
Published as a conference paper at ICLR 2023

UNBIASED STOCHASTIC PROXIMAL SOLVER FOR
GRAPH NEURAL NETWORKS WITH EQUILIBRIUM
STATES

Mingjie Li1, Yifei Wang2, Yisen Wang1,3, Zhouchen Lin1,3,4 ∗
1 National Key Lab of General Artificial Intelligence,

School of Intelligence Science and Technology, Peking University
2 School of Mathematical Sciences, Peking University
3 Institute for Artificial Intelligence, Peking University
4 Peng Cheng Laboratory

ABSTRACT

Graph Neural Networks (GNNs) are widely used deep learning models that can
extract meaningful representations from graph datasets and achieve great success
in many machine learning tasks. Among them, graph neural networks with iterative
iterations like unfolded GNNs and implicit GNNs can effectively capture long-
range dependencies in graphs and demonstrate superior performance on large
graphs since they can mathematically ensure its convergence to some nontrivial
solution after lots of aggregations. However, the aggregation time for such models
costs a lot as they need to aggregate the full graph in each update. Such weakness
limits the scalability of the implicit graph models. To tackle such limitations,
we propose two unbiased stochastic proximal solvers inspired by the stochastic
proximal gradient descent method and its variance reduction variant called USP
and USP-VR solvers. From the point of stochastic optimization, we theoretically
prove that our solvers are unbiased, which can converge to the same solution
as the original solvers for unfolded GNNs and implicit GNNs. Furthermore,
the computation complexities for unfolded GNNs and implicit GNNs with our
proposed solvers are significantly less than their vanilla versions. Experiments on
various large graph datasets show that our proposed solvers are more efficient and
can achieve state-of-the-art performance.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Zhou et al., 2020; Wu et al., 2020) can effectively aggregate
information from its neighbors and then encode graph information into meaningful representations
and have been widely used to extract meaningful representations of nodes in graph-structured data
recently. Furthermore, Graph Convolution Networks (GCNs)(Kipf & Welling, 2016) involve the
convolution structure in the GNNs and drastically improve the performance on a wide range of
tasks like computer vision (Xu et al., 2020b), recommendation systems (He et al., 2020; Zhang
et al., 2020b) and biochemical researches (Mincheva & Roussel, 2007; Wan et al., 2019). Due to
these results, GCN models have attracted a lot of attention and various techniques have be proposed
recently, including graph attention (Veličković et al., 2017), normalization (Zhao & Akoglu, 2019),
linearization (Wu et al., 2019; Li et al., 2022) and others (Klicpera et al., 2018; Rong et al., 2020).

Current GNN models usually capture topological information of T -hops by performing T iterations
graph aggregation. However, T cannot be large. Otherwise, their outputs may degenerate to some
trivial points and such a phenomenon is called over-smoothing (Yang et al., 2020; Li et al., 2019).
Therefore, traditional GNNs cannot discover the dependency with longer ranges. To tackle these prob-
lems, researchers have proposed some graph neural networks with iterative update algorithms (Yang
et al., 2021a;b). The implicit graph neural networks (IGNNs) (Gu et al., 2020) is another type of such

∗Corresponding author

1

Published as a conference paper at ICLR 2023

model. Since these models will finally converge to an equilibrium state (stationary points or fixed
points), we call these models Graph Equilibrium Models for convenience in the following paper.

Above graph equilibrium models enjoy superior advantages in capturing the long-range information
because they implicitly finish the “huge hop” aggregation via its forward procedure. However,
graph equilibrium models have to recursively aggregate the neighborhoods of graph nodes since
solving their equilibrium state needs iteratively aggregating the full graph. Therefore, it needs
expensive computation costs to deal with large graphs especially when they are dense. Although
many works (Chen et al., 2018; Hamilton et al., 2017) propose different aggregation methods through
the sampling nodes in traditional graph models, there are no guarantees for their convergence and
unbiased approximation when applying them to the graph equilibrium models.

For the above reasons, how to efficiently obtain the outputs for these graph equilibrium models is an
interesting problem worth exploring. Inspired by Yang et al. (2021b); Zhu et al. (2021); Zhang et al.
(2020a)’s works which reveal the connections between the implicit and the unfolded graph neural
networks’ architecture and learnable graph denoising problems, we are trying to study the efficiency
of the above models from the optimization view. Then we propose two stochastic solvers for these
graph equilibrium models with convergence guarantees inspired by the stochastic proximal gradient
descent algorithms. Since our forward procedure only needs to aggregate subgraphs, the proposed
solvers are much more efficient than vanilla deterministic solvers by gradient descent or fixed-point
iterations. Furthermore, we can theoretically prove that our solvers can obtain the unbiased output as
the vanilla deterministic solvers do.

Our Contributions. We summarize the contributions of our methods as follows:

• By splitting the graph denoising optimization for the graph equilibrium models as several
sub-optimization problems, we treat their forward procedure as solving the proper finite-sum
optimization problem. Then we propose two stochastic solvers for graph equilibrium models:
Unbiased Stochastic Proximal Solver (USP solver) and its variant with variance reduction
USP-VR solver.

• Compared with the vanilla deterministic solvers which aggregate the full graph for graph
equilibrium models’ forward procedure, our USP solver and its variant only need to aggregate
subgraphs to reach the equilibrium. Therefore, graph equilibrium models can be more
efficient than before with our stochastic solvers.

• We theoretically prove that USP solvers can converge to the same outputs obtained by
the vanilla deterministic forward procedure in expectation. Furthermore, we empirically
demonstrate our proposed method’s advantages with various experiments.

2 RELATED WORKS

2.1 GRAPH NEURAL NETWORKS

Most GNNs (Kipf & Welling, 2016; Veličković et al., 2017; Xu et al., 2018; Li et al., 2022) aggregate
the graph information for finite times due to the over-smoothing problem. Thereby, they can hardly
capture very long-range dependency. Contrary to these models, implicit graph models (Liu et al.,
2021a; Gu et al., 2020; Park et al., 2021) aggregate the graph information for a lot of iterations or
“infinite” iterations with theoretically non-trivial equilibrium outputs.

Moreover, recent works tries to explore the connections between the graph neural models and the
graph denoising optimization problem. Some works (Zhu et al., 2021; Zhang et al., 2020a) recover
different graph models to various graph denoising problems. Furthermore, Zhu et al. (2021) also
proposed two types of models by reformulating graph denoising problems from spectral filters per-
spective. Some researchers focus on interpreting existing graph models from the view of redesigning
the correlated graph denoising models (Yang et al., 2021a; Ma et al., 2021; Yang et al., 2021b).

Researchers also pay attention to GNNs from a different perspective. For example, robust graph
neural networks (Jin et al., 2020; Luo et al., 2021), pretraining graph neural networks (Hu et al.,
2019b; Qiu et al., 2020), explanations for graph networks (Ying et al., 2019; Yuan et al., 2020) and
connections to differential systems (Xu et al., 2020a; Chamberlain et al., 2021; Wang et al., 2021).

2

Published as a conference paper at ICLR 2023

2.2 GRAPH EQUILIBRIUM MODELS AND IMPLICIT MODELS

Since the implicit graph models (Gu et al., 2020; Chen et al., 2022) and unfolded graph Yang et al.
(2021a); Liu et al. (2021c); Klicpera et al. (2018)’s forward procedure will converge to the equilibrium
state of the corresponding optimization problem and Yang et al. (2021b) has already shown their
relationships, we call these models the graph equilibrium models in the following. Yang et al. (2021a)
briefly discusses the deterministic proximal gradient descent method’s implementation for explicit
graph models. Different regularizers’ impacts on graph models’ robustness have also been explored
in Liu et al. (2021b;c) by adding them and reformulating their correlated optimization problems.
Implicit graph models(El Ghaoui et al., 2021) are new types of graph neural architectures inspired by
the deep equilibrium models (Bai et al., 2019; Li et al., 2021) in deep learning whose outputs are
determined implicitly by the designation of fixed-point equations with graph aggregation. Since these
models’ forward procedures are all trying to reach the equilibrium points by iteratively aggregating
on graphs, these models can capture the long-range information of graphs. Therefore, the graph
equilibrium models can perform well on various large-scale graphs. However, as these models need
aggregating whole graphs lots of times for the outputs, the computation complexity is large when
dealing with large and dense graphs if we use the original solvers for graph equilibrium models.

2.3 GRAPH NEURAL NETWORKS FOR LARGE GRAPHS

Aggregating through large or dense graphs needs huge computation complexity. Different training
or inference strategy have been proposed to reduce the computation cost for training and testing
procedures. GraphSAINT (Zeng et al., 2019) and Cluster-GCN (Chiang et al., 2019) propose
subgraph sampling and restrict the back-propagation within the subgraphs to reduce the complexity
of training. VR-GCN (Chen et al., 2017) uses the variance elimination method for training to improve
the training performance. Narayanan et al. (2021) uses lazy update for weight parameters’ training.
GraphSAGE (Hamilton et al., 2017) updates a sub-sampled neighborhood of a node during training
and inferencing to speed up GNNs.

3 GRAPH EQUILIBRIUM MODELS USING THE UNBIASED STOCHASTIC
SOLVER

3.1 PRELIMINARIES AND SETTINGS

Implicit graph neural networks and other unfolded graph neural networks’ forward procedure to get
the output features after n iterations Z(n) for given input X can be formulated as follows:

Z(n) = σ
(
Z(n−1) − γZ(n−1) + γB− γÃZWW⊤

)
, (1)

with Ã = I−D−1/2AD−1/2 denotes the Laplacian matrix, A is the adjacent matrix, input injection
is B = ÃXWB as former works (Gu et al., 2020; Park et al., 2021) and σ is the activation function.
It can be viewed as the implicit graph neural networks when γ = 1 and otherwise it can be regarded
as other unfolded graph neural networks. The above equation can also be regarded as solving the
following graph denoising problems by deterministic gradient descent with step size γ,

min
Z

G(Z) = min
Z

g(Z) + f(Z) = min
Z

(
1

2
∥Z−B∥2F +

1

2
tr

(
(ZW)

⊤
Ã (ZW)

))
+ f(Z), (2)

where f is the proximal function that tries to constrain the output features and can induce the
widely used activation functions by different choices. For example, if we choose to constrain
the output features to be non-negative by setting f as the positive indicator function, then the
corresponding graph equilibrium models will use ReLU activation functions. Furthermore, the
above formulation is the general formulation for different models. For example, IRLS (Yang et al.,
2021a) sets W = I, APPNP (Klicpera et al., 2018) needs weight W and activation all be identity.
Although our formulation Eqn (1) restricts the symmetric weight structure WW⊤, our optimization
problem’s weight parameter in Eqn (2) is not be constrained. Therefore, it won’t have many impacts
on the representative ability of the hidden problem and the graph equilibrium models, which are
also illustrated in Hu et al. (2019a)’s work. To solve the above problem to get the equilibrium state,

3

Published as a conference paper at ICLR 2023

most works apply the deterministic gradient descent method like Eqn (1). However, such a solver is
time-consuming, especially when aggregating large graphs in each update. Therefore, we are going
to propose new solvers for the above graph equilibrium models to make them more efficient. Before
that, we are going to make some assumptions for the convenience of our analysis.

Firstly, we assume ∥WW⊤∥2 ≤ 1/∥Ã∥2 which can easily achieved by weight normalization (Sali-
mans & Kingma, 2016) following Gu et al. (2020)’s setting. As shown in former works (Bai et al.,
2020; Li et al., 2021), such a technique will not influence the performance much. Furthermore,
we assume the derivative of g(Z) are Lipschitz continuous with Lipschitz constant L satisfying
1 < L < 2, which can also be achieved by weight normalization. G(Z) is strongly convex with
µ = 1, which can easily be achieved for many activation functions including ReLU. And in our work,
we mainly focus on the graph equilibrium models without attention.

3.2 SOLVE GRAPH EQUILIBRIUM MODELS VIA UNBIASED STOCHASTIC SOLVER

In order to obtain the solutions in a stochastic way, we first reformulate the graph optimization
problem (2) from the view of edges as follows:

min
Z

G(Z) = min
Z

g(Z) + f(Z) = min
Z

1

2
∥Z−B∥2F +

1

2

∑
(i,j)∈E

Ãij∥ziW − zjW∥22

+ f(Z),

(3)
where E is the full edges set of the graph, (i, j) ∈ E means an edge between node i and j exist in
the edge set E , zi is the output feature vector for the i-th node and Ãij denotes (i, j)-th element of
original Laplacian Ã. Viewing graph edges as samples of the dataset, the original algorithm can be
viewed as using the global proximal gradient descent method for the problem (3). However, acquiring
the global gradient in each iteration is expensive as we demonstrate above. To make them more
efficient, we convert the deterministic solvers for graph equilibrium models to the stochastic scheme.

First, we separate the global graph denoising objective g into m sub-objectives:

gÊk
(Z) =

1

2
∥Z−B∥2F +

m

2

∑
(i,j)∈Êk

Ãij∥ziW − zjW∥22, (4)

where Êk ⊂ E is the k-th subset of edges which are randomly split into m sets from the full graph set
and each contains around ⌊ |E|

m ⌋ edges. Then the original optimization problem can be regarded as a
finite sum optimization problem: G(Z) = 1

m

∑m
k=1 gÊk

(Z) + f(Z).

Then we can use the stochastic proximal gradient method by randomly choosing k ∈ {1, · · · ,m}
with the same probability and calculate the stochastic gradient for updating as follows:

V(t) = Z(t) +mÂÊk
Z(t)WW⊤ −B, (5)

Z(t+1) = σ
(
Z(t) − ηtV

(t)
)
, (6)

where ηt =
1
t is the step size and ÂÊk

is the laplacian matrix for gÊk
with mEkÂÊk

= Ã and its
(k1, k2)-th element defined as:

ÂÊk
(k1, k2) =

∑

(k1,j)∈Êk
Ãk1j , if k1 = k2,

Ãk1k2
, if (k1, k2) ∈ Êk,

0, otherwise.

We call the graph equilibrium models “A” using our solvers are Eqn (6) as the “A w. USP” in the
following. “A w. USP” can converge to the equilibrium state Z∗ as the following proposition states:
Proposition 1. With the assumptions in Section 3.1, the expectations of our uniformly sampled
stochastic gradient defined in Eqn (5) is the same as the g(Z)’s gradient, i.e. EÊ∇Z

[
gÊk

(Z)
]
=

∇Zg(Z). Furthermore, we can conclude that with our USP solver Eqn (6) and ηt =
1
t , the result will

converge to the solution of the global objective Eqn (3) in expectation with the sub-linear convergent
rate, i.e., (We use Z∗ to denote the minimizer of Eqn (3).)

E
∥∥∥Z(t) − Z∗

∥∥∥2
F
= O

(
1

t

)
. (7)

4

Published as a conference paper at ICLR 2023

Proofs can be found in the Appendix. The above proposition indicates that iteratively forwarding
the stochastic proximal gradient descent step Eqn (6) can finally get the solution for the problem
Eqn (3), which means that our proposed stochastic solver is unbiased. Since the inner iterations
Eqn (5) and (6) only need subgraphs instead of the full graph, our stochastic proximal solver can be
much more efficient than the original solvers for graph equilibrium models in practice. However, the
USP solver’s forward procedure can only provide sub-linear convergence. Thereby, the outputs of our
proposed solver will be less accurate than the vanilla deterministic models when their propagation
times are limited during the forward procedure in practice and may influence performance. To solve
such a problem, we propose another stochastic solver with the linear convergent rate in the following.

3.3 SOLVE GRAPH EQUILIBRIUM MODELS VIA UNBIASED STOCHASTIC SOLVER WITH
VARIANCE REDUCTION

Although using the stochastic proximal gradient defined in Eqn. (5) is unbiased, the large variance
of the stochastic gradient still hinders our stochastic solver’s convergence speed. A straightforward
way to reduce the variance is utilizing the full gradient to correct the gradient every m2 iteration. For
example, if next m2 iterations of graph equilibrium models’ forwarding are initialized with Z(0) = Z̃,
then for the k-th iteration with k ≥ 1, we can use the modified gradient V̂(k) to replace the original
V(k) in Eqn (5):

V̂(k) = ∇gÊik
(Z(k−1))−∇gÊik

(Z̃) +∇g(Z̃), (8)

with ik sampled randomly from 1 to m with the same probability. Moreover, we can easily conclude
that the modified direction V̂k is unbiased and have a smaller variance than V(k) in Eqn (5):

E
[
V̂(k)

]
= ∇g(Z(k−1)),

E
∥∥∥V̂(k) −∇g(Z(k−1))

∥∥∥2 ≤ E
∥∥∥V(k) −∇g(Z(k−1))

∥∥∥2 .
Replacing the original stochastic gradient with this modified version in the USP solver, we obtain
our Unbiased Stochastic Proximal Solver with Variance Reduction (USP-VR) which is inspired by
the variance reduction algorithm proposed in Xiao & Zhang (2014). The procedure for our USP-VR
solver is listed in Alogrithm 1.

Algorithm 1 USP-VR solver’s procedure for the equilibrium state.

Input: Input graph Laplacian Ã, input injection B, initial state z̃0, step size η, maximum iteration
number m1, i = 1, maximum inner iteration number m2, W,σ depend on the choices of different
graph equilibrium models.

Output: output Z̃.
1: Randomly split the whole edge set E into m subsets {Ê1, · · · , Êm} and generate the subgraph’s

laplacian matrix. {ÂÊ1
, · · · , ÂÊm

}.
2: while i ≤ m1 and Z̃(i) not satisfies stop condition do
3: Z̃ = Z̃(i).
4: Ṽ = Z̃+ ÃZ̃WW⊤ −B.
5: Z(0) = Z̃.
6: for k = 1 to m2 do
7: Randomly pick sk ∈ {1, · · · ,m} with the same probability.
8: V̂(k) = (Z(k−1) − Z̃) +mÂÊsk

(Z(k−1) − Z̃)WW⊤ + Ṽ.

9: Z(k) = σ
(
Z(k−1) − ηV̂(k)W

)
.

10: end for
11: Z̃(i+1) = 1

m2

∑m2

k=1 Z
(k).

12: i = i+ 1
13: end while

Since the global optimization problem G(Z) is strongly convex, the USP-VR solver’s multi-stage
procedure can progressively reduce the variance of the stochastic gradient Vk and both Z̃,Z(k) will
finally converge to Z∗ with proper step size η.

5

Published as a conference paper at ICLR 2023

Proposition 2. With the same settings and assumptions in Proposition 1, we can conclude that
our proposed USP-VR solver can converge to the equilibrium state with step size η < 1

8Lmax
and

sufficiently large m2 so that

ρ =
8Lmaxη

2(m2 + 1) + 1

(η − 8Lmaxη2)m2
< 1.

where Lmax = maxk LgÊk
where Li are the Lipschitz constants for gÊi

’s derivatives. The output

Z̃(i) after i iterations will converge to the optimal solution Z∗ linearly in expectation as follows:

E
∥∥∥Z̃(i) − Z∗

∥∥∥2
F
≤ ρi

∥∥∥Z̃(0) − Z∗
∥∥∥2
F
.

As the above proposition shows, our USP-VR solver enjoys a linear convergent rate like the vanilla
deterministic solvers. Therefore, our USP-VR solver can achieve the solution which are more near to
optimal compared with the USP-VR solver with limited propagation times in the forward procedure.
Moreover, our USP-VR solver is still much faster than the original deterministic solvers since we
only use the full graph for every m2 iteration.

3.4 BACKPROPAGATION WHEN USING OUR SOLVERS

Assuming all the graph equilibrium models have achieved the equilibrium Zf during its iterative
forward pass, we use the one-step gradient by feeding Zf to one deterministic iteration update
(Eqn (1)) inspired by former works (Geng et al., 2021; Guo, 2013; Fung et al., 2022). Using h to
represent the deterministic iteration update (Eqn (1)) for convenience, the output for down-stream
tasks is Zo = h(Zf ,A,X). Since we can regard the whole structure as only propagating once from
a near-optimal initialization point, we can only backward the final iteration to get the gradients.
Gradients for learnable parameters in our methods can be written as follows:

∂L(Zo)

∂θ
=

∂L(Zo)

∂Zo

(
I+

∂h(Zf ,A,X)

∂Zf

)
∂h(Zf ,A,X)

∂θ
(9)

where θ denotes the learnable parameters for the graph equilibrium models h. The one-step gradient
can be regarded as the first-order Neumann approximation of the original gradients with a more
efficient memory cost. We adopt this approximated gradient in all our experiments.

4 EXPERIMENTS

In this section, we demonstrate the efficiency of our proposed USP and USP-VR solver compared
with the traditional implicit models on large graph datasets with better performance on both node
classification and graph classification tasks. Specifically, we test graph equilibrium models using our
solvers against their vanilla version and other models on 6 popular node classification datasets (Flickr,
Reddit, Yelp, PPI (Zitnik & Leskovec, 2017), OGBN (Hu et al., 2020) (Arxiv and Products)) and 2
graph classification datasets. These datasets are challenging for not only graph equilibrium models but
also vanilla graph neural networks due to their sizes. We conduct the experiments on PyTorch (Paszke
et al., 2019) with Torch-Geometric (Fey & Lenssen, 2019) and DGL (Wang et al., 2019). All the
experiments are finished on an RTX-3090 GPU. The hyper-parameter settings and other details for
the experiments are listed in the Appendix.

4.1 NUMERICAL EVALUATION

We first conduct an experiment to explore whether our proposed method can converge to equilibrium
as our analysis shows. As we cannot obtain the closed-form solution for Problem (2), we use the
gradient of g(Z) in Eqn (3) as the evaluation of the convergence. This is because ∇Zg(Z) = 0 also
demonstrates Z satisfies the first-order condition of Problem (2) if Z is obtained by our methods.

In this part, we use Reddit to draw the convergence curve for one layer IGNN, IGNN w. USP, and
IGNN w. USP-VR layer with 128 output feature size for each node. We set m = 20 for our proposed
solvers and m2 = 10 for IGNN w. USP-VR. Then we draw the convergence curve of the relative
gradient concerning the equivalent subgraph aggregation times (Each IGNN’s iteration through the
full graph is equivalent to m times subgraph aggregation) as Figure 1 shows.

6

Published as a conference paper at ICLR 2023

0 50 100 150 200
Equivalent SubGraph Aggregation Times

1.2

1.5

2

2.5

10-3

IGNN
IGNN+USP
IGNN+USP-VR

Figure 1: The convergence curve of each model’s equilibrium state on Reddit Dataset.

The convergence curve is consistent with our analysis: IGNN w. USP can quickly converge compared
with IGNN and IGNN w. USP-VR in the beginning while IGNN w. USP-VR will finally converge to
a better solution compared with the other two models.

4.2 NODE CLASSIFICATION

Comparison on popular large-scale graphs. In this section, we first evaluate the performance of
our methods on popular large-scale benchmark node classification graph datasets with the benchmark
model APPNP and IGNN. The statistics of the four datasets are listed in Table 1. We compare the
performance of the above models with their vanilla and our USP solvers. Apart from that, we also
report the vanilla GCN and its sampling variants as baselines. All models share the uniform hidden
dimensions of 256, m = 20 for our stochastic solvers, and other training details can be found in the
Appendix. Furthermore, all models are trained without subgraph training except the results for the
ClusterGCN and GraphSAINT. The results are listed in Table 2.

Table 1: Data Statistic (“m” stands for multi-label classification, and “s” for single-label).

Dataset Nodes Edges Degree Classes Training/Validation/Test
Flickr 89, 250 899, 756 10 7(s) 0.50/0.25/0.25
Reddit 232, 965 114, 615, 892 50 41(s) 0.66/0.10/0.24
Yelp 716, 847 13, 954, 819 10 100(m) 0.75/0.10/0.15

PPI (Multi Graph) 14, 755 225, 270 14 121(m) 0.79/0.11/0.10
OGBN-Arxiv 169, 343 1, 166, 243 7 40(s) 0.54/0.18/0.18

OGBN-Product 2, 449, 029 61, 859, 140 25 47(s) 0.90/0.02/0.08

From the table, one can see that our methods can outperform other vanilla models with notable advan-
tages on most datasets, which means that our USP solvers can also capture long-range information
such as APPNP and IGNN with their vanilla models. Moreover, the USP-VR solver is slightly better
than USP solver because USP-VR can obtain outputs that are nearer to the optimal.

In addition to evaluating the prediction performance, we also draw the testing and training time for
different models in Figure 2 to demonstrate the efficiency of our proposed solvers. From the figures,
one can see that our USP solvers can accelerate APPNP and IGNN for more than 2×. Moreover, our
USP solvers are more than 10× faster than the vanilla solver on Reddit because its scale is larger
than the other three datasets. Our USP-VR solver is slightly slower with better results than our USP
solver since they need additional full graph aggregation in the forward procedure.

Comparison on OGBN dataset. Apart from the above datasets, we also conduct experiments for
different models with their vanilla solvers and our USP solver on OGBN datasets listed in Table 3.
From the table, one can see that our USP solvers can still return comparable results on OGBN datasets

7

Published as a conference paper at ICLR 2023

Table 2: Comparison of test set Test Accuracy/F1-micro score with different methods. “OOT” here
denotes that the time cost is more than 10× longer than using USP solvers.

Model Flickr Reddit Yelp PPI
GCN (Kipf & Welling, 2016) 49.2± 0.3% 93.3± 0.1% 37.8± 0.1% 51.2± 0.3%

GraphSAGE (Hamilton et al., 2017) 50.1± 1.3% 95.3± 0.1% 63.4± 0.6% 63.4± 0.4%
FastGCN (Chen et al., 2018) 50.1± 1.3% 95.3± 0.1% 63.4± 0.6% 51.3± 3.2%
ASGCN (Huang et al., 2018) 50.1± 1.3% 95.3± 0.1% 63.4± 0.6% 68.7± 1.2%

ClusterGCN (Chiang et al., 2019) 48.1± 0.5% 95.4± 0.1% 60.9± 0.5% 87.3± 0.4%
GraphSAINT (Zeng et al., 2019) 51.5± 0.1% 96.7± 0.1% 64.5± 0.3% 98.0± 0.2%
APPNP (Klicpera et al., 2018) 51.2± 0.2% 95.9± 0.2% 63.2± 0.2% 98.1± 0.2%

APPNP w. USP 52.4± 0.1% 96.2± 0.2% 63.5± 0.3% 97.9± 0.2%
APPNP w. USP-VR 52.3± 0.2% 96.4± 0.3% 63.7± 0.1% 98.2± 0.3%

IGNN (Gu et al., 2020) 53.0± 0.2% OOT 65.8± 0.2% 97.8± 0.1%
IGNN w. USP 54.1± 0.2% 96.7± 0.3% 66.2± 0.2% 98.3± 0.2%

IGNN w. USP-VR 54.3± 0.1% 96.8± 0.2% 66.1± 0.2% 98.5± 0.2%

Flickr PPI Yelp Reddit
10-1

100

101

102
IGNN w. USP
IGNN w. USP-VR
IGNN

(a) Epoch time for IGNN.

Flickr PPI Yelp Reddit
0

2

4

6
APPNP w. USP
APPNP w. USP-VR
APPNP

(b) Epoch time for APPNP.

Figure 2: Comparison of the training time per epoch and test time through the full graph of IGNN
and APPNP with and without our proposed solvers for different node classification datasets.

with much faster speed. From the above results, we can conclude that our proposed solvers can
effectively improve the efficiency of various graph equilibrium models, especially on large graphs
with comparable or even better performance on the node classification tasks.

IGNN IRLS APPNP DAGNN JKNet

Arxiv
Accuracy 70.4± 0.8% 71.1± 0.3% 71.1± 0.2% 71.1± 0.1% 71.0± 0.2%

w. USP Accuracy 72.7± 0.2% 71.6± 0.2% 71.4± 0.2% 71.3± 0.1% 71.5± 0.4%
w. USP Speedup 3.5× 2× 2.5× 2.3× 2.4×

Product
Accuracy 69.7± 0.8% 73.8± 0.2% 74.2± 0.6% 73.7± 0.6% 75.4± 0.3%

w. USP Accuracy 73.6± 0.3% 73.8± 0.3% 74.6± 0.5% 73.5± 0.7% 75.2± 0.4%
w. USP Speedup 5× 3× 6× 6.2× 4.5×

Table 3: The empirical results for different Graph Equilibrium Models with their vanilla solver and
our proposed USP solvers on OGBN datasets.

4.3 GRAPH CLASSIFICATION

Aside from the node classification, we also conduct experiments on graph classification datasets
to see whether our methods can show consistent advantages on graph classification tasks. We use
D&D (Dobson & Doig, 2003) (Bioinformatics Graphs) and COLLAB (Yanardag & Vishwanathan,
2015) (Social Graphs) for our experiments and use CGS and IGNNs as baselines. Training details
can be found in the Appendix. Results are listed in Table 3a and test time for IGNN and our methods
are drawn in Figure 3b. From the results, our proposed solvers also perform well.

8

Published as a conference paper at ICLR 2023

dataset D&D COLLAB
Graphs 1178 5000

Avg # Edges 716 2458
CGS-1 76.75± 2.9% 77.4± 3.5%
CGS-4 OOM 77.5± 3.1%
IGNN 76.5± 8.1% 78.5± 1.6%

IGNN w. USP 78.1± 6.2% 78.4± 1.2%
IGNN w. USP-VR 81.8± 2.1% 78.1± 1.5%

(a) Graph classification accuracy. COLLAB DD
0

0.5

1

1.5

2

T
es

t
T

im
e

(s
)

IGNN+USP
IGNN+USP-VR
IGNN

(b) Test time for IGNN and IGNN with our pro-
posed solvers.

Figure 3: Graph classification accuracy and test time. Accuracies are averaged (and std are computed)
on the outer 10 folds. CGS-k denotes the CGS model with k heads. “OOM” denotes out-of-memory.

IGNN with our proposed solvers is also faster than its origin in the experiment, 3× on COLLAB
and 1.5× on D&D as the figure shows. We notice that our efficiency advantages are less significant
than using our methods in the node classification tasks. The reason is that the scale of a single graph
is much smaller in the graph classification task and the time cost of graph aggregations is not too
large compared with others like linear layers’ propagation or data processing. Furthermore, we can
conclude that our stochastic solvers can perform more efficiently as the graph scale goes larger as our
experiments show because the time cost of graph aggregation can gradually dominate the total cost of
the implicit models as the graph gets larger.

4.4 ABLATION STUDY: COMPARISON WITH FORMER SAMPLING METHODS.

First, we use the “SAGE” aggregator to directly replace APPNP’s graph aggregation to conduct the
experiments on OGBN-Arxiv. The results are shown in Table (4a). From the table, one can see that
the original sage aggregator is not stable when applying them on APPNP because they cannot ensure
convergence like our USP solvers.

Vanilla with USP with SAGE
Acc 71.1± 0.2% 71.4± 0.2% 67.8± 5.7%

Epoch Time 4.1s 1.7s 3.1s

(a) APPNP variants with full-graph training.

GraphSAINT GraphSAINT w. USP
Acc 64.8± 0.2 65.2± 0.3%

Epoch Time 14s 9.5s

(b) IGNN with sub-graph training on Yelp.

Figure 4: Comparison of different accelerating methods.

Furthermore, we conduct experiments using GraphSAINT on IGNN with and without our USP
solvers in Table (4b) on Yelp. From the table, one can see that our USP solver can also accelerate the
models when training them with the sub-graph techniques.

5 CONCLUSIONS

In our work, we first propose two stochastic solvers for the graph equilibrium models from the view of
their relationship to the graph denoising optimization problem. Our proposed solvers can be applied
to different graph equilibrium models such as APPNP and IGNN. Since our proposed solvers only
need to propagate sub-graphs in each aggregation, our methods are much faster than the original fixed
point iterative or gradient descent solvers used for implicit graph models and unfolded graph models,
especially on large and dense graphs. Furthermore, we also theoretically prove that our solvers are
unbiased and can finally output the same equilibrium state as the vanilla equilibrium models. The
empirical results also demonstrate the advantages of different models with our proposed solvers for
large-scale graphs.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

Zhouchen Lin and Yisen Wang were supported by National Key R&D Program of China
(2022ZD0160302), the major key project of PCL, China (No. PCL2021A12), the NSF China
(No. 62276004, 62006153), Open Research Projects of Zhejiang Lab (No. 2022RC0AB05), Huawei
Technologies Inc., Qualcomm, and Project 2020BD006 supported by PKU-Baidu Fund.

REFERENCES

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In NeurIPS, 2019.

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. In NeurIPS,
2020.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In ICML, 2021.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In arXiv preprint arXiv:1710.10568, 2017.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. In arXiv preprint arXiv:1801.10247, 2018.

Qi Chen, Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Optimization-induced graph
implicit nonlinear diffusion. In ICML, 2022.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-GCN. In
SIGKDD, 2019.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. In Inproceedings of Molecular Biology, 2003.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit deep
learning. In SIMODS, 2021.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley Osher, and Wotao Yin. Jfb:
Jacobian-free backpropagation for implicit networks. In AAAI, 2022.

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit
models. In NeurIPS, 2021.

Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit graph
neural networks. In NeurIPS, 2020.

Jiang Guo. Backpropagation through time. In Unpubl. ms., Harbin Institute of Technology, 2013.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In arXiv preprint arXiv:1706.02216, 2017.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In SIGIR, 2020.

Shell Xu Hu, Sergey Zagoruyko, and Nikos Komodakis. Exploring weight symmetry in deep neural
networks. In CVIU, 2019a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In arXiv preprint arXiv:1905.12265, 2019b.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In arXiv
preprint arXiv:2005.00687, 2020.

10

Published as a conference paper at ICLR 2023

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. In NeurIPS, 2018.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In SIGKDD, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In arXiv preprint arXiv:1810.05997, 2018.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as
cnns? In ICCV, 2019.

Mingjie Li, Yisen Wang, Xingyu Xie, and Zhouchen Lin. Optimization inspired multi-branch
equilibrium models. In ICLR, 2021.

Mingjie Li, Xiaojun Guo, Yifei Wang, Yisen Wang, and Zhouchen Lin. G2cn: Graph gaussian
convolution networks with concentrated graph filters. In ICML, 2022.

Juncheng Liu, Kenji Kawaguchi, Bryan Hooi, Yiwei Wang, and Xiaokui Xiao. Eignn: Efficient
infinite-depth graph neural networks. In NeurIPS, 2021a.

Xiaorui Liu, Jiayuan Ding, Wei Jin, Han Xu, Yao Ma, Zitao Liu, and Jiliang Tang. Graph neural
networks with adaptive residual. In NeurIPS, 2021b.

Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang, Ming Yan, and Jiliang Tang. Elastic
graph neural networks. In ICML, 2021c.

Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang Zhang.
Learning to drop: Robust graph neural network via topological denoising. In WSDM, 2021.

Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. A unified view on graph
neural networks as graph signal denoising. In CIKM, 2021.

Maya Mincheva and Marc R Roussel. Graph-theoretic methods for the analysis of chemical and
biochemical networks. ii. oscillations in networks with delays. In Inproceedings of Mathematical
Biology, Springer, 2007.

S Deepak Narayanan, Aditya Sinha, Prateek Jain, Purushottam Kar, and Sundararajan Sellamanickam.
Iglu: Efficient gcn training via lazy updates. In arXiv preprint arXiv:2109.13995, 2021.

Junyoung Park, Jinhyun Choo, and Jinkyoo Park. Convergent graph solvers. In arXiv preprint
arXiv:2106.01680, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS, 2019.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In SIGKDD,
2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In ICLR, 2020.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In NeurIPS, 2016.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In arXiv preprint arXiv:1710.10903, 2017.

11

Published as a conference paper at ICLR 2023

Fangping Wan, Lixiang Hong, An Xiao, Tao Jiang, and Jianyang Zeng. Neodti: neural integration of
neighbor information from a heterogeneous network for discovering new drug–target interactions.
In Bioinformatics, 2019.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang. Deep
graph library: A graph-centric, highly-performant package for graph neural networks. In arXiv
preprint arXiv:1909.01315, 2019.

Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the diffusion process in
linear graph convolutional networks. In NeurIPS, 2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
ing graph convolutional networks. In ICML, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. In IEEE TNNLS, 2020.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduction.
In SIAM, 2014.

Bingbing Xu, Huawei Shen, Qi Cao, Keting Cen, and Xueqi Cheng. Graph convolutional networks
using heat kernel for semi-supervised learning. In arXiv preprint arXiv:2007.16002, 2020a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In ICML, 2018.

Qiangeng Xu, Xudong Sun, Cho-Ying Wu, Panqu Wang, and Ulrich Neumann. Grid-gcn for fast and
scalable point cloud learning. In CVPR, 2020b.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In SIGKDD, 2015.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek F. Abdelzaher. Revisiting
“over-smoothing” in deep gcns. In arXiv preprint arXiv:2003.13663, 2020.

Yongyi Yang, Tang Liu, Yangkun Wang, Jinjing Zhou, Quan Gan, Zhewei Wei, Zheng Zhang,
Zengfeng Huang, and David Wipf. Graph neural networks inspired by classical iterative algorithms.
In ICML, 2021a.

Yongyi Yang, Yangkun Wang, Zengfeng Huang, and David Wipf. Implicit vs unfolded graph neural
networks. In arXiv preprint arXiv:2111.06592, 2021b.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. In NeurIPS, 2019.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of graph
neural networks. In SIGKDD, 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In arXiv preprint arXiv:1907.04931,
2019.

Hongwei Zhang, Tijin Yan, Zenjun Xie, Yuanqing Xia, and Yuan Zhang. Revisiting graph convolu-
tional network on semi-supervised node classification from an optimization perspective. In arXiv
preprint arXiv:2009.11469, 2020a.

Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, Zi Huang, and Lizhen Cui. Gcn-
based user representation learning for unifying robust recommendation and fraudster detection. In
SIGIR, 2020b.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In arXiv preprint
arXiv:1909.12223, 2019.

12

Published as a conference paper at ICLR 2023

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
In AI Open, Elsevier, 2020.

Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. Interpreting and unifying graph neural
networks with an optimization framework. In Web Conference, 2021.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. In Bioinformatics, 2017.

13

	Introduction
	Related Works
	Graph Neural Networks
	Graph Equilibrium Models and implicit models
	Graph Neural Networks for Large Graphs

	Graph Equilibrium Models Using the Unbiased Stochastic Solver
	Preliminaries and Settings
	Solve Graph Equilibrium models via Unbiased Stochastic Solver
	Solve Graph Equilibrium Models via Unbiased Stochastic Solver with Variance Reduction
	Backpropagation when using our solvers

	Experiments
	Numerical Evaluation
	Node Classification
	Graph Classification
	Ablation Study: Comparison with former sampling methods.

	Conclusions

