MultiFileTest: A Multi-File-Level LLM Unit Test Generation Benchmark
and Impact of Error Fixing Mechanisms

Anonymous ACL submission

Abstract

Unit test generation has become a promising
and important Large Language Model (LLM)
use case. However, existing evaluation bench-
marks for LLM unit test generation focus on
function- or class-level code (single-file) rather
than more practical and challenging multi-file-
level codebases. To address such a limitation,
we propose MultiFileTest, a multi-file-level
benchmark for unit test generation covering
Python, Java, and JavaScript. MultiFileTest
features 20 moderate-sized and high-quality
projects per language. We evaluate nine fron-
tier LLMs on MultiFileTest, and the results
show that all frontier LLMs tested exhibit mod-
erate performance on MultiFileTest on Python
and Java, highlighting the difficulty of Multi-
FileTest. We also conduct a thorough error anal-
ysis, which shows that even advanced LLMs,
such as Claude-3.5-Sonnet, exhibit basic yet
critical errors, including compilation and cas-
cade errors. Motivated by this observation, we
further evaluate all frontier LLMs under man-
ual error-fixing and self-error-fixing scenarios
to assess their potential when equipped with
error-fixing mechanisms.

1 Introduction

Unit testing plays an important role in software
development, helping identify bugs and ensuring
code quality. Unit tests verify whether individ-
ual components of a software program work as
expected—for example, checking if add(2, 3) re-
turns 5. Writing unit tests is time-consuming, usu-
ally accounting for approximately 15.8% of soft-
ware development time (Daka and Fraser, 2014).
Therefore, automated test case generation, like
search-based (Fraser and Arcuri, 2011; Harman
and McMinn, 2009), constraint-based (Xiao et al.,
2013), and random-based (Pacheco et al., 2007)
methods, has been proposed to create unit tests.
However, these methods often produce less read-
able tests and are limited to certain types of func-

tions (Grano et al., 2018). Recently, Large Lan-
guage Models (LLMs) have significantly acceler-
ated unit test generation and improved readabil-
ity and generalizability with little to no human ef-
fort (Siddiq et al., 2024; Xie et al., 2023).

Despite the rapid adoption of LLMs for unit
testing, evaluation of LLM unit test generation
capabilities appears to be lagging behind. Exist-
ing benchmarks primarily focus on function, class,
or single-file level code (Chen et al., 2021; Du
et al., 2023; Wang et al., 2025; Jain et al., 2024a),
while real-world scenarios typically involve multi-
file codebases where functions interact across files
with complex dependencies. For instance, a func-
tion in file A might import and use classes from
files B and C, which themselves depend on other
modules. To properly test such codebases, LLMs
must understand these cross-file dependencies and
correctly set up the test environment, making it
significantly more complex than testing function,
class, or single-file level code. The only bench-
mark that briefly explores multi-file testing, De-
vBench (Li et al., 2024), includes too few projects
per language (e.g., 5 for Java) with varying quality
and lacks thorough analysis of error types, poten-
tials, or self-fixing capabilities of frontier LLMs’
multi-file level unit test generation.

Therefore, we propose MultiFileTest, a new
multi-file-level unit test generation benchmark that
offers a larger, higher-quality project set along with
comprehensive error analysis of state-of-the-art
LLMs. MultiFileTest covers three programming
languages: Python, Java, and JavaScript. For each
language, we construct 20 self-contained multi-
file projects from GitHub' using clear filtering cri-
teria: moderate-sized projects with multiple files
and dependencies between them, each under 1,600
lines of code (fitting within input constraints of
most code language models), with quality ensured

"https://github.com/

through substantial stars and forks. This care-
fully constructed benchmark enables comprehen-
sive evaluation of LLMs’ capabilities in handling
realistic multi-file testing scenarios.

Our evaluation of nine frontier LLMs (including
Claude-3.5-Sonnet (Anthropic, 2024), Gemini-2.0-
Flash (Team et al., 2024b), and GPT-01) reveals
moderate performance across models, highlighting
the difficulty of MultiFileTest. We observe that dif-
ferent LLMs exhibit different language-level exper-
tise: Claude-3.5-Sonnet ranks first in Java, while
GPT-ol ranks first in JavaScript. Among three pro-
gramming languages, Java is the most difficult, pri-
marily due to its stricter syntax. Among all tested
models, GPT-o1 performs best overall, especially
in JavaScript.

Error analysis shows that even advanced LLMs,
like Claude-3.5-Sonnet, produce significant compi-
lation and cascade errors. These errors often stem
from misunderstandings of contextual dependen-
cies and program structure—areas where reasoning
capabilities of LLMs are critical. Although these
errors appear to be preliminary and may be rela-
tively easy to fix, they prevent us from observing
more advanced aspects of LLM performance on
unit test generation, such as correctness and cover-
age. To address this, we manually fix LLM’s com-
pilation and cascade errors and then re-evaluate the
fixed unit tests. This allows us to measure both
raw performance and potential improvement when
combined with error-fixing mechanisms. By incor-
porating error-fixing, we uncover critical insights
into the effort required to refine generated tests and
better understand the various types of errors that
occur in unit tests generated by different LLMs.
We observe that the model rankings change sig-
nificantly after manual fixes, revealing substantial
differences in error distributions and improvement
potential among LLMs. Inspired by these findings
from manual fixes, we also explore using LLMs for
self-fixing their errors in generating multi-file-level
unit tests. The results show that while LL.Ms can
correct some errors in their generated unit tests,
their self-fixing abilities still lag behind the quality
and reliability of human fixes.

Our contributions include: (1) the first multi-file
level benchmark for unit test generation with eval-
uation of nine frontier LLMs, (2) thorough error
analysis through manual fixing of compilation and
cascade errors to reveal model potential, and (3) the
first assessment of LLMs’ self-fixing capabilities
for unit test generation.

2 Related Work

2.1 Traditional Unit Test Generation

Traditional unit test generation methods employ
search-based (Harman and McMinn, 2009; Fraser
and Arcuri, 2011; Lukasczyk and Fraser, 2022),
constraint-based (Xiao et al., 2013), or random-
based (Pacheco et al., 2007) strategies to construct
test suites that maximize code coverage. Although
these traditional approaches can generate unit tests
with reasonable coverage, the resulting tests of-
ten have lower readability and less meaningfulness
compared to developer-written tests. As a result,
automatically generated tests are frequently not
directly adopted by practitioners in real-world sce-
narios (Almasi et al., 2017; Grano et al., 2019).

2.2 LLM-enhanced Unit Test Generation

Large Language Models (LLMs) have demon-
strated strong code generation capabilities (Feng
et al., 2020; Wang et al., 2023), inspiring their
use in automated unit test generation. Recent ap-
proaches in LLM-enhanced unit test generation
leverage zero-shot strategies (Siddiq et al., 2024),
iterative querying (Schifer et al., 2023), fine-tuning
on specialized datasets (Alagarsamy et al., 2025),
adaptive context selection (Xie et al., 2023), dy-
namic scaling (Ma et al., 2025), and focusing on
subtle code differences (Dakhel et al., 2024; Li
et al., 2023). These methods are evaluated with
various metrics, including compilation success,
test correctness, coverage, and bug detection, and
demonstrate that LLMs can effectively surpass tra-
ditional test generation techniques.

2.3 LLM Unit Test Generation Benchmark

Current benchmarks for LLM-based unit test gen-
eration mainly focus on function-level (Wang et al.,
2025; Villmow et al., 2021), class-level (Du et al.,
2023), or single-file-level code (Jain et al., 2024a).
Multi-file-level software testing benchmarks, on
the other hand, often target tasks other than unit test
generation. For instance, R2E-Evall (Jain et al.,
2024b) is designed for equivalent test harnesses
generation, SWT-Bench (Miindler et al., 2024) fo-
cuses on fixing specific bugs rather than entire
projects, and DevBench (Li et al., 2024) centers
on software development tasks. While DevBench
touches on multi-file-level unit testing, its dataset
is limited in quantity and varies in quality, espe-
cially for C/C# and Java, with only five projects
each. Half of its projects for unit test generation

Error
Message

‘‘‘‘‘‘‘‘‘‘‘‘‘‘

(St

Vanilla
Unit Tests

Input: +

LLM
@ Self-fixed

Manually
Fixed @
Unit Tests

Unit Tests

Figure 1: Overview of the unit test generation process.

evaluation are difficult to track, and most of the
identifiable projects have fewer than 250 Stars and
50 Forks. Moreover, its broad focus prevents com-
prehensive evaluation and error analysis of LLM-
based multi-file-level unit test generation. We in-
clude a detailed comparison with other benchmarks
in Appendix F.

3 Methodology

We introduce MultiFileTest dataset collection and
preprocessing (§3.1), evaluation metrics (§3.2), and
the unit test generation pipeline (§3.3) for evaluat-
ing LLMs on MultiFileTest across three unit test
generation scenarios.

3.1 Benchmark Dataset

Dataset Collection. Our dataset comprises care-
fully selected multi-file-level GitHub repositories
in Python, Java, and JavaScript. We establish se-
lection criteria based on three key factors: 1) ap-
propriate size (2-15 files, <1600 lines of code),
2) inter-file dependencies, and 3) reliable sources.
The size threshold ensures code fits within stan-
dard LLM input windows without truncation, en-
abling fair comparison across models with different
context lengths. This approach isolates our core
evaluation target—the model’s ability to generate
unit tests—rather than testing long-context man-
agement or external tooling. We limit our selec-
tion to repositories with publicly available licenses,
ensuring the legality and openness. To maintain
quality and reliability, we prioritize projects with
high numbers of stars and forks, signaling com-
munity approval and widespread usage. We also
extract smaller, self-contained projects from over-
sized codebases, carefully adjusting them to func-
tion independently without relying on the origi-
nal larger projects. After applying these criteria,
we construct 20 representative projects per pro-
gramming language. Dataset statistics are sum-

Language Avg. #Files Avg. LOC Avg. #Stars Avg. #Forks
Python 6.10 654.60 5810.30 996.90
Java 4.65 282.60 3306.05 1347.65
JavaScript 4.00 558.05 17242.30 5476.45

Table 1: MultiFileTest Data Statistics (LOC = Lines of
Code).

marized in Table 1, with detailed information on
dataset sources and project-specific information in
Appendix A.

Pre-processing. Dataset pre-processing involves
several key steps to ensure the projects are well-
structured and suitable for testing. First, we ver-
ify all selected projects for syntax errors despite
their reliable sources. Second, for projects ex-
tracted from larger codebases, we modify them
to be self-contained by reorganizing files, adjust-
ing domain naming conventions, and/or modifying
import paths to remove dependencies on external
modules. Next, to enhance the accuracy of line
coverage measurements, we consolidate statements
that span multiple lines into a single line, ensuring
more valid metrics. Additionally, we maintain orig-
inal coding styles as much as possible to preserve
diversity across projects, allowing us to assess how
LLMs perform when faced with various program-
ming styles.

3.2 Evaluation Metrics

We focus on three key aspects when evaluating the
generated unit tests: compilation rate, correctness
rate, and coverage rate. Compilation rate (ComR)
measures the percentage of projects in which the
generated test suites compile successfully, indicat-
ing how often LL.Ms produce executable unit test
suites. The compilation rate for all projects in X
is defined as ComR = |X|CTO‘M|, where X is the
project set and X" C X denotes the subset
of projects whose test suites compile successfully.
Correctness rate (CR) calculates the percentage of
unit tests that are correct out of all generated unit
tests for each project, providing insight into the
accuracy of the test generation process. On aver-
age, more than 95% of vanilla-generated unit tests
compare expected and actual values, reinforcing
the validity of CR as an evaluation metric. De-
tailed statistics see Appendix C.1. The correctness
rate for the project x is defined as CR, = ‘%iw',
where T} is the generated test suite and 7.°" C T,
denotes the correct unit test set for the project x.
Coverage rate analyzes both line and branch cover-
age to understand how well the generated unit tests
explore the code’s functionality. The coverage rate

(# stock.py

from structure import Structure
from validate import String, ...
class Stock(Structure):

structure.py
from validate import Validator, validated
class Structure:

validate.py
class Validator:

Figure 2: An example of MultiFileTest.

covered(x)
total(z) °
where covered(z) denotes the number of covered
lines/branches in project = and total(x) the total
number of lines/branches in project z € X.

These three evaluation metrics are interdepen-
dent. If a project’s generated test suite contains
compilation errors, none of its unit tests can exe-
cute successfully, resulting in zero correctness and
coverage rates for the project. Additionally, errors
causing test failures, such as missing Python depen-
dencies, can also impact coverage rates. Therefore,
considering these interdependencies, we extend our
analysis beyond vanilla unit tests evaluation to in-
clude manually fixing these errors. This enables
a more comprehensive assessment of LLMs’ po-
tential to generate high-quality unit tests once such
errors are addressed. This assessment is conducted
while maintaining the same quantity and diversity
of unit tests originally generated by the LLMs. Fur-
thermore, we extend our analysis to examine the
self-fixing capabilities of LLMs.

for the project x is defined as CR, =

3.3 Unit Test Generation

Figure 1 shows an overview of the LLM unit test

generation process. Our unit test generation and

evaluation aim to ensure fair and thorough assess-
ments under different scenarios:

* Scenario 1: Vanilla unit tests extracted from
LLMs’ outputs.

* Scenario 2: Compilable unit tests after manually
fixing all compilation and cascade errors.

* Scenario 3: Unit tests refined by LLMs self-
fixing, provided with error messages and human-
LLM conversation history.

Scenario 1: Vanilla Unit Test Generation. We in-

put the entire project and a carefully crafted prompt

into the LLM, ensuring the context and require-
ments are clearly communicated. Complete project
codes are provided to ensure LL.Ms have all the nec-
essary context to generate unit tests for the entire
project, as shown in Figure 2. To rigorously eval-

(# stock_test.py 0
import unittest
from stock.stock import Stock
from validate import PositiveInteger, ...
class TestStock(unittest.TestCase):
def setUp(self):
self.stock = ...

if __name_ == '_main_ ':
unittest.main()

Error Message:
from stock.stock import Stock
E ModuleNotFoundError: No module named 'stock.stock';
L 'stock' is not a package)

Figure 3: An example of compilation error.

uate LLM capabilities, we craft language-specific
prompts addressing the unique challenges of each
programming language. A comprehensive assess-
ment is ensured by requiring LLMs to generate unit
tests for all project files and providing targeted in-
structions on compilation rate, correctness rate, and
coverage metrics. This methodical prompt engi-
neering significantly enhances the quality and rele-
vance of the LLM-generated outputs. Appendix B.1
lists all experiment prompts, while Appendix D.1
contains the prompt ablation analysis. Vanilla unit
tests are extracted directly from the LLM response
based on the input project and prompt.

Scenario 2: Manual Fixing compilation and cas-
cade errors. Manually fixing compilation and cas-
cade errors is motivated by empirical observations
from scenario 1, where even unit tests generated by
state-of-the-art LLMs like Claude-3.5-Sonnet con-
tain significant compilation errors, making them
non-compilable. These tests also exhibit cascade
errors that, while easily fixable, can impact mul-
tiple unit tests or the entire test suite (details in
Section 5.5). Although these errors are prelimi-
nary and straightforward to resolve, they obstruct
a deeper analysis of other critical aspects of LLM
performance in unit test generation, particularly
correctness and coverage.

Therefore, we apply minimal necessary changes
to vanilla unit tests, resolving compilation and cas-
cade errors while preserving the original test intent.
Compilation errors” are defined as errors that pre-
vent testing frameworks from executing. As shown
in Figure 3, ModuleNotFoundError causes pytest
to fail before collecting any unit tests, making the
entire test suite uncompilable. This results not only
in compilation failure but also in unreachable cor-
rectness and coverage rates.® Cascade errors are de-

>While Python is an interpreted language, we classify er-
rors that cause pytest to fail before collecting and running any

tests as compilation errors.
3We consider unreachable correctness and coverage rate

import unittest
from base import f_entropy, ...
from tree import Tree
class TestBaseFunctions(unittest.TestCase):
def test f entropy(self):
p = np.array([1, 2, 2, 3, 3, 3])

def test _information gain(self):
y = np.array([1, 2, 2, 3, 3, 3])

def test mse criterion(self):
y = np.array([1, 2, 2, 3, 3, 3])

if __name_ == '_ main_ ':
unittest.main()

Error Message Obtained by Pytest:

FAILED tree test.py::TestBaseFunctions::test f entropy -
NameError: name 'np' is not defined

FAILED tree test.py::TestBaseFunctions::test get split mask -
NameError: name 'np' is not defined

FAILED tree_test.py::TestBaseFunctions::test_information gain -
NameError: name 'np' is not defined

Figure 4: An example of cascade error.

fined as errors that cause cascading failures across
multiple unit tests or even the entire test suite. Fig-
ure 4 demonstrates how a simple NameError (miss-
ing NumPy import) can invalidate multiple funda-
mentally correct tests. Most of these errors are
straightforward and mechanical to correct. Given
that these fixes necessitate limited reasoning capa-
bilities and typically involve small, localized mod-
ifications, it minimizes the influence of annotator
skill variation and ensures fair model comparison
post-fix. By resolving these errors, manual fixing
ensures that all unit tests are compilable with no
cascade errors invalidating fundamentally correct
tests. This manual fixing is essential for evaluating
the quality and reliability of generated unit tests,
providing deeper insights into the effectiveness of
LLM-generated unit tests, and identifying areas
for improvement. This process also helps assess
LLMs’ potential for continuous improvement once
basic errors are resolved. Additionally, we evalu-
ate unit tests with only compilation errors fixed in
Appendix D.2.

Scenario 3: LLM Self-fixing. Inspired by our ob-
servation from manual fixing that different LLMs
exhibit significantly different potentials after man-
ual fixing, we investigate how LLMs perform in
self-fixing on our benchmark. We explore LLMs’
self-fixing abilities by incorporating human-LLM
conversation history and error messages as shown
in Figure 5. We provide LLMs with the conversa-
tion history (including the system prompt, the user
prompt for unit test generation requests, and LLM
vanilla response), error messages obtained from the
testing framework, and the user prompt for error
fixing requests. When an open-source LLM’s in-
put length is limited, we prioritize the information

as zZero.

Self-fixing Prompt for Python]

System Prompt: You are a coding assistant...

User Prompt: {Original Codes} Please generate enough unit test cases...
LLM Response: {Generated Vanilla Unit Tests}

User Prompt: Here are the error messages from the tests: {Error
Messages}. Errors exist in the generated unit tests. Please fix the unit
tests to address these errors and provide the entire unit tests.

Figure 5: The prompt used for the LLM self-fixing
scenario for Python projects.

hierarchically: system prompt, LLM’s initial re-
sponse, error messages, error-fixing requests, and
unit test generation requests. We truncate less crit-
ical information as necessary while reserving at
least 2,000 tokens for the LLM’s self-fixing out-
puts. LLM self-fixing scenario helps us understand
LLMs’ error-fixing ability and their potential to
generate better unit tests when incorporating the
self-fixing process. Note that during self-fixing,
we do not constrain the target error types to just
compilation or cascade errors.

4 Experimental Settings

4.1 Models

We evaluate five close-sourced models: GPT-ol,
Gemini-2.0-Flash-Exp (Gemini-2.0-Flash) (Team
et al., 2024b), Claude-3.5-Sonnet-20241022
(Claude-3.5-Sonnet) (Anthropic, 2024), GPT-4-
Turbo (Achiam et al., 2023) and GPT-3.5-Turbo,
and four open-sourced models: CodeQwenl.5-7B-
Chat (CodeQwen1.5) (Bai et al., 2023), DeepSeek-
Coder-6.7b-Instruct (DeepSeek-Coder) (Guo et al.,
2024; Zhu et al., 2024), CodeLlama-7b-Instruct-
hf (CodeLlama) (Roziere et al., 2023), and
CodeGemma-7b-it (CodeGemma) (Team et al.,
2024a). Detailed information is in Appendix B.2.

4.2 TImplementation Details

We use zero-shot prompting with temperature O
for unit test generation, running experiments on 8
NVIDIA A100 GPUs with input length maximized
to each LLM’s token limit. We use Pytest* for
Python, JUnit’ for Java, and Jest® for JavaScript
regarding testing frameworks. For Java code cov-
erage, we use JaCoCo’. The manual fixes are per-
formed by PhD candidates in Computer Science
with extensive experience in software engineering
and program analysis.

“https://docs.pytest.org/en/stable/
Shttps://junit.org/

®https://jestjs.io
https://www.eclemma.org/jacoco/

Model CR ComR LC BC #Tests #Correct

Python
GPT-4-Turbo 47 65 40 36 12.60 6.15
GPT-3.5-Turbo 37 60 38 34 1690 6.65
GPT-ol 60 65 56 54 36.35 21.7
Gemini-2.0-Flash 46 65 42 39 3495 1695
Claude-3.5-Sonnet 64 70 51 47 18.05 10.40
CodeQwenl.5 24 65 43 40 2540 6.80

DeepSeek-Coder 37 70 39 35 7.20 2.95

CodeLlama 16 60 41 37 19.30 3.95
CodeGemma 13 50 31 28 15.00 2.30
Java
GPT-4-Turbo 21 35 15 12 7.05 2.20
GPT-3.5-Turbo 13 25 8 7 1750 0.80
GPT-ol 41 60 44 35 15.70 6.85
Gemini-2.0-Flash 19 30 14 12 23.30 3.90
Claude-3.5-Sonnet 53 75 47 33 1235 7.30
CodeQwenl.5 0 0 0 0 1295 0.00
DeepSeek-Coder 8 20 5 5 17.00 0.60
CodeLlama 0 0 0 0 785 0.00
CodeGemma 0 0 0 0 10.50 0.00
JavaScript
GPT-4-Turbo 67 75 56 46 1630 11.10
GPT-3.5-Turbo 51 65 37 28 13.25 8.05
GPT-ol 87 95 87 75 3940 33.30
Gemini-2.0-Flash 59 70 64 61 4585 22.55
Claude-3.5-Sonnet 65 80 59 53 2025 13.35

CodeQwenl.5 23 35 25 20 845 4.80

DeepSeek-Coder 62 85 50 35 11.85 7.90
CodeLlama 26 85 20 14 4875 18.00
CodeGemma 29 55 28 21 9.00 3.00

Table 2: Main Results. CR: Correctness Rate (%),
ComR: Compilation Rate (%), LC: Line Coverage (%),
BC: Branch Coverage (%).

5 Experiments

We evaluate the generated unit tests from three
scenarios, vanilla (§ 5.1), after manual fixing of
compilation and cascade errors (§ 5.2), and LLM
self-fixing (§ 5.3). For each scenario, we evalu-
ate the Correctness Rate (CR), Compilation Rate
(ComR), Line Coverage (LC), and Branch Cov-
erage (BC). We also conduct unique contribution
analyses (§5.4) and detailed error analyses (§ 5.5).

5.1 Main Results

The main results of the LLMs’ unit test genera-
tion performance focus on the vanilla unit tests
extracted directly from the LLMs’ outputs without
any changes. This scenario assesses the LLMs’ raw
capability to generate multi-file-level unit tests.
Table 2 shows the evaluation results for vanilla
unit tests. First, LLMs demonstrate varying
language-level expertise. For example, Claude-3.5-
Sonnet performs the best in Java but falls behind
GPT-o1 in JavaScript. Second, LLMs have differ-
ent metric-level expertise as well, validating the
effectiveness of different evaluation metrics. For

example, in Python, Claude-3.5-Sonnet performs
the best in CR and ComR while falling behind
GPT-01 in LC and BC.

Among three programming languages, Java
poses the greatest challenge due to its stricter syn-
tax requirements. Many models fail to generate
valid Java code, leading to low compilation rates
and execution coverage. Among all the evaluated
models, GPT-o1 performs the best in general, espe-
cially in JavaScript. CodeLlama and CodeGemma
have the worst general performance. We also ob-
serve that some models tend to generate more unit
tests. However, generating more unit tests does not
necessarily lead to better coverage rates. For exam-
ple, Gemini-2.0-Flash tends to generate the most
unit tests but does not obtain the best coverage rate.
Additionally, sometimes the open-source model
can even outperform some closed-source models.
For example, DeepSeek-Coder surpasses GPT-3.5-
Turbo on Python and JavaScript. Finally, we con-
firmed from such results that dependencies exist
in metrics. On Java, models like CodeQwenl.5,
CodeLlama, and CodeGemma fail to generate com-
pilable unit tests, resulting in the lowest correctness
rates and coverage rates. We verify the robustness
of these experimental results through multiple runs
in Appendix C.2.

5.2 Manual Fixing Results

Table 3 presents evaluation results after manual
fixing, highlighting substantial improvements com-
pared to vanilla outputs across all programming lan-
guages and LLMs. These significant gains demon-
strate that LLM-generated unit tests are highly sen-
sitive to compilation and cascade errors.

Among programming languages, Java benefits
most from manual fixing. In the vanilla scenario,
Java exhibits the lowest compilation rates, making
it particularly challenging. However, after manual
fixing, Java shows the most substantial improve-
ment, highlighting the potential of LLMs for Java
after fixing compilation and cascade errors. Among
all models, GPT-o1 maintains its superior perfor-
mance after manual fixing, while CodeLlama and
CodeGemma continue to demonstrate the weakest
overall results. Gemini-2.0-Flash shows the best
coverage improvement overall, indicating excep-
tional potential for better unit test generation once
compilation and cascade errors are fixed. Our anal-
ysis reveals that manual fixing can reorder model
performance rankings. For example, in Java, Code-
Qwenl.5 outperforms DeepSeek-Coder and is now

Model CR ComR LC BC #Tests #Correct Model CR ComR LC BC #Tests #Correct
Python Python
GPT-4-Turbo 74(+27) 100 65(+25) 59(+23) 12.60 9.30 GPT-4-Turbo 52(_22) 70(_30) 39(-26) 35(_24) 8.85 4.55
GPT-3.5-Turbo 64(+27) 100 63(+25) 57(.,.23) 16.90 10.50 GPT-3.5-Turbo 52(,12) E(,ﬁ) 45(718) 39(—18) 14.15 8.20
GPT-ol 89,29 100 883 86,32 3635 3225 GPT-ol 6722 70030y 60(28) 5828) 35.50 2435
Gemini-2.0-Flash 61(+15) 100 71(+29) 68(.,.29) 34.95 22.10 Gemini-2.0-Flash 47(,14) 60(,40) 45(726) 42(726) 34.95 17.40
Claude-3.5-Sonnet 92(+23) 100 B(+23) E(+23) 18.05 16.40 Claude-3.5-Sonnet 86(_6) 90(,]0) 67(_7) 63(_7) 18.00 15.55
CodeQwenl.S 46(+22) 100 70(+27) 65(+25) 25.40 10.90 CodeQwenl.S 22(,24) 60(,40) 41(,29) 37(728) 25.15 6.25
DeepSeek»Coder 53(+I6) 100 60(+2|) 54(+19) 7.20 4.10 DeepSeek—COder 18(.35) 35(»65) 20(.40) 18(_36) 4.30 1.45
CodeLlama 3115 100 6120y 56(+19) 19.30 7.20 CodeLlama 03y 595y Sese) Sesn 3.90 0.00
CodeGemma 36(+23) 100 54(+23) 49(+2|) 15.00 7.85 CodeGemma 8(.23) 25(,75) 14(.40) 13(-36) 9.15 0.70
Java Java
GPT-4-Turbo 59(+3g) 100 40(+25) 32(.,.20) 7.05 5.05 GPT-4-Turbo 43(716) 55(,45) 26(,14) 18(,14) 6.40 2.80
GPT-3.5-Turbo 54(+41) 100 36(+23) 27(+20) 7.50 4.55 GPT-3.5-Turbo 17(_37) 25(_75) 11(_25) 12(_]5) 6.90 1.05
GPT-ol @(4.23) 100 65(+21) 56(+21) 15.7 10.75 GPT-ol 68(+4) 85(,15) 58(,7) 54(,2) 15.60 10.10
Gemini-2.0-Flash 56(+37) 100 54(+40) $(+4]) 23.30 15.25 Gemini-2.0-Flash 31(.25) 40(-60) 29(.25) 24(_29) 22.65 7.15

Claude-3.5-Sonnet 74(+21) 100 @(4.13) EHQO) 12.35 9.65

Claude-3.5-Sonnet E(—IQ) m(,}()} Q(—Zl) ﬂ(,zz) 10.95 6.70

CodeQwenl.S 60(+60) 100 42(+42) 31(+3]) 12.95 8.40 CodeQwenl.S 5(.55) 5(,95) 0(.42) 0(_3]) 12.60 0.05
DeepSeek-Coder 52144y 100 33428y 19¢414) 7.00 3.80 DeepSeek-Coder 13(.39) 2080y 528y 2¢17y 1.35 0.25
CodeLlama 36(+36) 100 25(+25) 20(+20) 7.85 4.95 CodeLlama 0(.3(,) 0(_] 00) 0(.25) 0(_20) 1.30 0.00
CodeGemma 57ws7y 100 3737y 22¢422) 10.50 6.50 CodeGemma 2(s5) 595 334 Oy L.75 0.05
JavaScript JavaScript
GPT-4-Turbo Q(Jrzz) 100 75(+|9) 59(+13) 16.30 14.20 GPT-4-Turbo 70(_19) &(_]5) 48(_27) 35(_24) 8.35 6.35
GPT-3.5-Turbo 74(+23) 100 58(+21) 45(+17) 13.25 11.20 GPT-3.5-Turbo 64(,1()) 75(,25) 40(718) 30(,15) 9.70 5.00
GPT-ol 914 100 9245, 794 3940 35.15 GPT-ol 54(37) 65(35) 47(4s) 384 2030 1225
Gemini-2.0-Flash 76(+] 7) 100 &(4.24) 80(+1 9) 45.85 33.45 Gemini-2.0-Flash 75(, 1 ﬁ(, 15) 71(, 17) 65(, 15) 40.95 28.65
Claude-3.5-Sonnet 87(+22) 100 77(+|x) 68(+15) 20.25 17.55 Claude-3.5-Sonnet B(.m) 80(,20) 60(.17) ﬁ(_]s) 18.05 13.35
CodeQwenl.S 32(+9> 100 35(+10) 27(+7) 8.45 6.15 CodeQwenl.S 55(+23) 95(,5) ®(+31) 52(+25> 26.10 15.50
DeepSeek»Coder 67(+5) 100 58(+g> 43(+3) 11.85 8.10 DeepSeek—COder 14(.53) 35(»65) 15(.43) 10(_33) 2.90 1.00
CodeLlama 62136y 100 44(04) 28414y 48.75 31.50 CodeLlama 9¢s3) 35¢es) 7371y S23) 715 0.55
CodeGemma 58(+29) 100 50(+22) 38(+17) 9.00 6.40 CodeGemma 31(.27) 60(,40) 29(.2]) 21(.]7) 10.85 3.05

Table 3: Manual Fixing Results with Improvements
Shown in Parentheses.

on par with GPT-4-Turbo after fixing. In Python,
Gemini-2.0-Flash surpasses CodeQwen1.5, show-
ing better potential post-fix. In JavaScript, GPT-
3.5-Turbo reaches parity with DeepSeek-Coder.

5.3 LLMs Self-fixing Results

LLM self-fixing utilizes human-LLM conversation
history and error messages to assist LLMs in fixing
errors. This scenario assesses LLMs’ self-fixing
capabilities and their potential to generate better
unit tests by incorporating self-fixing.

Table 4 shows the LLM self-fixing evaluation
results compared with manual fixing results. First,
we observe that most closed-source models have
effective self-fixing abilities, generating better unit
tests than vanilla results. In contrast, the evaluated
open-source models lack reliable self-fixing abil-
ities. This limitation likely stems from restricted
input length, which leads to incomplete context,
alongside weaker comprehension and instruction-
following abilities. For instance, CodeGemma and
CodeLlama tend to generate textual instructions
for fixing errors rather than directly producing the
corrected unit tests specified in the prompt.

Second, LLM self-fixing follows similar but not
identical trends to manual fixing, suggesting that

Table 4: Evaluation Results after Self-fixing. The Com-
parisons with Manual Fixing are Shown in Parentheses.

although LLMs’ improvement potential generally
aligns with self-fixing capabilities, some LLMs
deviate from this pattern. In JavaScript, GPT-01’s
self-fixing yields substantially lower coverage rates
compared to manual fixing due to generating fewer
unit tests and achieving lower compilation rates.

Despite currently underperforming compared to
manual fixing, LLM self-fixing demonstrates sig-
nificant potential. Self-fixing has proven effective
when LLMs have the necessary capabilities, and
it even has the potential to surpass manual fixing
due to its flexibility. For example, in JavaScript,
CodeQwenl.5 shows greater improvement through
self-fixing than manual fixing. This occurs because
CodeQwenl.5 occasionally misinterprets prompts
in vanilla outputs, generating no unit tests. While
manual fixing cannot remedy this fundamental un-
derstanding issue, self-fixing enables the model
to correctly interpret test generation requirements
when error messages indicate missing tests.

5.4 Unique Contribution of Unit Tests

Beyond standard coverage metrics, we introduce a
novel evaluation measure—unique contribution—to
assess the efficiency and non-redundancy of gen-
erated unit tests on Python. The unique contribu-

Model #Tests LC BC Unique
GPT-4-Turbo 1260 40 36 6.35
GPT-3.5-Turbo 1690 38 34 5.90
GPT-ol 36.35 56 54 6.75
Gemini-2.0-Flash 3495 42 39 6.05
Claude-3.5-Sonnet 18.05 51 47 11.40
CodeQwenl.5 2540 43 40 3.75
DeepSeek-Coder 720 39 35 8.90
CodeLlama 1930 41 37 5.55
CodeGemma 1500 31 28 2.70

Table 5: Unique Contribution on Vanilla Unit Tests.

tion is defined as the total portion of coverage con-
tributed by each generated unit test that does not
overlap with the coverage of other unit tests. This
measure addresses two critical limitations of con-
ventional metrics. First, it accounts for variations
in test quantity across different LLMs, as relying
solely on coverage rate becomes insufficient when
models produce widely differing numbers of tests.
Second, it recognizes the importance of achiev-
ing high coverage with minimal tests, as executing
numerous tests can be resource-intensive and time-
consuming. Further details in Appendix G.

Table 5 reveals that all tested LLMs exhibit low
unique contribution rates, indicating a tendency to-
ward redundant and repetitive unit tests. Although
GPT-o01 has better coverage rates than Claude-3.5-
Sonnet, it produces significantly more unit tests,
and its unique contribution is lower than Claude-
3.5-Sonnet’s, indicating it prioritizes quantity over
quality to attain higher coverage. This approach
potentially compromises the overall efficiency of
the testing process.

5.5 Error Analyses

We analyze compilation, cascade, and post-fix er-
rors per programming language, identifying com-
mon errors and their underlying causes. Full analy-
ses in Appendix E.

Compilation Error Analyses. In Python, com-
mon compilation errors include incorrect import
paths for project functions/classes, hallucinated
import names/paths, and mismatched parentheses.
Java, being more syntax-heavy, faces various com-
pilation errors, like hallucinated methods/construc-
tors/classes, missing essential elements like pack-
age declarations, illegal access to private/protected
elements, invalid code generation, and improper
use of mocking frameworks, along with argument
type mismatches, ambiguous references, and in-
compatible types. JavaScript errors typically in-

clude hallucinated imports with incorrect paths,
empty test suites, and syntax errors from incom-
plete code generation or mismatched parentheses.
Cascade Error Analyses. Python cascade er-
rors include missing imports (e.g., numpy, unittest,
project functions/classes) and FileNotFoundError
from unmocked external files. Java’s primary cas-
cade error is improper/missing mocking of user in-
teractions, causing unusable coverage reports when
tests terminate abruptly. JavaScript struggles with
missing imports (e.g., chai, three, project function-
s/classes), confusion between named and default
imports, and Jest framework compliance issues.
Post-Fix Error Analyses. Across all languages,
mismatches between expected and actual values are
the most common error. Python frequently encoun-
ters AttributeError from hallucinated attributes.
Java suffers from NullPointerException, zero inter-
actions with mocks, and failures to release mocks
due to improper usage. JavaScript commonly faces
TypeError, typically caused by LLMs hallucinating
non-existent functions and constructors or LLMs
invalidly mocking some variables.

Overall. Persistent errors across languages in-
clude hallucinations of functions or classes and
missing required functions or classes. Missing
required functions or classes often occurs be-
cause LLMs prioritize logical structure over boil-
erplate code and fail to understand the codebase
structure and the dependencies between functions,
classes, or modules, which highlights the signif-
icant gap between LLM unit test generation at
function/class/single-file levels and at multi-file
level. Failure to understand the codebase struc-
ture and dependencies can further cause issues like
confusing non-package and package-based projects
(Python) or incorrectly using functions, classes, or
packages (Java). The most common post-fix error
is the mismatch between expected and received val-
ues, often caused by incorrect expected values due
to the weak reasoning abilities of LLMs.

6 Conclusion

In conclusion, we build a reliable and high-quality
multi-file-level unit test generation benchmark —
MultiFileTest — with three programming languages.
We comprehensively evaluate nine LLMs’ unit test
generation abilities with/without manual fixing and
LLM self-fixing mechanism on MultiFileTest. Be-
sides, we conduct comprehensive error analyses
per programming language.

Limitations

Our study has several limitations. First, our
focus is primarily on three programming lan-
guages—Python, Java, and JavaScript—excluding
other relevant languages such as C and C#.

Second, the scale of projects in our benchmark
is limited to approximately 1600 lines of code,
which is smaller than many production-scale code-
bases. This constraint stems from the inherent in-
put length restrictions and context window limita-
tions of current LL.Ms, which make processing very
large codebases impractical for tasks like unit test
generation without introducing confounding vari-
ables. Despite this size constraint, these projects
are designed to retain key structural characteris-
tics of larger codebases, including multiple files
with meaningful inter-file dependencies, cross-file
function calls, class inheritance, and shared util-
ity components. This ensures the benchmark still
evaluates reasoning across files, which is central
to multi-file-level unit test generation. Our experi-
mental results demonstrate that even at this reduced
scale, multi-file-level unit test generation remains
challenging for state-of-the-art models like Claude-
3.5-Sonnet. Expanding to significantly larger code-
bases would likely shift the evaluation focus toward
context handling techniques (e.g., truncation, re-
trieval, or hierarchical methods) rather than core
LLM test generation ability. While our benchmark
does not represent the full complexity of produc-
tion systems, it serves as a meaningful and chal-
lenging step toward that goal, providing valuable
evaluation grounded in the practical capabilities of
current LLMs.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Saranya Alagarsamy, Chakkrit Tantithamthavorn, Wan-
nita Takerngsaksiri, Chetan Arora, and Aldeida Aleti.
2025. Enhancing large language models for text-to-
testcase generation. Journal of Systems and Software,
page 112531.

M Moein Almasi, Hadi Hemmati, Gordon Fraser, An-
drea Arcuri, and Janis Benefelds. 2017. An industrial
evaluation of unit test generation: Finding real faults
in a financial application. In 2017 IEEE/ACM 39th
International Conference on Software Engineering:

Software Engineering in Practice Track (ICSE-SEIP),
pages 263-272. IEEE.

Amr Almorsi, Mohanned Ahmed, and Walid Gomaa.
2024. Guided code generation with 1lms: A multi-
agent framework for complex code tasks. In 2024
12th International Japan-Africa Conference on Elec-

tronics, Communications, and Computations (JAC-
ECC), pages 215-218. IEEE.

Al Anthropic. 2024. Claude 3.5 sonnet model card
addendum. Claude-3.5 Model Card, 3:6.

Mihir Athale and Vishal Vaddina. 2025. Knowledge
graph based repository-level code generation. In
2025 IEEE/ACM International Workshop on Large
Language Models for Code (LLM4Code), pages 169—
176. IEEE.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han,
Shuiguang Deng, and Jianwei Yin. 2024. Chatu-
nitest: A framework for llm-based test generation.
In Companion Proceedings of the 32nd ACM Inter-
national Conference on the Foundations of Software
Engineering, pages 572-576.

Ermira Daka and Gordon Fraser. 2014. A survey on
unit testing practices and problems. In 2014 IEEE
25th International Symposium on Software Reliabil-
ity Engineering, pages 201-211. IEEE.

Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Ma-
jdinasab, Foutse Khomh, and Michel C Desmarais.
2024. Effective test generation using pre-trained
large language models and mutation testing. Infor-
mation and Software Technology, 171:107468.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang,
Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang,
and Mao Yang. Longrope: Extending llm context
window beyond 2 million tokens. In Forty-first Inter-
national Conference on Machine Learning.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng
Sha, Xin Peng, and Yiling Lou. 2023. Classeval:
A manually-crafted benchmark for evaluating llms
on class-level code generation. arXiv e-prints, pages
arXiv-2308.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139

natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536-1547, Online. Association for Computational
Linguistics.

Gordon Fraser and Andrea Arcuri. 2011. Evosuite: au-
tomatic test suite generation for object-oriented soft-
ware. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on
Foundations of software engineering, pages 416—419.

Giovanni Grano, Fabio Palomba, Dario Di Nucci, An-
drea De Lucia, and Harald C Gall. 2019. Scented
since the beginning: On the diffuseness of test smells
in automatically generated test code. Journal of Sys-
tems and Software, 156:312-327.

Giovanni Grano, Simone Scalabrino, Harald C Gall, and
Rocco Oliveto. 2018. An empirical investigation on
the readability of manual and generated test cases.
In Proceedings of the 26th Conference on Program
Comprehension, pages 348-351.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When
the large language model meets programming—the

rise of code intelligence. arXiv e-prints, pages arXiv—
2401.

Mark Harman and Phil McMinn. 2009. A theoretical
and empirical study of search-based testing: Local,
global, and hybrid search. [EEE Transactions on
Software Engineering, 36(2):226-247.

Kush Jain, Gabriel Synnaeve, and Baptiste Roziere.
2024a. Testgeneval: A real world unit test gener-
ation and test completion benchmark. arXiv preprint
arXiv:2410.00752.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han,
Koushik Sen, and Ion Stoica. 2024b. R2e: Turning
any github repository into a programming agent envi-
ronment. In Forty-first International Conference on
Machine Learning.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models re-
solve real-world github issues? In The Twelfth Inter-
national Conference on Learning Representations.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in neu-
ral information processing systems, 33:9459-9474.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang,
Jinyang Li, Shunyu Yao, Chen Qian, Binyuan Hui,
Qicheng Zhang, et al. 2024. Devbench: A compre-
hensive benchmark for software development. arXiv
preprint arXiv:2403.08604.

10

Tsz-On Li, Wenxi Zong, Yibo Wang, Haoye Tian, Ying
Wang, Shing-Chi Cheung, and Jeff Kramer. 2023.
Nuances are the key: Unlocking chatgpt to find
failure-inducing tests with differential prompting. In
2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 14-26.
IEEE.

Stephan Lukasczyk and Gordon Fraser. 2022. Pyn-
guin: Automated unit test generation for python. In
Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion
Proceedings, pages 168—172.

Zeyao Ma, Xiaokang Zhang, Jing Zhang, Jifan Yu, Si-
jia Luo, and Jie Tang. 2025. Dynamic scaling of
unit tests for code reward modeling. In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6917-6935, Vienna, Austria. Association for
Computational Linguistics.

Al Meta. 2025. The llama 4 herd: The beginning
of a new era of natively multimodal ai innova-
tion. https://ai. meta. com/blog/llama-4-multimodal-
intelligence/, checked on, 4(7):2025.

Niels Miindler, Mark Niklas Mueller, Jingxuan He, and
Martin Vechev. 2024. Swt-bench: Testing and vali-
dating real-world bug-fixes with code agents. In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst,
and Thomas Ball. 2007. Feedback-directed random
test generation. In 29th International Conference
on Software Engineering (ICSE’07), pages 75-84.
IEEE.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank
Tip. 2023. An empirical evaluation of using large
language models for automated unit test generation.
IEEE Transactions on Software Engineering.

Mohammed Latif Siddiq, Joanna Cecilia Da Silva San-
tos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid
Al Rifat, and Vinicius Carvalho Lopes. 2024. Using
large language models to generate junit tests: An
empirical study. In Proceedings of the 28th Interna-
tional Conference on Evaluation and Assessment in
Software Engineering, pages 313-322.

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua
Howland, Nam Nguyen, Siqi Zuo, Andrea Hu,
Christopher A Choquette-Choo, Jingyue Shen, Joe
Kelley, et al. 2024a. Codegemma: Open code models
based on gemma. arXiv preprint arXiv:2406.11409.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://aclanthology.org/2025.acl-long.343/
https://aclanthology.org/2025.acl-long.343/
https://aclanthology.org/2025.acl-long.343/

Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024b. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Johannes Villmow, Jonas Depoix, and Adrian Ulges.
2021. ConTest: A unit test completion benchmark
featuring context. In Proceedings of the 1st Work-
shop on Natural Language Processing for Program-
ming (NLP4Prog 2021), pages 17-25, Online. Asso-
ciation for Computational Linguistics.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng
Huang, Zhaoyang Chu, Da Song, Lingming Zhang,
An Ran Chen, and Lei Ma. 2025. Testeval: Bench-
marking large language models for test case gener-
ation. In Findings of the Association for Computa-
tional Linguistics: NAACL 2025, pages 3547-3562.

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Jun-
nan Li, and Steven Hoi. 2023. CodeT5+: Open code
large language models for code understanding and
generation. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1069-1088, Singapore. Association for
Computational Linguistics.

Zejun Wang, Kaibo Liu, Ge Li, and Zhi Jin. 2024.
Hits: High-coverage llm-based unit test generation
via method slicing. In Proceedings of the 39th
IEEE/ACM International Conference on Automated
Software Engineering, pages 1258—1268.

Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann.
2013. Characteristic studies of loop problems for
structural test generation via symbolic execution. In
2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 246—
256. IEEE.

Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuiguang
Deng, and Jianwei Yin. 2023. Chatunitest: a chatgpt-
based automated unit test generation tool. arXiv
preprint arXiv:2305.04764.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023. Repocoder: Repository-level
code completion through iterative retrieval and gen-
eration. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,

pages 2471-2484.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

11

https://doi.org/10.18653/v1/2021.nlp4prog-1.2
https://doi.org/10.18653/v1/2021.nlp4prog-1.2
https://doi.org/10.18653/v1/2021.nlp4prog-1.2
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68

A Dataset

We provide the detailed information of our datasets
in Table 6, Table 7, and Table 8. We provide pro-
gramming language, project name, license, link,
number of stars, and number of forks for each indi-
vidual project.

The license of "Author Permission" in Table 7
means that we obtain the usage permission from
the author of the corresponding repository®.

Project Name License Link #Stars #Forks
blackjack MIT license blackjack 2937 641
bridge MIT license bridge 2937 641
doudizhu MIT license doudizhu 2937 641
fuzzywuzzy MIT license fuzzywuzzy 9200 876
gin_rummy GPL-2.0 license gin_rummy 2937 641
keras_preprocessing ~ MIT license keras_preprocessing 1024 443
leducholde MIT license leducholde 2937 641
limitholdem MIT license limitholdem 2937 641
mahjong MIT license mahjong 2937 641
nolimitholdem MIT license nolimitholdem 2937 641
slugify MIT license slugify 1500 109
stock CC-BY-SA-4.0 license ~ stock 10700 1800
stock2 CC-BY-SA-4.0 license stock2 10700 1800
stock3 CC-BY-SA-4.0 license ~ stock3 10700 1800
stock4 CC-BY-SA-4.0 license stock4 10700 1800
structly CC-BY-SA-4.0 license ~ structly 10700 1800
svm MIT license svm 10800 1800
the fuzz CC-BY-SA-4.0 license the fuzz 2949 141
tree CC-BY-SA-4.0 license tree 10800 1800
uno MIT license uno 2937 641
Table 6: Dataset Details (Python).
Project Name License Link #Stars #Forks
Actor_relationship_game Apache-2.0 license Actor_relationship_game 85 5
banking application MIT license banking application 341 366
CalculatorOOPS MIT license CalculatorOOPS 525 513
emailgenerator MIT license emailgenerator 525 513
heap MIT license heap 60500 19600
idcenter Apache-2.0 license idcenter 146 136
libraryApp MIT license libraryApp 341 366
libraryManagement MIT license libraryManagement 341 366
logrequestresponseundertow Author Permission logrequestresponseundertow 152 131
Password_Generator MIT license Password_Generator 341 366
Pong Game MIT license Pong Game 341 366
redis Apache-2.0 license redis 413 218
servlet MIT license servlet 341 366
simpleChat MIT license simpleChat 543 1500
springdatamongowithcluster ~ Author Permission springdatamongowithcluster 152 131
springmicrometerundertow Author Permission springmicrometerundertow 152 131
springreactivenonreactive Author Permission springreactivenonreactive 152 131
springuploads3 Author Permission springuploads3 152 131
Train MIT license Train 545 1600

Table 7: Dataset Details (Java).

B More Implementation Details

B.1 Prompts

The prompts are displayed in Figure 6, 7, 8, and
0.

B.2 Models

The detailed information of models, including li-

cense and link, is provided in Table 9.

C More Experiments and Statistics

C.1 Assert Statistics

Table 10 presents the percentages of the vanilla-
generated unit tests containing comparisons be-

8https://github.com/frandorado/spring-
projects/tree/master

12

Project Name License Link #Stars #Forks
aggregate MIT license aggregate 1500 18
animation MIT license animation 103000 35400
check MIT license check 1500 18
circle MIT license circle 2700 330
ckmeans ISClicense = ckmeans 3400 226
controls MIT license controls 103000 35400
convex MIT license convex 2700 330
easing MIT license easing 418 9
magnetic MIT license magnetic 418 9
overlapkeeper ~ MIT license overlapkeeper 2700 330
particle MIT license particle 2700 330
pixelrender MIT license pixelrender 2400 274
plane MIT license plane 2700 330
solver MIT license solver 2700 330
span MIT license span 2400 274
spherical MIT license spherical 103000 35400
synergy MIT license synergy 310 3
t_test ISC license t_test 3400 226
validate MIT license validate 1500 18
zone MIT license zone 2400 274

Table 8: Dataset Details (JavaScript).

Vanilla Prompt for Python)

System Prompt: You are a coding assistant. You generate only source
code.
User Prompt: {Original Codes} Please generate enough unit test cases
for each Python file in the project. Ensure that the import path is correct,
depending on whether the project is structured as a package. Make sure
the tests can successfully compile.

Try to achieve the highest coverage rate.

Figure 6: The prompt used to generate unit tests for
Python projects. Purple indicates language-specific in-
struction. Blue, , and red indicates instructions
related to compilation rate, correctness rate, and cover-
age rate, respectively.

tween expected and actual values per language and
per model.

C.2 Robustness Analysis

To address concerns about statistical robustness,
we conduct three independent runs of unit test gen-
eration using GPT-3.5-Turbo as shown in Table 11.
The variance across these runs is minimal, indi-
cating that model performance on MultiFileTest
is stable and reproducible, further supporting the
benchmark’s reliability.

C.3 Changed LOC Statistics of Manual Fixing

We calculated the average number of lines of code
(LOC) changed during manual fixing for Python
projects across all models in Table 12. We observe
that the amount of manual edits is modest and con-
sistent across models. These findings suggest that
while models frequently produce errors, many are
shallow and fixable with minimal human effort,
which reinforces the value of human-in-the-loop
and LLM-self-fix workflows.

https://github.com/datamllab/rlcard/tree/master/rlcard/games/blackjack
https://github.com/datamllab/rlcard/tree/master/rlcard/games/bridge
https://github.com/datamllab/rlcard/tree/master/rlcard/games/doudizhu
https://github.com/seatgeek/fuzzywuzzy/tree/master/fuzzywuzzy
https://github.com/datamllab/rlcard/tree/master/rlcard/games/gin_rummy
https://github.com/keras-team/keras-preprocessing/tree/master/keras_preprocessing
https://github.com/datamllab/rlcard/tree/master/rlcard/games/leducholde
https://github.com/datamllab/rlcard/tree/master/rlcard/games/limitholdem
https://github.com/datamllab/rlcard/tree/master/rlcard/games/mahjong
https://github.com/datamllab/rlcard/tree/master/rlcard/games/nolimitholdem
https://github.com/un33k/python-slugify/tree/master/slugify
https://github.com/dabeaz-course/python-mastery/tree/main/Solutions/7_3
https://github.com/dabeaz-course/python-mastery/tree/main/Solutions/7_6
https://github.com/dabeaz-course/python-mastery/tree/main/Solutions/8_1
https://github.com/dabeaz-course/python-mastery/tree/main/Solutions/8_2
https://github.com/dabeaz-course/python-mastery/tree/main/Solutions/9_2
https://github.com/rushter/MLAlgorithms/tree/master/mla/svm
https://github.com/seatgeek/thefuzz/tree/master/thefuzz
https://github.com/rushter/MLAlgorithms/blob/master/mla/ensemble/tree.py
https://github.com/datamllab/rlcard/tree/master/rlcard/games/uno
https://github.com/open-compass/DevEval/tree/main/benchmark_data/java/Actor_relationship_game/src/main/java/Actor_relationship_game
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/banking%20application
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Calculator-OOPS
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Email_Generator/src/emailgenerator
https://github.com/TheAlgorithms/Java/tree/5ab6356090c17cddd953c801eac4abb6ef48c9f1/src/main/java/com/thealgorithms/datastructures/heaps
https://github.com/adyliu/idcenter
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/LibraryApp/libraryApp
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/LibraryMangement/src
https://github.com/frandorado/spring-projects/tree/master/log-request-response-undertow
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Password_Generator/Password%20Generator/src
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Pong%20Game
https://github.com/mybatis/redis-cache
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Online%20Voting%20System/Online_Voting_System/src/main/java/vote/com/servlet
https://github.com/abhpd/hacktoberfest2021/tree/main/Java/Projects/SimpleChat
https://github.com/frandorado/spring-projects/tree/master/spring-data-mongo-with-cluster
https://github.com/frandorado/spring-projects/tree/master/spring-micrometer-undertow
https://github.com/frandorado/spring-projects/tree/master/spring-reactive-nonreactive
https://github.com/frandorado/spring-projects/tree/master/spring-upload-s3-localstack
https://github.com/abhpd/hacktoberfest2021/tree/main/Java/Projects/Train
https://github.com/ehmicky/modern-errors/blob/main/src/merge/aggregate.js
https://github.com/mrdoob/three.js/blob/dev/src/animation/AnimationAction.js
https://github.com/ehmicky/modern-errors/blob/main/src/subclass/check.js
https://github.com/schteppe/p2.js/blob/master/src/shapes/Circle.js
https://github.com/simple-statistics/simple-statistics/blob/main/src/ckmeans.js
https://github.com/mrdoob/three.js/blob/dev/src/extras/Controls.js
https://github.com/schteppe/p2.js/blob/master/src/shapes/Convex.js
https://github.com/alienkitty/space.js/blob/main/src/tween/Easing.js
https://github.com/alienkitty/space.js/blob/main/src/extras/Magnetic.js
https://github.com/schteppe/p2.js/blob/master/src/utils/OverlapKeeper.js
https://github.com/schteppe/p2.js/blob/master/src/shapes/Particle.js
https://github.com/drawcall/Proton/blob/master/src/render/PixelRenderer.js
https://github.com/schteppe/p2.js/blob/master/src/shapes/Plane.js
https://github.com/schteppe/p2.js/blob/master/src/solver/Solver.js
https://github.com/drawcall/Proton/blob/master/src/math/Span.js
https://github.com/mrdoob/three.js/blob/dev/src/math/Spherical.js
https://github.com/defx/synergy/tree/master/src
https://github.com/simple-statistics/simple-statistics/blob/main/src/t_test.js
https://github.com/ehmicky/modern-errors/blob/main/src/subclass/validate.js
https://github.com/drawcall/Proton/blob/master/src/zone/Zone.js

Model Type Model Name License Link

Close-sourced ~ GPT-4-Turbo - https://platform.openai.com/docs/models/gpt-4#gpt-4-turbo-and-gpt-4
Close-sourced ~ GPT-3.5-Turbo - https://platform.openai.com/docs/models/gpt-4#gpt-3-5-turbo
Close-sourced GPT-ol - https://platform.openai.com/docs/models#o1
Close-sourced ~ Gemini-2.0-Flash - https://ai.google.dev/gemini-api/docs/models/gemini#gemini-2.0-Flash
Close-sourced Claude-3.5-Sonnet - https://www.anthropic.com/claude/sonnet
Open-sourced CodeQwen1.5-7B-Chat Tongyi Qianwen LICENSE AGREEMENT https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat
Open-sourced DeepSeek-Coder-6.7b-Instruct DEEPSEEK LICENSE AGREEMENT https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
Open-sourced CodeLlama-7b-Instruct-hf LLAMA 2 COMMUNITY LICENSE AGREEMENT https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
Open-sourced ~ CodeGemma-7b-it Gemma Terms of Use https://huggingface.co/google/codegemma-7b-it

Table 9: Model Details.
Model GPT-4-Turbo GPT-3.5-Turbo GPT-01 Gemini Claude CodeQwen DeepSeek-Coder CodelLlama CodeGemma
Python 98% 99% 98% 89% 99% 97% 96% 99% 88%
Java 97% 90% 98% 98% 97% 89% 94% 85% 93%
JavaScript 100% 89% 96% 100% 100% 100% 96% 86% 100%

Table 10: Percentages of the Vanilla Unit Tests Containing Expected and Actual Value Comparisons.

Vanilla Prompt for Java /—CPrompt for Python with Comment Sign} ~
System Prompt: You are a coding assistant. You generate only source System Prompt: You are a coding assistant. You generate only source
code. code.

User Prompt: {Original Codes} Please generate enough unit test cases User Prompt: {Original Codes} # classname_test.py\n # Test class of
for each java file in the {method_signature} project. Ensure to use mock {classname}.\n # Please generate enough unit test cases for each python
properly for unit tests. Make sure the tests can successfully compile. file in the {method_signature} project. Ensure that the import path is
Make sure the tests have correct results. Try to achieve the highest correct, depending on whether the project is structured as a package.
coverage rate. Make sure the tests can successfully compile. Make sure the tests have
correct results. Try to achieve the highest coverage rate. \n # class
__{classname_test}\n)
Figure 7: The prompt used to generate unit tests for Java
projects. Figure 9: The prompt used to generate unit tests for

Vanilla Prompt for JavaScript] P ythOl’l projects.

System Prompt: You are a coding assistant. You generate only source Metric Runl Run2 Run3 Mean Variance Std Dev
:}’de'P ¢ (Orivinal Codes) Pl . b unit test CR 0.37 0.34 0.37 0.36 0.0003 0.0141
ser Prompt: {Original Codes} Please generate enough unit test cases ComR 0.60 0.65 0.65 0.633 0.0003 0.0236

for every javascript file in {method_signature} project. Make sure the
tests can successfully compile. Make sure the tests have correct results. LC 38% 40% 39% 39% 0.0001 0.01
Try to achieve the highest coverage rate. BC 34% 37% 35% 353% 0.00015 0.0122

Table 11: Performance Metrics across Multiple Runs

Figure 8: The prompt used to generate unit tests for X
Using GPT-3.5-Turbo on Python.

JavaScript projects.

C.4 Comparison with Other Methods D Ablation Study

We use the ChatUnitest (Chen et al., 2024) Maven
Plugin and follow Wang et al. (2024) to evaluate
GPT-3.5-Turbo on Java projects. HITS not only =~ We perform a detailed ablation study to analyze
uses iterative debugging, but also uses sophisticated the impact of prompts on the performance of unit
techniques like method slicing to improve unit test test generation by LLMs. As mentioned in § 3.3,
performance. These results, as shown in Table 13, the prompt is composed of programming language-
further emphasize the difficulty of MultiFileTest, as specific requirements (PL), as well as requirements
even the iterative debugging and complex method related to the correctness rate (CR), the compila-
still achieve low coverage rates. This comparison tion rate (ComR), and the coverage rate metrics
helps validate our benchmark and encourages fur- (Coverage). We ablate each component and an-
ther innovation in LLM-driven test generation. alyze the performance of unit test generation of

We conduct additional experiments with Evo- ~ GPT-4-Turbo using different prompts as shown in
Suite (Fraser and Arcuri, 2011), a leading search- Table 14. Requirements related to CR and ComR
based test generation tool for Java. Table 13 can help improve performance in vanilla unit tests.
presents the Line Coverage (LC) and Branch Cov- Coverage-related requirements are not always ben-
erage (BC) of EvoSuite compared to GPT-o1 on eficial, possibly because a high coverage rate is
Java projects. The results show that vanilla LLMs too abstract for LLMs to interpret effectively. Pro-
fall behind EvoSuite, while LLM self-fixing has gramming language-specific requirements improve
comparable performance with EvoSuite under this performance in CR but have the opposite effect on
multi-file unit test generation setting. ComR, LC, and BC.

D.1 Ablation Study on Prompts

13

Model GPT-4 GPT-3.5 GPT-ol Gemini-2.0 Claude-3.5 CodeQwenl.5 DeepSeeck CodeLlama CodeGemma
LOC Changed 2.45 3.35 3.15 3.15 4.05 3.4 2.35 3.0 34
Table 12: Lines of code changed during manual fixing for Python projects.
Method Model CR ComR LC BC Model CR ComR LC BC #Tests #Correct
Vanilla GPT-35-Turbo 13 25 8 7 S - 11;gth°“65 —
-4-1urbo . .
Manual fix GPT-3.5-Turbo 54 100 36 27 GPT-3.5-Turbo 63 100 62 56 1690 10.40
Self—ﬁx GPT—3.5-TUI'bO 17 25 11 12 GPT-ol 89 100 88 85 36.35 32.25
HITS GPT-3.5-Turbo 75 80 41 29 Gemini-2.0-Flash 61 100 71 68 3495 22.10
Vanilla GPT-ol 41 60 44 35 Claude-3.5-Sonnet 92 100 74 70 18.05 16.40
Manual fix GPT-ol 64 100 65 56 g"degwi‘l (1: -5d ‘5“3) igg 2(5) gj 2752‘30 ifl’g
eepyeek-Loder . .
Self-fix GPT-ol 68 8 58 CodeLlama 26 100 56 50 1930 6.15
EvoSuite - - - 55 57 CodeGemma 30 100 52 47 1500 6.15
Java
Table 13: Comparison with Traditional Method Evo- GPT-4-Turbo 59 100 42 34 705 5.05
Suite and LLM-based Methods HITS on Java Projects. GPT-3.5-Turbo 48 100 37 29 7.0 4.20
] GPT-ol 62 100 67 56 1570 10.50
Gemini-2.0-Flash 55 100 54 53 2330 15.00
Phase Settings CR ComR LC BC #Tests #Correct Claude-3.5-Sonnet 73 100 63 57 12.35 9.60
Full Prompt 47 62 40 26 12.60 642 CodeQwenl.5 49 100 49 39 1295 750
w/o CR Bpoo65 4 31275 47 DeepSeck-Coder 40 100 36 19 7.00 2.85
Vanilla WO COmR 35634 4l 38 1120 395 CodeLlama 30 100 26 21 785 425
w/o Coverage 43 75 461 421 9.80 4.20 : .
wlo PL 47 75 53 49 995 435 CodeGemma 46 100 44 26 1050 5.55
w/ Comments 41 65 45 41 10.65 4.15 JavaScript
Full Prompt 74 100 65 59 1260 9.30 GPT-4-Turbo 89 100 75 59 1630 14.15
wilo CR 761 100 69 64 1275 9.90 GPT-3.5-Turbo 71 100 56 44 1325 10.65
Manual w/o ComR 75 100 70 65 11.20 8.35 GPT-o0l 91 100 92 79 39.40 35.15
wilo Coverage 68 100 667 617 980 675 Gemini-2.0-Flash 76 100 88 80 4585 3330
:ﬁ"ci ; - 22 }gg 2(8) gg 1%9655 ggg Claude-3.5-Sonnet 83 100 75 66 2025 1675
. . CodeQwenl.5 28 100 29 22 845 5.65
. . DeepSeek-Coder 66 100 58 43 11.85 8.05
Table]4 Ablat]on Study The Performance Of Unlt Test CodelLlama 28 100 20 15 48.75 21.40
Generation by GPT-4-Turbo Using Different Prompts. CodeGemma 45 100 43 30 9.0 5.75

Besides, we follow the prompt template from
previous work like Siddiq et al. (2024) to move
the prompts into comments (e.g., /*...*/). We com-
pare the performance with and without comment
signs in Table 14. Experimental results show that
our prompt demonstrates a significant advantage in
CR, while the prompt with comment signs exhibits
marginal advantages in ComR, LC, and BC.

D.2 Effect of Compilation Errors and
Cascade Errors

We manually fix only compilation errors and evalu-
ate the corrected unit tests in Table 15.

By fixing compilation errors, Table 15 shows sig-
nificant improvements across all programming lan-
guages and LLMs compared to Table 2, indicating
that all the programming languages and LLMs are
highly sensitive to compilation errors. Comparing
Table 15 with Table 3, we can observe that Code-
Qwenl.5, CodeGemma, and CodelLlama are more
sensitive to cascade errors. For Java, the changes
in Table 3 compared to Table 15 are primarily due
to missing or invalid mocks of user interactions’

“We consider coverage rates as not applicable when requir-

14

Table 15: Evaluation Results When Only Manually Fix-
ing Compilation Errors.

which occur more frequently in unit tests generated
by CodeQwen1.5 and CodeGemma.

E Detailed Error Analyses

We conduct complex analyses of compilation, cas-
cade, and post-fix errors, highlighting the common
errors and potential reasons behind the errors.

Compilation Error Analyses Figure 10 high-
lights the detailed compilation errors that occurred.
One of the most common compilation errors in
Python arises from the LLM’s inability to deter-
mine whether the project being tested is a package.
Specifically, LLMs struggle to recognize the pres-
ence or absence of __init__.py files, which define
a package, leading to confusion between package-
based and non-package projects. This inability
leads LLM to fail to correctly import functions or
classes from the tested project. Other compilation
errors include hallucinating the paths or names of

ing user interactions.

imported functions/classes and mismatched paren-
theses. Java, a syntax-heavy programming lan-
guage compared to Python and JavaScript, encoun-
ters various compilation errors, resulting in a signif-
icantly lower compilation rate than other languages.
Java compilation errors often arise from issues like
hallucinated methods, constructors, or classes, such
as incorrect or non-existent imports and references.
Missing essential information, such as required
functions, classes, or packages, and package dec-
larations, is also a common problem. Errors fre-
quently occur due to illegal access to private or
protected elements, invalid code generation (e.g.,
generating text instead of code), and improper use
of mocking frameworks like Mockito, including
incorrect objects, missing or misused MockMvc
injections, and argument mismatches. Other errors
include incorrect usage of other functions, classes,
or packages—such as argument type errors, am-
biguous references, or incompatible types. One of
the most common compilation errors in JavaScript
is the hallucination of imported functions or classes,
where the issue often lies in incorrect paths for the
imported functions or classes. CodeQwen1.5 has a
particularly common compilation error involving
invalid generation. This typically occurs due to
difficulty understanding the prompt, the need for
more specific or detailed code requirements, or the
assumption that the code is part of a larger project,
leading it to decline generating unit tests. Other
compilation errors include test suites containing
empty unit tests and syntax errors caused by incom-
plete code generation or mismatched parentheses.

Cascade Error Analyses Figure 11 highlights
the detailed cascade errors that occurred. For
Python, the cascade errors include missing imports
of commonly used packages such as numpy and
unittest, missing imports of functions or classes
from the tested project, and FileNotFoundError.
For Java, the most common cascade error is miss-
ing or invalid mocking of user interactions. A
proper unit test should simulate user interactions
through mocking rather than relying on real user
inputs. This issue also results in unusable coverage
reports for some tested projects, as the error forces
an abrupt termination, preventing the generation
of coverage data. For JavaScript, the cascade er-
rors include missing imports of commonly used
packages such as chai and three, and missing im-
ports of functions or classes from the tested project.
Two other common errors specific to JavaScript

15

—[Confuse between non-package and package-based projects J

Hallucinate the imported functions/classes:

+— 1. Paths of the imported functions/classes are wrong
2. Names of the imported functions/classes are wrong
—[Syntax Error: Mismatched parentheses]

Hallucinate methods/constructors/functions/classes:

1. Paths of the imported functions/classes are wrong
[]2. Names of the imported functions/classes are wrong
3. Non-existed methods/constructors

Missing information:

1. Required functions/classes/packages are missing
2. Required package information is missing

3. Unreported exception

—[Illegal access to private/protected functions/classes J

{Invalid generation: }
1

1. Generate textual instructions instead of codes 2. Block by mode

Incorrect use of mocking:

1. Wrong objects provided to Mockito

2. Missing MockMvc injection 3. Inappropriate mockmve
4. Argument mismatch

Z
7
ES
|
<
<
5
=1
m
=
2
=
B
]
3
o

Incorrect use of other functions/classes/packages:
1. Arguments type error 2. Ambiguous reference
3. Incompatible types

Hallucinate the imported functions/classes:
1. Paths of the imported functions/classes are wrong

Invalid generation:
1. Cannot understand the prompt 2. Require more/specific codes

3 [|3. Assume the codes are part of a larger project and
JavaScript . .
decline to generate unit tests
—[Test suits have empty unit tests]
Syntax Error:
1. Incomplete generation 2. Mismatched parentheses

Figure 10: Frequent Compilation Errors in Main Re-
sults.

are that LLMs may confuse named imports with
default imports and fail to comply with the Jest
framework.

Post-Fix Error Analyses Figure 12 highlights
the incorrectness reasons after all manual fixes.
For all programming languages, the mismatch be-
tween expected and actual values (AssertionError)
is the most common error. Another frequent error
in Python is AttributeError, typically caused by
LLMs hallucinating non-existent attributes. Other
frequent problems in Java include NullPointer Er-
rors, zero interactions with mocks, and failures to
release mocks, often due to improper mock usage.
For projects tested with the Spring framework, er-
rors specific to Spring are also common. Another
frequent error in JavaScript is TypeError, mostly
caused by LLMs hallucinating non-existent func-
tions and constructors or LLMs invalidly mocking
some variables.

F Comparison with Other Benchmarks

Table 16 presents a comprehensive comparison
of major code evaluation datasets across multiple
dimensions. Among these, MultiFileTest stands
out as the first benchmark specifically designed

Dataset L Code Level Multi-file TestGen Size Avg. #Files Self-contained Error Analyses Error Fixing
HumanEval (Chen et al., 2021) Python Function X X 164 1 v X X
ClassEval (Du et al., 2023) Python Class X X 100 1 v X X
SWE-bench (Jimenez et al.) Python Multi-file v X 12 - v X X
TestEval (Wang et al., 2025) Python Function X v 210 1 v X X
TestGenEval (Jain et al., 2024a) Python Single-file X 4 1,210 1 X v X
DevBench (Li et al., 2024) Python, Java, C/C# Multi-file v v 20 4.20 v X X
MultiFileTest (ours) Python, Java, JavaScript ~ Multi-file v v 60 492 v v v

Table 16: Benchmarks comparison. “TestGen” refers to whether the benchmark is designed for unit test generation.

“Self-contained” refers to whether the data sample is independent rather than being part of a larger project. v
indicates partial satisfaction of the condition. “Error Analyses” refers to specific error analyses for unit test

generation by LLMs.

Required functions/classes/libraries are missing:
1. Import numpy or unittest.mock
2. Import functions/classes of the tested project

FileNotFoundError]

Required functions/classes/libraries are missing:
1. Import chai or three
2. Import functions/classes of the tested project

Cascade Error Analysis

Do not follow the Jest framework]

Figure 11: Frequent Cascade Errors.

. AttributeError 2. AssertionError 3. TypeError 4. ValueError
. IndexError 6. _csv.Error 7. NameError 8. KeyError 9. Others

>

. Mismatch between expected and received 2. NullPointer Error

. Zero interactions with mock 4. Failed to release mocks
MissingMethodInvocation 6. Misplaced or misused argument matcher
. Spring framework error 8. NoSuchElement 9. Others

[SEv o=

Post-fix Error Analysis

. Mismatch between expected and received 2. TypeError 3. RangeErro;
4. RuntimeError 5. ReferenceError 6. SyntaxError 7. Others

Figure 12: Frequent Post-Fix Errors.

for multi-language, multi-file unit test generation
with robust error analysis capabilities. We particu-
larly highlight the distinction between DevBench
and MultiFileTest: while DevBench addresses
broader software engineering tasks across the en-
tire development lifecycle, MultiFileTest is specif-
ically designed for unit test generation, providing
60 projects (20 per language) compared to De-
vBench’s smaller subset for unit testing. Further-
more, MultiFileTest uniquely offers fine-grained
error analysis and both manual fixing and LLM
self-fixing mechanisms, which are not present in
DevBench. This makes MultiFileTest particularly
valuable for evaluating and improving LLMs’ ca-
pabilities in generating functional test suites for
multi-file software projects.

G Comparison between Unique
Contribution and Other Metrics

While alternative metrics such as test execution
time or lines of code provide valuable insights

16

in single-project contexts, they present significant
challenges in multi-project benchmarks. The het-
erogeneous nature of our benchmark—spanning
diverse programming languages, project scales,
and architectural paradigms—makes these conven-
tional metrics difficult to normalize meaningfully
across projects. Test execution times fluctuate
based on external dependencies and environmental
factors, while code size metrics vary substantially
due to languages and coding styles. In contrast, our
unique contribution metric offers a project-agnostic
measurement framework that maintains consistent
interpretability across the entire benchmark suite.
It provides a standardized proxy for test utility that
transcends project boundaries. This normalized
approach enables meaningful cross-project com-
parisons that would be impractical with traditional
metrics, addressing the specific evaluation require-
ments of diverse multi-project benchmarks.

H Discussion on Context Window
Limitations

To address the context window limitation, we
identify three primary lines of methods that have
emerged in recent research.

The first line focuses on extending context win-
dows to accommodate larger codebases directly.
Recent models demonstrate dramatic improve-
ments, expanding from early limits of thousands
of tokens to millions by 2024. LongRoPE (Ding
et al.) extends pre-trained LLMs to 2048k tokens
with minimal fine-tuning while maintaining per-
formance at shorter context windows. Llama 4
Scout (Meta, 2025) achieves a 10 million token
context window.

The second line of methods employs Retrieval-
Augmented Generation (RAG) to provide only im-
portant context instead of full context. This ap-
proach involves indexing codebase components
and dependencies, then dynamically retrieving only

the code segments most relevant to the target func-
tion for test generation (Lewis et al., 2020; Athale
and Vaddina, 2025; Zhang et al., 2023). This
methodology enables scalability while maintain-
ing dependency awareness without overwhelming
the context window.

The third approach utilizes hierarchical decom-
position to break down large codebases into man-
ageable components (Almorsi et al., 2024; Miindler
et al., 2024). Often, this is achieved through agent-
like methods that employ multi-pass strategies.
These agents first analyze the high-level structure,
then progressively focus on specific components
while maintaining broader context awareness. This
allows for the effective handling of larger systems
by managing contextual information at different
abstraction levels and enabling specialized agents
to tackle sub-problems.

While these approaches show promise for scal-
ing to production-size codebases, they introduce
confounding variables that would complicate fair
evaluation of core LLM test generation capabil-
ities. Our benchmark’s constraint to 1600 lines
of code enables evaluation without truncation, re-
trieval strategies, or hierarchical preprocessing, al-
lowing fair comparison across models with differ-
ent context lengths. This approach isolates our core
evaluation target—the model’s ability to generate
unit tests—rather than testing long-context man-
agement or external tooling. The three methods
discussed above represent important future direc-
tions once foundational test generation capabilities
are well-established and benchmarked at the scale
our current LL.M capabilities can reliably handle.

17

	Introduction
	Related Work
	Traditional Unit Test Generation
	LLM-enhanced Unit Test Generation
	LLM Unit Test Generation Benchmark

	Methodology
	Benchmark Dataset
	Evaluation Metrics
	Unit Test Generation

	Experimental Settings
	Models
	Implementation Details

	Experiments
	Main Results
	Manual Fixing Results
	LLMs Self-fixing Results
	Unique Contribution of Unit Tests
	Error Analyses

	Conclusion
	Dataset
	More Implementation Details
	Prompts
	Models

	More Experiments and Statistics
	Assert Statistics
	Robustness Analysis
	Changed LOC Statistics of Manual Fixing
	Comparison with Other Methods

	Ablation Study
	Ablation Study on Prompts
	Effect of Compilation Errors and Cascade Errors

	Detailed Error Analyses
	Comparison with Other Benchmarks
	Comparison between Unique Contribution and Other Metrics
	Discussion on Context Window Limitations

