage. Such guarantees are
typically achieved by injecting carefully calibrated noise into the computation, e.g., through the
Gaussian (Dwork et al., 2014; Balle & Wang, 2018) or Laplace mechanisms (Dwork et al., 2014;
Geng et al., 2020). Over time, several refined formulations of DP have been developed, including
Rényi Differential Privacy (RDP) (Mironov, 2017; Mironov et al., 2019) and Local Differential
Privacy (LDP) (Evfimievski et al., 2003; Kasiviswanathan et al., 2011), which enable tighter analysis
and more flexible trade-offs between privacy and utility. These advances have enabled numerous
non-trivial applications of DP across diverse fields, such as classical algorithms (Andoni et al.,
2023; Li & Li, 2023; Song et al., 2023; Feng et al., 2025) and data structures (Qin et al., 2022;
Ke et al., 2025), machine learning (Chaudhuri & Monteleoni, 2008; Jayaraman & Evans, 2019;
Triastcyn & Faltings, 2020), large language models (Yu et al., 2022; Du et al., 2023; Mai et al., 2024),
learning on graphs (Lin et al., 2022a; Olatunji et al., 2023; Sajadmanesh et al., 2023), and computer
vision (Zheng et al., 2019; Zhu et al., 2020; Luo et al., 2021). Despite the rapid development and
wide adoption of DP in these areas, the problem of generating random spanning trees (RSTs) under
differential privacy has not been studied before. In this work, we address this novel and technically
challenging application for the first time.

2.3 GRAPH THEORY AND GRAPH PROBLEMS

Graph theory is a fundamental research direction in theoretical computer science, aiming to de-
sign efficient algorithms for solving a wide range of graph problems. One of the most classical
and well-studied problems is the single-source shortest path (SSSP) problem, which dates back
to Dijkstra’s algorithm in the 1950s (Dijksta, 1959). Since then, a large body of work (Fredman
& Willard, 1990; 1993; Hagerup, 2000) has focused on improving the time complexity beyond
the classical O(m + n log n) bound, where n is the number of vertices and m is the number of
edges. Notably, Thorup developed a linear-time algorithm for undirected graphs with positive inte-
ger weights (Thorup, 1999), and subsequent work achieved O(m + n log logmin{n,Cmax}) time
for directed graphs (Thorup, 2003), where Cmax is the maximum edge weight. Several studies have
also addressed graphs with negative edge weights, leading to further improvements in time com-
plexity (Bringmann et al., 2023; Fineman, 2024). More recently, the state-of-the-art algorithm for
directed graphs with nonnegative real edge weights achieves O(m log2/3 n) time (Duan et al., 2025),
marking the first improvement over Dijkstra’s algorithm in sparse graph settings. Another important
problem is the maximum flow problem, which seeks the maximum amount of flow that can be sent
from a source to a sink subject to edge capacity constraints and is equivalent, by the max-flow–min-
cut theorem, to computing a minimum s–t cut. Three classical algorithmic paradigms have been ex-
tensively developed: augmenting paths (Dinic, 1970; Boykov & Kolmogorov, 2004), push–relabel
methods (Goldberg, 2008; Goldberg et al., 2015), and pseudoflow-based approaches (Hochbaum,
2008; Chandran & Hochbaum, 2009). A breakthrough in recent years has culminated in an almost-
linear-time algorithm for maximum flow computation (Chen et al., 2022a; 2025a).

These foundational graph problems have also been studied under differential privacy. In particular,
there exist differentially private algorithms for shortest paths (Sealfon, 2016; Chen et al., 2023) and
for minimum cuts (Dalirrooyfard et al., 2023; Aamand et al., 2024). However, to the best of our
knowledge, the problem of generating random spanning trees under differential privacy has been
less explored prior to our work.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 PRELIMINARY

In Section 3.1, we present the basic notations used in this paper. In Section 3.2, we show the back-
ground knowledge of the random spanning tree. In Section 3.3, we explain the basics of differential
privacy.

3.1 NOTATIONS

Let n, d be positive integers. We define [n] := {1, 2, . . . , n}. We define
(
[n]
d

)
:= {S ⊆ [n] : |S| =

d}. We use Pr[·] to denote the probability function. Let T ⊆ E be a set of edges. We use |T |to
denote the cardinality of T .

3.2 RANDOM SPANNING TREE

We start by recalling the classical notion of a uniformly random spanning tree, which forms the
foundation for the more advanced constructions that follow.

Definition 3.1 (Uniformly Random Spanning Tree, (Aldous, 1990)). Let G = (V,E) be an undi-
rected connected graph, and let a simple random walk start from an arbitrary vertex s ∈ V , contin-
uing until every vertex has been visited. For each vertex v ∈ V \ {s}, let ev denote the edge through
which the walk first entered v. Then T = {ev | v ∈ V \ {s}} forms a spanning tree of G, and
moreover T is distributed as a uniformly random spanning tree of G, see Algorithm 1.

Algorithm 1 Uniformly Random Spannning Tree

1: procedure UNIFORMLYRST, (ALDOUS, 1990)(G = (V,E))
2: for each vertex v ∈ V do
3: Sv,(0) ← {v} ▷ Initialize singleton sets for each vertex
4: end for
5: pick an arbitrary starting vertex u0 ∈ V
6: u← u0

7: T ← ∅ ▷ Initialize empty set of edges for the tree
8: while not all vertices have been visited do
9: sample the first edge e = (u, v) that the random walk starting at u uses to exit Su,(0)

10: T ← T ∪ {e} ▷ Add the edge that reaches a new vertex
11: u← v ▷ Move to the new vertex
12: end while
13: return T
14: end procedure

We now introduce the down-up random walk, which is a Markov chain on subsets used in more
general sampling procedures.

Definition 3.2 (Down-Up Random Walk, (Anari et al., 2019)). Let µ :
(
[n]
k

)
→ R≥0 be a distribution

over k-subsets of [n]. The down-up random walk P is the Markov chain on
(
[n]
k

)
constructed via

Algorithm 2.

Algorithm 2 Down-Up Random Walk, (Anari et al., 2019)

1: for t = 0, 1, 2, · · · do
2: Let Tt ∈

(
St

k−1

)
be a subset of St obtained by dropping one element of St uniformly at

random.
3: Let St+1 = Tt ∪ {e}, where element e is chosen with probability ∝ µ(Tt ∪ {e}).
4: end for

Finally, we introduce the polynomial-generated weighted random spanning tree, which is based on
the down-up random walk and generalizes uniform spanning trees to weighted distributions with
provable approximation guarantees.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Definition 3.3 (Polynomial-generated weighted random spanning tree, (Anari et al., 2021)). Let
µ :

(
[n]
k

)
→ R≥0 be a density function on size k subsets of [n] = {1, . . . , n}, defining a distribution

Pr[S] ∝ µ(S). Then Algorithm 3 takes a connected weighted graph G = (V,E) on n edges with
weight function w : E → R≥0 and parameter ∆ > 0 as input and outputs a spanning tree T ⊆ E
in time O(n log(n) log(n/∆)). The distribution of T is guaranteed to be ∆-close in total variation
distance to the distribution µ over spanning trees of G defined by

µ(T) ∝ wT .

In particular, for w(e) = 1 for all e ∈ E, µ is the uniform distribution on spanning trees of G as
Definition 3.1.

Algorithm 3 Polynomial-generated weighted random spanning tree, (Anari et al., 2021)

1: procedure POLYGENRST(G = (V,E), w,∆)
2: T ← UNIFORMLYRST(G)
3: C ← E \ T
4: while |Pr[T]− µ(T)| > ∆ do
5: e← uniformly random element of C
6: T ← T ∪ {e}
7: f ∈ cycle(T) with probability ∝ 1/wf

8: T ← T \ {f}
9: C ← E \ T

10: end whilereturn T
11: end procedure

3.3 DIFFERENTIAL PRIVACY

Definition 3.4 (Differential Privacy, (Dwork et al., 2014)). For ϵ > 0, δ ≥ 0, a randomized function
A is (ϵ, δ)-differentially private ((ϵ, δ)-DP) if for any two neighboring datasets X ∼ X ′, and any
possible outcome of the algorithm S ⊂ Range(A), Pr[A(X) ∈ S] ≤ eϵ Pr[A(X ′) ∈ S] + δ.

To better understand differential privacy in the context of graphs, we first define what it means for
two graphs to be considered neighboring.

Definition 3.5 (Edge-Neighboring Graphs). Graphs G = (V,E,w) and G′ = (V,E′, w′) are said
to be edge-neighboring if they differ in the weight of exactly one edge uv ∈ V 2, with |wG(uv) −
wG′(uv)| ≤ 1, while all other edge weights remain identical.

Next, we recall an important property of differentially private mechanisms: post-processing does
not compromise privacy.

Lemma 3.6 (Post-Processing Lemma for DP, (Dwork et al., 2014)). Let M := N|χ| → R be a
randomized algorithm that is (ϵ, δ)-differentially private. Let f : R→ R′ be an arbitrarily random
mapping. Then is f ◦M : N|χ| → R′ (ϵ, δ)-differentially private.

We then present composition results, which describe how privacy guarantees degrade when multiple
DP mechanisms are combined.

Lemma 3.7 (Basic composition (Dwork et al., 2006)). Given t algorithms executed sequentially,
where the i-th algorithm is (ϵi, δi)-DP for ϵi > 0 and δi ≥ 0, the overall mechanism obtained by
composing them is (ϵ1 + · · ·+ ϵt, δ1 + · · ·+ δt)-DP.

For more refined guarantees when many mechanisms are composed adaptively, we refer to the ad-
vanced composition lemma.

Lemma 3.8 (Composition lemma, (Dwork et al., 2010)). Let ϵ ∈ (0, 1), and M1, · · · ,Mk be ϵ′-
DP, adaptively chosen mechanisms, then the composition M1 ◦ · · · ◦Mk is (ϵ, δ)-DP, where ϵ′ =

ϵ√
8k log(1/δ)

.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Lemma 3.9 (Advanced Composition, Theorem 3.20 in page 53 of (Dwork et al., 2014)). For all
ϵ, δ, δ′ ≥ 0, the class of (ϵ, δ)-DP mechanisms satisfies (ϵ, kδ + δ′)-DP under k-fold adaptive com-
position for:

ϵ′ =
√
2k ln(1/δ′)ϵ+ kϵ(eϵ − 1)

Finally, we introduce the formal definition of the random response mechanism, which will be used
later for bit-level perturbation of edges in the spanning tree.

Definition 3.10 (Random response mechanism). Let T = (V,E) denote a tree with node set V and
edge set E. For each edge e ∈ E, let g[e] ∈ {0, 1} denote whether edge e is present (g[e] = 1) or
absent (g[e] = 0) in the tree representation.

For any e ∈ E, let g̃[e] denote the perturbed version of g[e] using the random response mechanism.
Namely, for every edge e, we have

Pr[g̃[e] = y] =

{
eϵ0/(eϵ0 + 1), y = g[e],

1/(eϵ0 + 1), y = 1− g[e].

Let a = eϵ0/(eϵ0 +1), b = 1/(eϵ0 +1). Since a/b = eϵ0 , this implies random response can achieve
ϵ0-DP.

4 DIFFERENTIAL PRIVATE WEIGHTED RANDOM SPANNING TREE

In Section 4.1, we introduce an important technique that decomposes the edge weights into binary
representations. In Section 4.2, we show the bit-level privacy guarantee. In Section 4.3, we show
how to reconstruct the perturbed edge weights. In Section 4.4, we show our algorithm to produce
differentially private random spanning trees.

4.1 WEIGHT DECOMPOSITION

We begin by decomposing edge weights into their binary representations, which will later allow us
to apply randomized response at the bit level.

Definition 4.1 (Binary Weight Decomposition). Let G = (V,E,w) be a connected weighted graph,
where w : E → Z≥0 assigns nonnegative integer weights to edges. Assume that all edge weights
are bounded by k:

0 ≤ w(e) ≤ k, for all e ∈ E.

For each edge e ∈ E, we represent its weight in binary form:

w(e) =

⌈log2 k⌉−1∑
i=0

bi(e) · 2i,

where bi(e) ∈ {0, 1} denotes the i-th bit of w(e).

We then define a sequence of unweighted graphs:

G(i) = (V,E(i)), E(i) = {e ∈ E | bi(e) = 1},

for each bit index i ∈ {0, · · · , ⌈log2 k⌉ − 1}. That is, G(i) contains exactly those edges of G whose
i-th bit in the weight representation is 1.

A weighted random spanning tree in G can thus be interpreted as the superposition of at most
⌈log2 k⌉ unweighted spanning trees, each sampled from one of the G(i). This decomposition al-
lows us to apply randomized response at the bit level, and later reconstruct the perturbed weighted
distribution by combining the unweighted outcomes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 BIT-LEVEL DIFFERENTIAL PRIVACY

We then consider the privacy guarantees of a single bit in the binary decomposition of edge weights
for the weighted random spanning tree.
Lemma 4.2 (Single Bit of Edge Weight is Private, Informal Version of Lemma A.1). If the following
conditions hold:

• Let ϵ0 ≥ 0.

• Let b̃i(e) ∈ {0, 1} be the perturbed i-th bit of the weight of edge e.

Then, we can show that, for all edges e ∈ E and all bit positions i ∈ {0, . . . , ⌈log2 k⌉ − 1}, the
perturbed bit b̃i(e) is ϵ0-DP.

4.3 RECONSTRUCTION OF PERTURBED WEIGHTS

Once all bits have been perturbed, the next step is to reconstruct the perturbed weights of the edges
by recombining their randomized bits. Specifically, after applying bit-level randomized response on
each unweighted graph G(i), we obtain a set of perturbed bits:

b̃i(e) ∈ {0, 1}, ∀i = 0, · · · , ℓ− 1, e ∈ E,

where ℓ := ⌈log2 k⌉.
Definition 4.3 (Reconstructed Perturbed Edge Weights). For each edge e ∈ E, we define the recon-
structed perturbed weight as

w̃(e) :=

ℓ−1∑
i=0

2i · b̃i(e).

The collection {w̃(e)}e∈E defines a perturbed weighted graph G̃ = (V,E, w̃), which aggregates
the bit-level perturbations into integer valued edge weights.

With this reconstruction in place, we can establish the overall privacy guarantee of the resulting
perturbed weights.
Lemma 4.4 (Reconstruction Preserves Differential Privacy, Informal Version of Lemma A.2). Let
δ ∈ (0, 1), let ℓ := ⌈log2 k⌉ be the number of bit levels per edge. If each bit-level perturbed bit b̃i(e)
is ϵ0-DP, then the reconstructed weights w̃(e) satisfy (ϵ, δ)-DP with

ϵ = ϵ0
√

8k log(1/δ).

Since w̃(e) satisfies (ϵ, δ)-DP for each edge e under the single edge neighboring definition, the entire
reconstructed weight w̃ also satisfies (ϵ, δ)-DP.

Therefore, the reconstructed perturbed weights preserve differential privacy under composition, ex-
tending the bit-level guarantees to the full weighted graph.

4.4 GENERATING THE PERTURBED WEIGHTED RANDOM SPANNING TREE

After reconstructing the perturbed weights w̃, we can generate a final random spanning tree using
Algorithm 4.

5 UTILITY ANALYSIS OF DIFFERENTIAL PRIVATE WEIGHTED RANDOM
SPANNING TREE

In this section, we analyze the utility of the differentially private weighted random spanning tree,
quantifying how the bit-level perturbations affect the expected weights of sampled spanning trees
and providing upper bounds on the deviation from the original distribution.

We begin by defining the objects and notation used throughout this section.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 4 Differentially private weighted random spanning tree

1: procedure POLYGENRST(G = (V,E), w,∆, ϵ0)
2: ℓ← ⌈log2 k⌉
3: for each edge e ∈ E do
4: Decompose weight: w(e) =

∑ℓ−1
i=0 bi(e) · 2i

5: for i = 0 to ℓ− 1 do
6: b̃i(e) = bi(e), with probability eϵ0

eϵ0+1

7: b̃i(e) = 1− bi(e), with probability 1
eϵ0+1

8: end for
9: Reconstruct perturbed weight: w̃(e)←

∑ℓ−1
i=0 2

i · b̃i(e)
10: end for
11: T ← UNIFORMLYRST(G)
12: C ← E \ T
13: while |Pr[T]− µ(T)| > ∆ do
14: e← uniformly random element of C
15: T ← T ∪ {e}
16: f ∈ cycle(T) with probability ∝ 1/w̃f

17: T ← T \ {f}
18: C ← E \ T
19: end whilereturn T
20: end procedure

Definition 5.1 (Spanning Trees and Perturbed Weights). Let G = (V,E) be a weighted graph with
original edge weights e for e ∈ E. Let w̃(e) denote the perturbed edge weights obtained via bit-level
random response perturbation as in Algorithm 4.

• We use T∗ ∈ T (G) to denote a spanning tree sampled w.r.t. the original weights w, where

Pr[T∗] ∝
∏
e∈T∗

w(e).

• We use T̃ ∈ T (G) to denote a spanning tree sampled w.r.t. the perturbed weights w̃:

Pr[T̃] ∝
∏
e∈T̃

w̃(e).

• For each edge e, let t := eϵ0

eϵ0+1 denote the probability that a single bit in the decomposition
remains unchanged.

Having set up the notation, we first analyze the accuracy of the reconstructed edge weights after
perturbation.
Lemma 5.2 (Reconstructed Weight Accuracy, Informal Version of Lemma B.1). Let w̃(e) =∑ℓ−1

i=0 2
i · b̃i(e) be the reconstructed weight. Then Pr[w̃(e) = w(e)] = tℓ, where ℓ = ⌈log2 k⌉.

Building on this edge-level guarantee, we next extend the analysis to the entire spanning tree.
Theorem 5.3 (Utility of DP-RST, Informal Version of Theorem B.2). Let T∗ be a weighted random
spanning tree sampled from true weights w, and T̃ be sampled from perturbed weights w̃. Then, for
any fixed tree T , we have

Pr[T̃ = T∗] ≥ tℓ·|E(T∗)| = tℓ·(|V |−1),

where |V | − 1 is the number of edges in a spanning tree.

Note that this lower bound is conservative and reflects only a worst-case guarantee. In practice, the
probability that T̃ coincides with T∗ is usually higher, since spanning trees depend on the relative
ordering of edge weights rather than their exact values. As long as the order is preserved, T̃ will
still equal T∗. Thus, the bound tℓ·(|V |−1) underestimates the actual utility of DP-RST, which is often
better when perturbations are small or weight gaps are large.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 RUNNING TIME ANALYSIS

In this section, we provide a detailed analysis of the running time for Algorithm 4. The running
time can be devided into two main parts: bit-level randomized response on edge weights and the
polynomial-generated weighted random spanning tree procedure.

6.1 RUNNING TIME FOR BIT-LEVEL RANDOMIZED RESPONSE

We first analyze the time complexity of bit-level randomized response on edge weights.
Lemma 6.1 (Running Time for Bit-level Perturbation). Let n := |E| denote the number of edges
in the graph, and ℓ = ⌈log2 k⌉ denote the number of bits per edge weight. Then the bit-level
randomized response phase takes O(n · ℓ) time.

Proof. Step 1: Weight decomposition. Each edge weight w(e) is decomposed into ℓ bits. This
requires O(ℓ) time per edge. For all n edges, this step takes O(n · ℓ) time.

Step 2: Bit-level randomized response. For each bit bi(e), we apply randomized response, which
is O(1) per bit. Since there are ℓ bits per edge and n edges in total, this step also takes O(n · ℓ) time.

Step 3: Reconstruct perturbed weights. Reconstruction of w̃(e) from ℓ bits requires O(ℓ) per
edge, resulting in O(n · ℓ) total time.

Step 4: Combining. Combining the three steps, the total running time for bit-level perturbation is
O(n · ℓ) = O(n log k).

6.2 OVERALL RUNNING TIME

By combining the results of Lemma 6.1 and the known running time of the polynomial-generated
weighted random spanning tree in Definition 3.3, we obtain the overall running time of Algorithm 4:

O(n · ℓ+ n log n log(n/∆)) = O(n log k + n logn log(n/∆)),

where n = |E| is the number of edges, ℓ = ⌈log2 k⌉ is the number of bits per edge weight, and
∆ > 0 is the accuracy parameter of the polynomial-generated RST.
Remark 6.2. We conclude this section with some observations regarding the computational aspects
of DP-RST. In particular, we note the following:

• The bit-level randomized response phase is fully parallelizable across edges, so its runtime
can be significantly reduced in practice.

• The polynomial-generated RST dominates the computational cost for most practical
graphs, since log k ≪ logn log(n/∆).

• The parameter ∆ controls the trade-off between the accuracy of the sampled spanning tree
distribution and the number of iterations in the polynomial-generated RST.

Overall, these observations suggest that DP-RST can achieve strong privacy guarantees while main-
taining comparable computational efficiency to non-private RST algorithms, making it suitable for
large-scale graphs.

7 CONCLUSION

In this paper, we initiated the study of differentially private random spanning trees. To address this
challenge, we proposed DP-RST, the first framework for generating random spanning trees under
(ϵ, δ)-differential privacy. Our algorithm carefully introduces noise while preserving key structural
properties, and it achieves comparable time complexity to standard random spanning tree generation,
making it practical for large graphs. For future work, we plan to extend our results beyond uniform
random spanning trees and polynomial-generated weighted random spanning trees to more general
distributions. We hope this work will spark further research at the intersection of random graph
algorithms and differential privacy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Anders Aamand, Justin Y. Chen, Mina Dalirrooyfard, Slobodan Mitrović, Yuriy Nevmyvaka,
Sandeep Silwal, and Yinzhan Xu. Differentially private gomory-hu trees. arXiv preprint
arXiv:2408.01798, 2024.

David J Aldous. The random walk construction of uniform spanning trees and uniform labelled
trees. SIAM Journal on Discrete Mathematics, 3(4):450–465, 1990.

Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials ii:
high-dimensional walks and an fpras for counting bases of a matroid. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pp. 1–12, 2019.

Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant, and Thuy-Duong Vuong. Log-
concave polynomials iv: approximate exchange, tight mixing times, and near-optimal sampling
of forests. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pp. 408–420, 2021.

Alexandr Andoni, Piotr Indyk, Sepideh Mahabadi, and Shyam Narayanan. Differentially private
approximate near neighbor counting in high dimensions. Advances in Neural Information Pro-
cessing Systems, 36:43544–43562, 2023.

Arash Asadpour, Michel X Goemans, Aleksander Madry, Shayan Oveis Gharan, and Amin Saberi.
An O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman problem.
In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete algorithms, pp.
379–389, 2010.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy: An-
alytical calibration and optimal denoising. In International conference on machine learning, pp.
394–403. PMLR, 2018.

Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow algo-
rithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(9):1124–1137, 2004. doi: 10.1109/TPAMI.2004.60.

Karl Bringmann, Alejandro Cassis, and Nick Fischer. Negative-weight single-source shortest paths
in near-linear time: Now faster! In 2023 IEEE 64th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 515–538. IEEE, 2023.

Andrei Z Broder. Generating random spanning trees. In FOCS, volume 89, pp. 442–447, 1989.

Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. Random spanning trees
and the prediction of weighted graphs. In Proceedings of the 27th International Conference on
International Conference on Machine Learning, pp. 175–182, 2010.

Nicolo Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. Random spanning trees
and the prediction of weighted graphs. Journal of Machine Learning Research, 14(1):1251–1284,
2013.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bala G. Chandran and Dorit S. Hochbaum. A computational study of the pseudoflow and push–
relabel algorithms for the maximum flow problem. Operations Research, 57(2):358–376, 2009.
doi: 10.1287/OPRE.1080.0572.

Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. Advances in
neural information processing systems, 21, 2008.

Justin Y Chen, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Shyam Narayanan, Jelani Nelson,
and Yinzhan Xu. Differentially private all-pairs shortest path distances: Improved algorithms and
lower bounds. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 5040–5067. SIAM, 2023.

Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In Proceedings of the
63rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’22), 2022a.

Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. Journal of the ACM,
2025a.

Qing Chen, Oded Lachish, Sven Helmer, and Michael H Böhlen. Dynamic spanning trees for
connectivity queries on fully-dynamic undirected graphs. Proceedings of the VLDB Endowment,
15(11):3263–3276, 2022b.

Qing Chen, Michael H Böhlen, and Sven Helmer. An experimental comparison of tree-data struc-
tures for connectivity queries on fully-dynamic undirected graphs. Proceedings of the ACM on
Management of Data, 3(1):1–26, 2025b.

Mina Dalirrooyfard, Slobodan Mitrovic, and Yuriy Nevmyvaka. Nearly tight bounds for differen-
tially private multiway cut. In Advances in Neural Information Processing Systems (NeurIPS),
2023.

Edsger W Dijksta. A note on two problems in connexion with graphs. Numerische mathematik, 1
(1):269–271, 1959.

E. A. Dinic. Algorithm for solution of a problem of maximum flow in networks with power estima-
tion. Soviet Mathematics Doklady, 11:1277–1280, 1970.

Minxin Du, Xiang Yue, Sherman SM Chow, Tianhao Wang, Chenyu Huang, and Huan Sun. Dp-
forward: Fine-tuning and inference on language models with differential privacy in forward pass.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pp. 2665–2679, 2023.

Ran Duan, Jiayi Mao, Xiao Mao, Xinkai Shu, and Longhui Yin. Breaking the sorting barrier for
directed single-source shortest paths. In STOC, 2025.

David Durfee, Rasmus Kyng, John Peebles, Anup B Rao, and Sushant Sachdeva. Sampling random
spanning trees faster than matrix multiplication. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pp. 730–742, 2017.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In 2010
IEEE 51st annual symposium on foundations of computer science, pp. 51–60. IEEE, 2010.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Alessandro Epasto, Vahab Mirrokni, Bryan Perozzi, Anton Tsitsulin, and Peilin Zhong. Differen-
tially private graph learning via sensitivity-bounded personalized pagerank. Advances in Neural
Information Processing Systems, 35:22617–22627, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy breaches in
privacy preserving data mining. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pp. 211–222, 2003.

Shiyuan Feng, Ying Feng, George Zhaoqi Li, Zhao Song, David Woodruff, and Lichen Zhang. On
differential privacy for adaptively solving search problems via sketching. In ICML, 2025.

Jeremy T. Fineman. Single-source shortest paths with negative real weights in Õ(mn8/9) time. In
STOC, 2024.

Michael L Fredman and Dan E Willard. Trans-dichotomous algorithms for minimum spanning trees
and shortest paths. In Proceedings [1990] 31st Annual Symposium on Foundations of Computer
Science, pp. 719–725. IEEE, 1990.

Michael L Fredman and Dan E Willard. Surpassing the information theoretic bound with fusion
trees. Journal of computer and system sciences, 47(3):424–436, 1993.

Wai Shing Fung, Ramesh Hariharan, Nicholas JA Harvey, and Debmalya Panigrahi. A general
framework for graph sparsification. In Proceedings of the forty-third annual ACM symposium on
Theory of computing, pp. 71–80, 2011.

Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. Tight analysis of privacy and utility tradeoff
in approximate differential privacy. In International Conference on Artificial Intelligence and
Statistics, pp. 89–99. PMLR, 2020.

Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding approach to the
traveling salesman problem. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pp. 550–559. IEEE, 2011.

Andrew V. Goldberg. The partial augment–relabel algorithm for the maximum flow problem.
In Proceedings of the 16th Annual European Symposium on Algorithms (ESA’08), volume
5193 of Lecture Notes in Computer Science, pp. 466–477. Springer, 2008. doi: 10.1007/
978-3-540-87744-8 39.

Andrew V. Goldberg, Sagi Hed, Haim Kaplan, Pushmeet Kohli, Robert Endre Tarjan, and Re-
nato F. Werneck. Faster and more dynamic maximum flow by incremental breadth-first search.
In Proceedings of the 23rd Annual European Symposium on Algorithms (ESA’15), volume
9294 of Lecture Notes in Computer Science, pp. 619–630. Springer, 2015. doi: 10.1007/
978-3-662-48350-3 52.

Navin Goyal, Luis Rademacher, and Santosh Vempala. Expanders via random spanning trees. In
Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pp. 576–585.
SIAM, 2009.

Torben Hagerup. Improved shortest paths on the word ram. In International Colloquium on Au-
tomata, Languages, and Programming, pp. 61–72. Springer, 2000.

Richard Hladik and Jakub Tetek. Near-universally-optimal differentially private minimum spanning
trees. arXiv preprint arXiv:2404.15035, 2024.

Dorit S. Hochbaum. The pseudoflow algorithm: A new algorithm for the maximum-flow problem.
Operations Research, 56(4):992–1009, 2008. doi: 10.1287/OPRE.1080.0524.

Bargav Jayaraman and David Evans. Evaluating differentially private machine learning in practice.
In 28th USENIX security symposium (USENIX security 19), pp. 1895–1912, 2019.

Glen Jeh and Jennifer Widom. Scaling personalized web search. In Proceedings of the 12th inter-
national conference on World Wide Web, pp. 271–279, 2003.

Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam
Smith. What can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yekun Ke, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Dpbloomfilter: Secur-
ing bloom filters with differential privacy, 2025. URL https://arxiv.org/abs/2502.
00693.

Jonathan A Kelner and Aleksander Madry. Faster generation of random spanning trees. In 2009
50th Annual IEEE Symposium on Foundations of Computer Science, pp. 13–21. IEEE, 2009.

Gustav Kirchhoff. Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der
linearen vertheilung galvanischer ströme geführt wird. Annalen der Physik, 148(12):497–508,
1847.

Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy beyond k-
anonymity and l-diversity. In 2007 IEEE 23rd international conference on data engineering,
pp. 106–115. IEEE, 2006.

Xiaoyun Li and Ping Li. Differentially private one permutation hashing and bin-wise consistent
weighted sampling. arXiv preprint arXiv:2306.07674, 2023.

Meihao Liao, Rong-Hua Li, Qiangqiang Dai, and Guoren Wang. Efficient personalized pagerank
computation: A spanning forests sampling based approach. In Proceedings of the 2022 Interna-
tional Conference on Management of Data, pp. 2048–2061, 2022.

Wanyu Lin, Baochun Li, and Cong Wang. Towards private learning on decentralized graphs with
local differential privacy. IEEE Transactions on Information Forensics and Security, 17:2936–
2946, 2022a.

Wanyu Lin, Baochun Li, and Cong Wang. Towards private learning on decentralized graphs with
local differential privacy. IEEE Transactions on Information Forensics and Security, 17:2936–
2946, 2022b.

Zelun Luo, Daniel J Wu, Ehsan Adeli, and Fei-Fei Li. Scalable differential privacy with sparse
network finetuning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 5059–5068, 2021.

Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan Venkitasubra-
maniam. l-diversity: Privacy beyond k-anonymity. Acm transactions on knowledge discovery
from data (tkdd), 1(1):3–es, 2007.

Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast generation of random spanning
trees and the effective resistance metric. In Proceedings of the twenty-sixth annual ACM-SIAM
symposium on Discrete algorithms, pp. 2019–2036. SIAM, 2014.

Peihua Mai, Ran Yan, Zhe Huang, Youjia Yang, and Yan Pang. Split-and-denoise: Protect large
language model inference with local differential privacy. In Forty-first International Conference
on Machine Learning (ICML), 2024.

Sahar Mazloom and S Dov Gordon. Secure computation with differentially private access patterns.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pp. 490–507, 2018.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations sympo-
sium (CSF), pp. 263–275. IEEE, 2017.

Ilya Mironov, Kunal Talwar, and Li Zhang. R\’enyi differential privacy of the sampled gaussian
mechanism. arXiv preprint arXiv:1908.10530, 2019.

Iyiola Emmanuel Olatunji, Thorben Funke, and Megha Khosla. Releasing graph neural networks
with differential privacy guarantees. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=wk8oXR0kFA.

Rasmus Pagh, Lukas Retschmeier, Hao Wu, and Hanwen Zhang. Optimal bounds for private mini-
mum spanning trees via input perturbation. Proceedings of the ACM on Management of Data, 3
(2):1–26, 2025.

13

https://arxiv.org/abs/2502.00693
https://arxiv.org/abs/2502.00693
https://openreview.net/forum?id=wk8oXR0kFA

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song, Danyang Zhuo, and Shumo Chu. Adore:
Differentially oblivious relational database operators. arXiv preprint arXiv:2212.05176, 2022.

Sina Sajadmanesh, Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-Perez. {GAP}:
Differentially private graph neural networks with aggregation perturbation. In 32nd USENIX
Security Symposium (USENIX Security 23), pp. 3223–3240, 2023.

Aaron Schild. An almost-linear time algorithm for uniform random spanning tree generation. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 214–227,
2018.

Adam Sealfon. Shortest paths and distances with differential privacy. In Proceedings of the 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 29–41, 2016.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy: fast
algorithm for dynamic kronecker projection maintenance. In ICML, pp. 32418–32462. PMLR,
2023.

Latanya Sweeney. k-anonymity: A model for protecting privacy. International journal of uncer-
tainty, fuzziness and knowledge-based systems, 10(05):557–570, 2002.

Mikkel Thorup. Undirected single-source shortest paths with positive integer weights in linear time.
Journal of the ACM (JACM), 46(3):362–394, 1999.

Mikkel Thorup. Integer priority queues with decrease key in constant time and the single source
shortest paths problem. In Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pp. 149–158, 2003.

Aleksei Triastcyn and Boi Faltings. Bayesian differential privacy for machine learning. In Interna-
tional Conference on Machine Learning, pp. 9583–9592. PMLR, 2020.

Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer bias.
Journal of the American statistical association, 60(309):63–69, 1965.

Rongzhe Wei, Eli Chien, and Pan Li. Differentially private graph diffusion with applications in
personalized pageranks. Advances in neural information processing systems, 37:12119–12150,
2024.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, and Huishuai Zhang.
Differentially private fine-tuning of language models. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=Q42f0dfjECO.

Yifeng Zheng, Huayi Duan, Xiaoting Tang, Cong Wang, and Jiantao Zhou. Denoising in the dark:
Privacy-preserving deep neural network-based image denoising. IEEE Transactions on Depend-
able and Secure Computing, 18(3):1261–1275, 2019.

Yuqing Zhu, Xiang Yu, Manmohan Chandraker, and Yu-Xiang Wang. Private-knn: Practical dif-
ferential privacy for computer vision. In proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 11854–11862, 2020.

14

https://openreview.net/forum?id=Q42f0dfjECO

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In Section A, we supplement the missing proofs for Section 4. In Section B, we show
the missing proofs for Section 5.

A MISSING PROOFS IN SECTION 4

We begin by presenting the proof for Lemma 4.2.
Lemma A.1 (Single Bit of Edge Weight is Private, Formal Version of Lemma 4.2). If the following
conditions hold:

• Let ϵ0 ≥ 0.

• Let b̃i(e) ∈ {0, 1} be the perturbed i-th bit of the weight of edge e.

Then, we can show that, for all edges e ∈ E and all bit positions i ∈ {0, . . . , ⌈log2 k⌉ − 1}, the
perturbed bit b̃i(e) is ϵ0-DP.

Proof. For each edge e ∈ E and bit index i ∈ {0, . . . , ⌈log2 k⌉ − 1}, bi(e) ∈ {0, 1} is the ground
truth bit of the weight of edge e. For any neighboring graph G′ (differing in one edge weight),
denote the corresponding bit as b′i(e). Similarly, let b̃i(e) and b̃′i(e) denote the perturbed bits.

We consider the following two cases to prove b̃i(e) is ϵ0-DP.

Case 1. Suppose b′i(e) = bi(e) = u. Then

Pr[̃bi(e) = u] =
eϵ0

eϵ0 + 1
, Pr[̃b′i(e) = u] =

eϵ0

eϵ0 + 1
.

Thus,
Pr[̃bi(e) = u]

Pr[̃b′i(e) = u]
= 1.

Similarly,

Pr[̃bi(e) = 1− u]

Pr[̃b′i(e) = 1− u]
= 1.

Case 2. Suppose b′i(e) ̸= bi(e). Let bi(e) = u. Then

Pr[̃bi(e) = u]

Pr[̃b′i(e) = u]
= eϵ0 ,

Pr[̃bi(e) = 1− u]

Pr[̃b′i(e) = 1− u]
= e−ϵ0 .

Hence, for all v ∈ {0, 1},

e−ϵ0 ≤ Pr[̃bi(e) = v]

Pr[̃b′i(e) = v]
≤ eϵ0 .

Therefore, for every edge e and bit index i, the perturbed bit b̃i(e) satisfies ϵ0-differential privacy.

Next, we show the proof for Lemma 4.4.
Lemma A.2 (Reconstruction Preserves Differential Privacy, Formal Version of Lemma 4.4). Let
δ ∈ (0, 1), let ℓ := ⌈log2 k⌉ be the number of bit levels per edge. If each bit-level perturbed bit b̃i(e)
is ϵ0-DP, then the reconstructed weights w̃(e) satisfy (ϵ, δ)-DP with

ϵ = ϵ0
√
8k log(1/δ).

Proof. Since each b̃i(e) is ϵ0-DP, the reconstruction corresponds to the adaptive composition of at
most ℓ pure ϵ0-DP mechanisms. Applying the composition lemma (Lemma 3.8), we obtain that the
reconstruction mechanism satisfies (ϵ, δ)-DP with ϵ = ϵ0

√
8k log(1/δ).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B MISSING PROOFS IN SECTION 5

In this section, we first prove Lemma 5.2.
Lemma B.1 (Reconstructed Weight Accuracy, Formal Version of Lemma 5.2). Let w̃(e) =∑ℓ−1

i=0 2
i · b̃i(e) be the reconstructed weight. Then

Pr[w̃(e) = w(e)] = tℓ,

where ℓ = ⌈log2 k⌉.

Proof. All bits must be correctly preserved for w̃(e) to equal w(e). Since each bit is independent,
then:

Pr[w̃(e) = w(e)] =

ℓ−1∏
i=0

Pr[̃bi(e) = bi(e)] = tℓ.

Then, we prove our main result on the utility of DP-RST, which is Theorem 5.3.
Theorem B.2 (Utility of DP-RST, Formal Version of Theorem 5.3). Let T∗ be a weighted random
spanning tree sampled from true weights w, and T̃ be sampled from perturbed weights w̃. Then, for
any fixed tree T , we have

Pr[T̃ = T∗] ≥ tℓ·|E(T∗)| = tℓ·(|V |−1),

where |V | − 1 is the number of edges in a spanning tree.

Proof. For T̃ = T∗ to occur, all edges in T∗ must have their weights exactly reconstructed. By
Lemma 5.2, each edge is correct with probability tℓ, and edges are independent:

Pr[T̃ = T∗] =
∏
e∈T∗

Pr[w̃(e) = w(e)] = tℓ·|E(T∗)| = tℓ·(|V |−1).

This calculation gives a lower bound on the probability of sampling T∗, because other configurations
of perturbed weights could also lead to T̃ = T∗. Hence, we conclude:

Pr[T̃ = T∗] ≥ tℓ·|E(T∗)| = tℓ·(|V |−1).

Thus, we complete the proof.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

16

	Introduction
	Related Work
	Random Spanning Tree
	Differential Privacy
	Graph Theory and Graph Problems

	Preliminary
	Notations
	Random Spanning Tree
	Differential Privacy

	Differential Private Weighted Random Spanning Tree
	Weight Decomposition
	Bit-level Differential Privacy
	Reconstruction of Perturbed Weights
	Generating the Perturbed Weighted Random Spanning Tree

	Utility Analysis of Differential Private Weighted Random Spanning Tree
	Running Time Analysis
	Running time for bit-level randomized response
	Overall running time

	Conclusion
	Missing Proofs in Section 4
	Missing Proofs in Section 5

