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Abstract

In the domain of Inertial Confinement Fusion
(ICF), ensuring the surface quality of target shells
is critically demanding, as process anomalies
can lead to significant losses of both materi-
als and time. This paper presents a scalable
anomaly detection methodology tailored specif-
ically for the specialized task of batch polishing
these shells. Our approach utilizes an autoen-
coder model trained on normal process data, ap-
plying an Exponentially Weighted Moving Aver-
age (EWMA) control chart to the model’s recon-
struction loss to detect anomalies. This methodol-
ogy effectively handles large datasets and meets
the rigorous surface quality standards required to
maximize ignition yield in ICF operations. We
validate our methodology on datasets from two
distinct batch polishing experiments, H200 and
H202, which encompass multiple hours of oper-
ation. The paper also details the tuning of hy-
perparameters for the EWMA control chart and
includes both an ablation study and a comparative
analysis with other anomaly detection methods.
Our results demonstrate that this methodology out-
performs existing approaches by promptly detect-
ing subtle anomalies with minimal delay and low
rates of false positives. Specifically, it achieves
an average detection delay of 1.3 seconds for
the H200 dataset and 19.5 seconds for the H202
dataset, thereby contributing significantly to the
advancement of efficient and effective anomaly
detection in the ICF domain.

1Department of Industrial and Systems Engineering, Texas
A&M University, College Station, TX 77843. 2Lawrence Liver-
more National Lab, Livermore, California 94550.. Correspondence
to: Shashank Galla <shashankgalla@tamu.edu>, Kshitij Bhard-
waj <bhardwaj2@llnl.gov>.

Proceedings of the AI for Science workshop at 41 st International
Conference on Machine Learning, Vienna, Austria (2024). Copy-
right 2024 by the author(s).

1. Introduction
Decades of sustained research in laser-mediated nuclear fu-
sion have recently culminated in demonstration of ignition,
where the output energy is greater than the laser input en-
ergy. At the National Ignition Facility (NIF) in December
2022, an experiment yielded about 1.5 times greater fusion
energy than optical energy, which has generated much in-
terest in developing nuclear fusion as a highly concentrated
energy source that produces no harmful by-products (Abu-
Shawareb et al., 2024). With multiple more demonstrations
that followed, it is now hoped that nuclear fusion could
one day revolutionize the field of clean energy and greatly
alleviate the global energy crisis (Nature, 2024).

The approach used at NIF for this demonstration is called
Inertial Confinement Fusion (ICF). Here, a roughly 2mm
spherical shell made of high-density carbon (HDC), which is
akin to diamond (Biener et al., 2009), houses the deuterium-
tritium fuel on the interior required for ICF. The fusion
process is initiated by 192 laser beams, which impart energy
to the shell. This causes the HDC shell to implode rapidly
towards the fuel core, compressing and heating it to the lev-
els (1e9 bars and 1e8 K) needed to overcome the Coulombic
repulsion between the deuterium and tritium nuclei.

Ensuring the optimal use of deposited laser energy heavily
depends on the surface quality of the shells (Zylstra et al.,
2022). Any defects in the surface of the shell can lead to sig-
nificant instabilities, disrupting the uniform and symmetric
implosion necessary for successful fusion (Hurricane et al.,
2023; Casey et al., 2015; Schmitt et al., 2013). The stringent
requirements for the surface quality of the shells necessitate
ultra-high precision finishing processes, which is comprised
of a multi-stage polishing process. After undergoing fabri-
cation and polishing, only those shells that meet the high
surface quality standards are eligible for a fusion shot.

Polishing processes for batches of approximately 20 shells
are inherently time-consuming and susceptible to signif-
icant anomalies, which can result in catastrophic events
(Lawrence Livermore National Laboratory, 2024). These
anomalies typically originate from unanticipated deviations
within the polishing system or from surface irregularities
such as crack initiation sites on the shells. Such cracks
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may propagate, causing fractures and spalling of the HDC
coating. The disintegration of even a single shell can lead
to debris that compromises the integrity of the entire batch,
resulting in considerable losses.

To mitigate these catastrophic events and safeguard the pol-
ishing process, implementing robust online process mon-
itoring is crucial. By detecting incipient anomalies, this
system allows operators to halt the process timely, thereby
preventing extensive damage to expensive batches of shells
(Bukkapatnam et al., 2019). Advanced side-channel sen-
sors, including vibration sensors, acoustic emission sensors,
and microphones, are employed due to their high sensitivity
to subtle sub-micrometer level surface changes (Jin et al.,
2022).

However, the challenge lies in managing the vast volumes of
data generated by these sensors during the extended, multi-
hour polishing sessions. The sensors when sampled at high
frequencies, accumulate substantial datasets that demand ef-
ficient real-time processing and data management solutions.
Addressing this issue, our work aims to develop a scalable
anomaly detection methodology capable of handling such
large-scale datasets effectively.

In this work, we explore the use of an accelerometer to
gather extensive vibration data from the polishing process,
coupled with scalable machine learning techniques for early
anomaly detection. Specifically, an autoencoder model re-
constructs segments of the vibration signal, capitalizing on
its ability to learn normal data patterns and detect deviations
(Sakurada & Yairi, 2014). A high-pass filter is applied to
the reconstruction loss to improve the detection capability
and reduce cyclicity and noise. The processed signal is
then monitored using an Exponentially Weighted Moving
Average (EWMA) control chart, an effective method for
identifying shifts in process behavior (Hunter, 1986; Mont-
gomery, 2007).

Our methodology is implemented on two experimental
datasets, H200 and H202, each spanning multiple hours.
The system demonstrates a rapid detection capacity, with
lags of 1.3 seconds for H200 and 19.5 seconds for H202,
facilitating timely interventions to prevent potential dam-
age. This work significantly advances the application of
artificial intelligence in ICF and precision manufacturing.
By integrating autoencoders with EWMA control charts,
we enhance process efficiency and prevent catastrophic fail-
ures, broadening the spectrum of AI applications within the
nuclear and precision manufacturing sectors.

The paper is structured as follows: Section 2 delves into the
technical background of autoencoder models and EWMA
control charts. Section 3 describes the methodology for
detecting anomalies in the batch shell polishing process.
Section 4 discusses the tuning of hyperparameters for the

EWMA control chart and presents findings from a case study
involving two batch shell polishing experiments, including
an ablation study and benchmarking comparisons. Section 5
concludes the paper and outlines avenues for future research.

2. Background
In this study, we introduce a dual-stage framework for
anomaly detection tailored for complex manufacturing pro-
cesses. The initial stage focuses on identifying critical fea-
tures for monitoring using a machine learning model. We se-
lect an autoencoder for this purpose due to its demonstrated
effectiveness in unsupervised anomaly detection. In the sub-
sequent stage, these identified features are monitored using
an Exponentially Weighted Moving Average (EWMA) con-
trol chart to detect out-of-control (OOC) events indicative
of anomalies. This paper further elaborates on the specific
autoencoder architectures employed for unsupervised fea-
ture extraction and the application of EWMA control charts
for the detection of anomalies.

2.1. Autoencoder

Autoencoders have demonstrated efficacy in various
anomaly detection applications (Yan et al., 2023). These
neural network models operate on the principle of distin-
guishing between data with unseen properties and data with
seen properties during training. Autoencoders consist of
two main components: an encoder (fθe ) that compresses the
input wk ∈ Rn into a latent space representation z ∈ Rm,
and a decoder (gθd) that reconstructs the input from this
latent representation to produce ŵk. Mathematically, the
encoder-decoder structure can be expressed as follows:

z = fθe(wk) (1)

ŵk = gθd(z) (2)

An input is classified as anomalous if the reconstruction loss
Lk, typically measured by the Mean Squared Error (MSE),
exceeds a predefined threshold. The loss function is given
by:

L(wk, ŵk) =
1

n

n∑
i=1

(wk,i − ŵk,i)
2 (3)

In our approach, rather than using a predefined threshold,
we implement an EWMA control chart, as detailed in Sec.
2.2, to detect anomalies. This method enhances sensitivity
to subtle shifts in the monitored feature. For our specific
anomaly detection problem, the model is trained exclusively
on vibration data from normal polishing runs. This allows
the model to learn the typical characteristics of normal oper-
ations, facilitating the discrimination between normal and
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anomalous conditions in the polishing process. Also, a high-
pass filter is applied to Lk to eliminate cyclicity and noise
from the data.

2.2. EWMA control charts

Control charts serve as a fundamental instrument in statisti-
cal process control, designed to establish upper and lower
control limits and plot data points over time. These charts
are pivotal for monitoring processes and identifying out-of-
control (OOC) conditions when these limits are breached
(Montgomery, 2009). Statistical process control is typically
segmented into two phases: Phase I involves setting the
initial control limits, while Phase II uses these established
limits to monitor ongoing data.

Among various control chart formats, the Exponentially
Weighted Moving Average (EWMA) control chart stands
out for its efficacy in handling autocorrelated time series
data (Shi et al., 2022). In this study, we utilize the EWMA
control chart to monitor the filtered reconstruction loss (L′

k)
from an autoencoder model. This choice is informed by
the autocorrelation present in the time series data under
analysis.

The EWMA method offers a nuanced mechanism for pro-
cess monitoring by assigning incrementally greater weight
to more recent observations, thereby enhancing the detec-
tion of subtle changes and anomalies in the process. This
methodological approach ensures that recent data points
exert a more significant influence on the control measures,
facilitating timely identification of deviations and maintain-
ing the integrity of process monitoring.

The Phase I process involves obtaining data points (L′
k),

setting parameters (α,L,W ), computing statistics (zt, X̄
and σ̂), and establishing control limits (LCL/UCL). If data
points fall outside the control limits, they are removed, and
control limits are recalculated. Once stable control limits
are established, they are used for monitoring in Phase II.
The EWMA Statistic (zt) is given by:

zt = αL′
t + (1− α)zt−1,∀t = 1, . . . , T (4)

where z0 is data-point at time t = 0, zt is data-point at time
t and α is the smoothing parameter which corresponds to
the weight of historic observations. The steady-state control
limits are given by

LCL/UCL = X ± Lσ̂

√
α

2− α
(5)

where X is the average of the phase I observed data, σ̂
is the standard deviation of the phase I observed data and
L is the control limit co-efficient. α and L are the two

parameters that determine the design of an EWMA chart. In
our methodology, Phase I involves analyzing a steady-state
process of length W , where W serves as a critical design
parameter. The rationale and selection criteria for W are
discussed in detail in Section 4.2.

3. Methodology
This section outlines our proposed methodology, which is
structured into three key phases: Data collection, Feature
extraction, and Process monitoring. A detailed schematic of
our methodology for anomaly detection in batch polishing
processes is depicted in Figure 1.

3.1. Data collection

3.1.1. EXPERIMENTATION

Polishing experiments are performed on a batch of 20 shells,
polished simultaneously. Vibration data, denoted as yt for
t ∈ {1, . . . , T}, is captured from these experiments using
an accelerometer (Kistler 8728A500), where T indicates the
total duration of the experiment. The data collection occurs
at a sampling rate of 10 kHz, equivalent to every 0.0001
seconds.

3.1.2. DATA LABELING

The experimental data yt is segmented using a window size
β. Each window, represented as wk = {yt, . . . , yt+β−1},
undergoes auditory analysis by a human operator who lis-
tens to the sounds produced by the vibration signals dur-
ing the polishing process. The segments are labeled as
gk ∈ {0, 1}, with 0 indicating normal operating conditions
and 1 signifying anomalous conditions. These labels are
assigned based on auditory characteristics and changes in
signal amplitudes, allowing for the detection of anomalies
that manifest as unusual sound patterns or significant am-
plitude variations. This method enhances the detection of
subtle deviations that might not be evident in purely numer-
ical analysis.

3.2. Feature extraction

3.2.1. AUTOENCODER

An autoencoder model is trained on windowed data (wk, gk)
where gk = 0 represents normal operating conditions. Dur-
ing training, the model learns to compress the input data
and subsequently reconstruct it, optimizing the parameters
to minimize the discrepancy between the input and output.
After training, the model generates reconstructed data ŵk

for each window wk. The reconstruction loss, denoted as
L(wk, ŵk), quantifies the differences between the original
and reconstructed data. This metric is pivotal for anomaly
detection, as higher loss values suggest potential deviations
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Figure 1. Proposed Methodology for detecting anomaly during batch polishing process

from normal process conditions.

3.2.2. HIGH-PASS FILTER

Following the model training, the reconstruction loss data
Lk is subjected to high-pass filtering, a crucial step to
eliminate cyclical patterns and reduce noise, enhancing the
model’s sensitivity to subtle anomalies. This filtering effec-
tively attenuates low-frequency fluctuations, which might
otherwise mask the true dynamics of the process. By empha-
sizing high-frequency components, this approach ensures
that the data processed in subsequent analysis stages more
accurately represents significant deviations.

3.3. Process monitoring

In Phase I of the process monitoring, an Exponentially
Weighted Moving Average (EWMA) control chart is de-
veloped, establishing both lower (LCL) and upper (UCL)
control limits, using the high-pass filtered reconstruction
loss L′

k from the autoencoder model. Phase II involves the
application of this EWMA control chart to detect out-of-
control data points indicative of anomalies. Any data point
that breaches these established control limits is classified as
an anomaly.

4. Batch polishing case study
In general, process changes can be classified into two cate-
gories: major and subtle changes. Major changes, or process
anomalies, significantly alter the dynamics of the system.
The primary objective of this case study is to identify the first
major process anomaly, which marks a critical transition
in operational behavior. This initial anomaly is particularly
crucial as it heralds a substantial shift in the process dynam-
ics, often manifested by an increased amplitude in the signal

post-anomaly. Our proposed methodology is specifically
designed to quickly detect this first major change, facili-
tating timely intervention to prevent and mitigate potential
damage.

4.1. Dataset description

As previously discussed, we conduct polishing experiments
and collect extensive vibration datasets, with two such in-
stances designated as H200 and H202. These experiments
last TH200 = 2.78 hours and TH202 = 6.94 hours, respec-
tively. Each experiment culminates in a catastrophic event
that results in the complete decimation of the shells, leading
to substantial damage to the entire batch.

Figure 2 displays the time portraits of the vibration sig-
nals from these experiments, highlighting the occurrence
of the first process anomaly. The vibration data yt | t ∈
{1, . . . , T} are segmented into windows of size β = 1000
samples, which corresponds to a time resolution of 0.1 sec-
onds. A human operator examines each window wk by
listening to the playback of the signals at a sampling rate of
10 kHz. This auditory review facilitates the labeling of time
portrait regions as normal (gk = 0) or anomalous (gk = 1),
as discussed in Section 3.1.2.

The labeled data from the aforementioned experiments is
utilized for training the autoencoder.

4.2. Autoencoder training and filtering

For training our autoencoder, only a subset of the H200
dataset is utilized, specifically excluding the initial 100 sec-
onds identified as sensor startup noise by auditory analysis.
Subsequently, 900 seconds of data, categorized as normal
by the human operator, are used for training. The remaining
data from H200 are allocated for validation and testing pur-
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Figure 2. (a) H200 vibration time portrait with training data for
autoencoder (red patch) (b) H202 vibration time portrait

poses. The trained model is also assessed using the H202
dataset.

Figure 3. (a) Reconstruction loss from autoencoder for H200 (b)
Reconstruction loss from autoencoder for H202. (c) Filtered re-
construction loss from autoencoder for H200 (cutoff frequency:
1000 Hz) and (d) for H202 (cutoff frequency: 1000 Hz).

The architecture of our autoencoder is specifically designed
to discern complex patterns within the datasets. It incorpo-
rates fully connected layers, enhanced with batch normal-
ization and ReLU activation functions to ensure training sta-
bility and facilitate convergence. The encoder compresses
the input data from 1000 dimensions to a 100-dimensional
latent space, and the decoder restores the data back to its
original dimensionality. This dimensionality reduction is
crucial as it ensures that only the most relevant features are
preserved. Figure 3(a,b) displays the autoencoder’s recon-
struction loss for the H200 and H202 test datasets, with
the loss distribution highlighting significant anomalous re-
gions—two in H200 and one in H202—where the losses
significantly exceed the baseline.

After completing the training phase, the reconstruction loss
Lk is extracted from the autoencoder. To further process
this data, a high-pass filter with a cutoff frequency of 1000

Table 1. Training Configuration Parameters

Parameter Value

Loss Function MSE
Optimizer Adam
Learning Rate 0.001
Beta Parameters (0.99, 0.999)
Weight Decay 10−5

Training Epochs 500

Figure 4. Choice of Phase I window size W is chosen based on
convergence of control limit width. We set W = 5 min after which
the control limit width is asymptotic.

Hz is applied. The rationale behind choosing this particular
cutoff frequency is elaborated in Section 4.5. Figures 3(c,d)
depict the filtered reconstruction loss from the autoencoder
for the H200 and H202 datasets, respectively.

4.3. Design parameter settings for EWMA control chart

In the subsequent stage, after deriving L′
k, the analysis tran-

sitions to Phase I. This initial phase is critical for selecting
the appropriate parameters: the window size W , the smooth-
ing constant α, and the control limit L. It is a common
practice to set α within the range [0.1, 0.3]. Opting for a
lower α value, such as α = 0.1, enhances sensitivity to
subtle changes, thereby facilitating the detection of signif-
icant shifts in the process behavior. We select L = 3 to
balance the reduction of false positives with the retention
of sensitivity to significant variations, accommodating the
high variability observed in L′

k.

The determination of W during Phase I is established
through a numerical experiment. The control bounds
UCL−LCL

2 stabilize at W = 5 minutes, as evidenced by
the variations shown in Fig. 4. Consequently, W is set to
5 minutes for Phase I analysis to effectively detect process
anomalies.

4.4. Results and discussions

Following the completion of hyperparameter analysis and
the establishment of fixed parameters, Phase I analysis is
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Figure 5. (a) EWMA statistic time portraits for H200 correspond-
ing window size used in phase I for control chart development are
illustrated as brown patch (b) EWMA statistic time portraits for
H202

Table 2. Timing and adjustment of the first anomalies detected in
the datasets, accounting for system lag.

Dataset First Anomaly
(hh:mm:ss)

Detection
(hh:mm:ss)

Lag
(sec.)

H200 01:13:05 01:13:07 1.3
H202 04:32:03 04:32:23 19.5

commenced. We construct Exponentially Weighted Moving
Average (EWMA) control charts for the H200’s L′

k. To
ensure data stationarity, the initial 20 minutes are excluded,
and control limits (Upper Control Limit, UCL, and Lower
Control Limit, LCL) are derived from the subsequent 5
minutes of data. These established limits are subsequently
utilized to detect anomalies in the unseen datasets of H200
and H202 during Phase II. Figure 5(a,b) displays the EWMA
statistic constructed on L′

k for H200 and H202, respectively.

The timing of the first detected anomalies is documented
in Table 2. An anomaly is recognized when a data point
surpasses the established control limits, indicating an out-
of-control (OOC) condition. This breach constitutes the
detection event, and the time interval from the actual occur-
rence of the anomaly to its detection is termed the detection
lag.

For the datasets H200 and H202, the recorded detection
lags were 1.3 seconds and 19.5 seconds, respectively. These
metrics underscore the efficiency of the EWMA charts in
swiftly detecting anomalies, though responsiveness varies
across the datasets. The performance for H202 may be fur-
ther improved through domain adaptation strategies, such
as those proposed by (Ganin & Lempitsky, 2015), to accom-
modate the differing conditions encountered in polishing
operations between H200 and H202.

Figure 6 illustrates the EWMA control charts applied to
H200. This implementation resulted in two false positives,
depicted in Figure 6(b). The sensitivity of EWMA charts to
minor variations can be modulated by adjusting the smooth-
ing constant α. Setting α to 0.1, as previously discussed,
resulted in these false positives. Adjusting α directly affects

Figure 6. (a) EWMA control chart of Lk Phase II Anomaly Detec-
tion for H200. (b) illustrate subtle change/false positives and (c)
illustrate the lag between the ground truth occurrence of anomaly
and time when control chart detects anomaly.

the detection dynamics: increasing α heightens sensitiv-
ity, potentially increasing false positives, while decreasing
α tends to delay the detection of anomalies. Figure 6(c)
further displays the original process anomalies alongside
points identified as out of control (OOC), underscoring the
capability of EWMA charts to discern process anomalies
effectively.

4.5. Ablation study

To evaluate the impact of different components on the per-
formance of our anomaly detection system, we conducted an
ablation study utilizing four distinct analytical frameworks.
This study was implemented using the H200 dataset. The
configurations along with their respective detection latencies
are summarized in Table 3.

• Impact of autoencoder: Employing an autoencoder
in conjunction with a high-pass filter (cutoff frequency:
1000 Hz) facilitated anomaly detection with a minimal
lag of 1.3 seconds. In contrast, omitting the autoen-
coder increased the detection lag to 6 seconds for H200
and 2 seconds for H202, albeit with no false positives
recorded at either cutoff frequency. Despite the ab-
sence of false positives, our primary concern remains
with minimizing detection lag; the occurrence of two
false positives is deemed acceptable within this context.
This finding illustrates the critical role of the autoen-
coder as a non-linear filter in enhancing the sensitivity
of reconstruction loss data to process anomalies.

• Impact of cutoff frequency: Increasing the cutoff
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Table 3. Detailed results showing the detection lag and false positives for various analysis frameworks.
Sl. No Analysis Framework Lag (sec.) False positives count

1 Vibration + Autoencoder + High pass Filter (1000 Hz) + EWMA (+)1.3 2
2 Vibration + Autoencoder + High pass Filter (2500 Hz) + EWMA (+)7.2 2
3 Vibration + High pass Filter (1000 Hz) + EWMA (+)7.3 0
4 Vibration + High pass Filter (2500 Hz) + EWMA (+)9.7 0

Table 4. Performance comparison of different methods based on
lag and false positives.

Sl. No Method Lag (sec.) False positives
count

1 Autoencoders + EWMA 1.3 2
2 IForest 52 11
3 LOF 94 9
4 KNN 52 10
5 HBOS 50 7

frequency from 1000 Hz to 2500 Hz induced an addi-
tional lag of 2.5 seconds. This increase likely attenu-
ates essential signal components integral to anomaly
detection, underscoring the significance of selecting an
appropriate cutoff frequency for optimal performance
of the anomaly detection system.

4.6. Comparative analysis

To evaluate the effectiveness of our proposed methodol-
ogy, we conducted a comparative analysis using established
methods tailored to our problem domain. The H200 dataset
served as the basis for this comparative analysis. Four preva-
lent methods in anomaly detection research were selected
for their proven efficacy: Isolation Forest (IForest) (Liu
et al., 2008), Local Outlier Factor (LOF) (Breunig et al.,
2000), k-Nearest Neighbors (KNN) (Ramaswamy et al.,
2000), and Histogram-based Outlier Score (HBOS) (Gold-
stein & Dengel, 2012). The results are presented in Table 4.
Evaluation metrics included detection lag and the number
of false positives/subtle changes, with the objective of min-
imizing both. As shown in Table 4, our proposed method
surpasses all considered benchmarks in these metrics.

5. Conclusions and future work
This work introduces a scalable anomaly detection method-
ology that leverages an EWMA control chart for autoen-
coder reconstruction loss. Designed to accommodate large,
extensive datasets such as H200 and H202, which encom-
pass multiple hours of data, our approach is particularly
effective in managing the complexities of batch polishing
spherical shells. The robustness of the polishing process is
enhanced by demonstrating the methodology’s capability in
handling large-scale data environments.

Our approach is engineered to detect process anomalies at
the earliest possible instance, facilitating timely interven-
tions. We achieved detection latencies of 1.3 seconds for
H200 and 19.5 seconds for H202, indicating that such de-
lays do not compromise the integrity of production batches.
Instead, the swift identification and remediation of anoma-
lies contribute to maintaining operational efficiency and
minimizing potential disruptions.

The proposed method exhibits heightened sensitivity to
subtle changes, occasionally leading to false positives as
depicted in Figure 6(b). This sensitivity arises from the
model’s acute responsiveness to minor signal fluctuations.
While this attribute is beneficial for early anomaly detection,
it also heightens the risk of mistaking benign variations for
potential faults.

The timely detection of anomalies is critical in conserv-
ing valuable resources. A notable challenge in batch shell
polishing is the precise temporal localization of concurrent
damage across multiple shells, which complicates the inter-
pretation of vibration signals. In response, our trained au-
toencoder model serves as a tool for pinpointing anomalies
within vibration data, thereby facilitating further investiga-
tive efforts into the nature of these anomalies.

Future work will incorporate the use of cameras to precisely
locate temporal anomalies, reducing reliance on human-
generated labels. Further optimization of the autoencoder
and EWMA control chart parameters (α, L) is necessary to
enhance the system’s sensitivity to subtle process deviations,
often overlooked by human operators, and to improve detec-
tion lag and enable proactive maintenance strategies. Addi-
tionally, domain adaptation techniques will be investigated
to refine the prediction accuracy across different polishing
settings. We also aim to implement our anomaly detection
technique on edge devices located adjacent to the sensors
for in-situ monitoring during the early stages of anomaly
formation. This deployment will facilitate immediate noti-
fications before potential disruption to the entire batch of
shells, thus preserving the integrity of the manufacturing
process.

Broader impact
The methodology developed herein offers a modular,
general-purpose approach for time-series based anomaly
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detection in process monitoring. It enables the integration
of various machine learning models and control charts to
adjust detection sensitivity according to specific needs. Ap-
plied to batch polishing, this technique allows for the timely
detection of catastrophic damages, potentially saving signif-
icant production hours. Additionally, an online monitoring
system can proactively alert operators to halt machinery
and address detected faults, thereby enhancing operational
efficiency and reducing costly downtime. This approach
underscores its potential to significantly improve safety and
productivity in manufacturing environments.
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