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Dynamic Graph Information Bottleneck
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ABSTRACT
Dynamic Graphs widely exist in the real world, which carry com-
plicated spatial and temporal feature patterns, challenging their
representation learning. Dynamic GraphNeural Networks (DGNNs)
have shown impressive predictive abilities by exploiting the intrin-
sic dynamics. However, DGNNs exhibit limited robustness, prone to
adversarial attacks. This paper presents the novel Dynamic Graph
Information Bottleneck (DGIB) framework to learn robust and dis-
criminative representations. Leveraged by the Information Bottle-
neck (IB) principle, we first propose the expected optimal repre-
sentations should satisfy the Minimal-Sufficient-Consensual (MSC)
Condition. To compress redundant as well as conserve meritori-
ous information into latent representation, DGIB iteratively directs
and refines the structural and feature information flow passing
through graph snapshots. To meet the MSC Condition, we decom-
pose the overall IB objectives into DGIB𝑀𝑆 and DGIB𝐶 , in which
the DGIB𝑀𝑆 channel aims to learn the minimal and sufficient repre-
sentations, with the DGIB𝐶 channel guarantees the predictive con-
sensus. Extensive experiments on real-world and synthetic dynamic
graph datasets demonstrate the superior robustness of DGIB against
adversarial attacks compared with state-of-the-art baselines in the
link prediction task. To the best of our knowledge, DGIB is the first
work to learn robust representations of dynamic graphs grounded
in the information-theoretic IB principle.

KEYWORDS
dynamic graph neural networks, robust representation learning,
information bottleneck

1 INTRODUCTION
Dynamic graphs are prevalent in real-world scenarios, like the
extensive structure of the World Wide Web [3, 4, 52] represent-
ing a vast dynamic network, and encompassing domains such as
social networks [6, 16], financial transaction [38, 65], and traffic
networks [30, 66], etc. Due to their intricate spatial and temporal
correlation patterns, addressing awide spectrum of applications like
web link co-occurrence analysis [8, 22], relation prediction [24, 43],
anomaly detection [7, 44] and traffic flow analysis [32, 57], etc. poses
significant challenges. Leveraging their exceptional expressive ca-
pabilities, dynamic graph neural networks (DGNNs) [18, 50] intrin-
sically excel in the realm of dynamic graph representation learning
by modeling both spatial and temporal predictive patterns, which
is achieved with the combined merits of graph neural networks
(GNNs)-based models and sequence-based models.

Recently, there has been an increasing emphasis on the effi-
cacy enhancement of the DGNNs [13, 67, 68, 70], with a specific
focus on augmenting their capabilities to capture intricate spatio-
temporal feature patterns against the first-order Weisfeiler-Leman
(1-WL) isomorphism test [36, 59]. However, most of the existing
works still struggle with several challenges. One of the prominent
challenges is brought by the over-smoothing phenomenon due to

the message-passing mechanism in vanilla (D)GNNs [9]. Specifi-
cally, the inherent node features contain potentially irrelevant and
spurious information, which will be aggregated over the edges,
compromising the resilience of DGNNs, prone to ubiquitous noise
of in-the-wild testing samples, and possible adversarial attacks.

To against adversarial attacks, the Information Bottleneck (IB)
principle [54, 55] introduces an information-theoretic theory for
robust representation learning, which encourages the model to
acquire the most informative and predictive representation of the
target, which satisfies both the minimal and sufficient assump-
tion for optimal representations [12]. As illustrated in Figure 1(a),
the IB principle serves to encourage the representation to capture
maximum mutual information about the target and make accurate
predictions (Sufficient). Simultaneously, it discourages the inclusion
of redundant information from the input that is unrelated to pre-
dicting the target (Minimal). By adhering to this learning paradigm,
the trained model naturally mitigates overfitting and becomes more
robust to potential noise and adversarial attacks. However, directly
applying IB to robust representation learning of dynamic graphs
faces significant challenges. First, IB necessitates that the learn-
ing process adhere to the Markovian dependence, which requires
data to be independent and identically distributed (i.i.d.). However,
non-Euclidean dynamic graphs inherently do not satisfy the i.i.d. as-
sumption. Second, dynamic graphs exhibit coupled structural and
temporal features, where these discrete and intricate information
flows make optimizing the IB objectives intractable.

X Y

X AStep-1: 

Step-2: 
Y

X A
Y

X A

(c) Struct.-invol. GIB.(b) Non-struct.-invol. GIB.(a) Vanilla IB.

optimal (Minimal & Sufficient) overfitting (Redundant)

^ ^

Figure 1: Comparison among different IB principles.

A few attempts have beenmade to extend the IB principle to static
graphs [51, 60–64] by a two-step paradigm (Figure 1(b)), which
initially obtains tractable representations by vanilla GNNs, and
subsequently models the distributions of variables by variational
inference [55], which enables the calculation of IB objectives. How-
ever, as the crucial structural feature information are absent from
the direct IB optimization process, it leads to unsatisfying robust
performance. To make structures straightforwardly involved in the
IB optimization, [58] explicitly compresses the input from both
the graph structure and node feature perspectives iteratively in a
tractable and constrained searching space, which is then achieved
by optimizing the estimated variational bounds of the IB objectives
and leads to better robustness (Figure 1(c)). Accordingly, the learned
representations satisfy the MS Assumption, which can reduce the
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impact of structural and intricate feature noise, alleviate overfitting,
and strengthen informative and discriminative prediction ability.
To the best of our knowledge, there’s no successful work to adapt
the IB principle to dynamic graph representation learning with
spatio-temporal graph structures directly involved.

Due to the local (single snapshot) and global (overall snapshots)
joint reliance for prediction tasks on dynamic graphs, which intro-
duce complex correlated spatio-temporal patterns evolving with
time, extending the intractable IB principle to the dynamic graph
representation learning is a non-trivial problem confronting the
following major challenges:
• How to understand what constitutes the optimal representation

that is both discriminative and robust for downstream task
prediction under the dynamic scenario? (Section 4.1)

• How to appropriately compress the input dynamic graph fea-
tures by optimizing the information flow across graph snapshots
with structures straightforwardly involved? (Section 4.2)
• How to optimize the intractable IB objectives, which are incal-

culable on the non-Euclidean dynamic graphs? (Section 4.3)
Present work. To tackle the aforementioned challenges, we

propose the innovative Dynamic Graph Information Bottleneck
(DGIB) framework, aiming at striking a balance between the ex-
pressiveness and robustness of DGNNs. Our goal is to develop
a robust dynamic graph representation learning framework with
the theoretic support of the IB principle. To understand what con-
tributes to the optimal representations that are both informative
and robust for prediction in dynamic scenarios, we propose the
concept of Minimal-Sufficient-Consensual (MSC) Condition with
empirical and theoretical analysis on a case study. To conserve
informative features in the input, we design the spatio-temporal
sampling mechanism to derive the local dependence assumption,
based on which we establish the DGIB principle that guides the
information flow crossing graphs and iteratively refines structures
and features (Figure 2(a)). Specifically, we decompose the overall
DGIB objectives into DGIB𝑀𝑆 and DGIB𝐶 channels, both sharing
the same IB structures, cooperating to jointly satisfy the proposed
MSC Condition (Figure 2(b)). To make the IB objectives tractable,
we introduce appropriate variational upper and lower bounds for
DGIB𝑀𝑆 and DGIB𝐶 , respectively, which guarantee rational esti-
mation of the mutual information in DGIB objectives. We highlight
the advantages of our DGIB as follows:
• We propose a novel framework named DGIB for robust dynamic

graph representation learning with the information-theoretic
support of the IB principle. To the best of our knowledge, this
is the first exploration to extend IB on dynamic graphs with
structures directly involved in IB optimization.

• We investigate the expected optimal representations for dy-
namic graphs and propose the Minimal-Sufficient-Consensual
(MSC) Condition, which can be satisfied by the cooperation of
both DGIB𝑀𝑆 andDGIB𝐶 channels to refine the spatio-temporal
information flow for feature compression. We further introduce
their variational bounds to make training objectives tractable.

• Extensive experiments on both real-world and synthetic dy-
namic graph datasets demonstrate the superior robustness of
our DGIB against targeted and non-targeted adversarial attacks
compared with state-of-the-art baselines.

2 RELATEDWORK
2.1 Dynamic Graph Representation Learning
Dynamic Graphs find applications in a wide variety of disciplines,
including social networks, recommender systems, epidemiology,
etc. Following [18, 50], dynamic graphs can be categorized into four
levels based on their temporal granularity: static, edge-weighted,
discrete, and continuous. Our primary concern lies in the repre-
sentation learning for discrete dynamic graphs, which encompass
multiple discrete graph snapshots arranged in chronological order.

Dynamic Graph Neural Networks (DGNNs) are widely adopted
to learn dynamic graph representations by intrinsically modeling
both spatial and temporal predictive patterns, which can be divided
into two categories. (1) Stacked DGNNs employ separate GNNs to
process each graph snapshot, and forward the output of each GNN
to deep sequential models [19, 34], etc. Stacked DGNNs alternately
model the dynamics to learn representations, which are the main-
stream. (2) Integrated DGNNs function as encoders that combine
GNNs and deep time-series models within a single layer, unifying
spatial and temporal domain modeling. The deep sequential models
are applied to initialize the weights of GNN layers.

However, despite efforts aimed at creatingmore powerful DGNNs
with enhanced expressive capabilities, most of these models still
lack robustness against adversarial attacks. Dynamic graphs, often
derived from open data environments, inherently contain various
forms of noise, and frequently redundant features unrelated to
the prediction task, which can compromise DGNN performance in
downstream tasks. Additionally, DGNNs are susceptible to inherent
over-smoothing issues, making them sensitive to noise in real-world
testing samples and vulnerable to adversarial attacks. Currently, no
robust DGNN solutions have been effectively proposed.

2.2 Information Bottleneck
The Information Bottleneck (IB) principle aims to discover a concise
code for the input signal while retaining the maximum information
within the code for signal processing [54]. [55] initially extends
Variational Information Bottleneck (VIB) to deep learning, named
Deep VIB. Presently, IB and VIB are primarily associated with rep-
resentation learning and feature compression. In representation
learning, researchers employ either a deterministic or stochastic
encoder to acquire a compact yet predictive representation of input
data, facilitating diverse downstream applications in fields such
as reinforcement learning [11, 21], computer vision [15, 31], nat-
ural language processing [40], etc. For feature compression, IB is
employed to select a subset of input features, such as pixels in
images or dimensions in embeddings that are maximally discrimi-
native with respect to the target labels. Nevertheless, research on
IB in the non-Euclidean dynamic graphs has been relatively limited,
primarily due to the intractability of optimizing IB objectives.

There are some priorworks that extend IB on static graphs, which
can be categorized into two groups based on whether the graph
structures are straightforwardly involved in the IB optimization
process. (1) Non-structure-involved. These works follow the two-
step learning paradigm, which firstly models latent representations,
and consequently performs feature compression by IB, where the
graph structural information is absent from the optimization pro-
cess. For example, SIB [62–64] is proposed for the critical subgraph
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recognition problem. HGIB [61] implements the consensus hypoth-
esis of heterogeneous information networks in an unsupervised
manner. VIB-GSL [51] first leverages IB to graph structure learning
etc. To make IB objectives tractable, they model the distributions
of representations by variational inference, which enables the IB
terms computable for direct optimization. (2) Structure-involved.
To make IB directly involved in the feature compression process,
the pioneering GIB [58] explicitly extracts information with reg-
ularization of the structure and feature information in a tractable
searching space, which follows a Markov Chain and is achieved by
optimizing the estimated variational bounds of the IB objectives.

In conclusion, structure-involved GIBs demonstrate superior
advantages over non-structure-involved ones by leveraging the
significant graph structure patterns, which can reduce the impact
of environment noise, enhance the robustness of models, as well as
be informative and discriminative for downstream prediction tasks.
However, extending the IB principle on dynamic graph learning
proves challenging, as the impact of the spatio-temporal correla-
tions on the Markov process should be elaborately considered.

3 NOTATIONS AND PRELIMINARIES
In this paper, random variables are denoted as bold letters while
their realizations are italic letters. The ground-truth distribution is
represented as P(·), and Q(·) denotes its approximation.

Notation. We primarily consider the discrete dynamic represen-
tation learning. A discrete dynamic graph can be denoted as a series
of graphs snapshots DG = {G𝑡 }𝑇

𝑡=1, where 𝑇 is the time length.
G𝑡 = (V𝑡 , E𝑡 ) is the graph at time 𝑡 , whereV𝑡 is the node set and
E𝑡 is the edge set. Let A𝑡 ∈ {0, 1}𝑁×𝑁 be the adjacency matrix
and X𝑡 ∈ R𝑁×𝑑 be the node features, where 𝑁 = |V𝑡 | denotes the
number of nodes and 𝑑 denotes the feature dimensionality.

Dynamic Graph Representation Learning. As the most chal-
lenging task of dynamic graph representation learning, the future
link prediction aims to train a model 𝑓𝜽 : V × V ↦→ {0, 1}𝑁×𝑁
that predicts the existence of edges at 𝑇 + 1 given historical graphs
G1:𝑇 and next-step node features X𝑇+1. Concretely, 𝑓𝜽 = 𝑤 ◦ 𝑔 is
compound of a DGNN 𝑤 (·) to learn node representations and a
link predictor 𝑔(·) for link prediction, i.e., Z𝑇+1 = 𝑤

(G1:𝑇 ,X𝑇+1)
and Ŷ𝑇+1 = 𝑔

(
Z𝑇+1

)
. Our goal is to learn a robust representation

against adversarial attacks with the optimal parameters 𝜽★.
Information Bottleneck. The Information Bottleneck (IB)

principle trades off the data fit and robustness using mutual infor-
mation (MI) as the cost function and regularizer. Given the input
X, representation Z of X and target Y, the tuple (X,Y,Z) follows
the Markov Chain < Y → X → Z >. IB learns the minimal and
sufficient representation Z by optimizing the following objective:

Z = argmin
Z
−𝐼 (Y;Z) + 𝛽𝐼 (X;Z) , (1)

where 𝛽 is the Lagrangian parameter to balance the two terms.
𝐼 (X;Y) represents the mutual information between the random
variables X and Y, which takes the form:

𝐼 (X;Y) = KL [P(X,Y) ∥ P(X)P(Y)] , (2)

where KL[·∥·] is the Kullback-Liebler (KL) divergence [23], and
𝐻 (·) denotes the information entropy.

4 DYNAMIC GRAPH INFORMATION
BOTTLENECK

In this section, we elaborate on the proposed DGIB, where its prin-
ciple and framework are shown in Figure 2. First, we propose
the Minimal-Sufficient-Consensual (MSC) Condition that the ex-
pected optimal representations should satisfy. Then, we derive the
DGIB principle by decomposing it into DGIB𝑀𝑆 and DGIB𝐶 chan-
nels, which cooperate and contribute to satisfying the proposed
MSC Condition. Lastly, we instantiate the DGIB principle with
tractable variational bounds for efficient IB objective optimization.

4.1 DGIB Optimal Representation Condition
Given the input X and label Y, the sufficient statistics theory [49]
identifies the optimal representation of X, namely, 𝑆 (X), which
effectively encapsulates all the pertinent information contained
within X concerning Y, namely, 𝐼 (𝑆 (X);Y) = 𝐼 (X;Y). Steps further,
the minimal and sufficient statistics 𝑇 (X) establish a fundamental
sufficient partition of X. This can be expressed through the Markov
Chain: 𝑀𝐶IB < Y→ X→ 𝑆 (X) → 𝑇 (X) >, which holds true for
a minimal sufficient statistics 𝑇 (X) in conjunction with any other
sufficient statistics 𝑆 (X). Leveraging the Data Processing Inequality
(DPI) [5], the Minimal and Sufficient (MS) Assumption satisfied
representation can be optimized by:

𝑇 (X) = arg min
𝑆 (X) :𝐼 (𝑆 (X) ;Y)=𝐼 (X;Y)

𝐼 (𝑆 (X);X), (3)

where the mapping 𝑆 (·) can be relaxed to any encoder P(T | X),
which allows 𝑆 (·) to capture as much as possible of 𝐼 (X;Y).

Case Study. Non-structure-involved GIBs adapt the 𝑀𝐶IB to
𝑀𝐶GIB < Y → G → 𝑆 (G) → Z >, where G contains both
structures (A) and node features (X), leading to the minimal and
sufficient Z with a balance between expressiveness and robustness.
However, we observe a counterfactual result that if directly adapting
𝑀𝐶GIB to dynamic graphs as𝑀𝐶DGIB :< Y𝑇+1 → (G1:𝑇 ,X𝑇+1) →
𝑆
(G1:𝑇 ,X𝑇+1) → Z𝑇+1 > and optimizing the overall objective:

Z𝑇+1 = argmin
Z𝑇+1

[
−𝐼 (Y𝑇+1;Z𝑇+1) + 𝛽𝐼 (G1:𝑇 ,X𝑇+1;Z𝑇+1

) ]
(4)

will lead to sub-optimal MS representation Ẑ𝑇+1.
Following settings in Appendix C.2, we adapt the GIB [58] to dy-

namic scenarios by processing each individual graph with original
GIB [58] and then aggregating each output Z𝑡 with LSTM [19] to
learn the comprehensive representation Ẑ𝑇+1, where the two steps
are jointly optimized by Eq. (4). We evaluate the model performance
of the link prediction task on the dynamic graph dataset ACT [29].
As depicted in Figure 3, the results reveal a noteworthy finding:
the prediction performance achieved by Ẑ𝑡+1 for the next time-step
graph G𝑡+1 during training significantly surpasses that of Ẑ𝑇+1 for
the target graph G𝑇+1 during validating and testing.

We attribute the above results to the laziness of deep neural
networks [33], leading to non-consensual feature compression for
each time step. Specifically, there exist𝑇 +1 independent and identi-
cally distributed Markov Chains𝑀𝐶𝑡

DGIB < Y𝑡+1 → (G𝑡 ,X𝑡+1) →
𝑆
(G𝑡 ,X𝑡+1) → Z𝑡+1 >. Optimizing each𝑀𝐶𝑡

DGIB as:
Z𝑡+1 = argmin

Z𝑡+1

[−𝐼 (Y𝑡+1;Z𝑡+1) + 𝛽𝐼 (G𝑡 ,X𝑡+1;Z𝑡+1
) ]

(5)

guarantees the learned Z𝑡+1 meeting the𝑀𝑆 Assumption respec-
tively for each G𝑡+1. However, as the spatio-temporal patterns
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Figure 2: The proposed DGIB principle and its overall framework. (a) simultaneously maximizing the mutual information
between the representation and the target while constraining information with the input graphs. The significant graph
structures are directly involved in the optimizing process. (b) iteratively compresses structures and node features between
graphs. The overall LDGIB is decomposed to DGIB𝑀𝑆 and DGIB𝐶 channels, which act jointly to satisfy theMSC Condition.
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Figure 3: Case study between adapted GIB and DGIB-Cat.

among graph snapshots are intricately complicated, their depen-
dencies are coupled. The adapted GIB tends to converge to a sub-
optimal trivial solution that satisfies each𝑀𝐶𝑡

DGIB, such that every
Ẑ𝑡+1 is close toMS status for the next-step label Y𝑡+1, but fail to pre-
dict the final Y𝑇+1 due to its laziness. Consequently, the objective
in Eq. (4) degrades to simply optimize the union of {Ẑ𝑡 }𝑇+1

𝑡=1 .
The above analysis confirms the fact that the global represen-

tation Ẑ𝑇+1 does not align closely with the 𝑀𝑆 Assumption. To
encourage Ẑ𝑇+1 to reach the global minimal and sufficient status,
we apply an additional Consensual Constraint𝐶 (𝜽 ) on the sequence
of 𝑀𝐶𝑡

DGIB, which acts like the “baton” for compression process,
and encourages conserving the consensual parts. We conclude the
Minimal-Sufficient-Consensual (MSC) Condition as follows.

Assumption 1 (Minimal-Sufficient-Consensual (MSC) Condition).
Given DG = {G𝑡 }𝑇

𝑡=1, the optimal representation Z𝑇+1 for the
robust future link prediction should satisfy the Minimal-Sufficient-
Consensual (MSC) Condition, such that:

Z𝑇+1 = arg min
𝑆 (D) :𝐼 (𝑆 (D) ;Y𝑇+1 )=𝐼 (D;Y𝑇+1 )

𝐼 (𝑆 (D);D), (6)

where D is the training data containing previous graphs G1:𝑇 and
node feature X𝑇+1 at the next time-step, and 𝑆 (·) is the partitions
of D, which is implemented by a stochastic encoder P(Z𝑇+1 |
D,𝐶 (𝜽 )), where 𝐶 (𝜽 ) satisfies the Consensual Constraint.

Assumption 1 declares the optimal representation Z𝑇+1 for the
robust future link prediction task of dynamic graphs, which follows
the Markovian dependence𝑀𝐶DGIB, should be Minimal, Sufficient
and Consensual (MSC).

4.2 DGIB Principle Derivation
Prior to delving into the details of the DGIB principle, we first
provide a formal definition of the Dynamic Information Bottleneck
that satisfies MSC Condition.

Definition 1 (Dynamic Graph Information Bottleneck). Given
DG = {G𝑡 }𝑇

𝑡=1, and the nodes feature X𝑇+1 at the next time-step,
the Dynamic Graph Information Bottleneck (DGIB) is to learn the
optimal representation Z𝑇+1 that satisfies𝑀𝑆𝐶 Condition by:

Z𝑇+1 = arg min
P(Z𝑇+1 |D,𝐶 (𝜽 ) ) ∈Ω

DGIB
(D,Y𝑇+1;Z𝑇+1

)
≜

[
−𝐼 (Y𝑇+1;Z𝑇+1) + 𝛽𝐼 (D;Z𝑇+1

) ]
, (7)

where D =
(G1:𝑇 ,X𝑇+1) is the input training data, and Ω defines

the search space of the optimal DGNN model P
(
Z𝑇+1 | D,𝐶 (𝜽 )) .

Compared with Eq. (4), Eq. (7) satisfies the additional Consensual
Constraint 𝐶 (𝜽 ) on P(Z𝑇+1 | D)

within the underlying search
space Ω. This encourages Z𝑇+1 to align more effectively with the
MSC Condition. Subsequently, we decompose the overall DGIB into
DGIB𝑀𝑆 and DGIB𝐶 channels, both sharing the same IB structure
as Eq. (1). DGIB𝑀𝑆 aims to optimize Z𝑇+1 under P

(
Z𝑇+1 | D, 𝜽

)
,

while DGIB𝐶 encouragesZ1:𝑇 andZ𝑇+1 share consensual predictive
pattern for predciting Y𝑇+1 under P

(
Z𝑇+1 | Z1:𝑇 ,𝐶 (𝜽 )) . DGIB𝑀𝑆

and DGIB𝐶 cooperate and contribute to satisfying the proposed
MSC Condition under P

(
Z𝑇+1 | Z1:𝑇 ,𝐶 (𝜽 )) .

4.2.1 Deriving the DGIB𝑀𝑆 Principle. In general, directly optimiz-
ing Eq. (7) poses a significant challenge due to the complex spatio-
temporal correlations both among and within graphs. The i.i.d. as-
sumption, typically necessary for estimating variational bounds, is a
key factor in rendering the optimization of the IB objectives feasible.
However, the i.i.d. assumption cannot be reached in dynamic graphs,
as node features exhibit correlations owing to the underlying graph
structures, and the dependencies are intricate. Consequently, ap-
proximating the optimal representation in the DGIB formulation
appears unattainable without introducing additional assumptions.
To solve the above challenges, we propose the specific and unique
Spatio-Temporal Local Dependence Assumption following network
science and probability theory [47].
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Assumption 2 (Spatio-Temporal Local Dependence). Given DG =

{G𝑡 }𝑇
𝑡=1, letN𝑆𝑇 (𝑣, 𝑘, 𝑡) be the spatio-temporal 𝑘-hop neighbors of

any node 𝑣 ∈ V . The rest of the DG will be independent of node 𝑣
and its spatio-temporal 𝑘-hop neighbors, which takes the form:

P
(
X𝑡
𝑣 | G𝑡−1:𝑡N𝑆𝑇 (𝑣,𝑘,𝑡 ) ,G

1:𝑇
{𝑣}

)
= P

(
X𝑡
𝑣 | G𝑡−1:𝑡N𝑆𝑇 (𝑣,𝑘,𝑡 )

)
, (8)

where G𝑡−1:𝑡N𝑆𝑇 (𝑣,𝑘,𝑡 ) denotesN𝑆𝑇 (𝑣, 𝑘, 𝑡) related subgraphs, and G
1:𝑇
{𝑣}

denotes complement graphs in terms of node 𝑣 and associated edges.

Assumption 2 is applied to constrain the search space Ω as
P(Z𝑇+1 | D, 𝜽 ), which leads to a more feasible DGIB𝑀𝑆 :

Z𝑇+1 = arg min
P(Z𝑇+1 |D,𝜽 ) ∈Ω

DGIB𝑀𝑆

(D,Y𝑇+1;Z𝑇+1
)

≜

[
− 𝐼

(
Y𝑇+1;Z𝑇+1

) + 𝛽1 𝐼
(D;Z𝑇+1

) ]
. (9)

Eq. (16) Eq. (18)/Eq. (19), Eq. (20)

Convolution Layer.We assume the learning process follows
the Markovian dependency in Figure 2. During each iteration 𝑙 , the
representations of each node X𝑡

𝑣 will be aggregated and updated by
incorporating its spatio-temporal neighbors N𝑆𝑇 (𝑣, 𝑘, 𝑡) on the re-
fined structure Â𝑡 , which is adjusted to control the information flow
across graph snapshots. In this way, DGIB𝑀𝑆 requires to optimize
the distributions of P

(
Â𝑡 | Ẑ𝑡 ,Z𝑡−1,A𝑡

)
and P

(
Z𝑡 | Ẑ𝑡 ,Z𝑡−1, Â𝑡

)
.

Variational Bounds of DGIB𝑀𝑆 .We respectively introduce the
lower bound of 𝐼

(
Y𝑇+1;Z𝑇+1

)
with respect to [42], and the upper

bound of 𝐼
(D;Z𝑇+1

)
inspired by [58], for Eq. (9).

Proposition 1 (Lower Bound of 𝐼
(
Y𝑇+1;Z𝑇+1

)
).

𝐼
(
Y𝑇+1;Z𝑇+1

) ≥ 1 + EP(Y𝑇+1,Z𝑇+1 )
[
log
Q1

(
Y𝑇+1 | Z𝑇+1)
Q2

(
Y𝑇+1

)
]

− EP(Y𝑇+1 )P(Z𝑇+1 )
[
Q1

(
Y𝑇+1 | Z𝑇+1)
Q2

(
Y𝑇+1

)
]
. (10)

Proposition 2 (Upper Bound of 𝐼
(D;Z𝑇+1

)
). Let IA, IZ ⊂ [𝑇 + 1]

be the random time indices sets. Based on the Markov property
D ⊥⊥ Z𝑇+1 | ({Â𝑡 }𝑡 ∈IA ∪ {Z𝑡 }𝑡 ∈IZ

)
, for any Q(Â𝑡 ) and Q(Z𝑡 ):

𝐼
(D;Z𝑇+1

) ≤ 𝐼
(D; {Â𝑡 }𝑡 ∈IA∪{Z𝑡 }𝑡 ∈IZ

) ≤∑︁
𝑡 ∈IA
A𝑡 +

∑︁
𝑡 ∈IZ
Z𝑡 , (11)

𝑤ℎ𝑒𝑟𝑒 A𝑡 = E

[
log
P
(
Â𝑡 | Ẑ𝑡 ,Z𝑡−1,A𝑡

)
Q
(
Â𝑡

)
]
, (12)

Z𝑡 = E

[
log
P
(
Z𝑡 | Ẑ𝑡 ,Z𝑡−1, Â𝑡

)
Q
(
Z𝑡

)
]
. (13)

Proofs for Proposition 1 and 2 are provided in Appendix B.

4.2.2 Deriving the DGIB𝐶 Principle. To ensure Z𝑇+1 adheres to the
Consensual Constraint with respect to Z1:𝑇 , we further constrain
the search space Ω as P

(
Z𝑇+1 | Z1:𝑇 ,𝐶 (𝜽 )) and optimizing DGIB𝐶 :

Z𝑇+1 = arg min
P(Z𝑇+1 |Z1:𝑇 ,𝐶 (𝜽 ) ) ∈Ω

DGIB𝐶
(
Z1:𝑇 ,Y𝑇+1;Z𝑇+1

)

≜

[
− 𝐼

(
Y𝑇+1;Z𝑇+1

) + 𝛽2 𝐼
(
Z1:𝑇 ;Z𝑇+1

) ]
. (14)

Eq. (16) Eq. (21)

Variational Bounds of DGIB𝐶 . The lower bound of 𝐼
(D;Z𝑇+1

)
in Eq. (14) is consistent with Proposition 1. We introduce the upper
bound of 𝐼

(
Z1:𝑇 ;Z𝑇+1

)
, which is proved in Appendix B.

Proposition 3 (Upper Bound of 𝐼
(
Z1:𝑇 ;Z𝑇+1

)
).

𝐼
(
Z1:𝑇 ;Z𝑇+1

) ≤ E
[
log
P
(
Z𝑇+1 | Z1:𝑇 )
Q
(
Z𝑇+1

)
]
. (15)

The distinctions between DGIB𝑀𝑆 and DGIB𝐶 primarily per-
tain to their inputs and search space. DGIB𝑀𝑆 utilizes the original
training data D =

(G1:𝑇 ,X𝑇+1) with P(Z𝑇+1 | D, 𝜽
)
constraint as

input, whereas DGIB𝐶 takes intermediate variables Z1:𝑇 as input
with P

(
Z𝑇+1 | Z1:𝑇 ,𝐶 (𝜽 )) constraint. DGIB𝑀𝑆 and DGIB𝐶 mutu-

ally constrains each other via the optimization process, ultimately
leading to the satisfaction of the𝑀𝑆𝐶 Condition approved by Z𝑇+1.

4.3 DGIB Principle Instantiation
To jointly optimize DGIB𝑀𝑆 and DGIB𝐶 , we begin by specifying
the lower and upper bounds defined in Proposition 1, 2 and 3.

Instantiation for Eq. (10). To specify the lower bound, we set
Q1

(
Y𝑇+1 | Z𝑇+1) = Cat

(
𝑔(Z𝑇+1)) , where Cat(·) denotes the cate-

gorical distribution, and set Q2
(
Y𝑇+1

)
= P

(
Y𝑇+1

)
. As the second

term in Eq. (10) empirically converges to 1, we ignore it. Thus, the
RHS of Eq. (10) reduces to the cross-entropy loss [42], i.e.:

𝐼
(
Y𝑇+1;Z𝑇+1

)
� −LCE

(
𝑔
(
Z𝑇+1

)
,Y𝑇+1

)
. (16)

Instantiation for Eq. (12). We instantiate DGIB on the back-
bone of the GAT [56], where the attentions can be utilized to refine
the initial graph structure or as the parameters of the neighbor
sampling distributions. Concretely, let 𝜙𝑡

𝑣,𝑘
as the logits of the at-

tention weights between node 𝑣 and its spatio-temporal neighbors.
We assume the prior of P

(
Â𝑡 | Ẑ𝑡 ,Z𝑡−1,A𝑡

)
follows the Bernoulli

distribution Bern(·) or the categorical distribution Cat(·) both pa-
rameterized by 𝜙𝑡

𝑣,𝑘
. We assume Q

(
Â𝑡

)
respectively follows the

non-informative Bern(·) or Cat(·) parameterized by certain con-
stants. Thus, the RHS of Eq. (12) is estimated by:

A𝑡 � EP(Â𝑡 |Ẑ𝑡 ,Z𝑡−1,A𝑡 )

[
log
P
(
Â𝑡 | Ẑ𝑡 ,Z𝑡−1,A𝑡

)
Q
(
Â𝑡

)
]
, (17)

which can be further instantiated as:
A𝑡

B �
∑︁
𝑣∈V𝑡

KL
[
Bern

(
𝜙𝑡
𝑣,𝑘

)


 Bern(|N𝑆𝑇 (𝑣, 𝑘, 𝑡) |−1) ] , (18)

or A𝑡
C �

∑︁
𝑣∈V𝑡

KL
[
Cat

(
𝜙𝑡
𝑣,𝑘

)


 Cat(|N𝑆𝑇 (𝑣, 𝑘, 𝑡) |−1) ] . (19)

Instantiation for Eq. (13) and Eq. (15). To estimateZ𝑡 , we set
the prior distribution of P

(
Z𝑡 | Ẑ𝑡 ,Z𝑡−1, Â𝑡

)
follows a multivariate

normal distribution 𝑁
(
Z𝑡 ; 𝝁P,𝝈

2
P

)
, while Q

(
Z𝑡

) ∼ 𝑁
(
Z𝑡 ; 𝝁

Q
,𝝈2
Q

)
.

Inspired by the Markov Chain Monte Carlo (MCMC) sampling [14],
Eq. (13) can be estimated with sampledV𝑡 ′:

Z𝑡 �
∑︁

𝑣∈V𝑡 ′

[
logΦ

(
Z𝑡𝑣 ; 𝝁P,𝝈

2
P

) − logΦ(Z𝑡𝑣 ; 𝝁Q,𝝈2
Q

) ]
, (20)

where Φ(·) is the Probability Density Function (PDF) of the normal
distribution. Similarly, we specify Eq. (15) with sampledV (𝑇+1)′:∑︁

𝑣∈V (𝑇+1) ′

[
logΦ

(
Z𝑇+1𝑣 ; 𝝁P,𝝈

2
P

) − logΦ(Z𝑇+1𝑣 ; 𝝁Q,𝝈
2
Q

) ]
. (21)
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Training Objectives. To acquire a tractable version of Eq. (7),
we first plug Eq. (16), Eq. (18)/Eq. (19) and Eq. (20) into Eq. (9),
respectively, to estimate DGIB𝑀𝑆 . Then plug Eq. (16) and Eq. (21)
into Eq. (14) to estimate DGIB𝐶 . The overall training objectives of
the proposed DGIBcan be rewritten as:

LDGIB = 𝛼DGIB𝑀𝑆 + (1 − 𝛼)DGIB𝐶 , (22)

where the 𝛼 is a trade-off hyperparameter.

4.4 Optimization and Complexity Analysis
The overall training pipeline of DGIB is shown in Algorithm 1.
With the proposed upper and lower bounds for intractable terms
in both DGIB𝑀𝑆 and DGIB𝐶 , the overall framework can be trained
end-to-end using back-propagation, and thus we can use gradient
descent to optimize. Based on the detailed analysis in Appendix A,
the time complexity of our method is:

O(2𝐿𝑘 (𝑇 + 1) |V||E |𝑑𝑑′2) + O(|E′ |𝑑′), (23)

which is on par with the state-of-the-art DGNNs. We further illus-
trate the training time efficiency in Appendix C.5.

5 EXPERIMENT
In this section, we conduct extensive experiments on both real-
world and synthetic dynamic graph datasets to evaluate the robust-
ness of our DGIB against adversarial attacks. We first introduce
the experimental settings and then present the results. Additional
configurations and results can be found in Appendix C and D.

5.1 Experimental Settings
5.1.1 Dynamic Graph Datasets. In order to comprehensively eval-
uate the effectiveness of our proposed method, we use three real-
world dynamic graph datasets to evaluate DGIB1 on the challenging
future link prediction task. COLLAB [53] is an academic collabora-
tion dataset with papers published in 16 years, which reveals the
dynamic citation networks among authors. Yelp [46] contains cus-
tomer reviews on business for 24 months, which are collected from
the crowd-sourced local business review and social networking
web. ACT [29] describes the actions taken by users on a popular
MOOC website within 30 days, and each action has a binary label.
Statistics of the datasets are concluded in Table B.1, which also
contains the split of snapshots for training, validation, and testing.

5.1.2 Baselines. We compare DGIB with three categories baselines.
• Static GNNs: GAE [27] and VGAE [27] are representative

GCN [26] based autoencoders on static graphs, which are
widely used for the link prediction task. GAT [56] using atten-
tion mechanisms to dynamically weight and aggregate node
features, which is also the default backbone of DGIB.

• Dynamic GNNs: GCRN [48] adopts GCNs to obtain node em-
beddings, followed by a GRU [10] to capture temporal relations.
EvolveGCN [41] applies an LSTM [20] or GRU to evolve the
parameters of GCNs. DySAT [46] models self-attentions in
both structural and temporal domains.

• Robust and Generalized (D)GNNs: IRM [2] learns robust rep-
resentation by minimizing invariant risk. V-REx [28] extends

1The code of DGIB is available at https://anonymous.4open.science/r/DGIB.

IRM [2] by reweighting the risk. GroupDRO [45] reduces
the risk gap across training distributions. RGCN [69] fortifies
GCNs against adversarial attacks by Gaussian reparameteri-
zation and variance-based attention. DIDA [67] exploits ro-
bust and generalized predictive patterns on dynamic graphs.
GIB [58] is the most relevant baseline to ours, which learns
robust representations with structure-involved IB principle.

5.1.3 Adversarial Attack Settings. We compare baselines and the
proposed DGIB under two adversarial attack settings.
• Non-targetedAdversarial Attack:We produce synthetic datasets

by attacking graph structures and node features, respectively.
(1) Attack graph structures.We randomly remove one out
of five types of links in training and validation graphs in each
dataset (information on link type has been removed after the
above operations), which is more practical and challenging
in real-world scenarios as the model cannot get access to any
features about the filtered links. (2) Attack node features.We
add random Gaussian noise 𝜆 · 𝑟 · 𝜖 to each dimension of the
node features for all nodes, where 𝑟 is the reference amplitude
of original features, and 𝜖 ∼ 𝑁 (0, 1). 𝜆 ∈ {0.5, 1.0, 1.5} acts as
the parameter to control the attacking degree.

• Targeted Adversarial Attack: We apply the prevailing NET-
TACK [71], a strong targeted adversarial attack library on
graphs designed to target nodes by altering their connected
edges or node features.We simultaneously consider the evasive
attack and poisoning attack. (1) Evasive attack. We train the
model on clean datasets and perform attacking on each graph
snapshot in the testing split. (2) Poisoning attack. We attack
the whole dataset before model training and testing. In both
scenarios, we follow the default settings of NETTACK [71] to
select targeted attacking nodes, and choose GAT [56] as the
surrogate model with default parameter settings. We set the
number of perturbations 𝑛 in {1, 2, 3, 4}.

5.1.4 Hyperparameter Settings. We set the number of layers as two
for baselines as suggested, and as one for DGIB to avoid overfitting.
We set the representation dimension of all baselines and our DGIB to
be 128. The hyperparameters of baselines are set as the suggested
value in their papers or carefully tuned for fairness. The suggested
values of 𝛼 , 𝛽1 and 𝛽2 can be found in the configuration files. For
the optimization, we use Adam [25] with a learning rate selected
from {1e-03, 1e-04, 1e-05, 1e-06} adopt the grid search for the best
performance using the validation split. We set the maximum epoch
number as 1000 with the early stopping mechanism.

5.2 Against Non-targeted Adversarial Attacks
In this section, we evaluate model performance on the future link
prediction task, as well as the robustness against non-targeted ad-
versarial attacks in terms of graph structures and node features.
Specifically, we train baselines and our DGIB on the clean datasets,
after which we perturb edges and features respectively on the test-
ing split following the experimental settings. Note that, DGIB with
a prior of the Bernoulli distribution as Eq. (18) is referred to as
DGIB-Bern, while DGIB with a prior of the categorical distribution
in Eq. (19) is denoted as DGIB-Cat. Results are reported with the
metric of AUC (%) score in five runs and concluded in Table 1.
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Table 1: AUC score (% ± standard deviation) of future link prediction task on real-world datasets against non-targeted adversarial
attacks. The best results are shown in bold type and the runner-ups are underlined.

Dataset COLLAB Yelp ACT

Model Clean Structure
Attck

Feature Attack
Clean Structure

Attck
Feature Attack

Clean Structure
Attck

Feature Attack

𝜆 = 0.5 𝜆 = 1.0 𝜆 = 1.5 𝜆 = 0.5 𝜆 = 1.0 𝜆 = 1.5 𝜆 = 0.5 𝜆 = 1.0 𝜆 = 1.5
GAE [27] 77.15±0.5 74.04±0.8 50.59±0.8 44.66±0.8 43.12±0.8 70.67±1.1 64.45±5.0 51.05±0.6 45.41±0.6 41.56±0.9 72.31±0.5 60.27±0.4 56.56±0.5 52.52±0.6 50.36±0.9
VGAE [27] 86.47±0.0 74.95±1.2 56.75±0.6 50.39±0.7 48.68±0.7 76.54±0.5 65.33±1.4 55.53±0.7 49.88±0.8 45.08±0.6 79.18±0.5 66.29±1.3 60.67±0.7 57.39±0.8 55.27±1.0
GAT [56] 88.26±0.4 77.29±1.8 58.13±0.9 51.41±0.9 49.77±0.9 77.93±0.1 69.35±1.6 56.72±0.3 52.51±0.5 46.21±0.5 85.07±0.3 77.55±1.2 66.05±0.4 61.85±0.3 59.05±0.3
GCRN [48] 82.78±0.5 69.72±0.5 54.07±0.9 47.78±0.8 46.18±0.9 68.59±1.0 54.68±7.6 52.68±0.6 46.85±0.6 40.45±0.6 76.28±0.5 64.35±1.2 59.48±0.7 54.16±0.6 53.88±0.7

EvolveGCN [41] 86.62±1.0 76.15±0.9 56.82±1.2 50.33±1.0 48.55±1.0 78.21±0.0 53.82±2.0 57.91±0.5 51.82±0.3 45.32±1.0 74.55±0.3 63.17±1.0 61.02±0.5 53.34±0.5 51.62±0.7
DySAT [46] 88.77±0.2 76.59±0.2 58.28±0.3 51.52±0.3 49.32±0.5 78.87±0.6 66.09±1.4 58.46±0.4 52.33±0.7 46.24±0.7 78.52±0.4 66.55±1.2 61.94±0.8 56.98±0.8 54.14±0.7
IRM [2] 87.96±0.9 75.42±0.9 60.51±1.3 53.89±1.1 52.17±0.9 66.49±10.8 56.02±16.0 50.96±3.3 48.58±5.2 45.32±3.3 80.02±0.6 69.19±1.4 62.84±0.1 57.28±0.2 56.04±0.2

V-REx [27] 88.31±0.3 76.24±0.8 61.23±1.5 54.51±1.0 52.24±1.1 79.04±0.2 66.41±1.9 61.49±0.5 53.72±1.0 51.32±0.9 83.11±0.3 70.15±1.1 65.59±0.1 60.03±0.3 58.79±0.2
GroupDRO [45] 88.76±0.1 76.33±0.3 61.10±1.3 54.62±1.0 52.33±0.8 79.38±0.4 66.97±0.6 61.78±0.8 55.37±0.9 52.18±0.7 85.19±0.5 74.35±1.6 66.05±0.5 61.85±0.4 59.05±0.3
RGCN [69] 88.21±0.1 78.66±0.7 61.29±0.5 54.29±0.6 52.99±0.6 77.28±0.3 74.29±0.4 59.72±0.3 52.88±0.3 50.40±0.2 87.22±0.2 82.66±0.4 68.51±0.2 62.67±0.2 61.31±0.2
DIDA [67] 91.97±0.0 80.87±0.4 61.32±0.8 55.77±0.9 54.91±0.9 78.22±0.4 75.92±0.9 60.83±0.6 54.11±0.6 50.21±0.6 89.84±0.8 78.64±1.0 70.97±0.2 64.49±0.4 62.57±0.2
GIB [58] 91.36±0.2 80.89±0.1 61.88±0.8 55.15±0.8 54.65±0.9 77.52±0.4 75.03±0.3 61.94±0.9 56.15±0.3 52.21±0.8 92.33±0.3 86.99±0.3 72.16±0.5 66.72±0.2 64.96±0.5

DGIB-Bern 92.17±0.2 83.58±0.1 63.54±0.9 56.92±1.0 56.24±1.0 76.88±0.2 75.61±0.0 63.91±0.9 59.28±0.9 54.77±0.95 94.49±0.2 87.75±0.1 73.05±0.9 68.49±0.9 66.27±0.9
DGIB-Cat 92.68±0.1 84.16±0.1 63.99±0.5 57.76±0.8 55.63±1.0 79.53±0.2 77.72±0.1 61.42±0.9 55.12±0.7 51.90±0.9 94.89±0.2 88.27±0.2 73.92±0.8 68.88±0.9 65.99±0.7

Table 2: AUC score (% ± standard deviation) of future link prediction task on real-world datasets against targeted adversarial
attacks. The best results are shown in bold type and the runner-ups are underlined.

Dataset Model Clean
Evasive Attack Poisoning Attack

𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 Avg. Decrease 𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 Avg. Decrease

COLLAB

VGAE [27] 86.47±0.0 73.39±0.1 62.18±0.1 51.72±0.1 46.97±0.1 ↓ 32.27 63.42±0.3 52.63±0.3 50.98±0.4 45.64±0.3 ↓ 38.51
GAT [56] 88.26±0.4 76.21±0.1 66.56±0.1 57.92±0.1 50.96±0.1 ↓ 28.71 66.59±0.5 55.31±0.6 51.34±0.7 48.99±0.9 ↓ 37.05

DySAT [46] 88.77±0.2 77.91±0.1 68.22±0.1 58.82±0.1 51.39±0.1 ↓ 27.80 69.02±0.3 57.62±0.3 52.76±0.3 50.07±0.8 ↓ 35.37
RGCN [69] 88.21±0.1 77.65±0.1 67.11±0.1 59.06±0.1 52.02±0.1 ↓ 27.49 69.48±0.2 58.39±0.3 52.48±0.6 50.62±0.9 ↓ 34.53
GIB [58] 91.36±0.2 78.95±0.0 69.63±0.1 60.98±0.0 54.48±0.2 ↓ 27.74 71.47±0.3 61.03±0.4 54.97±0.7 52.09±1.0 ↓ 34.44

DGIB-Bern 92.17±0.2 81.36±0.0 72.79±0.0 63.25±0.1 57.22±0.1 ↓ 25.51 74.06±0.3 61.93±0.2 56.57±0.2 52.62±0.3 ↓ 33.49
DGIB-Cat 92.68±0.1 81.29±0.0 71.32±0.1 62.03±0.1 55.08±0.1 ↓ 27.24 72.55±0.2 60.99±0.3 55.62±0.4 53.08±0.3 ↓ 34.65

Yelp

VGAE [27] 76.54±0.5 65.86±0.1 54.82±0.2 48.08±0.1 46.25±0.1 ↓ 29.77 62.73±0.6 52.61±0.4 47.72±0.4 45.43±0.5 ↓ 31.90
GAT [56] 77.93±0.1 67.96±0.1 59.47±0.1 50.27±0.1 48.62±0.1 ↓ 27.39 65.34±0.5 54.51±0.2 50.24±0.4 48.96±0.4 ↓ 29.72

DySAT [46] 78.87±0.6 69.77±0.1 60.66±0.1 52.16±0.1 50.15±0.1 ↓ 26.22 66.87±0.6 56.31±0.3 50.44±0.6 50.49±0.5 ↓ 28.96
RGCN [69] 77.28±0.3 68.54±0.1 60.69±0.1 51.51±0.1 49.72±0.1 ↓ 25.44 65.55±0.4 55.47±0.3 49.08±0.6 49.09±0.6 ↓ 29.09
GIB [58] 77.52±0.4 68.59±0.1 61.22±0.1 51.26±0.1 49.58±0.1 ↓ 25.61 65.59±0.3 56.79±0.3 50.92±0.4 49.55±0.4 ↓ 28.13

DGIB-Bern 76.88±0.2 72.27±0.1 60.96±0.0 54.32±0.1 51.73±0.1 ↓ 22.19 68.64±0.2 56.73±0.2 53.18±0.3 50.21±0.2 ↓ 25.61
DGIB-Cat 79.53±0.2 70.17±0.0 62.25±0.1 52.69±0.1 50.87±0.1 ↓ 25.82 67.38±0.3 57.02±0.2 51.39±0.2 50.53±0.2 ↓ 28.85

ACT

VGAE [27] 79.18±0.5 67.59±0.1 62.98±0.1 54.33±0.1 52.26±0.0 ↓ 25.11 62.55±1.6 55.15±1.7 51.02±1.8 50.11±1.9 ↓ 30.90
GAT [56] 85.07±0.3 75.14±0.1 67.25±0.1 59.75±0.1 58.51±0.1 ↓ 23.40 71.26±0.9 61.43±1.1 57.35±1.1 58.53±1.0 ↓ 26.95

DySAT [46] 78.52±0.4 70.64±0.1 63.35±0.0 56.36±0.0 55.12±0.1 ↓ 21.84 66.21±0.9 56.28±0.9 53.45±1.1 54.43±1.0 ↓ 26.65
RGCN [69] 87.22±0.2 78.64±0.1 70.11±0.1 62.99±0.1 61.31±0.1 ↓ 21.73 73.71±0.8 63.43±0.9 59.97±1.3 60.41±0.8 ↓ 26.18
GIB [58] 92.33±0.3 85.61±0.1 74.08±0.1 65.44±0.1 64.04±0.1 ↓ 21.70 80.01±0.7 67.04±0.8 63.85±0.6 60.95±0.7 ↓ 26.39

DGIB-Bern 94.49±0.2 89.83±0.1 85.81±0.1 79.95±0.1 78.01±0.1 ↓ 11.73 80.92±0.3 70.76±0.4 65.27±0.6 61.93±0.9 ↓ 26.21
DGIB-Cat 94.89±0.2 84.98±0.1 76.78±0.1 67.69±0.1 66.68±0.1 ↓ 21.98 80.16±0.4 68.71±0.5 64.38±0.6 65.43±0.9 ↓ 26.57

Results. DGIB-Bern and DGIB-Cat outperform GIB [58] and
other baselines in most scenarios. Particularly, under structure
attacks, DGIB-Bern improves by 9.4%, 15.1%, and 22.4% for each
dataset, while 10.1%, 18.3%, and 23.1% for DGIB-Cat. Under feature
attacks, DGIB-Bern improves by an average of 9.9%, 14.0%, and 15.1%
for each dataset, while 10.3%, 7.9%, and 15.6% for DGIB-Cat. Static
GNN baselines fail in all settings as they cannot model dynamics.
Dynamic GNN baselines fail due to their weak robustness against
adversarial attacks. Some robust and generalized (D)GNNs, such as
GroupDRO [45], DIDA [67] and GIB [58] outperform DGIB-Bern or
DGIB-Cat slightly in a few scenarios, but they generally fall behind
DGIB in most cases due to the insufficient and inaccurate feature
compression and conservation, which greatly impact the model
robustness against the non-targeted adversarial attacks.

5.3 Against Targeted Adversarial Attacks
In this section, we continue to compare the proposed DGIB with
competitive baselines standing out in Table 1, considering the link
prediction performance and robustness against targeted adversarial
attacks, which reveals whether we successfully defended the attacks.
Specifically, we generate attacked datasets with NETTACK [71]
with respect to different perturbation number 𝑛 in both evasive
attacking mode and poisoning attacking mode. Higher 𝑛 represents
a heavier attacking degree. Results are reported in Table 2.

Results. Similar trends can be found that DGIB-Bern and DGIB-
Cat outperform all baselines under different settings. DGIB-Bern
improves the AUC over the average baselines by 8.4%, 5.4%, and
27.8% under evasive attacks for three datasets, while DGIB-Cat sur-
passes 6.4%, 3.9%, and 13.4%. In poisoning attack settings, DGIB-Cat
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contributes 8.0%, 4.6%, and 13.4% increase, and DGIB-Bern improves
6.7%, 3.5%, and 13.4%. Results demonstrate DGIB is contained under
challenging evasive and poisoning adversarial attacks.

Comprehensively, DGIB-Bern owns a better performance in tar-
geted adversarial attacks with a lower average AUC decrease, while
DGIB-Bern is better in non-targeted adversarial attacks. We explain
this phenomenon as the Cat(·) is the non-informative distribution,
which fits well to the non-targeted settings, and Bern(·) requires
priors, which may be more appropriate for against targeted attacks.

5.4 Ablation Study
In this section, we analyze the effectiveness of the three variants:
• DGIB (w/o Cons): We remove the Consensual channel DGIB𝐶

in the overall training objective (Eq. (22)), and optimizing only
with the Minimal and Sufficient channel DGIB𝑀𝑆 .
• DGIB (w/o A): We remove the structure sampling term (A)

in the upper bound of 𝐼
(D;Z𝑇+1

)
(Eq. (11)).

• DGIB (w/oZ): We remove the feature sampling term (Z) in
the upper bound of 𝐼

(D;Z𝑇+1
)
(Eq. (11)).

We choose DGIB-Bern as the backbone and compare performances
on the clean, evasive attacked (𝑛 = 2) and poisoning attacked (𝑛 = 2)
COLLAB, respectively. Results are shown in Figure 4.

Results. Overall, DGIB outperforms the other three variants,
except for DGIB (w/o A), where it exceeds the original DGIB-Bern
on the clean COLLAB by 1.1%. We claim this phenomenon is within
our expectation as the structure sampling term (A) contributes
to raising the robustness by refining structures and compression
feature information, which will surely damage its performance on
the clean dataset. Concretely, we witness DGIB surpassing all three
variants when confronting evasive and poisoning adversarial at-
tacks, which provides insights into the effectiveness of the proposed
components and demonstrates their importance in achieving better
performance for robust representation learning on dynamic graphs.

5.5 Information Plane Analysis
In this section, we observe the evolution of the IB compression pro-
cess on the Information Plane, which is widely applied to analyze
the changes in the mutual information between input, latent repre-
sentations, and output during training. Given the Markov Chain
< X→ Y→ Z >, the latent representation is uniquely mapped to

a point in the Information Plane with coordinates
(
𝐼
(
X;Z

)
, 𝐼
(
Y,Z

) )
.

We analyze DGIB-Bern on the clean COLLAB and draw the coordi-
nates of

(
𝐼
(D;Z𝑇+1

)
, 𝐼
(
Y𝑇+1;Z𝑇+1

) )
in Figure 5.

Results.We note that the information evolution process is com-
posed of two phases. During Phase 1 (ERM phase), 𝐼

(D;Z𝑇+1
)
and

𝐼
(
Y𝑇+1;Z𝑇+1

)
both increase, indicating the latent representations

are extracting information about the input and labels, and the co-
ordinates on the Information Plane are shifting toward the upper
right corner. In Phase 2 (compression phase), 𝐼

(D;Z𝑇+1
)
begins to

decline, while the growth rate of 𝐼
(
Y𝑇+1;Z𝑇+1

)
slows down, and

converging to the upper left corner, indicating our DGIB principle
begins to take effect, leading to a Minimal and Sufficient latent
representation with Consensual Constraint.

5.6 Hyperparameter Trade-off Analysis
In this section, we analyze the impact of the compression parame-
ters 𝛽1 and 𝛽2 on the trade-off between the performance of predic-
tion and robustness. We conduct experiments based on DGIB-Bern
with different ratios of MSE term and compression term (1/𝛽1, 1/𝛽2)
on the clean, evasive attacked (𝑛 = 2) and poisoning attacked (𝑛 = 2)
COLLAB, respectively. Results are reported in Figure 6.

Results.With the increase of 1/𝛽1 or 1/𝛽2, DGIB-Bern performs
better on the clean COLLAB, while its robustness against targeted
adversarial attacks decreases. This validates the conflicts between
the MSE term and the compression term, as the compression term
sacrifices prediction performance to improve the robustness. We
find the optimal setting for 1/𝛽1 and 1/𝛽2, where both the perfor-
mance of prediction and robustness are well-preserved.

6 CONCLUSION
In this paper, we present a novel framework named DGIB to
learn robust and discriminative representations on dynamic graphs
grounded in the information-theoretic IB principle for the first
time. We decompose the overall DGIB objectives into DGIB𝑀𝑆 and
DGIB𝐶 channels, which act jointly to satisfy the proposedMSC Con-
dition that the optimal representations should satisfy. Variational
bounds are further introduced to efficiently and appropriately esti-
mate intractable IB terms. Extensive experiments demonstrate the
superior robustness of DGIB against adversarial attacks compared
with state-of-the-art baselines in the link prediction task.
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A DETAILED OPTIMIZATION AND
COMPLEXITY ANALYSIS

We illustrate the overall training pipeline of DGIB in Algorithm 1.
Algorithm 1:Overall training pipeline of DGIB framework.
Input: Dynamic graph DG = {G𝑡 }𝑇

𝑡=1; Node features
X1:𝑇+1; Labels Y1:𝑇 of link occurrence; Number of
layers 𝐿; Relative time encoding function RTE(·);
Non-linear rectifier 𝜏 ; Activation function 𝜎 ;
Hyperparameters 𝑘 , 𝛼 , 𝛽1 and 𝛽2.

Output: The optimized robust model 𝑓 ★𝜽 = 𝑤 ◦ 𝑔; Predicted
label Ŷ𝑇+1 of link occurrence at time 𝑇 + 1.

1 Initialize weightsW and learnable parameters 𝜽 randomly;
2 Z1:𝑇+1,(0)←RTE

(
X1:𝑇+1) , attentions w←GAT

(
Z1:𝑇+1,(0)

)
;

3 Construct N𝑆𝑇 (𝑣, 𝑘, 𝑡) ← {𝑢 ∈ V𝑡−1:𝑡 | 𝑑 (𝑢, 𝑣) = 𝑘};
4 for 𝑙 = 1, 2, · · · , 𝐿 and 𝑣 ∈ V1:𝑇+1 do
5 for 𝑡 in range [𝑇 + 1] do
6 Ẑ𝑡 (𝑙−1) ← 𝜏

(
Z𝑡 (𝑙−1)

)
W(𝑙 ) ;

7 𝜙
𝑡 (𝑙 )
𝑣,𝑘
← 𝜎{ (Ẑ𝑡 (𝑙−1)𝑣 ∥Ẑ𝑡−1:𝑡 (𝑙−1)𝑢

)
w⊤}𝑢∈N𝑆𝑇 (𝑣,𝑘,𝑡 ) ;

8 Â𝑡 (𝑙 ) ← ∪𝑣∈V𝑡 {𝑢 ∈N𝑆𝑇 (𝑣, 𝑘, 𝑡) |𝑢∼Bern
(
𝜙
𝑡 (𝑙 )
𝑣,𝑘

)}
9 or ∪𝑣∈V𝑡 {𝑢 ∈N𝑆𝑇 (𝑣, 𝑘, 𝑡) |𝑢∼Cat

(
𝜙
𝑡 (𝑙 )
𝑣,𝑘

)};
10 Z𝑡 (𝑙 ) ← ∑

(𝑢,𝑣) ∈Â𝑡 (𝑙 ) {Ẑ𝑡 (𝑙−1)𝑣 }𝑣∈V𝑡 ;
11 end
12 Ŷ𝑇+1 = 𝑔

(
Z𝑇+1(𝐿)

)
;

13 DGIB𝑀𝑆 ← Eq. (9), DGIB𝐶 ← Eq. (14);
14 Calculate the overall loss, as LDGIB ← Eq. (22);
15 Update 𝜽 by minimizing LDGIB and back-propagation.
16 end

Comlexity Analysis.We analyze the computational complexity
of each part in DGIB as follows. For brevity, denote |V| and |E |
as the total number of nodes and edges in each graph snapshot,
respectively. Let 𝑑 be the dimension of the input node features, and
𝑑′ be the dimension of the latent node representation.
• Linear input feature projection layer: O((𝑇 + 1) |V|𝑑𝑑′).
• Relative Time Encoding (RTE(·)) layer: O((𝑇 + 1) |V|𝑑′2).
• Spatio-temporal neighbor sampling and attention compuata-

tion: O(𝐿(𝑇 + 1) |V|) +O(2𝐿𝑘 (𝑇 + 1) |V||E |𝑑′), where 𝑘 is the
range of receptive field, and 𝐿 is the number of layers.

• Feature aggregation: Constant complexity brought about by
addition operations (ignored).

• Link prediction: O(|E′ |𝑑′), where E′ is the number of sampled
links to be predicted.

In summary, the overall computational complexity of DGIB is:
O(2𝐿𝑘 (𝑇 + 1) |V||E |𝑑𝑑′2) + O(|E′ |𝑑′) . (A.1)

In conclusion, DGIB has a linear computation complexity with
respect to the number of nodes and edges in all graph snapshots,
which is on par with the state-of-the-art DGNNs. In addition, based
on our experiments experience, DGIB can be trained and tested un-
der the hardware configurations (including memory requirements)
listed in Appendix D.3, and the training time consumption is listed
in Appendix C.5, which demonstrates our DGIB has similar time
complexity compared with most of the existing DGNNs.
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B PROOFS
In this section, we provide proofs of Proposition 1, Proposition 2,
and Proposition 3.

B.1 Proof of Proposition 1
We restate Proposition 1:

Proposition 1 (The Lower Bound of 𝐼
(
Y𝑇+1;Z𝑇+1

)
). For any dis-

tributions Q1
(
Y𝑇+1 | Z𝑇+1) and Q2 (Y𝑇+1) :

𝐼
(
Y𝑇+1;Z𝑇+1

) ≥ 1 + EP(Y𝑇+1,Z𝑇+1 )
[
log
Q1

(
Y𝑇+1 | Z𝑇+1)
Q2

(
Y𝑇+1

)
]

− EP(Y𝑇+1 )P(Z𝑇+1 )
[
Q1

(
Y𝑇+1 | Z𝑇+1)
Q2

(
Y𝑇+1

)
]
. (B.1)

Proof. We apply the variational bounds of mutual information
𝐼NWJ proposed by [39], which is thoroughly concluded in [42].

Lemma 1 (Mutual Information Variational Bounds in 𝐼NWJ). Given
any two variables X and Y, and any permutation invariant function
𝑓 (X,Y), we have:

𝐼 (X;Y) ≥ EP(X,Y) [𝑓 (X,Y)] − e−1EP(X)P(Y)
[
e𝑓 (X,Y)

]
. (B.2)

As 𝑓 (X,Y) must learn to self-normalize, yielding a unique solu-
tion for variables

(
Y𝑇+1,Z𝑇+1

)
by plugging:

𝑓
(
Y𝑇+1,Z𝑇+1

)
= 1 + log Q1

(
Y𝑇+1 | Z𝑇+1)
Q2

(
Y𝑇+1

) (B.3)

into Eq. (B.2). Specifically:

𝐼
(
Y𝑇+1;Z𝑇+1

) ≥ EP(Y𝑇+1,Z𝑇+1 )
[
1 + log Q1

(
Y𝑇+1 | Z𝑇+1)
Q2

(
Y𝑇+1

)
]

− e−1EP(X)P(Y)
[
e · Q1

(
Y𝑇+1 | Z𝑇+1)
Q2

(
Y𝑇+1

)
]

(B.4)

≥ 1 + EP(Y𝑇+1,Z𝑇+1 )
[
log
Q1

(
Y𝑇+1 | Z𝑇+1)
Q2

(
Y𝑇+1

)
]

− EP(Y𝑇+1 )P(Z𝑇+1 )
[
Q1

(
Y𝑇+1 | Z𝑇+1)
Q2

(
Y𝑇+1

)
]
. (B.5)

We conclude the proof of Proposition 1. □

B.2 Proof of Proposition 2
We restate Proposition 2:

Proposition 2 (The Upper Bound of 𝐼
(D;Z𝑇+1

)
). Let IA, IZ ⊂

[𝑇 + 1] be the stochastic time indices sets. Based on the Markov
propertyD ⊥⊥ Z𝑇+1 | ({Â𝑡 }𝑡 ∈IA ∪{Z𝑡 }𝑡 ∈IZ

)
, for any distributions

Q
(
Â𝑡

)
and Q

(
Z𝑡

)
:

𝐼
(D;Z𝑇+1

) ≤ 𝐼
(D; {Â𝑡 }𝑡 ∈IA ∪ {Z𝑡 }𝑡 ∈IZ

) ≤ ∑︁
𝑡 ∈IA
A𝑡 +

∑︁
𝑡 ∈IZ
Z𝑡 ,

(B.6)

𝑤ℎ𝑒𝑟𝑒 A𝑡 = E

[
log
P
(
Â𝑡 | Ẑ𝑡 ,Z𝑡−1,A𝑡

)
Q
(
Â𝑡

)
]
, (B.7)

Z𝑡 = E

[
log
P
(
Z𝑡 | Ẑ𝑡 ,Z𝑡−1, Â𝑡

)
Q
(
Z𝑡

)
]
. (B.8)

Proof. We apply the Data Processing Inequality (DPI) [5] and
the Markovian dependency to prove the first inequality.

Lemma 2 (Mutual Information Lower Bound in Markov Chain).
Given any three variables X, Y and Z, which follow the Markov
Chain < X→ Y→ Z >, we have:

𝐼 (X;Y) ≥ 𝐼 (X;Z). (B.9)

Directly applying Lemma 2 to the Markov Chain in DGIB, i.e.,
< D → ({Â𝑡 }𝑡 ∈IA ∪ {Z𝑡 }𝑡 ∈IZ

) → Z𝑇+1 >, which satisfies the
Markov propertyD ⊥⊥ Z𝑇+1 | ({Â𝑡 }𝑡 ∈IA ∪{Z𝑡 }𝑡 ∈IZ

)
, we the have:

𝐼
(D;Z𝑇+1

) ≤ 𝐼
(D; {Â𝑡 }𝑡 ∈IA ∪ {Z𝑡 }𝑡 ∈IZ

)
. (B.10)

Next, we prove the second inequality. To guarantee the compres-
sion order following “structure first, features second” in each time
step, as well as the Spatio-Temporal Local Dependence (Assump-
tion 2), we define the order:

Definition 2 (DGIB Markovian Decision Order ≺). For any vari-
ables in set {Â𝑡 }𝑡 ∈IA ∪ {Z𝑡 }𝑡 ∈IZ , we have:
• For different time indices 𝑡1 and 𝑡2, Â𝑡1 ,Z𝑡1 ≺ Â𝑡2 ,Z𝑡2 .
• For any individual time index 𝑡 , Â𝑡 ≺ Z𝑡 .

To satisfy the Spatio-Temporal Local Dependence Assumption,
we define two preceding sequences of sets based on the ≺ order:
S𝑡
Â
,S𝑡Z = {Â𝑡1 ,Z𝑡1 | 𝑡1, 𝑡2 < 𝑡 − 1, 𝑡1 ∈ IA, 𝑡2 ∈ IZ}. (B.11)

Thus, we have S𝑡
Â
⊥⊥ Â𝑡 | {Z𝑡−1,A𝑡 } and S𝑡Z ⊥⊥ Z𝑡 | {Z𝑡−1, Â𝑡 }.

Then, we decompose 𝐼 (D; {Â𝑡 }𝑡 ∈IA ∪ {Z𝑡 }𝑡 ∈IZ ) into:
𝐼
(D; {Â𝑡 }𝑡 ∈IA ∪ {Z𝑡 }𝑡 ∈IZ

)
=

∑︁
𝑡 ∈IA

𝐼
(D; Â𝑡 | S𝑡

Â

)

+
∑︁
𝑡 ∈IZ

𝐼
(D;Z𝑡 | S𝑡Z

)
. (B.12)

Following [58], we provide upper bounds for 𝐼
(D; Â𝑡 | S𝑡

Â

)
and

𝐼
(D;Z𝑡 | S𝑡Z

)
, respectively:

𝐼
(D; Â𝑡 | S𝑡

Â

) ≤ 𝐼
(D,Z𝑡−1; Â𝑡 | S𝑡

Â

)
= 𝐼

(
Z𝑡−1,A𝑡 ; Â𝑡 | S𝑡

Â

)
≤ 𝐼

(
Z𝑡−1,A𝑡 ; Â𝑡 ) = A𝑡 − KL [

P
(
Â𝑡 ) ∥Q(Â𝑡 ) ]

≤ A𝑡 . (B.13)
Similarly, we have:
𝐼
(D;Z𝑡 | S𝑡Z

) ≤ 𝐼
(D,Z𝑡−1, Â𝑡 ;Z𝑡 | S𝑡Z

)
= 𝐼

(
Z𝑡−1, Â𝑡 ;Z𝑡 | S𝑡Z

)
≤ 𝐼

(
Z𝑡−1, Â𝑡 ;Z𝑡

)
= Z𝑡 − KL [

P
(
Z𝑡

) ∥Q(Z𝑡 ) ]
≤ Z𝑡 . (B.14)
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By plugging Eq. (B.13) and Eq. (B.14) into Eq. (B.12), we conclude
the proof of the second inequality. □

B.3 Proof of Proposition 3
We restate Proposition 3:

Proposition 3 (The Upper Bound of 𝐼
(
Z1:𝑇 ;Z𝑇+1

)
). For any dis-

tributions Q
(
Z𝑇+1

)
:

𝐼
(
Z1:𝑇 ;Z𝑇+1

) ≤ E
[
log
P
(
Z𝑇+1 | Z1:𝑇 )
Q
(
Z𝑇+1

)
]
. (B.15)

Proof. We apply the upper bound proposed in the Variational
Information Bottleneck (VIB) [1].

Lemma 3 (Mutual Information Upper Bound in VIB). Given any
two variables X and Y, we have the variational upper bound of
𝐼 (X;Y):

𝐼 (X;Y) = EP(X,Y)
[
log P(Y | X)

P(Y)

]
= EP(X,Y)

[
log P(Y | X)Q(Y)

P(Y)Q(Y)

]

= EP(X,Y)
[
log P(Y | X)

Q(Y)

]
− KL [P(Y)∥Q(Y)]︸               ︷︷               ︸

non-negative
≤ EP(X,Y)

[
log P(Y | X)

Q(Y)

]
. (B.16)

By utlizing Lemma 3 to variables Z1:𝑇 and Z𝑇+1, we conclude
the proof of Proposition 3.

□

C EXPERIMENT DETAILS AND ADDITIONAL
RESULTS

In this section, we provide additional experiment details and results.

C.1 Datasets Details
We use three real-world datasets to evaluate DGIB on the challeng-
ing future link prediction task.
• COLLAB1 [53] is an academic collaboration dataset with pa-

pers that were published during 1990-2006 (16 graph snap-
shots), which reveals the dynamic citation networks among
authors. Nodes and edges represent authors and co-authorship,
respectively. Based on the co-authored publication, there are
five attributes in edges, including “Data Mining”, “Database”,
“Medical Informatics”, “Theory” and “Visualization”. We apply
word2vec [35] to extract 32-dimensional node features from
paper abstracts. We use 10/1/5 chronological graph snapshots
for training, validation, and testing, respectively. The dataset
includes 23,035 nodes and 151,790 links in total.

• Yelp2 [46] contains customer reviews on business, which are
collected from the crowd-sourced local business review and
social networking web. Nodes represent customer or business,
and edges represent review behaviors, respectively. Considering
categories of business, there are five attributes in edges, includ-
ing “Pizza”, “American (New) Food”, “Coffee & Tea”, “Sushi Bars”
and “Fast Food” from January 2019 to December 2020 (24 graph

1 https://www.aminer.cn/collaboration
2 https://www.yelp.com/dataset

snapshots). We apply word2vec [35] to extract 32-dimensional
node features from reviews. We use 15/1/8 chronological graph
snapshots for training, validation, and testing, respectively. The
dataset includes 13,095 nodes and 65,375 links in total.

• ACT3 [29] describes student actions on a popular MOOC web-
site within a month (30 graph snapshots). Nodes represent stu-
dents or targets of actions, edges represent actions. Considering
the attributes of different actions, we apply K-Means to cluster
the action features into five categories. We assign the features
of actions to each student or target and expand the original
4-dimensional features to 32 dimensions by a linear function.
We use 20/2/8 chronological graph snapshots for training, val-
idation, and testing, respectively. The dataset includes 20,408
nodes and 202,339 links in total.
Statistics of the three datasets are concluded in Table B.1. These

three datasets have different time spans and temporal granularity
(16 years, 24 months, and 30 days), covering most real-world scenar-
ios. The most challenging dataset for the future link prediction task
is the COLLAB. In addition to having the longest time span and the
coarsest temporal granularity, it also has the largest difference in
the properties of its links, which greatly challenges the robustness.

Table B.1: Statistics of the real-world dynamic graph datasets.

Dataset # Node # Link # Link
Type

Length
(Split)

Temporal
Granularity

COLLAB 23,035 151,790 5 16 (10/1/5) year
Yelp 13,095 65,375 5 24 (15/1/8) month
ACT 20,408 202,339 5 30 (20/2/8) day

C.2 Detailed Settings and Analysis for
Experiment in Figure 3

In Figure 3, we evaluate the performance of our DGIBagainst non-
targeted adversarial attack compared with GIB [58]. We choose the
ACT [29] as the dataset, with 20 graphs to train, 2 graphs to vali-
date, and 8 graphs to test. In attacking settings, we follow the same
non-targeted adversarial attack settings introduced in Section 5.1.3
on graph structures. For the baseline, we adapt the GIB [58]-Cat
to dynamic scenarios by obtaining Ẑ𝑡 for each individual graph
snapshot first with the original GIB [58], and then aggregating them
using the vanilla LSTM [19] to learn the comprehensive representa-
tion Ẑ𝑇+1, where the two steps are jointly optimized by the overall
objective Eq. (4). For our DGIB, we train the DGIB-Cat version with
the same objective in Eq. (4).

Results show that, for GIB (adapted), we witness a sudden drop in
the link prediction performance (AUC %) achieved by Ẑ𝑡+1 for the
next time-step graph G𝑡+1 in testing, while our DGIB-Cat contains
a slight and acceptable decrease when encountering adversarial
attacks, and its average testing score surpasses GIB. This demon-
strates that directly optimizing GIB with the intuitive IB objective in
Eq. (4) will lead to sub-optimal model performance, and our DGIB is
endowed with stronger robustness by jointly optimizing DGIB𝑀𝑆

and DGIB𝐶 channels, which cooperate and constrain each other to
satisfy the𝑀𝑆𝐶 Condition.
3 https://snap.stanford.edu/data/act-mooc.html
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C.3 Additional Results of Ablation Study
We provide additional results of ablation studies on dynamic graph
datasets Yelp and ACT. Accordingly, we choose DGIB-Bern as the
backbone and compare performances on the clean, evasive attacked
(𝑛 = 2) and poisoning attacked (𝑛 = 2) Yelp and ACT, respectively.
Results are shown in Figure B.1 and Figure B.2.

Results. Similar conclusions can be derived as in Section 5.4 that
DGIB outperforms the other three variants, except for DGIB (w/o
A), where it exceeds the original DGIB-Bern on the clean Yelp
and clean ACT by 0.3% and 0.7%, respectively. We explain this phe-
nomenon that the structure sampling term (A) acts to improve
the robustness by modifying structures and compression features,
which will damage the performance on clean occasions. When
confronting evasive and poisoning adversarial attacks, DGIB sur-
passing all three variants, which validates the importance of the
proposed three mechanisms in achieving better performance for
robust representation learning on dynamic graphs.

C.4 Parameter Sensitivity Analysis
We provide additional experiments on the sensitivity of hyperpa-
rameters 𝛼 , 𝛽1 and 𝛽2, which are chosen from {1e-04, 1e-03, 1e-02,
1e-01, 1}. We report the results of sensitivity analysis on the clean
and structure-attacked COLLAB in Figure B.3 and Figure B.4.

Results. Results demonstrate that the performance on both
the clean and structure-attacked COLLAB is sensitive to different

values of 𝛼 , 𝛽1, and 𝛽2, and contains in a reasonable range. In
addition, we observe there exist negative correlations between
performance on the clean dataset and attacked dataset for three
hyperparameters, which demonstrates the confrontations of the
MSE term and compression term in DGIB overall optimization
objectives (Eq. (7)). Specifically, in most cases, higher 𝛼 , 𝛽1, and
𝛽2, lead to better robustness but weaker clean dataset performance.
In conclusion, different combinations of hyperparameters lead to
varying task performance and model robustness, and we follow the
tradition of configuring the values of hyperparameters with the
best trade-off setting against adversarial attacks.

C.5 Training Efficiency Analysis
We report the training time for our DGIB-Bern and DGIB-Cat with
the default configurations as we provided in the code. We conduct
experiments with the hardware and software configurations listed
in Section D.3. We ignore the tiny difference when training under
the poisoning attacks and only report the average time per epoch
for training on the respective clean datasets in Table B.2.

Results. The training time of DGIB-Bern and DGIB-Cat is in
the same order as the state-of-the-art DGNN baselines due to the
computation complexity of DGIB is on par with related works. The
maximum epochs for each training is set to 1000 (fixed), thus the
total time is feasible in practice. Note that, the number of layers,
neighbors to sampling, etc., will have a significant impact on the
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training efficiency, and not always large numbers bring extra im-
provements in performance, so it is recommended to properly set
the related parameters.

Table B.2: Results of training time per epoch (s).

Dataset COLLAB Yelp ACT

DIDA [67] 2.61 5.12 3.31
DGIB-Bern 0.88 1.91 1.32
DGIB-Cat 0.86 1.54 1.64

D IMPLEMENTATION DETAILS
In this section, we provide implementation details of the proposed
DGIB and baselines.

D.1 DGIB Implementation Details
According to respective experiment settings, we randomly split
the dynamic graph datasets into training, validation, and testing
chronological sets. We sample negative links from nodes that do
not have links, and the negative links for validation and testing
sets are kept the same for all baseline methods and ours. We set the
number of positive links to the same as the negative links. We use
the Area under the ROC Curve (AUC) as the evaluation metric. As
we focus on the future link prediction task, we use the inner product
of a pair of learned node representations to predict the occurrence
of links, i.e., we implement the link predictor 𝑔(·) as the inner
product of hidden embeddings, which is widely applied in future
link prediction tasks. The non-linear rectifier 𝜏 is ReLU(·) [37], and
the activation function 𝜎 is Sigmoid(·) [17]. We randomly run all
the experiments for five times, and report the average results with
standard deviations.

D.2 Baseline Implementation Details
We provide the baseline methods implementations with respective
licenses as follows.
• GAE [27]: https://github.com/DaehanKim/vgae_pytorch.
• VGAE [27]: https://github.com/DaehanKim/vgae_pytorch.
• GAT [56]: https://github.com/pyg-team/pytorch_geometric.
• GCRN [48]: https://github.com/youngjoo-epfl/gconvRNN.
• EvolveGCN [41]: https://github.com/IBM/EvolveGCN.
• DySAT [46]: https://github.com/FeiGSSS/DySAT_pytorch.
• IRM [2]: https://github.com/facebookresearch/InvariantRiskM

inimization.
• V-REx [28]: https://github.com/capybaralet/REx_code_release.
• GroupDRO [45]: https://github.com/kohpangwei/group_DRO.
• RGCN [69]: https://github.com/DSE-MSU/DeepRobust.
• DIDA [67]: https://github.com/wondergo2017/DIDA.
• GIB [58]: https://github.com/snap-stanford/GIB. We report the

best result between GIB-Bern and GIB-Cat versions.
• NETTACK [71]: https://github.com/DSE-MSU/DeepRobust.
The parameters of baseline methods are set as the suggested value
in their papers or carefully tuned for fairness.

D.3 Hardware and Software Configurations
We conduct the experiments with:
• Operating System: Ubuntu 20.04 LTS.
• CPU: Intel(R) Xeon(R) Platinum 8358 CPU@2.60GHz with 1TB

DDR4 of Memory.
• GPU: NVIDIA Tesla A100 SMX4 with 40GB of Memory.
• Software: CUDA 10.1, Python 3.8.12, PyTorch4 1.9.1, PyTorch

Geometric5 2.0.1.

4 https://github.com/pytorch/pytorch
5 https://github.com/pyg-team/pytorch_geometric
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