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Abstract

Scanning Electron Microscopy (SEM) imaging provides a powerful yet often under-
utilized method for diagnosing the state of lithium-ion battery cathodes. However,
deep learning models for SEM-based state prediction often struggle with limited
training data and domain shifts, especially when functional electrolyte additives
are added. In this work, we propose a two-stage transfer learning framework
using an EfficientNet-B0 backbone to robustly classify cathode SEM images across
nine classes defined by material composition (NCM333, NCM622, NCM811) and
aging state (pristine, formation-aged, 100 cycles). Our method first pretrains the
model on a data-rich source domain of additive-free samples, then fine-tunes it
on a smaller target domain containing additive-induced variations. To address
class imbalance, we compare targeted oversampling and weighted loss strategies.
Experimental results show that our framework consistently outperforms pretraining-
only and fine-tuning-only baselines, achieving over 0.98 accuracy and F1 scores
for domain-shifted classes. Qualitative analysis with Grad-CAM shows that the
model identifies important physical features, such as particle cracking and boundary
degradation. These findings demonstrate the effectiveness of transfer learning in re-
ducing data scarcity and domain shift in SEM-based battery diagnostics, providing
a practical solution for automated analysis in the development of next-generation
batteries. Our code is available at here.

1 Introduction

Lithium-ion batteries (LIBs) are widely used in electric vehicles and grid-level energy storage systems
because of their high energy density and long cycle life. An accurate assessment of battery state,
such as aging or functional degradation, is important for ensuring safety, reliability, and optimal
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Figure 1: Representative SEM images of NCM cathode materials with varying nickel content
(NCM333 and NCM622), cycling conditions (pristine, formation-aged, 100 cycles), and presence of
functional additives.

performance [Zhang et al., [2025]]. There are several factors that affect overall capacity and cyclability.
Especially, a different nickel composition in lithium nickel cobalt manganese oxide cathode material
affects the specific capacity and rate capability of the whole LIB. A typical LIB consists of a cathode,
an anode, an electrolyte, and a separator, with the cathode influencing the overall behaviors of the
battery. Various techniques have been used for battery state estimation, including electrochemical
impedance spectroscopy, X-ray diffraction, and imaging-based methods. However, many of these
approaches involve high-cost, complex equipment, or destructive testing procedures.

Among imaging techniques, scanning electron microscopy (SEM) is widely used for characterizing
the morphology of cathode materials. SEM allows for direct visual inspection of microstructural
changes linked to different electrochemical states, as shown in Figure[T} While SEM brightness can
reflect variations in relative electron conductivity due to differences in electron density, it does not
indicate changes in the elemental composition of the electrode. Particle morphology, however, can
reveal whether a sample is pristine or cycled, since repeated charge-discharge cycles often cause
particle fragmentation 2024]). These features make SEM a convenient tool for assessing
the chemical composition and degradation state of battery materials.

Furthermore, functional electrolyte additives are incorporated into positive electrode interfaces to
enhance electrochemical performance, such as improving interfacial stability and suppressing side
reactions 2020].. Identifying these additive effects in the surface structure is important for
understanding how they affect degradation behavior and performance changes. However, interpreting
SEM images still requires manual analysis with considerable domain expertise [Wang et al., 2018,
Sulzer et al.l 2021].

To address this challenge, recent studies have begun to apply deep learning and machine learning
techniques to automate SEM image analysis. These methods enable data-driven interpretation, reduce
the reliance on expert heuristics, and can handle large-scale datasets more efficiently. For example, [Ohl
trained a CNN-based model using cathode SEM images to predict the composition of the
material and the charge-discharge state, reporting high precision in the former but relatively limited
performance in the latter. Despite these advances, labeled SEM data are still limited, especially for
electrodes under diverse cycling conditions and functional electrolyte additives. This scarcity of data
creates a problem for deep classifiers because they struggle to learn underrepresented classes.

We focus on the data-rich and data-poor situation. Transfer learning offers a solution to deal with
data scarcity, using models that were pretrained on similar tasks and applying them to areas with
scarce data, like medical imaging, remote sensing, and materials science.
let al., 2024, [Chen et al.,[2024]. Models pretrained on data-rich source domains are adapted to target
domains with limited labeled samples. However, its application to SEM-based battery state prediction
remains unexplored. Most existing studies focus on training models from scratch, without leveraging
transferable representations across experimental conditions or compositions.




In this work, we explore how transfer learning can be used for SEM-based classification of LIB
cathodes. Specifically, our goal is to transfer knowledge learned from additive-free cathode images to
improve classification performance on samples containing functional additives under various cycling
conditions. We focus on NCM (Nickel-Cobalt-Manganese) cathodes, which are widely used in
electric vehicles and grid-scale energy storage, with varying nickel content and cycling stages (e.g.,
pristine, formation-aged, and 100-cycle samples). By comparing models trained with and without
transfer learning, we assess generalization performance and explore the effectiveness of pretrained
representations in this domain.

The main contributions of this paper are as follows:

* We propose a transfer learning framework to address the data scarcity and class imbalance
issues in SEM-based classification of LIB cathodes.

* We conduct a systematic evaluation across varying experimental conditions, including
composition, additive presence, and cycle stages.

* We analyze the interpretability of the learned models using Grad-CAM visualization, pro-
viding insight into how morphological features contribute to prediction.

2 Related Work

Battery Life Prediction Recent studies have utilized machine learning to predict battery life and
understand material degradation. In|Severson et al.|[2019]’s work, using features from the initial
5-100 charge/discharge cycles, a supervised machine learning model was trained to predict remaining
useful life, achieving predictions within 9.1% error after only 100 initial cycles. While effective for
early screening of cells for longevity, their model was limited to a single chemistry and aging protocol,
so its generalizability to other cell types or conditions is limited. Zhang et al.| [2025] introduced
BatLiNet, a deep learning framework trained in a broad spectrum of aging conditions, such as
varying charge protocols, temperatures, and chemistries, which achieved significantly lower error
up to 40% than prior CNN approaches. However, BatLiNet struggled under highly mixed datasets,
highlighting challenges in diverse conditions. |Li et al.|[2024] proposed a machine learning approach
combining classification and regression to predict aluminum-ion battery cathode performance. They
trained on known MXene cathode types and fine-tuned with a small amount of data from a new
material, successfully predicting improved capacity and cycle life. This approach assumes the training
materials’ performance trends apply to the new material, and if the new material’s behavior deviates
radically, the model may need retraining. |Yardimci and Ersoy| [2025] sought to optimize deep learning
architectures for classifying SEM image data categorized into three classes: non-defective, slightly
defective, and defective. They examined how applying dimensionality reduction would impact the
accuracy, speed, and resource usage of various convolutional neural network (CNN) architectures.

In addition, |Oh et al.|[2024] explored cathode composition and cycle state classification using SEM
images. Their EfficientNet-based classifier [Tan and Le| 2019] achieved 99.6% accuracy on test
SEM data, but performance degraded on unseen manufacturer samples with different additives,
underscoring limited cross-domain robustness.

Transfer Learning under Data Scarcity Transfer learning has been widely adopted to address
small-data challenges across various domains. Raghu et al.| [2019] showed that the benefit of transfer
learning from ImageNet to medical imaging often stems from weight scaling rather than feature reuse,
and its advantage diminishes when sufficient labeled data are available. To overcome label scarcity,
Chae and Kim| [2023] proposed tailored transfer strategies, such as similar-image pretraining and
Rol-focused fine-tuning, which significantly improved performance in cervical cancer and skin lesion
analysis. Similarly, [Song et al.|[2024] reported that ImageNet-pretrained CNNs, combined with
extensive augmentation and weighted cross-entropy loss, effectively mitigated overfitting and class
imbalance in small medical datasets. In the materials domain, Semitela et al.| [2025] applied transfer
learning using ResNet-50 and Inception V3 for SEM-based surface defect classification, achieving
improved performance under data scarcity. |[Liu et al.|[2023]] further enhanced transfer learning for
imbalanced datasets through active sampling of minority classes. Beyond these applications, Maxwell
et al.|[2024] found that ImageNet-based transfer learning provided moderate gains in remote sensing
tasks, suggesting that unsupervised or semi-supervised methods may be preferable when labeled data
are extremely limited.
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Figure 2: Class distribution before and after oversampling. Top: original sample counts per class.
Bottom: balanced dataset with oversampling to 201 samples per class.

Summary of Gaps Overall, battery life prediction has advanced through early-cycle feature
learning and inter-cell deep networks, but faces generalization issues under different chemistries and
additives. Our work bridges these gaps by employing transfer learning strategies for SEM-based
battery data under domain shift, leveraging pretraining on additive-free samples and fine-tuning on
additive-containing data.

3 Proposed Method

We formulate the SEM image classification task as a multi-class supervised learning problem. Given a
grayscale SEM image x € R”*W the goal is to predict its corresponding class label y € {1,..., K},
where the class represents a combination of cathode composition (NCM333, NCM622, NCM811)
and cycled state (pristine, formation-aged, 100 cycles). This task is challenged by limited labeled
samples and class imbalance, particularly for additive-containing samples.

3.1 Model Architecture

We adopt EfficientNet-BO0 as the backbone architecture, which has 5.3 million parameters and provides
a good trade-off between efficiency and accuracy [Tan and Lel 2019]]. The network is initialized with
ImageNet-pretrained weights and fine-tuned on our dataset after replacing the final classification
layer to match K classes. Pretraining on ImageNet, despite domain differences, can help improving
convergence and generalization [ Yosinski et al., [2014].

3.2 Data Preprocessing and Augmentation

Each SEM image is resized to 224 x 224. The raw dataset contains 1,700 images before augmentation.
To enhance generalization, we apply random flips, rotations (+20°), contrast adjustment, and scaling
during training. Resizing and contrast adjustment can potentially introduce artifacts; however, these
operations were carefully applied to emulate variations that naturally occur under different SEM
acquisition conditions, thereby improving the model’s robustness in both data-rich and data-poor
scenarios. To address class imbalance, we oversample the training set by replicating samples for each
class until it matches the size of the second-largest class (201 samples). The resulting balanced class
distribution is shown in Figure 2]

3.3 Framework Overview

We propose a two-stage transfer learning framework to improve classification performance under data
scarcity and imbalance. The framework includes (1) pretraining on an additive-free source dataset,
and (2) fine-tuning on a smaller target dataset containing additives.

Formally, let

Dy = { (SCE-S), yl(s)) N (source, additive-free)
Dy = {(x§t), yj(-t))}j-\;‘l, (target, with additives)
fo : RV 5 RE (CNN classifier)
p = softmax(fy(x)), (predicted probabilities).



After resizing, the grayscale SEM image is passed through EfficientNet-BO [Tan and Le} 2019, which
begins with a series of depthwise separable convolutions and squeeze-and-excitation blocks to extract
low- to mid-level features. The backbone progressively encodes hierarchical morphological patterns
while maintaining parameter efficiency through compound scaling.

The resulting high-dimensional feature map is then fed into a global average pooling layer, reducing
spatial dimensions while preserving semantic content. Finally, a fully connected classification layer
(replaced to match K target classes) produces a logit vector, which is converted to class probabilities
via softmax activation.

This pipeline enables the model to capture fine surface features related to cathode composition and
cycling state, supporting reliable SEM-based battery classification.

Stage 1: Pretraining on Source Dataset

The model is first trained on Dg,. using standard cross-entropy loss:
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Stage 2: Fine-tuning on Target Dataset

The pretrained weights 6y are used to initialize the model for fine-tuning on D,y. We compare two
fine-tuning approaches:

(a) Standard Cross-Entropy Loss
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Oversampling is applied to balance the class distribution in this setting.

(b) Weighted Cross-Entropy Loss To address class imbalance without oversampling, we assign
class weights wy, = 1/ny, with ny the number of samples in class &, and minimize

Lyee(0) = ZZwk]l =k) 1ogpl(€).
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4 Experiments

4.1 Dataset

We performed SEM imaging on various NCM cathode samples with four different nickel compositions
and three cycle states. The SEM images were captured at 500x magnification and an operating voltage
of 20 kV using secondary electrons, following the methodology described in |Oh et al.| [2024]. The
initial dataset contained 1,700 images before augmentation, covering both additive-free (E1) and
additive-containing (E2) samples. For fair evaluation, the test set was separated from the experimental
data used for training, and an 80:20 train—test split was applied. On the training portion, we performed
5-fold cross-validation to assess model stability and generalization.

To address class imbalance, all classes were oversampled to match the sample count of the second
most frequent class, and data augmentation techniques—including random cropping, flipping, rotation,
and their composites—were applied. This process expanded the dataset to a total of 3,211 images.

We plan to make the dataset available upon reasonable request for further research in SEM-based
battery diagnostics.



4.2 Evaluation Metric

We evaluate our models using class-wise accuracy and F1 score.

TP, Fl. — 2 x P.R. _ TP, _ TP, 3)
TP. +FP. +FN.” ¢ P.+R. ¢ TP.+FP.  ° TP.+FN.
where TP, is the number of true positives, FP,. is the number of false positives, and FN,, is the
number of false negatives for class c. This metric measures how well the model predicts each
individual class. The F1 score for class c is the harmonic mean of precision and recall, providing a
balanced measure with our class-imbalanced dataset.

Acc. =

4.3 Baselines

We conducted experiments and statistical comparisons against prior work. We evaluated four different
training strategies:

¢ Pre+FT(OS): Pretraining on E1 data, followed by finetuning on E2 data with oversampling,
and testing on E2.

* Pre+FT(WL): Same as above, but using weighted cross-entropy loss instead of oversam-
pling during finetuning.

* FT(OS): Direct training on E2 data with oversampling, without E1 pretraining.
* Pre Only: Pretraining on E1 data and directly testing on E2 without additional finetuning.

We examine the impact of pretraining on additive-free data and subsequent finetuning on additive
data, as well as to compare oversampling versus weighted loss for addressing class imbalance.

For qualitative evaluation, we use GradCAM |[Selvaraju et al., |2019] to visualize and interpret
the spatial regions of the SEM images that the model considers when making predictions. We
analyze whether the learned features correspond to meaningful physical structures relevant to NCM
composition or cycle state.

Additionally, we perform an ablation study, training different backbone models to compare their
training performance. We report training time, overall accuracy, and F1 score to assess if there are
trade-offs between computational efficiency and predictive performance.

4.4 Models

For our ablation study, we employed four different backbone architectures: EfficientNet-BO [Tan
and Le, [2019]], ResNet-18 [He et al., 2015]], MobileNet-v2 [Sandler et al.,|2019]], and DenseNet-
201 [Huang et al., [2017]]. These models were selected to cover a range of parameter sizes and
computational complexities. Specifically, EfficientNet-B0 and MobileNet-v2 serve as lightweight
models, while DenseNet-201 represents deeper architectures with larger parameter counts.

4.5 Experimental Setup

All experiments were performed with MATLAB R2024b. We installed additional toolboxes and
add-ons to load pretrained networks and perform deep learning operations. The computations were
executed on a device equipped with an Intel i5-12400 processor, 12GB RAM, and an NVIDIA RTX
3060 GPU.

We performed oversampling by replicating samples for each class up to 201 instances. Input images
were resized to 224 x 224. Training used a mini-batch size of 16, the Adam optimizer with a learning
rate of 0.001, and was run for a single epoch per stage. We performed 5-fold cross-validation on the
training set, and for all models, repeated training ten times to report averaged results.

4.6 Experimental Results and Analysis

Table [I] compares per-class classification metrics under four training strategies. The proposed
Pretraining + Finetuning approach consistently outperforms both the finetuning-only baseline and



Method Pre+FT(OS) Pre+FT(WL) FT(OS) Pre only

Class Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1
ncm333 pristine* 0.97 0.96 091 0.93 0.83 091 0.92 0.90
ncm333 100cycles 0.98 0.99 0.93 0.97 091 0.94 0.59 0.57
ncm333 formation 1.00 0.98 0.98 0.98 0.87 0.90 0.17 0.27
ncm622 pristine* 0.98 0.99 0.90 0.95 0.99 0.96 0.99 0.95
ncm622 100cycles 0.96 0.98 0.96 0.97 0.84 0.91 0.10 0.15
ncm622 formation 0.99 0.99 0.85 091 0.84 0.91 0.93 0.64
ncm811 pristine* 0.94 0.95 0.93 0.99 0.96 0.97 0.99 0.99
ncm811 100cycles 0.98 0.98 0.85 0.89 0.92 0.89 0.85 0.89
ncm811 formation 0.99 0.98 0.86 0.92 0.88 0.94 0.16 0.18

Table 1: Comparison of class-wise Accuracy and F1 Scores between Pre+FT(OS), Pre+FT(WL),
FT(OS), and Pre only. * indicates pristine classes without an additive, thus no domain shift.

the pretraining-only method across nearly all 9 classes. In particular, Pre+FT with oversampling
(Pre+FT(OS)) achieves the highest accuracy and F1 scores, often near 0.98-0.99, whereas the baseline
FT(OS) model lags behind (typically in the 0.85-0.95 F1 range). The prior Pre only model performs
worst on most classes, with some F1 scores falling below 0.3. This result indicates the effect of
combining the pretraining stage of SEM data not containing additive with target-domain finetuning.

Our approach uses the features learned from pretraining while adapting to the new data distribution.
For example, in the NCM333 formation class, Pre+FT(OS) achieves an F1 score of ~0.98, whereas
FT(OS) and Pre only yield ~0.90 and 0.27, respectively, showing the effectiveness of our approach.
Similar trends hold across other categories, showing that our Pre+FT method offers a substantial gain
over the finetuning-only baseline and the previous pretraining-only model in this battery SEM image
classification task.

Class-Specific Benefits of Finetuning The results also reveal that certain classes benefit more from
finetuning than others, depending on their susceptibility to domain shift. Classes representing cycled
or formation states (i.e. aged electrodes) see greater performance gains with finetuning. These classes
exhibit significant domain-specific features (e.g. particle cracking) that were not fully captured by
the pretraining alone. Consequently, without finetuning, the pretraining-only model struggled on
these classes (e.g., for some 100-cycle and formation categories). Once fine-tuned on target data,
however, the model’s F1 for these classes jumps by 0.4-0.7 points in many cases, reaching ~0.98
F1. This indicates that adaptation is effective for domain-shifted classes in the SEM analysis task.
The Pristine classes (unaged cathodes) exhibit high performance even before finetuning because
these images appear domain-invariant. As a result, finetuning yields relatively modest or no gains on
pristine classes, since the model already generalizes well to them.

Impact of Oversampling vs. Weighted Loss Table|l|also contrasts two data imbalance mitigation
strategies: oversampling (OS) vs. class-weighted loss (WL) within the Pre+FT framework. Oversam-
pling is slightly more effective overall in our experiments. The Pre+FT(OS) variant achieves equal
or higher F1 scores than Pre+FT(WL) for most classes, particularly for minority classes that had a
few training examples. For example, in the NCM811 100-cycles class, Pre+FT with oversampling
reaches ~0.98 F1, compared to ~0.89 F1 with weighted loss. Similar advantages are seen in other
underrepresented classes (e.g., NCM811 formation). This suggests that duplicating minority class
examples (with appropriate augmentation) gave the model more opportunities to learn their distinc-
tive features, leading to better recognition of those classes than using a weighted loss alone. The
weighted-loss approach still improved performance on rare classes relative to no balancing, but it did
not fully close the gap — likely because simply increasing loss weight does not provide additional
diverse exposures to minority-class patterns. In summary, oversampling produced superior or on-par
performance across the board, with no observed overfitting detriment in this case, making it the
preferred imbalance handling strategy for our task.

Generalization Limits of the Pretraining-Only Model The pretraining-only (Pre only) scenario
highlights significant generalization limitations. In this setting, a model trained on a source SEM
image dataset is applied directly to the target classification task without finetuning. While this model
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Figure 3: Confusion matrices for three training settings: (Left) Pre+FT(OS) — proposed two-stage
training with oversampling; (Middle) FT(OS) — direct training on the target data with oversampling;
and (Right) Pre only — pretrained model without fine-tuning. Each matrix shows predictions across
nine classes.

(from a prior study of |Oh et al.|[2024]]) achieved very high accuracy on its original training domain, it
transfers poorly to our new dataset for several classes. As noted above, Pre only performance falls on
classes involving different cycle states. For multiple 100 cycles and formation categories, it scored
below 20-30% F1 in Table [T} These failures indicate that pretraining alone is insufficient for robust
cross-domain generalization when the target data distribution shifts. Even for compositions seen
during pretraining, changes in state (aging) can introduce new textures that the frozen pretrained
model cannot interpret, resulting in misclassifications. This emphasizes why our proposed combined
approach is needed: pretraining must be coupled with target-data finetuning to achieve high accuracy
on new SEM image domains.

Model | TrainTime | Accuracy | Fl
EfficientNet-B0O 43.38 0.94 0.94
ResNet-18 26.62 0.66 0.59
MobileNet-v2 39.34 0.91 0.91
DenseNet-201 297.34 0.82 0.8

Table 2: Comparison of CNN backbones under the two-stage transfer learning setting. EfficientNet-
BO achieved the best trade-off between accuracy, F1 score, and training time.

Comparative Performance Evaluation of Models with fine-tuning We compared four CNN
backbones: EfficientNet-B0O, ResNet-18, MobileNet-v2, and DenseNet-201. All models were under
the same two-stage transfer learning setup, pretrained on ImageNet and fine-tuned on our SEM
dataset using the Pre+FT(OS) strategy.

As summarized in Table [2] EfficientNet-BO achieved the best balance between accuracy (0.94), F1
score (0.94), and training time (43 s). MobileNet-v2 also performed well (accuracy 0.91, F1 0.91)
with lower computational cost, suggesting that lightweight models can be effective for SEM transfer
learning. In contrast, ResNet-18 showed limited accuracy (0.66) and F1 score (0.59), likely due to its
shallower architecture, while DenseNet-201 incurred high training cost (297 s) without performance
gains.

Overall, EfficientNet-BO offered the best trade-off between performance and efficiency, indicating
that its compound scaling is well-suited for capturing multi-scale morphological features in SEM
images.

Qualitative Analysis To interpret the model’s decision-making behavior and evaluate its alignment
with domain-specific knowledge in battery materials, we conducted qualitative analyses using the
confusion matrix and Grad-CAM visualizations.

The confusion matrix in Figure 3] reveals strong class-wise performance across nine categories,
with especially high accuracy in pristine classes and well-separated compositions such as NCM811
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pristine and NCM622 100 cycles. Misclassifications primarily occur between classes with similar
morphological degradation patterns—for example, between NCM333 formation-aged and 100-cycle
samples—highlighting the difficulty in visually distinguishing intermediate aging states based solely
on SEM features. These observations align with known electrochemical behavior, where early-stage
degradation often manifests subtly in particle boundaries, crack initiation, and surface texturing.

To enhance interpretability, we applied Grad-CAM to visualize the spatial attention maps of the
trained model. As shown in Figure[d] the model primarily attends to regions with physical significance:
smooth surfaces in pristine samples, and microcracks, voids, or fragmented grains in aged or additive-
containing samples. This indicates that the model utilizes morphological cues relevant to battery state
and composition rather than spurious features.

5 Conclusion

In this study, we addressed SEM-based state prediction for lithium-ion battery cathodes under data
scarcity and domain shift caused by electrolyte additives. We proposed a two-stage transfer learning
framework using EfficientNet-BO, which learns general features from additive-free SEM images
and adapts to additive-containing samples through fine-tuning. To address class imbalance, targeted
oversampling was applied and compared with weighted loss strategies.

Experiments across nine cathode classes—covering compositions (NCM333, NCM622, NCMS811)
and cycling states (pristine, formation, 100 cycles)—showed that our approach consistently outper-
forms finetuning-only and pretraining-only baselines. The model achieved over 0.98 accuracy and F1
scores even for domain-shifted classes such as NCM333 formation. Grad-CAM analysis confirmed
that it captures physically relevant features, including surface cracking and particle boundaries.

This study reflects a common challenge in battery research: the tension between the need for data-
driven modeling and the practical limitations of collecting large, well-controlled datasets. The
proposed framework alleviates this issue by enabling robust classification and state prediction in
data-scarce conditions.

Although demonstrated with SEM images, the method is readily applicable to other characterization
modalities such as OM, XRD, XPS, and TEM. These can be integrated into a multimodal learning
framework to further enhance predictive insights into electrode structure and degradation.

Overall, this work demonstrates that transfer learning can substantially improve SEM-based state
prediction in practical, data-limited environments, paving the way toward scalable and automated
diagnostics for advanced battery materials.
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