
MultiFileTest: A Multi-File-Level LLM Unit Test Generation Benchmark
and Impact of Error Fixing Mechanisms

Anonymous ACL submission

Abstract

Unit test generation has become a promising001
and important Large Language Model (LLM)002
use case. However, existing evaluation bench-003
marks for LLM unit test generation focus on004
function- or class-level code (single-file) rather005
than more practical and challenging multi-file-006
level codebases. To address such a limitation,007
we propose MultiFileTest, a multi-file-level008
benchmark for unit test generation covering009
Python, Java, and JavaScript. MultiFileTest010
features 20 moderate-sized and high-quality011
projects per language. We evaluate nine fron-012
tier LLMs on MultiFileTest, and the results013
show that all frontier LLMs tested exhibit mod-014
erate performance on MultiFileTest on Python015
and Java, highlighting the difficulty of Multi-016
FileTest. We also conduct a thorough error anal-017
ysis, which shows that even advanced LLMs,018
such as Claude-3.5-Sonnet, exhibit basic yet019
critical errors, including compilation and cas-020
cade errors. Motivated by this observation, we021
further evaluate all frontier LLMs under man-022
ual error-fixing and self-error-fixing scenarios023
to assess their potential when equipped with024
error-fixing mechanisms.025

1 Introduction026

Unit testing plays an important role in software027

development, helping identify bugs and ensuring028

code quality. Unit tests verify whether individ-029

ual components of a software program work as030

expected—for example, checking if add(2, 3) re-031

turns 5. Writing unit tests is time-consuming, usu-032

ally accounting for approximately 15.8% of soft-033

ware development time (Daka and Fraser, 2014).034

Therefore, automated test case generation, like035

search-based (Fraser and Arcuri, 2011; Harman036

and McMinn, 2009), constraint-based (Xiao et al.,037

2013), and random-based (Pacheco et al., 2007)038

methods, has been proposed to create unit tests.039

However, these methods often produce less read-040

able tests and are limited to certain types of func-041

tions (Grano et al., 2018). Recently, Large Lan- 042

guage Models (LLMs) have significantly acceler- 043

ated unit test generation and improved readabil- 044

ity and generalizability with little to no human ef- 045

fort (Siddiq et al., 2024; Xie et al., 2023). 046

Despite the rapid adoption of LLMs for unit 047

testing, evaluation of LLM unit test generation 048

capabilities appears to be lagging behind. Exist- 049

ing benchmarks primarily focus on function, class, 050

or single-file level code (Chen et al., 2021; Du 051

et al., 2023; Wang et al., 2025; Jain et al., 2024a), 052

while real-world scenarios typically involve multi- 053

file codebases where functions interact across files 054

with complex dependencies. For instance, a func- 055

tion in file A might import and use classes from 056

files B and C, which themselves depend on other 057

modules. To properly test such codebases, LLMs 058

must understand these cross-file dependencies and 059

correctly set up the test environment, making it 060

significantly more complex than testing function, 061

class, or single-file level code. The only bench- 062

mark that briefly explores multi-file testing, De- 063

vBench (Li et al., 2024), includes too few projects 064

per language (e.g., 5 for Java) with varying quality 065

and lacks thorough analysis of error types, poten- 066

tials, or self-fixing capabilities of frontier LLMs’ 067

multi-file level unit test generation. 068

Therefore, we propose MultiFileTest, a new 069

multi-file-level unit test generation benchmark that 070

offers a larger, higher-quality project set along with 071

comprehensive error analysis of state-of-the-art 072

LLMs. MultiFileTest covers three programming 073

languages: Python, Java, and JavaScript. For each 074

language, we construct 20 self-contained multi- 075

file projects from GitHub1 using clear filtering cri- 076

teria: moderate-sized projects with multiple files 077

and dependencies between them, each under 1,600 078

lines of code (fitting within input constraints of 079

most code language models), with quality ensured 080

1https://github.com/

1

through substantial stars and forks. This care-081

fully constructed benchmark enables comprehen-082

sive evaluation of LLMs’ capabilities in handling083

realistic multi-file testing scenarios.084

Our evaluation of nine frontier LLMs (including085

Claude-3.5-Sonnet (Anthropic, 2024), Gemini-2.0-086

Flash (Team et al., 2024b), and GPT-o1) reveals087

moderate performance across models, highlighting088

the difficulty of MultiFileTest. We observe that dif-089

ferent LLMs exhibit different language-level exper-090

tise: Claude-3.5-Sonnet ranks first in Java, while091

GPT-o1 ranks first in JavaScript. Among three pro-092

gramming languages, Java is the most difficult, pri-093

marily due to its stricter syntax. Among all tested094

models, GPT-o1 performs best overall, especially095

in JavaScript.096

Error analysis shows that even advanced LLMs,097

like Claude-3.5-Sonnet, produce significant compi-098

lation and cascade errors. These errors often stem099

from misunderstandings of contextual dependen-100

cies and program structure—areas where reasoning101

capabilities of LLMs are critical. Although these102

errors appear to be preliminary and may be rela-103

tively easy to fix, they prevent us from observing104

more advanced aspects of LLM performance on105

unit test generation, such as correctness and cover-106

age. To address this, we manually fix LLM’s com-107

pilation and cascade errors and then re-evaluate the108

fixed unit tests. This allows us to measure both109

raw performance and potential improvement when110

combined with error-fixing mechanisms. By incor-111

porating error-fixing, we uncover critical insights112

into the effort required to refine generated tests and113

better understand the various types of errors that114

occur in unit tests generated by different LLMs.115

We observe that the model rankings change sig-116

nificantly after manual fixes, revealing substantial117

differences in error distributions and improvement118

potential among LLMs. Inspired by these findings119

from manual fixes, we also explore using LLMs for120

self-fixing their errors in generating multi-file-level121

unit tests. The results show that while LLMs can122

correct some errors in their generated unit tests,123

their self-fixing abilities still lag behind the quality124

and reliability of human fixes.125

Our contributions include: (1) the first multi-file126

level benchmark for unit test generation with eval-127

uation of nine frontier LLMs, (2) thorough error128

analysis through manual fixing of compilation and129

cascade errors to reveal model potential, and (3) the130

first assessment of LLMs’ self-fixing capabilities131

for unit test generation.132

2 Related Work 133

2.1 Traditional Unit Test Generation 134

Traditional unit test generation methods employ 135

search-based (Harman and McMinn, 2009; Fraser 136

and Arcuri, 2011; Lukasczyk and Fraser, 2022), 137

constraint-based (Xiao et al., 2013), or random- 138

based (Pacheco et al., 2007) strategies to construct 139

test suites that maximize code coverage. Although 140

these traditional approaches can generate unit tests 141

with reasonable coverage, the resulting tests of- 142

ten have lower readability and less meaningfulness 143

compared to developer-written tests. As a result, 144

automatically generated tests are frequently not 145

directly adopted by practitioners in real-world sce- 146

narios (Almasi et al., 2017; Grano et al., 2019). 147

2.2 LLM-enhanced Unit Test Generation 148

Large Language Models (LLMs) have demon- 149

strated strong code generation capabilities (Feng 150

et al., 2020; Wang et al., 2023), inspiring their 151

use in automated unit test generation. Recent ap- 152

proaches in LLM-enhanced unit test generation 153

leverage zero-shot strategies (Siddiq et al., 2024), 154

iterative querying (Schäfer et al., 2023), fine-tuning 155

on specialized datasets (Alagarsamy et al., 2025), 156

adaptive context selection (Xie et al., 2023), dy- 157

namic scaling (Ma et al., 2025), and focusing on 158

subtle code differences (Dakhel et al., 2024; Li 159

et al., 2023). These methods are evaluated with 160

various metrics, including compilation success, 161

test correctness, coverage, and bug detection, and 162

demonstrate that LLMs can effectively surpass tra- 163

ditional test generation techniques. 164

2.3 LLM Unit Test Generation Benchmark 165

Current benchmarks for LLM-based unit test gen- 166

eration mainly focus on function-level (Wang et al., 167

2025; Villmow et al., 2021), class-level (Du et al., 168

2023), or single-file-level code (Jain et al., 2024a). 169

Multi-file-level software testing benchmarks, on 170

the other hand, often target tasks other than unit test 171

generation. For instance, R2E-Eval1 (Jain et al., 172

2024b) is designed for equivalent test harnesses 173

generation, SWT-Bench (Mündler et al., 2024) fo- 174

cuses on fixing specific bugs rather than entire 175

projects, and DevBench (Li et al., 2024) centers 176

on software development tasks. While DevBench 177

touches on multi-file-level unit testing, its dataset 178

is limited in quantity and varies in quality, espe- 179

cially for C/C# and Java, with only five projects 180

each. Half of its projects for unit test generation 181

2

Error
Message

Vanilla
Unit Tests

Manually
Fixed

Unit Tests

LLM
Self-fixed
Unit Tests

Input: +

Figure 1: Overview of the unit test generation process.

evaluation are difficult to track, and most of the182

identifiable projects have fewer than 250 Stars and183

50 Forks. Moreover, its broad focus prevents com-184

prehensive evaluation and error analysis of LLM-185

based multi-file-level unit test generation. We in-186

clude a detailed comparison with other benchmarks187

in Appendix F.188

3 Methodology189

We introduce MultiFileTest dataset collection and190

preprocessing (§3.1), evaluation metrics (§3.2), and191

the unit test generation pipeline (§3.3) for evaluat-192

ing LLMs on MultiFileTest across three unit test193

generation scenarios.194

3.1 Benchmark Dataset195

Dataset Collection. Our dataset comprises care-196

fully selected multi-file-level GitHub repositories197

in Python, Java, and JavaScript. We establish se-198

lection criteria based on three key factors: 1) ap-199

propriate size (2-15 files, <1600 lines of code),200

2) inter-file dependencies, and 3) reliable sources.201

The size threshold ensures code fits within stan-202

dard LLM input windows without truncation, en-203

abling fair comparison across models with different204

context lengths. This approach isolates our core205

evaluation target—the model’s ability to generate206

unit tests—rather than testing long-context man-207

agement or external tooling. We limit our selec-208

tion to repositories with publicly available licenses,209

ensuring the legality and openness. To maintain210

quality and reliability, we prioritize projects with211

high numbers of stars and forks, signaling com-212

munity approval and widespread usage. We also213

extract smaller, self-contained projects from over-214

sized codebases, carefully adjusting them to func-215

tion independently without relying on the origi-216

nal larger projects. After applying these criteria,217

we construct 20 representative projects per pro-218

gramming language. Dataset statistics are sum-219

Language Avg. #Files Avg. LOC Avg. #Stars Avg. #Forks
Python 6.10 654.60 5810.30 996.90
Java 4.65 282.60 3306.05 1347.65
JavaScript 4.00 558.05 17242.30 5476.45

Table 1: MultiFileTest Data Statistics (LOC = Lines of
Code).

marized in Table 1, with detailed information on 220

dataset sources and project-specific information in 221

Appendix A. 222

Pre-processing. Dataset pre-processing involves 223

several key steps to ensure the projects are well- 224

structured and suitable for testing. First, we ver- 225

ify all selected projects for syntax errors despite 226

their reliable sources. Second, for projects ex- 227

tracted from larger codebases, we modify them 228

to be self-contained by reorganizing files, adjust- 229

ing domain naming conventions, and/or modifying 230

import paths to remove dependencies on external 231

modules. Next, to enhance the accuracy of line 232

coverage measurements, we consolidate statements 233

that span multiple lines into a single line, ensuring 234

more valid metrics. Additionally, we maintain orig- 235

inal coding styles as much as possible to preserve 236

diversity across projects, allowing us to assess how 237

LLMs perform when faced with various program- 238

ming styles. 239

3.2 Evaluation Metrics 240

We focus on three key aspects when evaluating the 241

generated unit tests: compilation rate, correctness 242

rate, and coverage rate. Compilation rate (ComR) 243

measures the percentage of projects in which the 244

generated test suites compile successfully, indicat- 245

ing how often LLMs produce executable unit test 246

suites. The compilation rate for all projects in X 247

is defined as ComR = |Xcom|
|X| , where X is the 248

project set and Xcom ⊂ X denotes the subset 249

of projects whose test suites compile successfully. 250

Correctness rate (CR) calculates the percentage of 251

unit tests that are correct out of all generated unit 252

tests for each project, providing insight into the 253

accuracy of the test generation process. On aver- 254

age, more than 95% of vanilla-generated unit tests 255

compare expected and actual values, reinforcing 256

the validity of CR as an evaluation metric. De- 257

tailed statistics see Appendix C.1. The correctness 258

rate for the project x is defined as CRx = |T cor
x |
|Tx| , 259

where Tx is the generated test suite and T cor
x ⊂ Tx 260

denotes the correct unit test set for the project x. 261

Coverage rate analyzes both line and branch cover- 262

age to understand how well the generated unit tests 263

explore the code’s functionality. The coverage rate 264

3

Figure 2: An example of MultiFileTest.

for the project x is defined as CRx = covered(x)
total(x) ,265

where covered(x) denotes the number of covered266

lines/branches in project x and total(x) the total267

number of lines/branches in project x ∈ X .268

These three evaluation metrics are interdepen-269

dent. If a project’s generated test suite contains270

compilation errors, none of its unit tests can exe-271

cute successfully, resulting in zero correctness and272

coverage rates for the project. Additionally, errors273

causing test failures, such as missing Python depen-274

dencies, can also impact coverage rates. Therefore,275

considering these interdependencies, we extend our276

analysis beyond vanilla unit tests evaluation to in-277

clude manually fixing these errors. This enables278

a more comprehensive assessment of LLMs’ po-279

tential to generate high-quality unit tests once such280

errors are addressed. This assessment is conducted281

while maintaining the same quantity and diversity282

of unit tests originally generated by the LLMs. Fur-283

thermore, we extend our analysis to examine the284

self-fixing capabilities of LLMs.285

3.3 Unit Test Generation286

Figure 1 shows an overview of the LLM unit test287

generation process. Our unit test generation and288

evaluation aim to ensure fair and thorough assess-289

ments under different scenarios:290

• Scenario 1: Vanilla unit tests extracted from291

LLMs’ outputs.292

• Scenario 2: Compilable unit tests after manually293

fixing all compilation and cascade errors.294

• Scenario 3: Unit tests refined by LLMs self-295

fixing, provided with error messages and human-296

LLM conversation history.297

Scenario 1: Vanilla Unit Test Generation. We in-298

put the entire project and a carefully crafted prompt299

into the LLM, ensuring the context and require-300

ments are clearly communicated. Complete project301

codes are provided to ensure LLMs have all the nec-302

essary context to generate unit tests for the entire303

project, as shown in Figure 2. To rigorously eval-304

Figure 3: An example of compilation error.

uate LLM capabilities, we craft language-specific 305

prompts addressing the unique challenges of each 306

programming language. A comprehensive assess- 307

ment is ensured by requiring LLMs to generate unit 308

tests for all project files and providing targeted in- 309

structions on compilation rate, correctness rate, and 310

coverage metrics. This methodical prompt engi- 311

neering significantly enhances the quality and rele- 312

vance of the LLM-generated outputs. Appendix B.1 313

lists all experiment prompts, while Appendix D.1 314

contains the prompt ablation analysis. Vanilla unit 315

tests are extracted directly from the LLM response 316

based on the input project and prompt. 317

Scenario 2: Manual Fixing compilation and cas- 318

cade errors. Manually fixing compilation and cas- 319

cade errors is motivated by empirical observations 320

from scenario 1, where even unit tests generated by 321

state-of-the-art LLMs like Claude-3.5-Sonnet con- 322

tain significant compilation errors, making them 323

non-compilable. These tests also exhibit cascade 324

errors that, while easily fixable, can impact mul- 325

tiple unit tests or the entire test suite (details in 326

Section 5.5). Although these errors are prelimi- 327

nary and straightforward to resolve, they obstruct 328

a deeper analysis of other critical aspects of LLM 329

performance in unit test generation, particularly 330

correctness and coverage. 331

Therefore, we apply minimal necessary changes 332

to vanilla unit tests, resolving compilation and cas- 333

cade errors while preserving the original test intent. 334

Compilation errors2 are defined as errors that pre- 335

vent testing frameworks from executing. As shown 336

in Figure 3, ModuleNotFoundError causes pytest 337

to fail before collecting any unit tests, making the 338

entire test suite uncompilable. This results not only 339

in compilation failure but also in unreachable cor- 340

rectness and coverage rates.3 Cascade errors are de- 341

2While Python is an interpreted language, we classify er-
rors that cause pytest to fail before collecting and running any
tests as compilation errors.

3We consider unreachable correctness and coverage rate

4

Figure 4: An example of cascade error.

fined as errors that cause cascading failures across342

multiple unit tests or even the entire test suite. Fig-343

ure 4 demonstrates how a simple NameError (miss-344

ing NumPy import) can invalidate multiple funda-345

mentally correct tests. Most of these errors are346

straightforward and mechanical to correct. Given347

that these fixes necessitate limited reasoning capa-348

bilities and typically involve small, localized mod-349

ifications, it minimizes the influence of annotator350

skill variation and ensures fair model comparison351

post-fix. By resolving these errors, manual fixing352

ensures that all unit tests are compilable with no353

cascade errors invalidating fundamentally correct354

tests. This manual fixing is essential for evaluating355

the quality and reliability of generated unit tests,356

providing deeper insights into the effectiveness of357

LLM-generated unit tests, and identifying areas358

for improvement. This process also helps assess359

LLMs’ potential for continuous improvement once360

basic errors are resolved. Additionally, we evalu-361

ate unit tests with only compilation errors fixed in362

Appendix D.2.363

Scenario 3: LLM Self-fixing. Inspired by our ob-364

servation from manual fixing that different LLMs365

exhibit significantly different potentials after man-366

ual fixing, we investigate how LLMs perform in367

self-fixing on our benchmark. We explore LLMs’368

self-fixing abilities by incorporating human-LLM369

conversation history and error messages as shown370

in Figure 5. We provide LLMs with the conversa-371

tion history (including the system prompt, the user372

prompt for unit test generation requests, and LLM373

vanilla response), error messages obtained from the374

testing framework, and the user prompt for error375

fixing requests. When an open-source LLM’s in-376

put length is limited, we prioritize the information377

as zero.

System Prompt: You are a coding assistant...
User Prompt: {Original Codes} Please generate enough unit test cases...
LLM Response: {Generated Vanilla Unit Tests}
User Prompt: Here are the error messages from the tests: {Error
Messages}. Errors exist in the generated unit tests. Please fix the unit
tests to address these errors and provide the entire unit tests.

Self-fixing Prompt for Python

Figure 5: The prompt used for the LLM self-fixing
scenario for Python projects.

hierarchically: system prompt, LLM’s initial re- 378

sponse, error messages, error-fixing requests, and 379

unit test generation requests. We truncate less crit- 380

ical information as necessary while reserving at 381

least 2,000 tokens for the LLM’s self-fixing out- 382

puts. LLM self-fixing scenario helps us understand 383

LLMs’ error-fixing ability and their potential to 384

generate better unit tests when incorporating the 385

self-fixing process. Note that during self-fixing, 386

we do not constrain the target error types to just 387

compilation or cascade errors. 388

4 Experimental Settings 389

4.1 Models 390

We evaluate five close-sourced models: GPT-o1, 391

Gemini-2.0-Flash-Exp (Gemini-2.0-Flash) (Team 392

et al., 2024b), Claude-3.5-Sonnet-20241022 393

(Claude-3.5-Sonnet) (Anthropic, 2024), GPT-4- 394

Turbo (Achiam et al., 2023) and GPT-3.5-Turbo, 395

and four open-sourced models: CodeQwen1.5-7B- 396

Chat (CodeQwen1.5) (Bai et al., 2023), DeepSeek- 397

Coder-6.7b-Instruct (DeepSeek-Coder) (Guo et al., 398

2024; Zhu et al., 2024), CodeLlama-7b-Instruct- 399

hf (CodeLlama) (Roziere et al., 2023), and 400

CodeGemma-7b-it (CodeGemma) (Team et al., 401

2024a). Detailed information is in Appendix B.2. 402

4.2 Implementation Details 403

We use zero-shot prompting with temperature 0 404

for unit test generation, running experiments on 8 405

NVIDIA A100 GPUs with input length maximized 406

to each LLM’s token limit. We use Pytest4 for 407

Python, JUnit5 for Java, and Jest6 for JavaScript 408

regarding testing frameworks. For Java code cov- 409

erage, we use JaCoCo7. The manual fixes are per- 410

formed by PhD candidates in Computer Science 411

with extensive experience in software engineering 412

and program analysis. 413

4https://docs.pytest.org/en/stable/
5https://junit.org/
6https://jestjs.io/
7https://www.eclemma.org/jacoco/

5

Model CR ComR LC BC #Tests #Correct
Python

GPT-4-Turbo 47 65 40 36 12.60 6.15
GPT-3.5-Turbo 37 60 38 34 16.90 6.65
GPT-o1 60 65 56 54 36.35 21.7
Gemini-2.0-Flash 46 65 42 39 34.95 16.95
Claude-3.5-Sonnet 64 70 51 47 18.05 10.40
CodeQwen1.5 24 65 43 40 25.40 6.80
DeepSeek-Coder 37 70 39 35 7.20 2.95
CodeLlama 16 60 41 37 19.30 3.95
CodeGemma 13 50 31 28 15.00 2.30

Java
GPT-4-Turbo 21 35 15 12 7.05 2.20
GPT-3.5-Turbo 13 25 8 7 7.50 0.80
GPT-o1 41 60 44 35 15.70 6.85
Gemini-2.0-Flash 19 30 14 12 23.30 3.90
Claude-3.5-Sonnet 53 75 47 33 12.35 7.30
CodeQwen1.5 0 0 0 0 12.95 0.00
DeepSeek-Coder 8 20 5 5 7.00 0.60
CodeLlama 0 0 0 0 7.85 0.00
CodeGemma 0 0 0 0 10.50 0.00

JavaScript
GPT-4-Turbo 67 75 56 46 16.30 11.10
GPT-3.5-Turbo 51 65 37 28 13.25 8.05
GPT-o1 87 95 87 75 39.40 33.30
Gemini-2.0-Flash 59 70 64 61 45.85 22.55
Claude-3.5-Sonnet 65 80 59 53 20.25 13.35
CodeQwen1.5 23 35 25 20 8.45 4.80
DeepSeek-Coder 62 85 50 35 11.85 7.90
CodeLlama 26 85 20 14 48.75 18.00
CodeGemma 29 55 28 21 9.00 3.00

Table 2: Main Results. CR: Correctness Rate (%),
ComR: Compilation Rate (%), LC: Line Coverage (%),
BC: Branch Coverage (%).

5 Experiments414

We evaluate the generated unit tests from three415

scenarios, vanilla (§ 5.1), after manual fixing of416

compilation and cascade errors (§ 5.2), and LLM417

self-fixing (§ 5.3). For each scenario, we evalu-418

ate the Correctness Rate (CR), Compilation Rate419

(ComR), Line Coverage (LC), and Branch Cov-420

erage (BC). We also conduct unique contribution421

analyses (§5.4) and detailed error analyses (§ 5.5).422

5.1 Main Results423

The main results of the LLMs’ unit test genera-424

tion performance focus on the vanilla unit tests425

extracted directly from the LLMs’ outputs without426

any changes. This scenario assesses the LLMs’ raw427

capability to generate multi-file-level unit tests.428

Table 2 shows the evaluation results for vanilla429

unit tests. First, LLMs demonstrate varying430

language-level expertise. For example, Claude-3.5-431

Sonnet performs the best in Java but falls behind432

GPT-o1 in JavaScript. Second, LLMs have differ-433

ent metric-level expertise as well, validating the434

effectiveness of different evaluation metrics. For435

example, in Python, Claude-3.5-Sonnet performs 436

the best in CR and ComR while falling behind 437

GPT-o1 in LC and BC. 438

Among three programming languages, Java 439

poses the greatest challenge due to its stricter syn- 440

tax requirements. Many models fail to generate 441

valid Java code, leading to low compilation rates 442

and execution coverage. Among all the evaluated 443

models, GPT-o1 performs the best in general, espe- 444

cially in JavaScript. CodeLlama and CodeGemma 445

have the worst general performance. We also ob- 446

serve that some models tend to generate more unit 447

tests. However, generating more unit tests does not 448

necessarily lead to better coverage rates. For exam- 449

ple, Gemini-2.0-Flash tends to generate the most 450

unit tests but does not obtain the best coverage rate. 451

Additionally, sometimes the open-source model 452

can even outperform some closed-source models. 453

For example, DeepSeek-Coder surpasses GPT-3.5- 454

Turbo on Python and JavaScript. Finally, we con- 455

firmed from such results that dependencies exist 456

in metrics. On Java, models like CodeQwen1.5, 457

CodeLlama, and CodeGemma fail to generate com- 458

pilable unit tests, resulting in the lowest correctness 459

rates and coverage rates. We verify the robustness 460

of these experimental results through multiple runs 461

in Appendix C.2. 462

5.2 Manual Fixing Results 463

Table 3 presents evaluation results after manual 464

fixing, highlighting substantial improvements com- 465

pared to vanilla outputs across all programming lan- 466

guages and LLMs. These significant gains demon- 467

strate that LLM-generated unit tests are highly sen- 468

sitive to compilation and cascade errors. 469

Among programming languages, Java benefits 470

most from manual fixing. In the vanilla scenario, 471

Java exhibits the lowest compilation rates, making 472

it particularly challenging. However, after manual 473

fixing, Java shows the most substantial improve- 474

ment, highlighting the potential of LLMs for Java 475

after fixing compilation and cascade errors. Among 476

all models, GPT-o1 maintains its superior perfor- 477

mance after manual fixing, while CodeLlama and 478

CodeGemma continue to demonstrate the weakest 479

overall results. Gemini-2.0-Flash shows the best 480

coverage improvement overall, indicating excep- 481

tional potential for better unit test generation once 482

compilation and cascade errors are fixed. Our anal- 483

ysis reveals that manual fixing can reorder model 484

performance rankings. For example, in Java, Code- 485

Qwen1.5 outperforms DeepSeek-Coder and is now 486

6

Model CR ComR LC BC #Tests #Correct
Python

GPT-4-Turbo 74(+27) 100 65(+25) 59(+23) 12.60 9.30
GPT-3.5-Turbo 64(+27) 100 63(+25) 57(+23) 16.90 10.50
GPT-o1 89(+29) 100 88(+32) 86(+32) 36.35 32.25
Gemini-2.0-Flash 61(+15) 100 71(+29) 68(+29) 34.95 22.10
Claude-3.5-Sonnet 92(+28) 100 74(+23) 70(+23) 18.05 16.40
CodeQwen1.5 46(+22) 100 70(+27) 65(+25) 25.40 10.90
DeepSeek-Coder 53(+16) 100 60(+21) 54(+19) 7.20 4.10
CodeLlama 31(+15) 100 61(+20) 56(+19) 19.30 7.20
CodeGemma 36(+23) 100 54(+23) 49(+21) 15.00 7.85

Java
GPT-4-Turbo 59(+38) 100 40(+25) 32(+20) 7.05 5.05
GPT-3.5-Turbo 54(+41) 100 36(+28) 27(+20) 7.50 4.55
GPT-o1 64(+23) 100 65(+21) 56(+21) 15.7 10.75
Gemini-2.0-Flash 56(+37) 100 54(+40) 53(+41) 23.30 15.25
Claude-3.5-Sonnet 74(+21) 100 60(+13) 53(+20) 12.35 9.65
CodeQwen1.5 60(+60) 100 42(+42) 31(+31) 12.95 8.40
DeepSeek-Coder 52(+44) 100 33(+28) 19(+14) 7.00 3.80
CodeLlama 36(+36) 100 25(+25) 20(+20) 7.85 4.95
CodeGemma 57(+57) 100 37(+37) 22(+22) 10.50 6.50

JavaScript
GPT-4-Turbo 89(+22) 100 75(+19) 59(+13) 16.30 14.20
GPT-3.5-Turbo 74(+23) 100 58(+21) 45(+17) 13.25 11.20
GPT-o1 91(+4) 100 92(+5) 79(+4) 39.40 35.15
Gemini-2.0-Flash 76(+17) 100 88(+24) 80(+19) 45.85 33.45
Claude-3.5-Sonnet 87(+22) 100 77(+18) 68(+15) 20.25 17.55
CodeQwen1.5 32(+9) 100 35(+10) 27(+7) 8.45 6.15
DeepSeek-Coder 67(+5) 100 58(+8) 43(+8) 11.85 8.10
CodeLlama 62(+36) 100 44(+24) 28(+14) 48.75 31.50
CodeGemma 58(+29) 100 50(+22) 38(+17) 9.00 6.40

Table 3: Manual Fixing Results with Improvements
Shown in Parentheses.

on par with GPT-4-Turbo after fixing. In Python,487

Gemini-2.0-Flash surpasses CodeQwen1.5, show-488

ing better potential post-fix. In JavaScript, GPT-489

3.5-Turbo reaches parity with DeepSeek-Coder.490

5.3 LLMs Self-fixing Results491

LLM self-fixing utilizes human-LLM conversation492

history and error messages to assist LLMs in fixing493

errors. This scenario assesses LLMs’ self-fixing494

capabilities and their potential to generate better495

unit tests by incorporating self-fixing.496

Table 4 shows the LLM self-fixing evaluation497

results compared with manual fixing results. First,498

we observe that most closed-source models have499

effective self-fixing abilities, generating better unit500

tests than vanilla results. In contrast, the evaluated501

open-source models lack reliable self-fixing abil-502

ities. This limitation likely stems from restricted503

input length, which leads to incomplete context,504

alongside weaker comprehension and instruction-505

following abilities. For instance, CodeGemma and506

CodeLlama tend to generate textual instructions507

for fixing errors rather than directly producing the508

corrected unit tests specified in the prompt.509

Second, LLM self-fixing follows similar but not510

identical trends to manual fixing, suggesting that511

Model CR ComR LC BC #Tests #Correct
Python

GPT-4-Turbo 52(-22) 70(-30) 39(-26) 35(-24) 8.85 4.55
GPT-3.5-Turbo 52(-12) 75(-25) 45(-18) 39(-18) 14.15 8.20
GPT-o1 67(-22) 70(-30) 60(-28) 58(-28) 35.50 24.35
Gemini-2.0-Flash 47(-14) 60(-40) 45(-26) 42(-26) 34.95 17.40
Claude-3.5-Sonnet 86(-6) 90(-10) 67(-7) 63(-7) 18.00 15.55
CodeQwen1.5 22(-24) 60(-40) 41(-29) 37(-28) 25.15 6.25
DeepSeek-Coder 18(-35) 35(-65) 20(-40) 18(-36) 4.30 1.45
CodeLlama 0(-31) 5(-95) 5(-56) 5(-51) 3.90 0.00
CodeGemma 8(-28) 25(-75) 14(-40) 13(-36) 9.15 0.70

Java
GPT-4-Turbo 43(-16) 55(-45) 26(-14) 18(-14) 6.40 2.80
GPT-3.5-Turbo 17(-37) 25(-75) 11(-25) 12(-15) 6.90 1.05
GPT-o1 68(+4) 85(-15) 58(-7) 54(-2) 15.60 10.10
Gemini-2.0-Flash 31(-25) 40(-60) 29(-25) 24(-29) 22.65 7.15
Claude-3.5-Sonnet 55(-19) 70(-30) 39(-21) 31(-22) 10.95 6.70
CodeQwen1.5 5(-55) 5(-95) 0(-42) 0(-31) 12.60 0.05
DeepSeek-Coder 13(-39) 20(-80) 5(-28) 2(-17) 1.35 0.25
CodeLlama 0(-36) 0(-100) 0(-25) 0(-20) 1.30 0.00
CodeGemma 2(-55) 5(-95) 3(-34) 0(-22) 1.75 0.05

JavaScript
GPT-4-Turbo 70(-19) 85(-15) 48(-27) 35(-24) 8.35 6.35
GPT-3.5-Turbo 64(-10) 75(-25) 40(-18) 30(-15) 9.70 5.00
GPT-o1 54(-37) 65(-35) 47(-45) 38(-41) 20.30 12.25
Gemini-2.0-Flash 75(-1) 85(-15) 71(-17) 65(-15) 40.95 28.65
Claude-3.5-Sonnet 74(-13) 80(-20) 60(-17) 53(-15) 18.05 13.35
CodeQwen1.5 55(+23) 95(-5) 66(+31) 52(+25) 26.10 15.50
DeepSeek-Coder 14(-53) 35(-65) 15(-43) 10(-33) 2.90 1.00
CodeLlama 9(-53) 35(-65) 7(-37) 5(-23) 7.15 0.55
CodeGemma 31(-27) 60(-40) 29(-21) 21(-17) 10.85 3.05

Table 4: Evaluation Results after Self-fixing. The Com-
parisons with Manual Fixing are Shown in Parentheses.

although LLMs’ improvement potential generally 512

aligns with self-fixing capabilities, some LLMs 513

deviate from this pattern. In JavaScript, GPT-o1’s 514

self-fixing yields substantially lower coverage rates 515

compared to manual fixing due to generating fewer 516

unit tests and achieving lower compilation rates. 517

Despite currently underperforming compared to 518

manual fixing, LLM self-fixing demonstrates sig- 519

nificant potential. Self-fixing has proven effective 520

when LLMs have the necessary capabilities, and 521

it even has the potential to surpass manual fixing 522

due to its flexibility. For example, in JavaScript, 523

CodeQwen1.5 shows greater improvement through 524

self-fixing than manual fixing. This occurs because 525

CodeQwen1.5 occasionally misinterprets prompts 526

in vanilla outputs, generating no unit tests. While 527

manual fixing cannot remedy this fundamental un- 528

derstanding issue, self-fixing enables the model 529

to correctly interpret test generation requirements 530

when error messages indicate missing tests. 531

5.4 Unique Contribution of Unit Tests 532

Beyond standard coverage metrics, we introduce a 533

novel evaluation measure–unique contribution–to 534

assess the efficiency and non-redundancy of gen- 535

erated unit tests on Python. The unique contribu- 536

7

Model #Tests LC BC Unique
GPT-4-Turbo 12.60 40 36 6.35
GPT-3.5-Turbo 16.90 38 34 5.90
GPT-o1 36.35 56 54 6.75
Gemini-2.0-Flash 34.95 42 39 6.05
Claude-3.5-Sonnet 18.05 51 47 11.40
CodeQwen1.5 25.40 43 40 3.75
DeepSeek-Coder 7.20 39 35 8.90
CodeLlama 19.30 41 37 5.55
CodeGemma 15.00 31 28 2.70

Table 5: Unique Contribution on Vanilla Unit Tests.

tion is defined as the total portion of coverage con-537

tributed by each generated unit test that does not538

overlap with the coverage of other unit tests. This539

measure addresses two critical limitations of con-540

ventional metrics. First, it accounts for variations541

in test quantity across different LLMs, as relying542

solely on coverage rate becomes insufficient when543

models produce widely differing numbers of tests.544

Second, it recognizes the importance of achiev-545

ing high coverage with minimal tests, as executing546

numerous tests can be resource-intensive and time-547

consuming. Further details in Appendix G.548

Table 5 reveals that all tested LLMs exhibit low549

unique contribution rates, indicating a tendency to-550

ward redundant and repetitive unit tests. Although551

GPT-o1 has better coverage rates than Claude-3.5-552

Sonnet, it produces significantly more unit tests,553

and its unique contribution is lower than Claude-554

3.5-Sonnet’s, indicating it prioritizes quantity over555

quality to attain higher coverage. This approach556

potentially compromises the overall efficiency of557

the testing process.558

5.5 Error Analyses559

We analyze compilation, cascade, and post-fix er-560

rors per programming language, identifying com-561

mon errors and their underlying causes. Full analy-562

ses in Appendix E.563

Compilation Error Analyses. In Python, com-564

mon compilation errors include incorrect import565

paths for project functions/classes, hallucinated566

import names/paths, and mismatched parentheses.567

Java, being more syntax-heavy, faces various com-568

pilation errors, like hallucinated methods/construc-569

tors/classes, missing essential elements like pack-570

age declarations, illegal access to private/protected571

elements, invalid code generation, and improper572

use of mocking frameworks, along with argument573

type mismatches, ambiguous references, and in-574

compatible types. JavaScript errors typically in-575

clude hallucinated imports with incorrect paths, 576

empty test suites, and syntax errors from incom- 577

plete code generation or mismatched parentheses. 578

Cascade Error Analyses. Python cascade er- 579

rors include missing imports (e.g., numpy, unittest, 580

project functions/classes) and FileNotFoundError 581

from unmocked external files. Java’s primary cas- 582

cade error is improper/missing mocking of user in- 583

teractions, causing unusable coverage reports when 584

tests terminate abruptly. JavaScript struggles with 585

missing imports (e.g., chai, three, project function- 586

s/classes), confusion between named and default 587

imports, and Jest framework compliance issues. 588

Post-Fix Error Analyses. Across all languages, 589

mismatches between expected and actual values are 590

the most common error. Python frequently encoun- 591

ters AttributeError from hallucinated attributes. 592

Java suffers from NullPointerException, zero inter- 593

actions with mocks, and failures to release mocks 594

due to improper usage. JavaScript commonly faces 595

TypeError, typically caused by LLMs hallucinating 596

non-existent functions and constructors or LLMs 597

invalidly mocking some variables. 598

Overall. Persistent errors across languages in- 599

clude hallucinations of functions or classes and 600

missing required functions or classes. Missing 601

required functions or classes often occurs be- 602

cause LLMs prioritize logical structure over boil- 603

erplate code and fail to understand the codebase 604

structure and the dependencies between functions, 605

classes, or modules, which highlights the signif- 606

icant gap between LLM unit test generation at 607

function/class/single-file levels and at multi-file 608

level. Failure to understand the codebase struc- 609

ture and dependencies can further cause issues like 610

confusing non-package and package-based projects 611

(Python) or incorrectly using functions, classes, or 612

packages (Java). The most common post-fix error 613

is the mismatch between expected and received val- 614

ues, often caused by incorrect expected values due 615

to the weak reasoning abilities of LLMs. 616

6 Conclusion 617

In conclusion, we build a reliable and high-quality 618

multi-file-level unit test generation benchmark – 619

MultiFileTest – with three programming languages. 620

We comprehensively evaluate nine LLMs’ unit test 621

generation abilities with/without manual fixing and 622

LLM self-fixing mechanism on MultiFileTest. Be- 623

sides, we conduct comprehensive error analyses 624

per programming language. 625

8

Limitations626

Our study has several limitations. First, our627

focus is primarily on three programming lan-628

guages—Python, Java, and JavaScript—excluding629

other relevant languages such as C and C#.630

Second, the scale of projects in our benchmark631

is limited to approximately 1600 lines of code,632

which is smaller than many production-scale code-633

bases. This constraint stems from the inherent in-634

put length restrictions and context window limita-635

tions of current LLMs, which make processing very636

large codebases impractical for tasks like unit test637

generation without introducing confounding vari-638

ables. Despite this size constraint, these projects639

are designed to retain key structural characteris-640

tics of larger codebases, including multiple files641

with meaningful inter-file dependencies, cross-file642

function calls, class inheritance, and shared util-643

ity components. This ensures the benchmark still644

evaluates reasoning across files, which is central645

to multi-file-level unit test generation. Our experi-646

mental results demonstrate that even at this reduced647

scale, multi-file-level unit test generation remains648

challenging for state-of-the-art models like Claude-649

3.5-Sonnet. Expanding to significantly larger code-650

bases would likely shift the evaluation focus toward651

context handling techniques (e.g., truncation, re-652

trieval, or hierarchical methods) rather than core653

LLM test generation ability. While our benchmark654

does not represent the full complexity of produc-655

tion systems, it serves as a meaningful and chal-656

lenging step toward that goal, providing valuable657

evaluation grounded in the practical capabilities of658

current LLMs.659

References660

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama661
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,662
Diogo Almeida, Janko Altenschmidt, Sam Altman,663
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.664
arXiv preprint arXiv:2303.08774.665

Saranya Alagarsamy, Chakkrit Tantithamthavorn, Wan-666
nita Takerngsaksiri, Chetan Arora, and Aldeida Aleti.667
2025. Enhancing large language models for text-to-668
testcase generation. Journal of Systems and Software,669
page 112531.670

M Moein Almasi, Hadi Hemmati, Gordon Fraser, An-671
drea Arcuri, and Janis Benefelds. 2017. An industrial672
evaluation of unit test generation: Finding real faults673
in a financial application. In 2017 IEEE/ACM 39th674
International Conference on Software Engineering:675

Software Engineering in Practice Track (ICSE-SEIP), 676
pages 263–272. IEEE. 677

Amr Almorsi, Mohanned Ahmed, and Walid Gomaa. 678
2024. Guided code generation with llms: A multi- 679
agent framework for complex code tasks. In 2024 680
12th International Japan-Africa Conference on Elec- 681
tronics, Communications, and Computations (JAC- 682
ECC), pages 215–218. IEEE. 683

AI Anthropic. 2024. Claude 3.5 sonnet model card 684
addendum. Claude-3.5 Model Card, 3:6. 685

Mihir Athale and Vishal Vaddina. 2025. Knowledge 686
graph based repository-level code generation. In 687
2025 IEEE/ACM International Workshop on Large 688
Language Models for Code (LLM4Code), pages 169– 689
176. IEEE. 690

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 691
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 692
Huang, et al. 2023. Qwen technical report. arXiv 693
preprint arXiv:2309.16609. 694

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 695
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 696
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 697
Greg Brockman, et al. 2021. Evaluating large 698
language models trained on code. arXiv preprint 699
arXiv:2107.03374. 700

Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, 701
Shuiguang Deng, and Jianwei Yin. 2024. Chatu- 702
nitest: A framework for llm-based test generation. 703
In Companion Proceedings of the 32nd ACM Inter- 704
national Conference on the Foundations of Software 705
Engineering, pages 572–576. 706

Ermira Daka and Gordon Fraser. 2014. A survey on 707
unit testing practices and problems. In 2014 IEEE 708
25th International Symposium on Software Reliabil- 709
ity Engineering, pages 201–211. IEEE. 710

Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Ma- 711
jdinasab, Foutse Khomh, and Michel C Desmarais. 712
2024. Effective test generation using pre-trained 713
large language models and mutation testing. Infor- 714
mation and Software Technology, 171:107468. 715

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, 716
Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang, 717
and Mao Yang. Longrope: Extending llm context 718
window beyond 2 million tokens. In Forty-first Inter- 719
national Conference on Machine Learning. 720

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, 721
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng 722
Sha, Xin Peng, and Yiling Lou. 2023. Classeval: 723
A manually-crafted benchmark for evaluating llms 724
on class-level code generation. arXiv e-prints, pages 725
arXiv–2308. 726

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 727
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 728
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 729
BERT: A pre-trained model for programming and 730

9

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139

natural languages. In Findings of the Association731
for Computational Linguistics: EMNLP 2020, pages732
1536–1547, Online. Association for Computational733
Linguistics.734

Gordon Fraser and Andrea Arcuri. 2011. Evosuite: au-735
tomatic test suite generation for object-oriented soft-736
ware. In Proceedings of the 19th ACM SIGSOFT737
symposium and the 13th European conference on738
Foundations of software engineering, pages 416–419.739

Giovanni Grano, Fabio Palomba, Dario Di Nucci, An-740
drea De Lucia, and Harald C Gall. 2019. Scented741
since the beginning: On the diffuseness of test smells742
in automatically generated test code. Journal of Sys-743
tems and Software, 156:312–327.744

Giovanni Grano, Simone Scalabrino, Harald C Gall, and745
Rocco Oliveto. 2018. An empirical investigation on746
the readability of manual and generated test cases.747
In Proceedings of the 26th Conference on Program748
Comprehension, pages 348–351.749

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai750
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,751
Y Wu, YK Li, et al. 2024. Deepseek-coder: When752
the large language model meets programming–the753
rise of code intelligence. arXiv e-prints, pages arXiv–754
2401.755

Mark Harman and Phil McMinn. 2009. A theoretical756
and empirical study of search-based testing: Local,757
global, and hybrid search. IEEE Transactions on758
Software Engineering, 36(2):226–247.759

Kush Jain, Gabriel Synnaeve, and Baptiste Rozière.760
2024a. Testgeneval: A real world unit test gener-761
ation and test completion benchmark. arXiv preprint762
arXiv:2410.00752.763

Naman Jain, Manish Shetty, Tianjun Zhang, King Han,764
Koushik Sen, and Ion Stoica. 2024b. R2e: Turning765
any github repository into a programming agent envi-766
ronment. In Forty-first International Conference on767
Machine Learning.768

Carlos E Jimenez, John Yang, Alexander Wettig,769
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R770
Narasimhan. Swe-bench: Can language models re-771
solve real-world github issues? In The Twelfth Inter-772
national Conference on Learning Representations.773

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio774
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-775
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-776
täschel, et al. 2020. Retrieval-augmented generation777
for knowledge-intensive nlp tasks. Advances in neu-778
ral information processing systems, 33:9459–9474.779

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang,780
Jinyang Li, Shunyu Yao, Chen Qian, Binyuan Hui,781
Qicheng Zhang, et al. 2024. Devbench: A compre-782
hensive benchmark for software development. arXiv783
preprint arXiv:2403.08604.784

Tsz-On Li, Wenxi Zong, Yibo Wang, Haoye Tian, Ying 785
Wang, Shing-Chi Cheung, and Jeff Kramer. 2023. 786
Nuances are the key: Unlocking chatgpt to find 787
failure-inducing tests with differential prompting. In 788
2023 38th IEEE/ACM International Conference on 789
Automated Software Engineering (ASE), pages 14–26. 790
IEEE. 791

Stephan Lukasczyk and Gordon Fraser. 2022. Pyn- 792
guin: Automated unit test generation for python. In 793
Proceedings of the ACM/IEEE 44th International 794
Conference on Software Engineering: Companion 795
Proceedings, pages 168–172. 796

Zeyao Ma, Xiaokang Zhang, Jing Zhang, Jifan Yu, Si- 797
jia Luo, and Jie Tang. 2025. Dynamic scaling of 798
unit tests for code reward modeling. In Proceedings 799
of the 63rd Annual Meeting of the Association for 800
Computational Linguistics (Volume 1: Long Papers), 801
pages 6917–6935, Vienna, Austria. Association for 802
Computational Linguistics. 803

AI Meta. 2025. The llama 4 herd: The beginning 804
of a new era of natively multimodal ai innova- 805
tion. https://ai. meta. com/blog/llama-4-multimodal- 806
intelligence/, checked on, 4(7):2025. 807

Niels Mündler, Mark Niklas Mueller, Jingxuan He, and 808
Martin Vechev. 2024. Swt-bench: Testing and vali- 809
dating real-world bug-fixes with code agents. In The 810
Thirty-eighth Annual Conference on Neural Informa- 811
tion Processing Systems. 812

Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, 813
and Thomas Ball. 2007. Feedback-directed random 814
test generation. In 29th International Conference 815
on Software Engineering (ICSE’07), pages 75–84. 816
IEEE. 817

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 818
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 819
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023. 820
Code llama: Open foundation models for code. arXiv 821
preprint arXiv:2308.12950. 822

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank 823
Tip. 2023. An empirical evaluation of using large 824
language models for automated unit test generation. 825
IEEE Transactions on Software Engineering. 826

Mohammed Latif Siddiq, Joanna Cecilia Da Silva San- 827
tos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid 828
Al Rifat, and Vinícius Carvalho Lopes. 2024. Using 829
large language models to generate junit tests: An 830
empirical study. In Proceedings of the 28th Interna- 831
tional Conference on Evaluation and Assessment in 832
Software Engineering, pages 313–322. 833

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua 834
Howland, Nam Nguyen, Siqi Zuo, Andrea Hu, 835
Christopher A Choquette-Choo, Jingyue Shen, Joe 836
Kelley, et al. 2024a. Codegemma: Open code models 837
based on gemma. arXiv preprint arXiv:2406.11409. 838

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan 839
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, 840

10

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://aclanthology.org/2025.acl-long.343/
https://aclanthology.org/2025.acl-long.343/
https://aclanthology.org/2025.acl-long.343/

Damien Vincent, Zhufeng Pan, Shibo Wang, et al.841
2024b. Gemini 1.5: Unlocking multimodal under-842
standing across millions of tokens of context. arXiv843
preprint arXiv:2403.05530.844

Johannes Villmow, Jonas Depoix, and Adrian Ulges.845
2021. ConTest: A unit test completion benchmark846
featuring context. In Proceedings of the 1st Work-847
shop on Natural Language Processing for Program-848
ming (NLP4Prog 2021), pages 17–25, Online. Asso-849
ciation for Computational Linguistics.850

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng851
Huang, Zhaoyang Chu, Da Song, Lingming Zhang,852
An Ran Chen, and Lei Ma. 2025. Testeval: Bench-853
marking large language models for test case gener-854
ation. In Findings of the Association for Computa-855
tional Linguistics: NAACL 2025, pages 3547–3562.856

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Jun-857
nan Li, and Steven Hoi. 2023. CodeT5+: Open code858
large language models for code understanding and859
generation. In Proceedings of the 2023 Conference860
on Empirical Methods in Natural Language Process-861
ing, pages 1069–1088, Singapore. Association for862
Computational Linguistics.863

Zejun Wang, Kaibo Liu, Ge Li, and Zhi Jin. 2024.864
Hits: High-coverage llm-based unit test generation865
via method slicing. In Proceedings of the 39th866
IEEE/ACM International Conference on Automated867
Software Engineering, pages 1258–1268.868

Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann.869
2013. Characteristic studies of loop problems for870
structural test generation via symbolic execution. In871
2013 28th IEEE/ACM International Conference on872
Automated Software Engineering (ASE), pages 246–873
256. IEEE.874

Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuiguang875
Deng, and Jianwei Yin. 2023. Chatunitest: a chatgpt-876
based automated unit test generation tool. arXiv877
preprint arXiv:2305.04764.878

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin879
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and880
Weizhu Chen. 2023. Repocoder: Repository-level881
code completion through iterative retrieval and gen-882
eration. In Proceedings of the 2023 Conference on883
Empirical Methods in Natural Language Processing,884
pages 2471–2484.885

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,886
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo887
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:888
Breaking the barrier of closed-source models in code889
intelligence. arXiv preprint arXiv:2406.11931.890

11

https://doi.org/10.18653/v1/2021.nlp4prog-1.2
https://doi.org/10.18653/v1/2021.nlp4prog-1.2
https://doi.org/10.18653/v1/2021.nlp4prog-1.2
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68

A Dataset891

We provide the detailed information of our datasets892

in Table 6, Table 7, and Table 8. We provide pro-893

gramming language, project name, license, link,894

number of stars, and number of forks for each indi-895

vidual project.896

The license of "Author Permission" in Table 7897

means that we obtain the usage permission from898

the author of the corresponding repository8.

Project Name License Link #Stars #Forks
blackjack MIT license blackjack 2937 641
bridge MIT license bridge 2937 641
doudizhu MIT license doudizhu 2937 641
fuzzywuzzy MIT license fuzzywuzzy 9200 876
gin_rummy GPL-2.0 license gin_rummy 2937 641
keras_preprocessing MIT license keras_preprocessing 1024 443
leducholde MIT license leducholde 2937 641
limitholdem MIT license limitholdem 2937 641
mahjong MIT license mahjong 2937 641
nolimitholdem MIT license nolimitholdem 2937 641
slugify MIT license slugify 1500 109
stock CC-BY-SA-4.0 license stock 10700 1800
stock2 CC-BY-SA-4.0 license stock2 10700 1800
stock3 CC-BY-SA-4.0 license stock3 10700 1800
stock4 CC-BY-SA-4.0 license stock4 10700 1800
structly CC-BY-SA-4.0 license structly 10700 1800
svm MIT license svm 10800 1800
the fuzz CC-BY-SA-4.0 license the fuzz 2949 141
tree CC-BY-SA-4.0 license tree 10800 1800
uno MIT license uno 2937 641

Table 6: Dataset Details (Python).

899

Project Name License Link #Stars #Forks
Actor_relationship_game Apache-2.0 license Actor_relationship_game 85 5
banking application MIT license banking application 341 366
CalculatorOOPS MIT license CalculatorOOPS 525 513
emailgenerator MIT license emailgenerator 525 513
heap MIT license heap 60500 19600
idcenter Apache-2.0 license idcenter 146 136
libraryApp MIT license libraryApp 341 366
libraryManagement MIT license libraryManagement 341 366
logrequestresponseundertow Author Permission logrequestresponseundertow 152 131
Password_Generator MIT license Password_Generator 341 366
Pong Game MIT license Pong Game 341 366
redis Apache-2.0 license redis 413 218
servlet MIT license servlet 341 366
simpleChat MIT license simpleChat 543 1500
springdatamongowithcluster Author Permission springdatamongowithcluster 152 131
springmicrometerundertow Author Permission springmicrometerundertow 152 131
springreactivenonreactive Author Permission springreactivenonreactive 152 131
springuploads3 Author Permission springuploads3 152 131
Train MIT license Train 545 1600

Table 7: Dataset Details (Java).

B More Implementation Details900

B.1 Prompts901

The prompts are displayed in Figure 6, 7, 8, and902

9.903

B.2 Models904

The detailed information of models, including li-905

cense and link, is provided in Table 9.906

C More Experiments and Statistics907

C.1 Assert Statistics908

Table 10 presents the percentages of the vanilla-909

generated unit tests containing comparisons be-910

8https://github.com/frandorado/spring-
projects/tree/master

Project Name License Link #Stars #Forks
aggregate MIT license aggregate 1500 18
animation MIT license animation 103000 35400
check MIT license check 1500 18
circle MIT license circle 2700 330
ckmeans ISC license ckmeans 3400 226
controls MIT license controls 103000 35400
convex MIT license convex 2700 330
easing MIT license easing 418 9
magnetic MIT license magnetic 418 9
overlapkeeper MIT license overlapkeeper 2700 330
particle MIT license particle 2700 330
pixelrender MIT license pixelrender 2400 274
plane MIT license plane 2700 330
solver MIT license solver 2700 330
span MIT license span 2400 274
spherical MIT license spherical 103000 35400
synergy MIT license synergy 310 3
t_test ISC license t_test 3400 226
validate MIT license validate 1500 18
zone MIT license zone 2400 274

Table 8: Dataset Details (JavaScript).

System Prompt: You are a coding assistant. You generate only source
code.
User Prompt: {Original Codes} Please generate enough unit test cases
for each Python file in the project. Ensure that the import path is correct,
depending on whether the project is structured as a package. Make sure
the tests can successfully compile. Make sure the tests have correct
results. Try to achieve the highest coverage rate.

Vanilla Prompt for Python

Figure 6: The prompt used to generate unit tests for
Python projects. Purple indicates language-specific in-
struction. Blue, orange, and red indicates instructions
related to compilation rate, correctness rate, and cover-
age rate, respectively.

tween expected and actual values per language and 911

per model. 912

C.2 Robustness Analysis 913

To address concerns about statistical robustness, 914

we conduct three independent runs of unit test gen- 915

eration using GPT-3.5-Turbo as shown in Table 11. 916

The variance across these runs is minimal, indi- 917

cating that model performance on MultiFileTest 918

is stable and reproducible, further supporting the 919

benchmark’s reliability. 920

C.3 Changed LOC Statistics of Manual Fixing 921

We calculated the average number of lines of code 922

(LOC) changed during manual fixing for Python 923

projects across all models in Table 12. We observe 924

that the amount of manual edits is modest and con- 925

sistent across models. These findings suggest that 926

while models frequently produce errors, many are 927

shallow and fixable with minimal human effort, 928

which reinforces the value of human-in-the-loop 929

and LLM-self-fix workflows. 930

12

https://github.com/datamllab/rlcard/tree/master/rlcard/games/blackjack
https://github.com/datamllab/rlcard/tree/master/rlcard/games/bridge
https://github.com/datamllab/rlcard/tree/master/rlcard/games/doudizhu
https://github.com/seatgeek/fuzzywuzzy/tree/master/fuzzywuzzy
https://github.com/datamllab/rlcard/tree/master/rlcard/games/gin_rummy
https://github.com/keras-team/keras-preprocessing/tree/master/keras_preprocessing
https://github.com/datamllab/rlcard/tree/master/rlcard/games/leducholde
https://github.com/datamllab/rlcard/tree/master/rlcard/games/limitholdem
https://github.com/datamllab/rlcard/tree/master/rlcard/games/mahjong
https://github.com/datamllab/rlcard/tree/master/rlcard/games/nolimitholdem
https://github.com/un33k/python-slugify/tree/master/slugify
https://github.com/dabeaz-course/python-mastery/tree/main/Solutions/7_3
https://github.com/dabeaz-course/python-mastery/tree/main/Solutions/7_6
https://github.com/dabeaz-course/python-mastery/tree/main/Solutions/8_1
https://github.com/dabeaz-course/python-mastery/tree/main/Solutions/8_2
https://github.com/dabeaz-course/python-mastery/tree/main/Solutions/9_2
https://github.com/rushter/MLAlgorithms/tree/master/mla/svm
https://github.com/seatgeek/thefuzz/tree/master/thefuzz
https://github.com/rushter/MLAlgorithms/blob/master/mla/ensemble/tree.py
https://github.com/datamllab/rlcard/tree/master/rlcard/games/uno
https://github.com/open-compass/DevEval/tree/main/benchmark_data/java/Actor_relationship_game/src/main/java/Actor_relationship_game
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/banking%20application
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Calculator-OOPS
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Email_Generator/src/emailgenerator
https://github.com/TheAlgorithms/Java/tree/5ab6356090c17cddd953c801eac4abb6ef48c9f1/src/main/java/com/thealgorithms/datastructures/heaps
https://github.com/adyliu/idcenter
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/LibraryApp/libraryApp
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/LibraryMangement/src
https://github.com/frandorado/spring-projects/tree/master/log-request-response-undertow
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Password_Generator/Password%20Generator/src
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Pong%20Game
https://github.com/mybatis/redis-cache
https://github.com/kishanrajput23/Java-Projects-Collections/tree/main/Online%20Voting%20System/Online_Voting_System/src/main/java/vote/com/servlet
https://github.com/abhpd/hacktoberfest2021/tree/main/Java/Projects/SimpleChat
https://github.com/frandorado/spring-projects/tree/master/spring-data-mongo-with-cluster
https://github.com/frandorado/spring-projects/tree/master/spring-micrometer-undertow
https://github.com/frandorado/spring-projects/tree/master/spring-reactive-nonreactive
https://github.com/frandorado/spring-projects/tree/master/spring-upload-s3-localstack
https://github.com/abhpd/hacktoberfest2021/tree/main/Java/Projects/Train
https://github.com/ehmicky/modern-errors/blob/main/src/merge/aggregate.js
https://github.com/mrdoob/three.js/blob/dev/src/animation/AnimationAction.js
https://github.com/ehmicky/modern-errors/blob/main/src/subclass/check.js
https://github.com/schteppe/p2.js/blob/master/src/shapes/Circle.js
https://github.com/simple-statistics/simple-statistics/blob/main/src/ckmeans.js
https://github.com/mrdoob/three.js/blob/dev/src/extras/Controls.js
https://github.com/schteppe/p2.js/blob/master/src/shapes/Convex.js
https://github.com/alienkitty/space.js/blob/main/src/tween/Easing.js
https://github.com/alienkitty/space.js/blob/main/src/extras/Magnetic.js
https://github.com/schteppe/p2.js/blob/master/src/utils/OverlapKeeper.js
https://github.com/schteppe/p2.js/blob/master/src/shapes/Particle.js
https://github.com/drawcall/Proton/blob/master/src/render/PixelRenderer.js
https://github.com/schteppe/p2.js/blob/master/src/shapes/Plane.js
https://github.com/schteppe/p2.js/blob/master/src/solver/Solver.js
https://github.com/drawcall/Proton/blob/master/src/math/Span.js
https://github.com/mrdoob/three.js/blob/dev/src/math/Spherical.js
https://github.com/defx/synergy/tree/master/src
https://github.com/simple-statistics/simple-statistics/blob/main/src/t_test.js
https://github.com/ehmicky/modern-errors/blob/main/src/subclass/validate.js
https://github.com/drawcall/Proton/blob/master/src/zone/Zone.js

Model Type Model Name License Link
Close-sourced GPT-4-Turbo - https://platform.openai.com/docs/models/gpt-4#gpt-4-turbo-and-gpt-4
Close-sourced GPT-3.5-Turbo - https://platform.openai.com/docs/models/gpt-4#gpt-3-5-turbo
Close-sourced GPT-o1 - https://platform.openai.com/docs/models#o1
Close-sourced Gemini-2.0-Flash - https://ai.google.dev/gemini-api/docs/models/gemini#gemini-2.0-Flash
Close-sourced Claude-3.5-Sonnet - https://www.anthropic.com/claude/sonnet
Open-sourced CodeQwen1.5-7B-Chat Tongyi Qianwen LICENSE AGREEMENT https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat
Open-sourced DeepSeek-Coder-6.7b-Instruct DEEPSEEK LICENSE AGREEMENT https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
Open-sourced CodeLlama-7b-Instruct-hf LLAMA 2 COMMUNITY LICENSE AGREEMENT https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
Open-sourced CodeGemma-7b-it Gemma Terms of Use https://huggingface.co/google/codegemma-7b-it

Table 9: Model Details.

Model GPT-4-Turbo GPT-3.5-Turbo GPT-o1 Gemini Claude CodeQwen DeepSeek-Coder CodeLlama CodeGemma
Python 98% 99% 98% 89% 99% 97% 96% 99% 88%
Java 97% 90% 98% 98% 97% 89% 94% 85% 93%
JavaScript 100% 89% 96% 100% 100% 100% 96% 86% 100%

Table 10: Percentages of the Vanilla Unit Tests Containing Expected and Actual Value Comparisons.

System Prompt: You are a coding assistant. You generate only source
code.
User Prompt: {Original Codes} Please generate enough unit test cases
for each java file in the {method_signature} project. Ensure to use mock
properly for unit tests. Make sure the tests can successfully compile.
Make sure the tests have correct results. Try to achieve the highest
coverage rate.

Vanilla Prompt for Java

Figure 7: The prompt used to generate unit tests for Java
projects.

System Prompt: You are a coding assistant. You generate only source
code.
User Prompt: {Original Codes} Please generate enough unit test cases
for every javascript file in {method_signature} project. Make sure the
tests can successfully compile. Make sure the tests have correct results.
Try to achieve the highest coverage rate.

Vanilla Prompt for JavaScript

Figure 8: The prompt used to generate unit tests for
JavaScript projects.

C.4 Comparison with Other Methods931

We use the ChatUnitest (Chen et al., 2024) Maven932

Plugin and follow Wang et al. (2024) to evaluate933

GPT-3.5-Turbo on Java projects. HITS not only934

uses iterative debugging, but also uses sophisticated935

techniques like method slicing to improve unit test936

performance. These results, as shown in Table 13,937

further emphasize the difficulty of MultiFileTest, as938

even the iterative debugging and complex method939

still achieve low coverage rates. This comparison940

helps validate our benchmark and encourages fur-941

ther innovation in LLM-driven test generation.942

We conduct additional experiments with Evo-943

Suite (Fraser and Arcuri, 2011), a leading search-944

based test generation tool for Java. Table 13945

presents the Line Coverage (LC) and Branch Cov-946

erage (BC) of EvoSuite compared to GPT-o1 on947

Java projects. The results show that vanilla LLMs948

fall behind EvoSuite, while LLM self-fixing has949

comparable performance with EvoSuite under this950

multi-file unit test generation setting.951

System Prompt: You are a coding assistant. You generate only source
code.
User Prompt: {Original Codes} # classname_test.py\n # Test class of
{classname}.\n # Please generate enough unit test cases for each python
file in the {method_signature} project. Ensure that the import path is
correct, depending on whether the project is structured as a package.
Make sure the tests can successfully compile. Make sure the tests have
correct results. Try to achieve the highest coverage rate. \n # class
{classname_test}\n

Prompt for Python with Comment Sign

Figure 9: The prompt used to generate unit tests for
Python projects.

Metric Run 1 Run 2 Run 3 Mean Variance Std Dev
CR 0.37 0.34 0.37 0.36 0.0003 0.0141
ComR 0.60 0.65 0.65 0.633 0.0003 0.0236
LC 38% 40% 39% 39% 0.0001 0.01
BC 34% 37% 35% 35.3% 0.00015 0.0122

Table 11: Performance Metrics across Multiple Runs
Using GPT-3.5-Turbo on Python.

D Ablation Study 952

D.1 Ablation Study on Prompts 953

We perform a detailed ablation study to analyze 954

the impact of prompts on the performance of unit 955

test generation by LLMs. As mentioned in § 3.3, 956

the prompt is composed of programming language- 957

specific requirements (PL), as well as requirements 958

related to the correctness rate (CR), the compila- 959

tion rate (ComR), and the coverage rate metrics 960

(Coverage). We ablate each component and an- 961

alyze the performance of unit test generation of 962

GPT-4-Turbo using different prompts as shown in 963

Table 14. Requirements related to CR and ComR 964

can help improve performance in vanilla unit tests. 965

Coverage-related requirements are not always ben- 966

eficial, possibly because a high coverage rate is 967

too abstract for LLMs to interpret effectively. Pro- 968

gramming language-specific requirements improve 969

performance in CR but have the opposite effect on 970

ComR, LC, and BC. 971

13

Model GPT-4 GPT-3.5 GPT-o1 Gemini-2.0 Claude-3.5 CodeQwen1.5 DeepSeek CodeLlama CodeGemma
LOC Changed 2.45 3.35 3.15 3.15 4.05 3.4 2.35 3.0 3.4

Table 12: Lines of code changed during manual fixing for Python projects.

Method Model CR ComR LC BC
Vanilla GPT-3.5-Turbo 13 25 8 7
Manual fix GPT-3.5-Turbo 54 100 36 27
Self-fix GPT-3.5-Turbo 17 25 11 12
HITS GPT-3.5-Turbo 75 80 41 29
Vanilla GPT-o1 41 60 44 35
Manual fix GPT-o1 64 100 65 56
Self-fix GPT-o1 68 85 58 54
EvoSuite - - - 55 57

Table 13: Comparison with Traditional Method Evo-
Suite and LLM-based Methods HITS on Java Projects.

Phase Settings CR ComR LC BC #Tests #Correct

Vanilla

Full Prompt 47 65 40 36 12.60 6.15
w/o CR 33 ↓ 65 42 38 12.75 4.75
w/o ComR 35 63 ↓ 41 38 11.20 3.95
w/o Coverage 43 75 46 ↑ 42 ↑ 9.80 4.20
w/o PL 47 75 53 49 9.95 4.35
w/ Comments 41 65 45 41 10.65 4.15

Manual

Full Prompt 74 100 65 59 12.60 9.30
w/o CR 76 ↑ 100 69 64 12.75 9.90
w/o ComR 75 100 70 65 11.20 8.35
w/o Coverage 68 100 66 ↑ 61 ↑ 9.80 6.75
w/o PL 70 100 70 66 9.95 6.90
w/ Comments 66 100 68 62 10.65 7.00

Table 14: Ablation Study. The Performance of Unit Test
Generation by GPT-4-Turbo Using Different Prompts.

Besides, we follow the prompt template from972

previous work like Siddiq et al. (2024) to move973

the prompts into comments (e.g., /*...*/). We com-974

pare the performance with and without comment975

signs in Table 14. Experimental results show that976

our prompt demonstrates a significant advantage in977

CR, while the prompt with comment signs exhibits978

marginal advantages in ComR, LC, and BC.979

D.2 Effect of Compilation Errors and980

Cascade Errors981

We manually fix only compilation errors and evalu-982

ate the corrected unit tests in Table 15.983

By fixing compilation errors, Table 15 shows sig-984

nificant improvements across all programming lan-985

guages and LLMs compared to Table 2, indicating986

that all the programming languages and LLMs are987

highly sensitive to compilation errors. Comparing988

Table 15 with Table 3, we can observe that Code-989

Qwen1.5, CodeGemma, and CodeLlama are more990

sensitive to cascade errors. For Java, the changes991

in Table 3 compared to Table 15 are primarily due992

to missing or invalid mocks of user interactions9993

9We consider coverage rates as not applicable when requir-

Model CR ComR LC BC #Tests #Correct
Python

GPT-4-Turbo 73 100 65 59 12.60 9.10
GPT-3.5-Turbo 63 100 62 56 16.90 10.40
GPT-o1 89 100 88 85 36.35 32.25
Gemini-2.0-Flash 61 100 71 68 34.95 22.10
Claude-3.5-Sonnet 92 100 74 70 18.05 16.40
CodeQwen1.5 40 100 65 59 25.40 9.60
DeepSeek-Coder 53 100 60 54 7.20 4.10
CodeLlama 26 100 56 50 19.30 6.15
CodeGemma 30 100 52 47 15.00 6.15

Java
GPT-4-Turbo 59 100 42 34 7.05 5.05
GPT-3.5-Turbo 48 100 37 29 7.50 4.20
GPT-o1 62 100 67 56 15.70 10.50
Gemini-2.0-Flash 55 100 54 53 23.30 15.00
Claude-3.5-Sonnet 73 100 63 57 12.35 9.60
CodeQwen1.5 49 100 49 39 12.95 7.50
DeepSeek-Coder 40 100 36 19 7.00 2.85
CodeLlama 30 100 26 21 7.85 4.25
CodeGemma 46 100 44 26 10.50 5.55

JavaScript
GPT-4-Turbo 89 100 75 59 16.30 14.15
GPT-3.5-Turbo 71 100 56 44 13.25 10.65
GPT-o1 91 100 92 79 39.40 35.15
Gemini-2.0-Flash 76 100 88 80 45.85 33.30
Claude-3.5-Sonnet 83 100 75 66 20.25 16.75
CodeQwen1.5 28 100 29 22 8.45 5.65
DeepSeek-Coder 66 100 58 43 11.85 8.05
CodeLlama 28 100 20 15 48.75 21.40
CodeGemma 45 100 43 30 9.00 5.75

Table 15: Evaluation Results When Only Manually Fix-
ing Compilation Errors.

which occur more frequently in unit tests generated 994

by CodeQwen1.5 and CodeGemma. 995

E Detailed Error Analyses 996

We conduct complex analyses of compilation, cas- 997

cade, and post-fix errors, highlighting the common 998

errors and potential reasons behind the errors. 999

Compilation Error Analyses Figure 10 high- 1000

lights the detailed compilation errors that occurred. 1001

One of the most common compilation errors in 1002

Python arises from the LLM’s inability to deter- 1003

mine whether the project being tested is a package. 1004

Specifically, LLMs struggle to recognize the pres- 1005

ence or absence of __init__.py files, which define 1006

a package, leading to confusion between package- 1007

based and non-package projects. This inability 1008

leads LLM to fail to correctly import functions or 1009

classes from the tested project. Other compilation 1010

errors include hallucinating the paths or names of 1011

ing user interactions.

14

imported functions/classes and mismatched paren-1012

theses. Java, a syntax-heavy programming lan-1013

guage compared to Python and JavaScript, encoun-1014

ters various compilation errors, resulting in a signif-1015

icantly lower compilation rate than other languages.1016

Java compilation errors often arise from issues like1017

hallucinated methods, constructors, or classes, such1018

as incorrect or non-existent imports and references.1019

Missing essential information, such as required1020

functions, classes, or packages, and package dec-1021

larations, is also a common problem. Errors fre-1022

quently occur due to illegal access to private or1023

protected elements, invalid code generation (e.g.,1024

generating text instead of code), and improper use1025

of mocking frameworks like Mockito, including1026

incorrect objects, missing or misused MockMvc1027

injections, and argument mismatches. Other errors1028

include incorrect usage of other functions, classes,1029

or packages—such as argument type errors, am-1030

biguous references, or incompatible types. One of1031

the most common compilation errors in JavaScript1032

is the hallucination of imported functions or classes,1033

where the issue often lies in incorrect paths for the1034

imported functions or classes. CodeQwen1.5 has a1035

particularly common compilation error involving1036

invalid generation. This typically occurs due to1037

difficulty understanding the prompt, the need for1038

more specific or detailed code requirements, or the1039

assumption that the code is part of a larger project,1040

leading it to decline generating unit tests. Other1041

compilation errors include test suites containing1042

empty unit tests and syntax errors caused by incom-1043

plete code generation or mismatched parentheses.1044

Cascade Error Analyses Figure 11 highlights1045

the detailed cascade errors that occurred. For1046

Python, the cascade errors include missing imports1047

of commonly used packages such as numpy and1048

unittest, missing imports of functions or classes1049

from the tested project, and FileNotFoundError.1050

For Java, the most common cascade error is miss-1051

ing or invalid mocking of user interactions. A1052

proper unit test should simulate user interactions1053

through mocking rather than relying on real user1054

inputs. This issue also results in unusable coverage1055

reports for some tested projects, as the error forces1056

an abrupt termination, preventing the generation1057

of coverage data. For JavaScript, the cascade er-1058

rors include missing imports of commonly used1059

packages such as chai and three, and missing im-1060

ports of functions or classes from the tested project.1061

Two other common errors specific to JavaScript1062

C
om

pi
la

tio
n

E
rr

or
A

na
ly

si
s

Python

Confuse between non-package and package-based projects

Hallucinate the imported functions/classes:
1. Paths of the imported functions/classes are wrong
2. Names of the imported functions/classes are wrong

Syntax Error: Mismatched parentheses

Java

Hallucinate methods/constructors/functions/classes:
1. Paths of the imported functions/classes are wrong
2. Names of the imported functions/classes are wrong
3. Non-existed methods/constructors

Missing information:
1. Required functions/classes/packages are missing
2. Required package information is missing
3. Unreported exception

Illegal access to private/protected functions/classes

Invalid generation:
1. Generate textual instructions instead of codes 2. Block by model

Incorrect use of mocking:
1. Wrong objects provided to Mockito
2. Missing MockMvc injection 3. Inappropriate mockmvc
4. Argument mismatch

Incorrect use of other functions/classes/packages:
1. Arguments type error 2. Ambiguous reference
3. Incompatible types

JavaScript

Hallucinate the imported functions/classes:
1. Paths of the imported functions/classes are wrong

Invalid generation:
1. Cannot understand the prompt 2. Require more/specific codes
3. Assume the codes are part of a larger project and
decline to generate unit tests

Test suits have empty unit tests

Syntax Error:
1. Incomplete generation 2. Mismatched parentheses

Figure 10: Frequent Compilation Errors in Main Re-
sults.

are that LLMs may confuse named imports with 1063

default imports and fail to comply with the Jest 1064

framework. 1065

Post-Fix Error Analyses Figure 12 highlights 1066

the incorrectness reasons after all manual fixes. 1067

For all programming languages, the mismatch be- 1068

tween expected and actual values (AssertionError) 1069

is the most common error. Another frequent error 1070

in Python is AttributeError, typically caused by 1071

LLMs hallucinating non-existent attributes. Other 1072

frequent problems in Java include NullPointer Er- 1073

rors, zero interactions with mocks, and failures to 1074

release mocks, often due to improper mock usage. 1075

For projects tested with the Spring framework, er- 1076

rors specific to Spring are also common. Another 1077

frequent error in JavaScript is TypeError, mostly 1078

caused by LLMs hallucinating non-existent func- 1079

tions and constructors or LLMs invalidly mocking 1080

some variables. 1081

F Comparison with Other Benchmarks 1082

Table 16 presents a comprehensive comparison 1083

of major code evaluation datasets across multiple 1084

dimensions. Among these, MultiFileTest stands 1085

out as the first benchmark specifically designed 1086

15

Dataset Language Code Level Multi-file TestGen Size Avg. #Files Self-contained Error Analyses Error Fixing
HumanEval (Chen et al., 2021) Python Function % % 164 1 ! % %

ClassEval (Du et al., 2023) Python Class % % 100 1 ! % %

SWE-bench (Jimenez et al.) Python Multi-file ! % 12 - ! % %

TestEval (Wang et al., 2025) Python Function % ! 210 1 ! % %

TestGenEval (Jain et al., 2024a) Python Single-file % ! 1,210 1 % ! %

DevBench (Li et al., 2024) Python, Java, C/C# Multi-file ! !

–

20 4.20 ! % %

MultiFileTest (ours) Python, Java, JavaScript Multi-file ! ! 60 4.92 ! ! !

Table 16: Benchmarks comparison. “TestGen” refers to whether the benchmark is designed for unit test generation.
“Self-contained” refers to whether the data sample is independent rather than being part of a larger project. !

–

indicates partial satisfaction of the condition. “Error Analyses” refers to specific error analyses for unit test
generation by LLMs.

C
as

ca
de

E
rr

or
A

na
ly

si
s Python

Required functions/classes/libraries are missing:
1. Import numpy or unittest.mock
2. Import functions/classes of the tested project

FileNotFoundError

Java Missing/Invalid mock of user interactions

JavaScript

Required functions/classes/libraries are missing:
1. Import chai or three
2. Import functions/classes of the tested project

Confuse between name import and default import

Do not follow the Jest framework

Figure 11: Frequent Cascade Errors.

Po
st

-fi
x

E
rr

or
A

na
ly

si
s Python

1. AttributeError 2. AssertionError 3. TypeError 4. ValueError
5. IndexError 6. _csv.Error 7. NameError 8. KeyError 9. Others

Java

1. Mismatch between expected and received 2. NullPointer Error
3. Zero interactions with mock 4. Failed to release mocks
5. MissingMethodInvocation 6. Misplaced or misused argument matcher
7. Spring framework error 8. NoSuchElement 9. Others

JavaScript
1. Mismatch between expected and received 2. TypeError 3. RangeError
4. RuntimeError 5. ReferenceError 6. SyntaxError 7. Others

Figure 12: Frequent Post-Fix Errors.

for multi-language, multi-file unit test generation1087

with robust error analysis capabilities. We particu-1088

larly highlight the distinction between DevBench1089

and MultiFileTest: while DevBench addresses1090

broader software engineering tasks across the en-1091

tire development lifecycle, MultiFileTest is specif-1092

ically designed for unit test generation, providing1093

60 projects (20 per language) compared to De-1094

vBench’s smaller subset for unit testing. Further-1095

more, MultiFileTest uniquely offers fine-grained1096

error analysis and both manual fixing and LLM1097

self-fixing mechanisms, which are not present in1098

DevBench. This makes MultiFileTest particularly1099

valuable for evaluating and improving LLMs’ ca-1100

pabilities in generating functional test suites for1101

multi-file software projects.1102

G Comparison between Unique1103

Contribution and Other Metrics1104

While alternative metrics such as test execution1105

time or lines of code provide valuable insights1106

in single-project contexts, they present significant 1107

challenges in multi-project benchmarks. The het- 1108

erogeneous nature of our benchmark—spanning 1109

diverse programming languages, project scales, 1110

and architectural paradigms—makes these conven- 1111

tional metrics difficult to normalize meaningfully 1112

across projects. Test execution times fluctuate 1113

based on external dependencies and environmental 1114

factors, while code size metrics vary substantially 1115

due to languages and coding styles. In contrast, our 1116

unique contribution metric offers a project-agnostic 1117

measurement framework that maintains consistent 1118

interpretability across the entire benchmark suite. 1119

It provides a standardized proxy for test utility that 1120

transcends project boundaries. This normalized 1121

approach enables meaningful cross-project com- 1122

parisons that would be impractical with traditional 1123

metrics, addressing the specific evaluation require- 1124

ments of diverse multi-project benchmarks. 1125

H Discussion on Context Window 1126

Limitations 1127

To address the context window limitation, we 1128

identify three primary lines of methods that have 1129

emerged in recent research. 1130

The first line focuses on extending context win- 1131

dows to accommodate larger codebases directly. 1132

Recent models demonstrate dramatic improve- 1133

ments, expanding from early limits of thousands 1134

of tokens to millions by 2024. LongRoPE (Ding 1135

et al.) extends pre-trained LLMs to 2048k tokens 1136

with minimal fine-tuning while maintaining per- 1137

formance at shorter context windows. Llama 4 1138

Scout (Meta, 2025) achieves a 10 million token 1139

context window. 1140

The second line of methods employs Retrieval- 1141

Augmented Generation (RAG) to provide only im- 1142

portant context instead of full context. This ap- 1143

proach involves indexing codebase components 1144

and dependencies, then dynamically retrieving only 1145

16

the code segments most relevant to the target func-1146

tion for test generation (Lewis et al., 2020; Athale1147

and Vaddina, 2025; Zhang et al., 2023). This1148

methodology enables scalability while maintain-1149

ing dependency awareness without overwhelming1150

the context window.1151

The third approach utilizes hierarchical decom-1152

position to break down large codebases into man-1153

ageable components (Almorsi et al., 2024; Mündler1154

et al., 2024). Often, this is achieved through agent-1155

like methods that employ multi-pass strategies.1156

These agents first analyze the high-level structure,1157

then progressively focus on specific components1158

while maintaining broader context awareness. This1159

allows for the effective handling of larger systems1160

by managing contextual information at different1161

abstraction levels and enabling specialized agents1162

to tackle sub-problems.1163

While these approaches show promise for scal-1164

ing to production-size codebases, they introduce1165

confounding variables that would complicate fair1166

evaluation of core LLM test generation capabil-1167

ities. Our benchmark’s constraint to 1600 lines1168

of code enables evaluation without truncation, re-1169

trieval strategies, or hierarchical preprocessing, al-1170

lowing fair comparison across models with differ-1171

ent context lengths. This approach isolates our core1172

evaluation target—the model’s ability to generate1173

unit tests—rather than testing long-context man-1174

agement or external tooling. The three methods1175

discussed above represent important future direc-1176

tions once foundational test generation capabilities1177

are well-established and benchmarked at the scale1178

our current LLM capabilities can reliably handle.1179

17

	Introduction
	Related Work
	Traditional Unit Test Generation
	LLM-enhanced Unit Test Generation
	LLM Unit Test Generation Benchmark

	Methodology
	Benchmark Dataset
	Evaluation Metrics
	Unit Test Generation

	Experimental Settings
	Models
	Implementation Details

	Experiments
	Main Results
	Manual Fixing Results
	LLMs Self-fixing Results
	Unique Contribution of Unit Tests
	Error Analyses

	Conclusion
	Dataset
	More Implementation Details
	Prompts
	Models

	More Experiments and Statistics
	Assert Statistics
	Robustness Analysis
	Changed LOC Statistics of Manual Fixing
	Comparison with Other Methods

	Ablation Study
	Ablation Study on Prompts
	Effect of Compilation Errors and Cascade Errors

	Detailed Error Analyses
	Comparison with Other Benchmarks
	Comparison between Unique Contribution and Other Metrics
	Discussion on Context Window Limitations

