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Abstract

Generalised linear models for multi-class classification problems are one of the
fundamental building blocks of modern machine learning tasks. In this manuscript,
we characterise the learning of a mixture of K Gaussians with generic means
and covariances via empirical risk minimisation (ERM) with any convex loss and
regularisation. In particular, we prove exact asymptotics characterising the ERM
estimator in high-dimensions, extending several previous results about Gaussian
mixture classification in the literature. We exemplify our result in two tasks of
interest in statistical learning: a) classification for a mixture with sparse means,
where we study the efficiency of `1 penalty with respect to `2; b) max-margin multi-
class classification, where we characterise the phase transition on the existence
of the multi-class logistic maximum likelihood estimator for K > 2. Finally, we
discuss how our theory can be applied beyond the scope of synthetic data, showing
that in different cases Gaussian mixtures capture closely the learning curve of
classification tasks in real data sets.

1 Introduction

A recurring observation in modern deep learning practice is that neural networks often defy the
standard wisdom of classical statistical theory. For instance, deep neural networks typically achieve
good generalisation performances at a regime in which it interpolates the data, a fact at odds with the
intuitive bias-variance trade-off picture stemming from classical theory [1–3]. Surprisingly, many
of the “exotic” behaviours encountered in deep neural networks have recently been shown to be
shared by models as simple as overparametrised linear classifiers [4, 5], e.g., the aforementioned
benign over-fitting [6]. Therefore, understanding the generalisation properties of simple models in
high-dimensions has proven to be a fertile ground for elucidating some of the challenging statistical
questions posed by modern machine learning practice [7–16].

In this manuscript, we pursue this enterprise in the context of a commonly used model for high-
dimensional classification problems: the Gaussian mixture. Indeed, it has been recently argued
that the features learned by deep neural networks trained on the cross-entropy loss “collapse” in a
mixture of well-separated clusters, with the last layer acting as a simple linear classifier [17]. Another
observation put forward in [18] is that data obtained using generative adversarial networks behave
as Gaussian mixtures. Here, we derive an exact asymptotic formula characterising the performance
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of generalised linear classifiers trained on K Gaussian clusters with generic covariances and means.
Our formula is valid for any convex loss and penalty, encompassing popular tasks in the machine
learning literature such as ridge regression, basis pursuit, cross-entropy minimisation and max-margin
estimation. This allow us to answer relevant questions for statistical learning, such as: what is
the separability threshold for K-clustered data? How does regularisation affects estimation? Can
different penalties help when the means are sparse? We also extend the observation of [18] showing
that the learning curves of binary classification tasks on real data are indeed well captured by our
asymptotic analysis.

Model definition — We consider learning from a d-dimensional mixture of K Gaussian clusters
Ck∈[K]. The data set is obtained by sampling n pairs (xν ,yν)ν∈[n] ∈ Rd+K identically and indepen-
dently. We adopt the one-hot encoded representation of the labels, i.e., if xν ∈ Ck, then yν = ek,
kth basis vector of RK . We will denote the matrix of concatenated samplesX ∈ Rd×n. The mixture
density then reads:

P (x,y) =

K∑
k=1

ykρkN (x |µk,Σk ) , (1)

where N (x|µ,Σ) is the multivariate normal distribution with mean µ and covariance matrix Σ.
The matrix of concatenated means is denoted M ∈ Rd×K . In Eq. (1), ∀k, ρk = P (y = ek) ≥ 0,
µk ∈ Rd and Σk ∈ Rd×d is positive-definite. We will consider the estimator obtained by minimising
the following empirical risk:

R(W , b) ≡
n∑
ν=1

`

(
yν ,

Wxν√
d

+ b

)
+ λr(W ), (2)

(W ?, b?) ≡ argmin
W∈RK×d, b∈RK

R(W , b) , (3)

whereW ∈ RK×d and b ∈ RK are the weights and bias to be learned, ` is a convex loss function,
and r is a regularisation function whose strength is tuned by the parameter λ ≥ 0. For example the
loss function ` can represent the composition of a cross-entropy loss with a softmax thresholding on
the linear part of Eq. (2). We will characterise the distribution of the estimator (W ?, b?), and we will
evaluate the average training loss defined as

ε` =
1

n

n∑
ν=1

`

(
yν ,

W ?xν√
d

+ b?
)
, (4)

as well as the average training error εt and generalisation error εg, defined as the misclassification
rates:

εt =
1

n

n∑
ν=1

I
[
yν 6= ŷ

(
W ?xν√

d
+ b?

)]
, εg = E(xnew,ynew)

[
I
[
ynew 6= ŷ

(
W ?xnew

√
d

+ b?
)]]

,

where (xnew,ynew) is a new unseen data point sampled from the distribution in Eq. (1). In the
previous equations, we have used the function ŷ : RK → RK , so that ŷk(x) := I(maxκ xκ = xk).

The main contributions in this manuscript are the following:

(C1) In Sec. 2 and Appendix A we prove closed-form equations characterizing the asymptotic
distribution of the matrix of weightsW ? ∈ RK×d, enabling the exact computation of key quantities
such as the training and generalisation error. Our proof method solves shortcomings of previous
approaches by introducing a novel approximate message-passing sequence, building on recent
advances in this framework, that is of independent interest.
(C2) In Sec. 3.1 we study the problem of classifying an anisotropic mixture with sparse means,
where the strong or weak directions in the data are correlated with the non-zero components of the
mean as in [19]. We study how learning the sparsity with an `1 penalty improves the classification
performance.
(C3) In Sec. 3.2 we study the performance of the cross-entropy estimator in the limit of vanishing
regularisation λ → 0+ for K Gaussian clusters as a function of the sample complexity α = n/d;
we show that a phase transition takes place at a certain value α?K between a regime of complete
separability of the data and a regime in which the correct classification of almost all points in the data
set is not possible. We also investigate the effect of λ > 0 regularisation on the generalisation error,
comparing the K > 2 case with the results given in the literature for K = 2 [14, 20].
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(C4) In Sec. 3.3 we investigate the applicability of our formula beyond the Gaussian assumption by
applying it to classification tasks on real data. We show that for different tasks and losses, it closely
captures the real learning curves, even when data is mapped through a non-linear feature map. This
further shows that Gaussian mixtures are a good surrogate model for investigating real classification
tasks, as put forward in [18].

Relation to previous work — The analysis of Gaussian mixture models in the high-dimensional
regime has been the subject of many recent works. Exact asymptotics has been derived for the
binary classification case with diagonal covariances in [21–23] for the logistic loss and in [24, 25]
for the square loss, both with `2 penalty. A similar analysis has been performed in [26] for the
hard-margin SVM. These works were generalised to generic convex losses and `2 penalty in [14],
where it has been also shown that the regularisation term can play an important role in reaching
Bayes-optimal performances. Hinge regression with `1 penalty and diagonal covariance was treated
in [13]. Recently, these asymptotic results were generalised to the case in which both clusters share
the same covariance in [27], and finite rate bounds were given in [28, 29] in the case of sub-Gaussian
mixtures. Asymptotic results for the multiclass problem with diagonal covariance were derived in
[20] for the restricted case of the square loss with `2 penalty. Our result unifies all the aforementioned
asymptotic formulas, and extends them to the general case of a multiclass problem with generic
covariances and arbitrary convex losses and penalties.
From a technical standpoint, in [13, 14, 20, 21, 25, 27, 30] the authors use convex Gaussian compari-
son inequalities, see e.g. [31, 32], to prove their result. In particular, the proof given in [20] for the
multiclass problem harnesses the geometry of least-squares, and it is then stressed that this method
breaks down for multiclass problems in which the risk does not factorise over the K clusters (as for
the cross-entropy, for example). We solve this problem using an innovative proof technique which has
an interest in its own. Our approach is to capture the effect of non-linearity and generic covariances
via the rigorous study of an approximate message-passing (AMP) sequence, a family of iterations
that admit closed-form asymptotics at each step called state evolution equations [33]. Our proof
relies on several refinements of AMP methods to handle the full complexity of the problem, notably
spatial coupling with matrix valued variables [34–36] and non-separable update functions [37], via a
multi-layer approach to AMP [38].
The sparse Gaussian mixture model analysed in Section 3.1 is closely related to the rare/weak features
model introduced in [19] and widely studied in the context of sparse linear discriminant analysis
[39–42]. It was recently revisited in [28, 29] in the context of ERM with max-margin classifiers. Here,
we consider a correlated variation of the model and study the benefit of using a sparsity inducing `1
penalty.
The separability transition is a classical topic [43, 44] that has recently witnessed a renewal of interest
thanks to its connection to overparametrization. It was studied in [16] in the context of uncorrelated
Gaussian data, in [8] in the random features model and in [14, 21] for binary Gaussian mixtures.
Recently, [12, 45, 46] showed that the performance of different regression tasks on real data are
well-captured by a teacher-student Gaussian model in high-dimensions for ridge regression, but
this turned not to be true for non-linear problems such as logistic classification [12]. Authors of
[18] showed instead that data from generative adversarial networks behave like Gaussian mixtures,
motivating the modeling of such mixture for real-data in the present paper.

2 Technical results

Our main technical result is an exact asymptotic characterization of the distribution of the esti-
mator W ?. Informally, the estimator W ? and the quantity W ?X/

√
d behave asymptotically as

non-linear transforms of multivariate Gaussian distributions. These transforms are directly linked to
the proximal operators [47, 48] associated to the loss and regularisation functions, summarizing the
effect of the cost function landscape on the estimator. The parameters of these Gaussian distributions
and proximals can then be computed from the fixed point of a self-contained set of equations. We
start by presenting the most generic form of our result in a concentration of measure-like statement in
Theorem 1, and discuss an intuitive interpretation of the different quantities involved. Theorem 2
then states how the training and generalisation errors can be computed. All results presented in the
experiments section can be obtained from Theorem 1. In Corollary 3 we discuss a particular case
where explicit simplifications can be obtained. But first, let’s summarise the required assumptions for
our result to hold.
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(A1) The functions ` (as a function of its second argument) and r are proper, closed, lower semi-
continuous convex functions. We assume additionally that either the cost function `(y, •X) + r(•)
is strictly convex, or that `(y, •) is strictly convex in its second argument and r is the `1 norm, and
that the optimization problem 2 is feasible.
(A2) The covariance matrices are positive definite and their spectral norms are bounded.
(A3) The mean vectors µk are distributed according to some density Pµ(M) such that the following
quantity is finite

∀d E
[∥∥M>M

∥∥
F

]
< +∞, (5)

where ‖ • ‖F denotes the Frobenius norm.
(A4) The number of samples n and dimension d both go to infinity with fixed ratio α = n/d, called
hereafter the sample complexity. The number of clusters K is finite.
(A5) The fixed point of the set of self-consistent equations Eq.(8) exists and is unique.

As specified by assumption (A1), our proof does not apply to any convex problem. We discuss
this assumption further in Appendix A.5. We also comment on the existence and uniqueness of
the solution to the set of self consistent equations Eq.(8) in Appendix A.6. Before proceeding
further, let us specify a useful notation. Suppose that the matrix G = (Gki)ki ∈ RK×d is given,
alongside the four-index tensor A = (Aki k′i′)ki k′i′ ∈ RK×d ⊗ RK×d. We will use the notation
G� A =

∑
kiGkiAki k′i′ ∈ RK×d. Similarly, given a four-index tensor A, we will define

√
A as

the tensor such that A =
√
A�
√
A. We are now in a position to state our main result.

Theorem 1 (Concentration properties of the estimator). Let ξk∈[K] ∼ N (0, IK) be collection of
K-dimensional standard normal vectors independent of other quantities. Let also be {Ξk} a set of
K matrices, Ξk ∈ RK×d, with i.i.d. standard normal entries, independent of other quantities. Under
the set of assumptions (A1–A5), for any pseudo-Lispchitz functions of finite order φ1 : RK×d →
R, φ2 : RK×n → R, the estimatorW ? and the matrix Z? = 1√

d
W ?X verify:

φ1(W ?)
P−−−−−−→

n,d→+∞
EΞ [φ1(G)] , φ2(Z?)

P−−−−−−→
n,d→+∞

Eξ [φ2(H)] , (6)

where we have introduced the proximal for the loss:

hk = V
1/2
k Prox

`(ek,V
1/2
k •)(V

−1/2
k ωk) ∈ RK , ωk ≡mk + b+Q

1/2
k ξk , (7)

and H ∈ RK×n is obtained by concatenating each hk, ρkn times. We have also introduced the
matrix proximalG ∈ RK×d:

G = A
1
2�Prox

r(A
1
2�•)

(A
1
2�B), A−1 ≡

∑
k

V̂k⊗Σk, B≡
∑
k

(
µkm̂

>
k +Ξk �

√
Q̂k⊗Σk

)
.

The collection of parameters (Qk,mk,Vk, Q̂k, m̂k, V̂k)k∈[K] is given by the fixed point of the
following self-consistent equations:

Qk= 1
dEΞ[GΣkG

>]

mk= 1√
d
EΞ[Gµk]

Vk= 1
dEΞ

[(
G�

(
Q̂k ⊗Σk

)− 1
2� (IK ⊗Σk)

)
Ξ>k

]

Q̂k= αρkEξ

[
fkf

>
k

]
V̂k= −αρkQ

− 1
2

k Eξ
[
fkξ

>]
m̂k= αρkEξ [fk]

(8)

where fk ≡ V −1
k (hk − ωk), and the vector b? is such that

∑
k ρkEξ [Vkfk] = 0 holds.

The purpose of this statement is to have an asymptotically exact description of the distribution of the
estimator, where the dimensions going to infinity are effectively summarized as averages over simple,
independent distributions. Those distributions are parametrised by the set of finite-size parameters
(Qk,mk,Vk, Q̂k, m̂k, V̂k)k∈[K] that can be exactly evaluated and have a clear interpretation. Indeed,
the parameters (mk, m̂k) and (Qk, Q̂k) respectively represent means and covariances of multivariate
Gaussians (combined with the original µk,Σk), and the (Vk, V̂k) parametrise the deformations that
should be applied to these Gaussians to obtain the distribution of W ?,Z?. The distribution is
characterized in a weak sense with concentration of pseudo-Lipschitz (i.e., sufficiently regular)
functions, whose definition is reminded in the Appendix A. From this result one can work out a
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number of properties of the weightsW ?, e.g., training and generalisation error, but also hypothesis
tests as done in [49] for the LASSO. Due to the generality of the statement, no direct simplification is
possible. However, we will see that in certain specific cases all quantities can be greatly simplified.
This is notably the case for diagonal covariance matrices and separable estimators and observables
φ1, φ2, where the sums over high-dimensional Gaussians concentrate explicitly to one-dimensional
expectations. For instance the results of [14, 20] can be recovered as special cases of the present work.
Theorem 1 then allows to obtain the asymptotic values of the generalisation error, of the training loss
and of the training error. Their explicit expression is given in the following Theorem.

Theorem 2 (generalisation error and training loss). In the hypotheses of Theorem 1, the training loss,
the training error and the generalisation error are given by

ε` =

K∑
k=1

ρkEξ[`(ek,hk)], εt = 1−
K∑
k=1

ρkEξ [ŷk(hk)] , εg = 1−
K∑
k=1

ρkEξ [ŷk(ωk)] . (9)

The case of ridge regularisation and diagonal Σk — The general formulas given above can be
remarkably simplified under some assumptions about the choice of the regularisation and about the
structure of the covariance matrices Σk. This is the case for instance for the ridge regularisation
r(W ) = ‖W ‖2F/2 and jointly diagonalizable covariances. In this case, Theorem 1 simplifies as
follows.

Corollary 3. Under the hypotheses of Theorem 1, let us further assume that a ridge regularisation is
adopted, r(W ) = ‖W ‖2F/2, and that the covariance matrices Σk have a common set of orthonormal
eigenvectors {vi}di=1, so that, for each Σk =

∑d
i=1 σ

k
i viv

>
i . Let us also introduce, in the d→ +∞

limit, the joint distribution for the K-dimensional vectors σ = (σ1, . . . , σK) and µ = (µ1, . . . , µK),

1

d

d∑
i=1

K∏
k=1

δ(σk − σki )δ(µk −
√
dµ>k vi)

d→+∞−−−−−→ p(σ,µ), (10)

Then, the first three saddle point equations in eqs. (8) take the form

Qk = Eσ,µ
[
σk
(
λIK +

∑K
κ=1 σ

κV̂k

)−2 (∑
κκ′ µ

κµκ
′
m̂κm̂

>
κ′ +

∑K
κ=1 σ

κQ̂k

)]
,

mk = Eσ,µ
[
µk
(
λIK +

∑K
κ=1 σ

κV̂k

)−1∑K
κ=1 µ

κm̂κ

]
,

Vk = Eσ,µ
[
σk
(
λIK +

∑K
κ=1 σ

κV̂k

)−1
]
.

(11)

Narrative of the proof — The proof is detailed in Appendix A. It overcomes problems that existing
methods, notably convex Gaussian comparison inequalities [20], have yet to be adapted to. The first
main technical difficulty resides in the estimator of interest being a matrix learned with non-linear
functions. This makes it impossible to decompose the problem on each row of the estimator, which
must be characterized in a probabilistic sense directly as a matrix. The second main difficulty is
brought by the mixture of arbitrary covariances. Intuitively, the covariances correlate the estimator
with the individual clusters, and therefore the correlation function cannot be represented by a single
quantity. In our proof, these points are handled using the AMP and related state-evolution techniques
[33, 50–52]. The main idea of the proof is to express the estimatorW ? as the limit of a convergent
sequence whose structure enables the decomposition of all correlations and distributions in closed
form. AMP iterations can handle matrix valued variables [36, 53], correlations in block-structure
[36], non-separable functions [37, 38] and compositions of the previous three, leaving a large choice
of possibilities in their design. We thus reformulate the problem in a way that makes the interaction
between the estimator and each cluster explicit, effectively introducing a block structure to the
problem, and isolate the overlaps with the means {µk}. We then design a matrix-valued sequence
that obeys the update rule of an AMP sequence, in order to benefit from its exact asymptotics, and
whose fixed point condition matches the optimality condition of the ERM problem, Eq. (2). Our
proof builds on the spatial coupling framework in the AMP literature [36, 54], which shows that
the effect of random matrices defined with non-identically distributed blocks can be embedded in
an AMP iteration while explicitly keeping the effect of each block. The non-linearities are then
obtained by a block decomposition of the proximal operators defined on sets of matrices, acting on
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different variables of the AMP sequence and representing the effect of each cluster. The convergence
analysis is made possible by the convexity of the problem: the sequence is defined with proximal
operators of convex functions which are roughly contractions, and results in converging sequences
when combined with the high-dimensional properties of the iteration. It is also interesting to note that
the replica method, although heuristic, yet again gives the correct prediction without any hindering
from the aforementioned main difficulties, as detailed in Appendix B.

Universality — AMP-type proofs are amenable to both finite sample size analysis and universality
proofs. For instance, in [55] it is shown that simpler instances of AMP for the LASSO exhibit
exponential concentration in the system size, and the i.i.d. Gaussian assumption can be relaxed to
independently sampled sub-Gaussian distributions, as shown in [56, 57]. Although these results do
not formally encompass our case, their proof method contains most of the required technicalities,
and it should be possible to prove similar results in the present setting. Indeed, recent results in [18]
suggest that the formula of Theorem 1 and 2 should be universal for all mixtures of concentrated
distribution in high-dimension, not only Gaussian ones. As we discuss Sec. 3.3, even real data
learning curves are empirically found to follow the behavior of the mixture of Gaussians.

3 Results on synthetic and real datasets

In this section we exemplify how Theorem 1 can be employed to compute quantities of interest in
different empirical risk minimisation tasks in high-dimensions. In all cases discussed below, eqs. (8)
have been solved numerically. A repository with a polished version of the code we used to solve the
equations is available on GitHub [58] (see also Appendix B.5).

3.1 Correlated sparse mixtures
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Figure 1: (Left) Two-dimensional projection of the Gaussian mixture introduced via Eq. (12) in
which the sparse directions of the means are correlated with the weak/strong directions in the data.
(Right) Fraction of non-zero elements of the lasso estimator (top) and optimal regularisation strength
(bottom) as a function of the sample complexity α = n/d for different anisotropy ratios and fixed
sparsity ρ = 0.1. Note that for ∆1/∆2 . 1 and for low α the optimal error is achieved for vanishing
regularisation, which corresponds to the basis pursuit algorithm [59].

As a first example, consider a binary classification problem in which the most relevant features live
in a subspace of Rd, and can be either weaker or stronger with respect to the irrelevant features.
This problem can be modelled with a Gaussian mixture model with sparse means, and where the
strong/weak directions of the covariance matrix are correlated with the non-zero components of the
means. Mathematically, we consider a data set with n independent samples (xν , yν) ∈ Rd×{−1, 1}
drawn from a Gaussian mixture xν ∼ N (yνµ,Σ) with diagonal covariance Σij = σiδij which is
correlated with the sparse means:

P (µ,σ) =

d∏
i=1

{ρN (µi|0, 1)δσi,∆1
+ (1− ρ)δµi,0δσi,∆2

} (12)

where ρ > 0 is the fraction of non-zero entries in µ. This model is closely related to the rare/weak
features model introduced by Donoho and Jin in [19]. Indeed, in the case ∆1 = ∆2 ≡ ∆ the
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Figure 2: Learning curves for the sparse mixture model defined via Eq. (12) at fixed sparsity
ρ = 0.1, comparing the performance of the ridge (blue) and the lasso (orange) estimators at optimal
regularisation strength λ∗ and for different anisotropy ratio ∆1/∆2 (here ∆1 = 0.1 and we vary
∆2). Full lines denote the theoretical prediction, and dots denote finite instance simulations with
d = 1000 using the ElasticNet module in the Scikit-learn package [60]. Above a certain
sample complexity α, we can identify two regimes: a) a ∆1/∆2 . 1 regime in which the `1
penalty improves significantly over `2; b) a ∆1/∆2 & 1 regime in which the performance is similar.
Interestingly, even though the generalisation error of lasso is considerably better in a), the training
loss (i.e. the mse on the labels) is higher, & vice-versa in b).

signal-to-noise ratio of the model is proportional to ρ/
√

∆, with ρ and ∆−1/2 playing the roles of
the parameters ε and µ0 setting the "rareness" and "strength" of the features in [19].

The formulas given in Theorem 1 simplify considerably for this model (see Appendix C for details),
and therefore can be readily used to characterise the learning performance of different losses and
penalties. For instance, one fundamental question we can address is when learning a sparse solution
with the `1 regularization is advantageous over the usual `2. Figure 2 compares the learning curves
computed from Theorem 1 for the lasso and ridge estimators, with optimal regularisation strength
λ?(α) = argmin εg(α, λ) at fixed sparsity ρ = 0.1. We can see that lasso performs considerably
better than ridge in the regime where ∆1/∆2 . 1, while it achieves a similar performance when
∆1/∆2 & 1. This is quite intuitive: the sparse directions are uninformative, and therefore learning
the relevant features is better when they are stronger. Figure 1 (right) shows how the sparsity of the
learned estimatorW ? and the optimal regularisation λ? depends on the sample complexity α = n/d.
Interestingly, for ∆1/∆2 = 0.1 or lower there is a region of small α in which basis pursuit (λ = 0+)
[59] is optimal, and the sparsity of the estimator has a curious non-monotonic behaviour with α.

3.2 Separability transition for the cross-entropy loss

We now consider the problem of classifying points of K Gaussian clusters using a cross-entropy loss

`(y,x) = −
K∑
k=1

yk ln
exk∑K
κ=1 e

xκ
. (13)

Using the results of Theorem 2, we estimate the dependence of the generalisation error εg on the
sample complexity α and on the regularisation λ. We assume Gaussian means µk ∼ N (0, Id/d) and
diagonal covariances Σk ≡ Σ = ∆Id. Finally, we adopt a ridge penalty, r(W ) ≡ ‖W ‖2F/2, and we
focus on the case of balanced clusters, i.e., ρk = 1/K for the sake of simplicity.

Separability transition — In Fig. 3 (left top) we plot the generalisation error εg as function of α
for 2 ≤ K ≤ 5 and λ = 10−4. The smooth curve is obtained solving the fixed point equations in The-
orem 1 and plugging the results in the formulas in Theorem 2. The results of numerical experiments
are obtained averaging over 102 instances of the problem solved using the LogisticRegression
module in the Scikit-learn package [60]. An excellent agreement is observed. For each pair
(K,∆) and for vanishing regularisation λ→ 0+ we observe a double-descent-like behaviour in the
generalisation error. Indeed, the cusp α?K(∆) in the generalisation error corresponds to the point in
which the cross-entropy estimator ceases to perfectly interpolate the data, revealing the existence of a
separability transition of the type discussed in [16] for Gaussian i.i.d. data. As stressed therein, a phase
of perfect separability of the data points corresponds to a regime in which the maximum-likelihood
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Figure 3: Classification of K Gaussian clusters in d dimensions, having Gaussian means and
Σk ≡ Σ = ∆Id with ∆ = 1/2. In all presented cases, a quadratic regularisation has been adopted.
Numerical experiments have been performed using d = 103. (Left) Generalisation error εg (top)
and training error εt (bottom) as function of α at λ = 10−4. Theoretical predictions (full lines) are
compared with the results of numerical experiments (dots). Dash-dotted lines of the corresponding
color represent, for comparison, the Bayes-optimal error. The results of numerical experiments are
in agreement with the theoretical predictions in all cases. (Center) Separability transition α?K as a
function of K in the same setting for different values of ∆. (Right) Dependence of the generalisation
error on the regularization λ for K = 3 and ∆ = 1/2 in the balanced case, ρk = 1/K.

estimate does not exist with probability one. This is visible, in the same figure (left bottom), from the
training error εt that is identically zero for α < α?K , and strictly positive otherwise. Our result extends
the observations in [14, 21], where an analytic expression for α?2 has been given in the case of for
K = 2, µ1 = −µ2 Gaussian vector, generalising the classical result of Cover [43]. The separability
transition point α?K decreases with ∆ and increases with K, showing that for larger K it is easier to
separate the different clusters: this intuitively follows from the fact that, at fixed α and ∆, each cluster
is given by αd/K points, i.e., fewer for increasingK and therefore easier to classify, see Fig. 3 (center).
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Figure 4: (Left.) Generalisation error obtained
using ridge regression in the case of two bal-
anced Gaussian clusters having Σ1 = 1

10Id and
Σ2 = 1

100Id as function of λ for different val-
ues of the sample complexity α. (Right) Gen-
eralisation error εg as a function of λ at fixed
α in the binary classification of MNIST and in
the FashionMNIST via logistic regression (see
Sec. 3.3 for details).

The role of regularisation — In Fig. 3 (right)
we compare the performances of the cross-entropy
loss with respect to the Bayes-optimal error (de-
tailed in Appendix D) for different strength λ of
the regularisation, assuming all identical diagonal
covariances Σk ≡ Σ = ∆Id. In the case of bal-
anced clusters (i.e., ρk = 1/K for all k) it is ob-
served that the generalisation error approaches the
Bayes-optimal error for λ→ +∞. The same phe-
nomenology has been observed in [14, 24] in the
K = 2 case with opposite means and generic loss,
and in [20] forK > 2 for the square loss. Using the
concentration results of Section 2, we investigated
the robustness of this result in the case of balanced
clusters but with different covariances and vari-
ous losses. First, we considered two opposite bal-
anced clusters with Σ1 = ∆1Id and Σ2 = ∆2I2,
∆1 6= ∆2, and we estimated the generalisation
error at fixed sample complexity as function of
λ ∈ [10−4, 102] using ridge regression. As shown
in Fig. 4 (left), the regularisation strength optimis-
ing the error is finite, and in particular depends on the sample complexity. This situation is closer to
what is observed in real problems with balanced data analysed using logistic regression. Indeed, using
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Figure 5: Generalisation error and training loss for the binary classification using the logistic loss on
MNIST with λ = 0.05 (left) and on Fashion-MNIST with λ = 1 (right). The results are compared
with synthetic data produced from the corresponding Gaussian mixture, and the theoretical prediction.

the covariances from real data sets such as MNIST or Fashion-MNIST yields a similar behaviour, see
Fig. 4 (right), with an optimal λ that is found to be finite.

3.3 Binary classification with real data

A recent line of works has reported that the asymptotic learning curves of simple regression tasks
on real data sets can be well approximated by a surrogate Gaussian model matching the first two
moments of the data [12, 45, 46]. However, this analysis was fundamentally restricted to least-squares
regression, and considerable deviation from the Gaussian model was observed for classification
tasks [12]. Authors of [18] have shown that realistic-looking data from trained generative adversarial
networks behave like Gaussian mixtures. Here, we pursue these observations and investigate whether
Theorem 2 can be used to capture the learning curves of classification tasks on two popular data
sets: MNIST [61] and Fashion-MNIST [62]. Our goal is to compare the performances of some
classification tasks on them with the predictions provided by the theory for the Gaussian mixture
model.

Both data sets consist of ntot = 7× 104 images x̂µ ∈ Rd, d = 784. Each image x̂µ is associated to
a label ŷµ = {0, 1, . . . , 9} specifying the type of represented digit (in the case of MNIST) or item
(in the case of Fashion-MNIST). In both cases, we divided the database into two balanced classes
(even vs odd digits for MNIST, clothes vs accessories for Fashion-MNIST), relabelling the elements
x̂µ with yµ ∈ {−1, 1} depending on their class, and we selected n < ntot elements to perform
the training, leaving the others for the test of the performances. We adopted a logistic loss with `2
regularisation. First, we performed logistic regression on the training real data set, then we tested
the learned estimators on the remaining ntot − n images. At the same time, for each class k of
the training set, we empirically estimated the corresponding mean µk ∈ Rd and covariance matrix
Σk ∈ Rd×d. We then assumed that the classification problem on the real database corresponds to a
Gaussian mixture model of K = 2 clusters with means {µk}k∈[2] and covariances {Σk}k∈[2]. Under
this assumption, we computed the generalisation error and the training loss predicted by the theory
inserting the empirical means and covariances in our general formulas. The results are given in Fig. 5,
showing a good agreement between the theoretical prediction and the results obtained on MNIST and
Fashion-MNIST. In Fig. 5 we also plot, as reference, the results of a classification task performed on
synthetic data, obtained generating a genuine Gaussian mixture with the means and covariances of
the real data set.

Interestingly, this construction can also be used to analyse the learning curves of classification
problems with non-linear feature maps [12], e.g. random features [63]. In this case, we first apply to
our data set a feature map xµ = erf(F x̂µ), where F ∈ Rp×d has i.i.d. Gaussian entries and the erf
function is applied component wise. The classification task is then performed on the new data set
{(xν , yν)}ν∈[n], the new data points xν living in a p-dimensional space. We denote γ = p/d. We
repeat the analysis described above in this new setting. Our results are in Fig. 6 for different values of
γ. Once again, the generalisation error and the training loss are shown to be in a good agreement
with both the theoretical prediction and the synthetic data sets obtained plugging in our formulas the
real data means and the real data covariance matrices.

9



0.15

0.20

0.25

ge
ne

ra
lis

at
io

n 
er

ro
r

= 0.5
= 0.75
= 1.5

Theory
Synthetic
MNIST

0.00

0.05

0.10

0.15
= 0.5
= 1.0
= 1.5

Theory
Synthetic
Fashion-MNIST

0 1 2 3 4 5
sample complexity

0.3

0.4

tra
in

in
g 

lo
ss

0 1 2 3 4 5 6 7
sample complexity

0.2

0.4

0.6

Figure 6: Generalisation error and training loss for the binary classification using the logistic on
MNIST at λ = 0.05 (left) and on Fashion-MNIST at λ = 1 (right) in the random feature setting, for
different values of γ, ratio between the number of parameters and the dimensionality of the data. The
results are compared with synthetic data produced with the same γ, and the theoretical prediction.
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