
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

TFMKC: Tuning-Free Multiple Kernel Clustering
Coupled With Diverse Partition Fusion

Junpu Zhang , Liang Li , Pei Zhang , Yue Liu , Member, IEEE, Siwei Wang , Member, IEEE,
Changbao Zhou , Xinwang Liu , Senior Member, IEEE, and En Zhu

Abstract— Clustering is a popular research pipeline in unsu-
pervised learning to find potential groupings. As a representative
paradigm in multiple kernel clustering (MKC), late fusion-based
models learn a consistent partition across multiple base kernels.
Despite their promising performance, a common concern is the
limited representation capacity caused by the inflexible fusion
mechanism. Concretely, the representations are constrained by
truncated-k Eigen-decomposition (EVD) without fully exploiting
potential information. An intuitive idea to alleviate this concern
is to generate a set of augmented partitions and then select the
optimal partition by fine-tuning. However, this is overlimited by:
1) introducing undesired hyperparameters and dataset-related
consequences; 2) neglecting rich information across diverse par-
titions; and 3) expensive parameter-tuning costs. To address these
problems, we propose transforming the challenging problem of
directly determining the optimal partition (optimal parameter)
into a diverse partition fusion (parameter ensemble) problem.
We design a novel flexible fusion mechanism called tuning-free
multiple kernel clustering coupled with diverse partition fusion
(TFMKC) by reweighting diverse partitions through optimiza-
tion, achieving an optimal consensus partition by integrating
diverse and complementary information rather than traditional
fine-tuning, and distinguishing our work from existing methods.
Extensive experiments verify that TFMKC achieves competitive
effectiveness and efficiency over comparison baselines. The code
can be accessed at https://github.com/ZJP/TFMKC.

Index Terms— Diverse fusion, ensemble learning, late fusion
kernel learning, multiview clustering.

NOMENCLATURE

Notation Explanation
n, k, and v Number of clusters, samples, and views.
α ∈ Rv×1 View weights.
β ∈ Rm×v Diverse partition weights.
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Kp ∈ Rn×n pth base kernel.
Hp ∈ Rn×k pth base kernel partition.
H ∈ Rn×k Consensus kernel partition.
Vp ∈ Rk×k Permutation matrix.
U(i)

p ∈ Rn×di Augmented kernel partition of Kp.
K(i)

p ∈ Rn×n Refined kernel from U(i)
p .

I. INTRODUCTION

CLUSTERING is a representative unsupervised learning
method to explore hidden grouping structures within

data [1], [2], [3], [4], [5], gained wide applications in data
mining, and knowledge discovery. To tackle fast-growing mul-
tisource or multichannel data, multiple view clustering (MVC)
has been an active topic in integrating diverse information [6],
[7], [8], [9], [10], [11], [12]. As a representative pipeline,
multiple kernel clustering (MKC) [13], [14], [15], [16] is
developed to address real-world nonlinearly separable data,
mapping raw features into a reproducing Kernel Hilbert Space
(RKHS) [17].

Existing MKC algorithms can be classified into two
branches according to the information fusion stage, i.e., kernel
fusion MKC and late fusion MKC. For kernel fusion strategy,
it first fuses a consistent kernel from the original multiple
kernels and then computes the clustering partition [18], [19].
Multiple kernel k-means (MKKM) [20] is a representative
method with extensive investigations [21], [22], [23]. Typ-
ically, SimpleMKKM [14] achieved a global optimum by
formulating a min–max problem. LSWMKC [19] transferred
graph construction into neighbor kernel learning to exploit
local structures. In contrast, the late fusion strategy first
generates base partitions from the original kernels and then
fuses a consensus partition [24]. Based on this backbone,
many variants are developed with various strategies [25], [26],
[27]. Some recent methods explored partition approximation
techniques [28] and joint feature and structural information
fusion [29].

Although late fusion MKC exhibits promising performance
and efficiency [24], [25], [30], many variants adopt an
inflexible strategy that constrains partition representation by
truncated-k Eigen-decomposition (EVD). Typically, the fea-
ture dimension of the partition is fixed at d = k, which
means that only rank-k eigenvectors are preserved, while
the rest are removed. However, a synthetic dataset shown
in Fig. 1 indicates that only preserving rank-k eigenvec-
tors is insufficient. We observe that such a way achieves
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Fig. 1. Visualizing the limited representation capacity problem in late fusion
MKC, which exists in the widely used truncated-k strategy in generating
base partitions. The synthetic single-view dataset Xsyn consists of 18 samples
generated by the normal distribution. (a) Base kernel Ksyn generated by
X⊤

synXsyn; the metric is obtained by performing k-means on raw features Xsyn.
(b)–(d) Refined kernel K(i)

syn = U(i)
synU(i)⊤

syn computed by augmented partitions
U(i)

syn with truncated-d EVD, where d ∈ {k, 2k, 3k}; the metrics are obtained
by performing k-means on U(i)

syn.

11.11% improvement on kernels over performing k-means on
the raw features, and increasing the dimension to 2k further
gains 16.66% improvement. However, when it increases to 3k,
the performance worsens with a negative gain of 22.22%.

The above results motivate us: how to determine optimal
partition/parameter in unsupervised late fusion MKC tasks?

A naive strategy is to first generate a set of augmented
partitions with various dimensions, e.g., {k, 2k, . . . , 10k}, and
then select the optimal parameter by grid search. However,
this approach is overlimited in three ways.

1) Undesired Hyperparameters: It introduces several
hyperparameters, requiring repetitive parameter tuning
to obtain the appropriate parameter combination,
which is undesirable in unsupervised learning
because ground-truth labels are difficult to
access [31], [32], [33], [34].

2) Neglecting Diverse Information: Selecting the optimal
partition from the candidate partitions ignores the rich
and complementary information within the diverse par-
titions, degrading the representation capacity.

3) Expensive Tuning Costs: The single-view scenario
requires ten-time parameter tuning. However, it induces
10v parameter combinations in multiview scenarios,
which is unacceptable in real scenarios.

To this end, we consider designing an elegant strategy to
obtain the optimal kernel partition. However, directly solving
the optimal partition/parameter is challenging, as there is no
prior. Inspired by the popular ensemble clustering [35], [36],
[37], which combines multiple clustering into better and more
robust consensus clustering, we consider adopting a diverse
partition/parameter fusion approach to get the optimal kernel

partition. Specifically, we predefine a search region of param-
eter d and generate multiple candidate augmented partitions
across multiple views. Then, we design an elegant fusion
strategy to adaptively integrate these partitions by reweighting
their importance and, finally, fuse a consensus partition. The
contributions are summarized as follows.

1) This article investigates the challenging problem of
determining the optimal partition/parameter in unsu-
pervised late fusion MKC. We propose to transform
the original complex problem into a partition/parameter
fusion problem, which can be easily solved.

2) We design an elegant, tuning-free, and flexible fusion
mechanism called TFMKC to fuse diverse and com-
plementary information by reweighting the importance
of diverse augmented partitions across multiple views.
In this way, view-level information and partition-level
information are combined to learn a consensus partition.
In addition, we provide an upper bound of our model.

3) Our TFMKC exhibits competitive effectiveness and
efficiency over traditional fine-tuning strategies and out-
performs existing baselines with large margins on eight
benchmark datasets. In addition, our TFMKC achieves
linear computational complexity, demonstrating promis-
ing scalability in large-scale datasets.

II. RELATED WORK

A. Generation of Kernel Matrix

Given raw data {x j }
n
j=1 drawn from feature space X ∈ RdX ,

a kernel method can encode them into a high-dimensional
RKHS H ∈ RdH [38] through a nonlinear kernel mapping
φ(·). However, the dimension of H could be infinite, making
it difficult to explicitly define φ(·) and generate embeddings.
Fortunately, Mercer’s theorem [39] pointed out that we can
directly calculate the inner product of mapped vectors in H
by kernel function κ(·, ·) rather than defining the mapping
functions φ(·), i.e.,

K jl = κ
(
x j , xl

)
= φ

(
x j
)⊤

φ(xl). (1)

The typical kernel generation method is to explicitly define
kernel functions, such as linear, polynomial, Gaussian, Lapla-
cian, Cauchy, and Sigmoid functions. In addition, researchers
have developed specific kernel generation methods tailored to
the characteristics of problems in different domains. For exam-
ple, Nyström [40] is a pioneering research that selects a small
subset to approximate the original kernel matrix. Learning
kernel functions is another pipeline; [41] first categorized over
125 000 different types of kernel functions and parameters and
then introduced sparse representation and orthogonal matching
pursuit algorithm to search for the appropriate kernel functions
and parameters. Recently, owing to the powerful capacity
of deep learning, introducing a neural network to generate
kernel matrix is a promising research; DMMV [42] utilized
a neural network to optimize both the global kernel and the
local view-specific kernels, exploring complementarity and
diversity.
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B. Multiple Kernel k-Means

k-means [43] minimizes the intercluster loss, which can be
expressed by

min
Y

n∑
j=1

k∑
q=1

∥x j − cq∥
2
2Y jq

s.t.
k∑

q=1

Y jq = 1 (2)

where {cq}
k
q=1 denote the centroids and Y ∈ {0, 1}

n×k repre-
sents the discrete indicator matrix.

According to [18], the relaxed kernel k-means (KKM) is
formulated by

min
H

Tr
(
K
(
I − HH⊤

))
s.t. H⊤H = Ik (3)

where H is the partition matrix obtained by truncated-k EVD,
and we further perform k-means to compute the predicted
labels.

For multikernel settings, the combined kernel matrix is
commonly supposed to be linear combinations of υ base
kernels. Multiple kernel k-means (MKKM) [44] is given as

min
H,γ

Tr
(
Kγ

(
I − HH⊤

))
s.t.

{
H⊤H = Ik

γ ⊤γ = 1, γ ≥ 0
(4)

where Kγ =
∑v

p=1 γ 2
p Kp denotes the combined kernel and

γ denotes the view contribution.

C. Late Fusion Multiple Kernel k-Means

Unlike the kernel fusion method that integrates a fused
kernel across multiple base partitions, the late fusion paradigm
aims to fuse a consensus partition across multiple base parti-
tions {Hp}

v
p=1 [24], which is formulated by

max
H,Wp,γ

Tr
(
H⊤Hγ + λH⊤Q

)
s.t.


H⊤H = Ik

V⊤

p Vp = Ik

γ ⊤γ = 1, γ ≥ 0
(5)

where H represents the consistent partition, Hγ =
∑v

p=1
γpHpVp denotes the sum of base partitions that are aligned by
column permutation matrices, Vp denotes the pth permutation
matrix with orthogonal constraint, Q is the partition from
the average kernel, and λ denotes a balanced hyperparameter.
Specifically, Q = arg maxQ⊤Q=Ik

Tr(Q⊤(
∑v

p=1(1/v)Kp)Q).

LFMKC focuses on maximizing the alignment of fused base
partitions. Although it has achieved promising performance,
it encounters a limited feature presentation capability problem
because base partitions Hp are computed by truncated-k EVD,
ignoring potential benefits within augmented partitions Up

from truncated-d (d > k) EVD.

III. METHODOLOGY

A. Motivation

Recall our analysis of the limited representation capacity
concern in existing late fusion MKC, i.e., precomputed parti-
tions are fixed by truncated-k EVD, which ignores the potential
benefits across diverse partitions. A naive idea to alleviate
this problem is to fine-tune the size of the kernel partition.
Specifically, we first generate a set of candidate augmented
partitions U(i)

∈ Rn×di by truncated-di (di > k) EVD, e.g.,
{d1, d2, d3, . . . , dm}. Then, the optimal d with satisfactory
performance can be selected by grid search via maximally
the alignment of the original kernel and the refined kernel
U(i)U(i)⊤, i.e.,

U(i)
= arg max

U(i)
Tr
(
KU(i)U(i)⊤)

s.t. U(i)⊤U(i)
= Idi . (6)

Tuning the optimal parameter is an inflexible way that
incurs: 1) dataset-related results: the optimal dopt varies with
different datasets; 2) repetitive tuning costs: parameter tuning
induces m combinations in single-kernel scenarios, while
in multikernel scenarios, it induces unacceptable mv com-
binations; and 3) neglecting rich information across diverse
partitions.

Moreover, learning the optimal parameter directly through
optimization can be a complex problem, as there is no prior
available in unsupervised learning. Therefore, a significant
problem arises: is there a flexible strategy that can replace
parameter tuning?

B. Proposed TFMKC Model

To optimize the above formulation, we consider trans-
forming the original problem that directly determines the
optimal partition/parameter into a partition/parameter fusion
problem, which is inspired by ensemble clustering that fuses
multiclustering into superior and robust consensus clustering.

To this end, we propose jointly utilizing the partitionwise
diversity and complementary information, reweighting their
contributions automatically through optimization, to displace
manual selection. Taking the single-view scenario as an exam-
ple, we first define the weights βi of the augmented partitions
U(i) as follows:

β = (β1, β2, . . . , βm)⊤, s.t. β⊤1m = 1, β ≥ 0. (7)

Similar to (6), we introduce a function that can evaluate the
alignment of the refined kernel K(i) and our pursuit optimal
partition, i.e.,

feval
(
K(i), H

)
= Tr

(
K(i)HH⊤

)
(8)

where K(i)
= U(i)U(i)⊤ denotes the refined kernel with

dimension di and H ∈ Rn×k denotes the optimal consensus
partition. A larger feval represents a better performance of K(i).

Intuitively, a larger feval means a larger contribution. Given
m candidate dimensions d, we can derive a weighted objective
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Fig. 2. Framework of our TFMKC method. The core idea is to learn a consensus partition H by jointly fusing partition- and view-level diverse and

complementary information. Specifically, TFMKC first performs KKM to generate diverse augmented partitions U(i)
p ; note that U(i)

p U(i)⊤
p can recreate the

original structures of the pth base kernel Kp and then fuses these augmented base partitions U(i)
p by reweighting importance, which is different from traditional

fine-tuning method. In this way, rich feature representation across multiple views can be integrated. The subsequent process is to perform k-means on H to
get the discrete clustering labels.

by maximizing a convex combination of a set of evaluation
functions, i.e.,

β = arg max
β

m∑
i=1

βi Tr
(
K(i)HH⊤

)
= arg min

β

m∑
i=1

(1 − βi )Tr
(
K(i)HH⊤

)
s.t. β⊤1m = 1, β ≥ 0. (9)

Equation (9) provides an intuitive solution to measure the
importance of partitions. However, it is not a viable strategy
since it incurs a sparse trivial solution; namely, the weight of
the largest feval will equal one, while the others are 0. This
is equivalent to manual selection and reporting the best result.
Such a method is called TFMKC-tune.

To alleviate this problem, we modify (9) by solving
quadratic programming (QP) of β as follows:

β = arg min
β

m∑
i=1

(1 − βi )
2Tr
(
K(i)HH⊤

)
= arg max

β

m∑
i=1

(
βi −

1
2
β2

i

)
Tr
(
K(i)HH⊤

)
s.t. β⊤1 = 1, β ≥ 0. (10)

Compared to TFMKC-tune with a trivial solution, the
weight distribution of our TFMKC is smoother. In partic-
ular, introducing fusion mechanisms of diverse augmented
partitions into optimization can circumvent the repetitive
fine-tuning achieved by assigning different weights according
to their importance. That is, expressive augmented partitions
are imposed large weights, while the limited ones are assigned
small weights.

In the MKC scenario, it is generally assumed that all
views are helpful. To integrate diverse and complementary
information across multiple kernels, we extend (10) to an

MKC version, and our TFMKC is given as follows:

max
H,ω,β

v∑
p=1

ωp

m∑
i=1

(
βi p −

1
2
β2

i p

)
Tr
(
K(i)

p HH⊤
)

s.t.


ω⊤ω = 1, ω ≥ 0
β⊤1m = 1v, β ≥ 0
H⊤H = Ik

(11)

where ωp represents the view contribution. Since imposing
ℓ1-norm constraint ω⊤1v = 1 will induce a trivial solution
that MKC is degraded into single-kernel clustering, we impose
ℓ2-norm constraint on kernel weights by following [24]. Note
that β ∈ Rm×v represents the weight matrix of augmented par-
titions U(i)

p . Therefore, our tuning-free model integrates view-
weight ω and partition-weight β into a unified framework.

Remark 1: The proposed TFMKC requires initializing a
search region of dimension di as input, e.g., feature dimensions
can vary in {d1, d2, . . . , dm}. In fact, for late fusion MKC,
we only need to compute the largest augmented partition
U(m)

p ∈ Rn×dm , and other smaller partitions can be extracted
from the largest one, which significantly reduces computation.

Remark 2: Note that we only initialize a search region
of feature dimension d , and no extra hyperparameters are
involved in optimization. Therefore, our TFMKC can be
regarded as a parameter-free model, which is practical in
unsupervised learning.

In summary, we first transform the challenging task of
directly determining the optimal partition/parameter into a
flexible partition/parameter ensemble problem and propose a
tuning-free fusion mechanism to integrate partition level and
view level by adaptively reweighting their importance, distin-
guishing our work from existing parameter-tuning methods.
Fig. 2 illustrates the framework of our TFMKC method.

C. Solver

Considering the nonconvexity of (11), this section designs
a three-step block-coordinate descent optimization with each
step having a closed-form solution.
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1) Update H: With β and ω been fixed, (11) is converted
to

max
H

Tr
(
KinteHH⊤

)
, s.t. H⊤H = Ik (12)

where Kinte =
∑v

p=1 ωp
∑m

i=1(βi p − (1/2)β2
i p)K(i)

p .
Theorem 1 illustrates that the optimal H can be obtained

by performing truncated-k SVD on B ∈ Rn×vdm rather than
using EVD on Kinte ∈ Rn×n , which significantly reduces
computational complexity.

Theorem 1: Given K(i)
p defined in (8), the optimal H

obtained by truncated-k EVD of Kinte is equivalent to the solu-
tion solved by the truncated-k SVD of B = (B1, B2, . . . , Bv),
B ∈ Rn×vdm . Specifically,

Bp = U(m)
p diag

(√
D1(u)

m×m0:,p

)
, p ∈ {1, 2, . . . , v} (13)

where D is a diagonal block matrix with 1di −di−1 as the
i th block, 1di −di−1 = (1, 1, . . . , 1)⊤ denotes a (di − di−1)-
dimensional column vector with all elements being 1, 1(u)

m×m
denotes the upper triangular part of the m × m all-one matrix
1m×m , and 0i p = (βi p − (1/2)β2

i p)ωp. Mathematically, D is
defined by

D = blkdiag
(
1d1 , 1d2−d1 , . . . , 1dm−dm−1

)
(14)

where blkdiag(·) is a function used to create a block diagonal
matrix with input arguments. Specifically, with multiple input
arguments that represent a matrix, it places these matrices
along the diagonal with zeros filling the remaining positions.

Proof: This can be verified by checking Kinte = BB⊤.
According to (6), we have K(i)

p = U(i)
p U(i)⊤

p and U(i)
p =

U(m)
p

[
Idi 0
0 0

]
. Then, we have

K(i)
p = U(m)

p

[
Idi 0
0 0

]
U(m)⊤

p . (15)

Naturally, we have

ωp

m∑
i=1

(
βi p −

1
2
β2

i p

)
K(i)

p

= U(m)
p

m∑
i=1

ωp

(
βi p −

1
2
β2

i p

)[
Idi 0
0 0

]
U(m)⊤

p . (16)

Furthermore, we have
m∑

i=1

ωp

(
βi p −

1
2
β2

i p

)[
Idi 0
0 0

]

=

m∑
i=1

0i p

[
Idi 0
0 0

]

=

Id1 0
. . .

0 Idm−dm−1

diag
(

D1(u)
m×m0:,p

)
= diag

(
D1(u)

m×m0:,p

)
. (17)

When matrix D is left-multiplied onto another matrix, it dupli-
cates the rows of the latter, effectively transforming a matrix

Algorithm 1 TFMKC
Input: Augmented partitions {U(i)

p }
v
p=1 and k.

Output: The optimal H, ω and β.
1: Initialize ωp =

1
v
, βi p =

1
m .

2: while not converge do
3: Update H by optimizing Eq. (12),
4: Update β by optimizing Eq. (19),
5: Update ω by optimizing Eq. (26),
6: end while
7: Utilize k-means on H to discrete the clustering labels.

with m rows into one with dm rows. Consequently, we derive
that

Kinte =

v∑
p=1

U(m)
p diag

(
D1(u)

m×m0:,p

)
U(m)⊤

p

=

v∑
p=1

BpB⊤

p = BB⊤ (18)

which indicates that the optimal H can be obtained by perform-
ing truncated-k SVD on B ∈ Rn×vdm rather than using EVD
on Kinte ∈ Rn×n , which significantly reduces computational
complexity.

This completes the proof.
2) Update β: With H and ω been fixed, (11) can be

independently solved across υ kernels, and each column of β

is a QP problem, i.e.,

min
β :,p

1
2
β⊤

:,pSpβ :,p + e⊤

p β :,p

s.t. β⊤

:,p1m = 1, β :,p ≥ 0 (19)

where Sp is a diagonal matrix, (Sp)i i = Tr(K(i)
p HH⊤), and

epi = −Tr(K(i)
p HH⊤).

Theorem 2 shows that (19) has closed solution.
Theorem 2: Define the following function with respect to x :

gp(x) :=

(
max

(
x1m − ep

diag
(
Sp
) , 0

))⊤

1m − 1. (20)

The closed-form solution (19) is

β :,p = max

(
µp1m − ep

diag
(
Sp
) , 0

)
(21)

where µp is the root of function gp(x).
Proof: For (19), the Lagrangian function of β :,p is

L
(
β :,p, µp, ν p

)
=

1
2
β⊤

:,pSpβ :,p + e⊤

p β :,p − µp
(
β⊤

:,p1m − 1
)
− ν⊤

p β :,p (22)

where scalar µp and vector ν p ≥ 0 denote the Lagrangian
multipliers. We derive the derivative of (22) with respect
to β :,p and enforce it equal zero; we obtain

Spβ :,p + ep − µp1m − ν p = 0. (23)
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According to the KKT condition, we have β⊤

:,pν p = 0.
Therefore, we derive

β :,p = max

(
µp1m − ep

diag
(
Sp
) , 0

)
. (24)

Then, according the constraint β⊤

:,p1m = 1, we have the
following equation:

gp
(
µp
)

= 0. (25)

It is clear that µp is the root of the function gp(x), which is
piecewise linear and increases monotonically. The root can be
solved by Newton’s method efficiently.

This completes the proof.
3) Update ω: With H and β been fixed, the proposed

algorithm is converted to

max
ω

v∑
p=1

ωpτp

s.t. ω⊤ω = 1, ω ≥ 0 (26)

where τp =
∑m

i=1(βi p − (1/2)β2
i p)Tr(K(i)

p HH⊤). This problem
can be solved by calculating ω = τ/∥τ∥2.

D. Analysis and Extensions
1) Computational Complexity: The workflow of

Algorithm 1 consists of three components. First,
updating H involves performing SVD, incurring a cost
of O(nv2d2

m). Second, updating β requires O(mv)

operations to obtain the closed-form solution. Finally,
updating ω necessitates O(mv) operations. Thus, the
time complexity of optimization is O(nv2d2

m).
Note that our model requires k-means to output discrete
labels, which needs time complexity O(nk2). Thus, the
overall computational complexity is O(nv2d2

m), which
is linear concerning sample number, making it can be
scaled to large-scale tasks.

2) Convergence: The three-step alternative optimization
involves one SVD and two convex problems. Since
each suboptimization has a closed-form solution, the
objective of Algorithm 1 increases monotonically with
the iteration. Moreover, Theorem 3 illustrates that it is
upper bounded by (1 − (1/2m))

√
vk. Therefore, our

TFMKC theoretically converges to a local maximum,
as pointed out in [45].
Theorem 3: An upper bound of (11) is (1 −

(1/2m))
√

vk.
Proof: According to constraints U(i)⊤U(i)

=

Idi , K(i)
p = U(i)U(i)⊤, and H⊤H = Ik , we have

Tr(K(i)
p HH⊤) ≤ k, i.e., feval(K(i)

p , H) ≤ k. Therefore,
we derive that

max
H,ω,β

v∑
p=1

ωp

m∑
i=1

(
βi p −

1
2
β2

i p

)
Tr
(
K(i)

p HH⊤
)

≤ max
ω,β

v∑
p=1

ωp

m∑
i=1

(
βi p −

1
2
β2

i p

)
k

TABLE I
BENCHMARK MKC DATASETS

=

v∑
p=1

1
√

v

m∑
i=1

(
1
m

−
1

2m2

)
k

=

(
1 −

1
2m

)
√

vk. (27)

Thus, (11) is upper bounded by (1 − (1/2m))
√

vk.
This completes the proof.

3) Extensions: The proposed TFMKC provides an elegant
strategy to address the limited representation capacity
problem in the late fusion MKC community. Most of
all, our tuning-free strategy will avoid undesired param-
eter tuning, significantly improving efficiency. Moreover,
such a parameter fusion strategy shows strong scalability
that can be easily extended to existing MVC methods to
exploit potential information.

IV. EXPERIMENT

A. Synthetic Dataset

In this article, we design a synthetic dataset to show
our motivation. Note that the synthetic dataset serves two
purposes: 1) to visualize the limited representation issue in
existing late fusion MKC methods and 2) the difficulty in
determining the optimal feature dimension.

Specifically, we first generate raw features Xsyn by random
sampling from three different normal distributions, each cluster
contains six samples, and each instance has nine dimensions.
Then, we construct a linear kernel matrix Ksyn = X⊤

synXsyn.
The results in Fig. 1 are based on Ksyn.

B. Real-World Datasets

Table I lists eight public MKC datasets with different types
and sizes, including Politicsuk,1 Rugby,2 Willow,3 Plant,4

Flower17,5 CCV,6 Flower102,7 and Reuters.8 These datasets
can be downloaded from public websites.

1http://mlg.ucd.ie/aggregation/
2http://mlg.ucd.ie/aggregation/
3https://www.di.ens.fr/willow/research/

stillactions/
4https://bmi.inf.ethz.ch/supplements/protsubloc
5http://www.robots.ox.ac.uk/˜vgg/data/flowers/
6https://www.ee.columbia.edu/ln/dvmm/CCV/
7http://www.robots.ox.ac.uk/˜vgg/data/flowers/
8http://kdd.ics.uci.edu/databases/reuters21578.html
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TABLE II
COMPARING THE CLUSTERING METRICS. THE STRONGEST METRICS ARE SYMBOLIZED IN BOLD, WHILE THE SUBOPTIMAL RESULTS ARE ITALICIZED

AND UNDERLINED. “-” REPRESENTS TIME-OUT OR OUT-OF-MEMORY ERRORS. “RANK” REPORTS THE AVERAGE RANKING PERFORMANCE

C. Compared Baselines
Nine existing kernel and graph MVC models are set as

baselines.
1) AKKM performs KKM on the average kernel.
2) MKKM [44] is a pioneering MKC method that aligns

the fused kernel and the consensus partition.
3) MKKM-MR [46] induces a matrix-induced regularizer

to measure the view similarity, serving to improve the
diversity of kernels.

4) SwMC [47] designs an autoweighted strategy to measure
the contribution of kernels, without explicitly introduc-
ing view weights.

5) ONKC [48] claims to learn the optimal neighborhood
kernel of input kernels.

6) LFMKC [24] is a pioneering late-fusion-based kernel
clustering method that aims to maximize the align-
ment between kernel partitions and the consensus
optimal one.

7) SPMKC [13] jointly explores the local and
global structures across multiple kernels and
introduces a similarity graph to explore the neighbor
information.

8) CAGL [49] introduces a Laplacian rank constraint into
graph learning to explore a consensus similarity graph
with clear diagonal block structures.

9) OPLF [27] is a one-stage late-fusion method that
can directly generate clustering labels without
postprocessing.
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TABLE III
COMPARING THE CLUSTERING METRICS ON FOUR RECENT BASELINES

10) SimpleMKKM [14] pioneers the kernel alignment cri-
terion into MKC and derives a min–max problem with
global optimum.

11) FAMKKM [28] learns the approximate partitions of the
original kernel partitions and aligns a consensus partition
to both original and approximate partitions.

12) LSWMKC [19] introduces graph learning into MKC to
fuse a discriminative affinity graph and further learns
an optimal neighborhood kernel that preserves local
structures.

13) MPS [29] jointly explores the structural information
within raw features and kernels by integrating multiscale
partitions and enforcing the alignment between the opti-
mal partition and local similarity graph. It also designs
sparse regularization to select high-quality kernels.

The compared algorithms include: 1) kernel fusion models,
namely, AKKM, MKKM, MKKM-MR, ONKC, and Sim-
pleMKKM; 2) graph model SwMC; 3) kernel coupled graph
models, i.e., SPMKC, CAGL, and LSWMKC; and 4) late
fusion models, LFMKC, OPLF, FAMKKM, and MPS. The
first three share the same computational complexity of O(n3),
and the last has a complexity of O(n).

D. Experimental Settings

Following existing experimental settings in clustering, the
cluster number k is assumed to be known in advance, and
the datasets are first centered and then normalized [17].
To mitigate the randomness of k-means in postprocessing,
we initialize clustering centroids 20 times and present the
average results.

The hyperparameters of the compared models are carefully
tuned following the authors’ settings. For our TFMKC, we ini-
tialize a search region parameter d ∈ {k, 2k, . . . , 20k}, and the
optimal parameter ensemble process is left for optimization.

Since no extra hyperparameters are fine-tuned during optimiza-
tion, our TFMKC can be considered a parameter-free model,
making it suitable for unsupervised learning tasks.

We utilize four metrics, including normalized mutual infor-
mation (NMI) [50], accuracy (ACC) [51], purity [52], and
adjusted rand index (ARI) [53], to measure the clustering
performance. Note that ARI ranges [−1, 1]. Compared to the
rand index (RI) that ranges [0, 1], ARI is a more stringent
metric since it considers the randomness in results and adjusts
the expected similarity under random clustering. Specifically,
negative values indicate random results, 0 indicates no similar-
ity between predicted labels and ground truth, and 1 indicates
perfect agreement between predicted labels and ground truth.
All the experiments are executed on a desktop with Intel
i7-8700K (3.70 GHz), 64-GB RAM, and MATLAB (2020b).

E. Clustering Metrics

Tables II and III compare four clustering metrics. For
reference, we provide the average rank. We find that the
following holds.

1) Our designed TFMKC model achieves the strongest
clustering metrics across all datasets. In particular, it out-
performs the second-best ACC with large margins of
11.67%, 2.56%, 4.53%, 0.48%, 1.56%, 2.24%, 8.26%,
1.85%, 10.34%, 7.92%, 3.05%, 7.89%, and 6.02%,
respectively. Our TFMKC ranks first, demonstrating
its superior performance over other existing kernel or
graph-based algorithms.

2) Compared to traditional late fusion MKC methods that
use truncated-k EVD manner with limited representation
capacity, our flexible partition fusion strategy integrates
diverse and complementary information and achieves
significant improvements.

3) Note that most baselines achieve positive ARI except
for SwMC and SPMKC. However, the ARI metric of
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TABLE IV
COMPARISON OF RUNNING TIME (S). “TUNING” MEANS THE TOTAL EXECUTION TIME. “RUNNING” MEANS THE SINGLE RUNNING

TIME. “-” MEANS A HYPERPARAMETER-FREE ALGORITHM. “-” MEANS TIME-OUT OR OUT-OF-MEMORY ERRORS

TABLE V
COMPARISON OF RUNNING TIME WITH FOUR RECENT COMPARED BASELINES

SwMC is close to zero on most datasets, and the ARI
metric of SPMKC is negative/zero on Plant and CCV
datasets, illustrating their clustering results involving
obvious randomness.

4) Table III compares the clustering metrics with four
recent baselines, namely, SimpleMKKM, FAMKKM,
LSWMKC, and MPS. Although our NMI is inferior
to them on Politicsuk and Plant datasets, our TFMKC
achieves better performance on most datasets, especially
on large-scale datasets, illustrating our effectiveness.

F. Running Time

Tables IV and V record the CPU time. “-” indicates
no tuning process for a parameter-free algorithm, while

“N/A” denotes unreported metrics caused by out-of-memory
or time-out errors. As noted in Remark 2, our model can
be considered a parameter-free method since we initialize
the search region of parameter d and leave the rest for
optimization. From the table, we see that the following
holds.

1) Comparing the kernel or graph fusion baselines with
cubic time complexityO(n3), e.g., MKKM-MR, SwMC,
ONKC, SPMKC, and CAGL, our TFMKC with linear
complexity O(n) exhibits obvious efficiencies, espe-
cially on larger scale datasets.

2) Comparing the late fusion MKC baselines, that is,
LFMKC and OPLF, the proposed TFMKC costs more
“running time,” mainly caused by our partition fusion
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Fig. 3. Kernel weights distribution on eight datasets.

Fig. 4. Learned diverse partition weight β of the i th augmented kernel partition matrix in the pth view. (a) Politicsuk. (b) Rugby. (c) Willow. (d) Plant.
(e) Flower17. (f) CCV. (g) Flower102. (h) Reuters.

mechanism. However, since LFMKC and OPLF involve
fine-tuning or repetitive computations, their “tuning
time” is much longer than ours.

3) Although our proposed model requires more CPU time
than AKKM and MKKM with cubic complexity O(n3),
which our complex solver causes, we believe that this
extra computational cost is worthwhile for significant
improvement.

4) Table V reports running time comparisons on four recent
baselines. SimpleMKKM is a nonparameter method
without parameter tuning, yet it still requires much more
run time than our model due to its complex optimization.
Although FAMKKM achieves a comparable run time
as our TFMKC, it requires two hyperparameters to
fine-tune its performance, inducing respective parameter
tuning. Both LSWMKC and MPS require more run
time compared to our proposed model, and their tune
time is a huge cost. By contrast, our TFMKC gets
rid of the parameter tuning and achieves competitive
efficiency.

Fig. 5. Evolution of four metrics with iterations. (a) Politicsuk. (b) Plant.

G. Kernel Weights
Figs. 3 and 4 depict the learned view-wise weight ω

and partition weight β. We observe that the nonsparse
distribution varies with different views, demonstrating the
superiority of our view-level fusion method in fusing diverse
and complementary structures. As a result, our TFMKC adap-
tively achieves view-level fusion.
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Fig. 6. Comparing clustering metrics of our tuning-free TFMKC and the fine-tuning TFMKC-tune. (a) Politicsuk. (b) Rugby. (c) Willow. (d) Plant. (e) Flower17.
(f) CCV. (g) Flower102. (h) Reuters.

TABLE VI
COMPARING THE EFFICIENCY OF OUR TUNING-FREE TFMKC AND FINE-TUNING VERSION (TFMKC-TUNE)

H. Evaluation of Clustering Performance

Fig. 5 records the evolution of clustering metrics on Politic-
suk and Plant datasets. We observe that four metrics increase
with iteration and remain stable, indicating the effectiveness
of our TFMKC optimization process.

I. Ablation Study of Partition Fusion Mechanism

This section provides an ablation study of our diverse
partition fusion mechanism, i.e., comparing the fine-tuning
strategy (TFMKC-tune) with our tuning-free TFMKC
model. TFMKC-tune involves parameter tuning, as noted
in (9).

Fig. 6 and Table VI compare clustering performance and
CPU time. From the table, we observe that: 1) in terms
of effectiveness, although our TFMKC exhibits comparable
results with TFMKC-tune on Flower17, our model achieves
significant improvements on other datasets, with a large margin
of 24.12%, 22.52%, 4.57%, 11.03%, 12.42%, 1.61%, and
2.96% of ACC, respectively, indicating the metric improve-
ments of our TFMKC and 2) in terms of efficiency, our
model requires much shorter CPU time due to our elegant

tuning-free fusion mechanism and linear algorithm time
complexity.

In addition, we plot the distribution of partition weights
β with respect to views’ ID m and search region param-
eter d . As our analysis of (9), the weight distribution of
TFMKC-tune is a sparse trivial solution, i.e., the weight of
the largest objective feval will be imposed 1, while the others
are 0, which means that the potential rich benefits across
diverse partitions are ignored. In contrast, our tuning-free
fusion mechanism automatically reweights and fuses var-
ious partitions, which can explain significant performance
improvements.

Overall, our TFMKC shows significant superiority over the
traditional fine-tuning strategy.

J. Convergence

According to Section III-D, our model theoretically con-
verges to a local optimum solution. Fig. 7 presents experimen-
tal validation on CCV and Flower102 datasets. The objective
of our TFMKC decreases monotonically and converges in less
than ten iterations.
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Fig. 7. Empirical validation of convergence. The objective increases monotonically and converges in less than ten iterations. (a) Politicsuk. (b) Rugby.
(c) Willow. (d) Plant. (e) Flower17. (f) CCV. (g) Flower102. (h) Reuters.

V. CONCLUSION

This article investigates a critical issue of how to efficiently
exploit diverse and complementary structures in late fusion
MKC to address the limited feature representation capability
of existing methods. To this end, we propose to transform
the original challenging problem that directly determines the
optimal partition/parameter into a flexible partition/parameter
fusion problem. Based on this, we design a novel tuning-free
fusion mechanism that adaptively reweights the importance of
diverse partitions through optimization, integrating view- and
partition-level expressive information, contributing to learning
an optimal consensus partition. In addition, we provide an
upper bound of our model. Extensive experiments verify our
significant effectiveness and efficiency. Moreover, our flexible
fusion mechanism provides a promising strategy and can be
easily extended to existing MVC algorithms.
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