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Gait Recognition in Large-scale Free Environment via Single
LiDAR

Anonymous Authors

(a) various crowd density and occlusion across different scenes (b) LiDAR point clouds of scene 3  (c) sequences of 2 subjects 

Figure 1: We propose FreeGait, a new LiDAR-based in-the-wild gait dataset under various crowd density and occlusion across
different real-life scenes. FreeGait is captured in diverse large-scale real-life scenarios with free trajectory, resulting in various
challenges such as 1. occlusions, 2. noise from crowd, 3. noise from carrying objects and etc., as shown in the right part.

ABSTRACT
Human gait recognition is crucial in multimedia, enabling identi-
fication through walking patterns without direct interaction, en-
hancing the integration across various media forms in real-world
applications like smart homes, healthcare and non-intrusive secu-
rity. LiDAR’s ability to capture depth makes it pivotal for robotic
perception and holds promise for real-world gait recognition. In this
paper, based on a single LiDAR, we present the Hierarchical Multi-
representation Feature Interaction Network (HMRNet) for robust
gait recognition. Prevailing LiDAR-based gait datasets primarily
derive from controlled settings with predefined trajectory, remain-
ing a gap with real-world scenarios. To facilitate LiDAR-based
gait recognition research, we introduce FreeGait, a comprehensive
gait dataset from large-scale, unconstrained settings, enriched with
multi-modal and varied 2D/3D data. Notably, our approach achieves
state-of-the-art performance on prior dataset (SUSTech1K) and on
FreeGait. Code and dataset will be released upon publication
of this paper.

CCS CONCEPTS
• Computing methodologies → Biometrics; Activity recogni-
tion and understanding.

KEYWORDS
Gait Recogntion, Human-centric Multimedia Understanding, Li-
DAR point cloud
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1 INTRODUCTION
Gait is a promising biometric feature for human identification [4, 8,
9, 12, 14, 19, 22] that is difficult to disguise and can be captured from
a distance without intrusive interactions. This characteristic is par-
ticularly significant for multimedia applications [21, 39, 42, 46, 50],
where the seamless integration of information across various media
forms is paramount. For example, in smart homes and IoT environ-
ments, gait recognition tailors user experiences by automatically
adjusting environmental controls to individual preferences based on
their movement patterns. Gait recognition also provides advanced
diagnostic and monitoring tools in healthcare, offering insights
into patient health and flagging potential issues, thus integrating
essential health data with multimedia systems for improved pa-
tient management. Additionally, its non-intrusive nature makes
gait recognition ideal for security and surveillance, enabling pas-
sive monitoring in environments where conventional methods may
be too invasive. Despite being a subject of extensive research for
decades, human gait recognition continues to be highly relevant and
holds significant potential in the evolving multimedia landscape.

Existing large-scale LiDAR-based gait datasets [31] are predomi-
nantly collected within controlled lab environments where subjects
follow a predetermined routine in a limited space. This lab setting
often prompts participants to walk in a manner they believe is ex-
pected, potentially skewing their natural gait. Instructions to walk
along a straight line, maintain a certain speed, or repeatedly traverse
a marked path can render the collected data artificial, contrasting
sharply with the spontaneous and varied movements typical in
real-world scenarios. This discrepancy creates a gap between lab-
collected gait data and the naturalistic human gait in complex real
environments.

To bridge this gap in human gait recognition, we introduce Free-
Gait, a comprehensive dataset captured in open public areas such
as subway exits, school gates, and sidewalks (see Figure 1). This
dataset encompasses 1,195 subjects of diverse ages and genders, all
walking freely in large-scale, unconstrained settings that reflect
true pedestrian behavior in both sparse and crowded conditions.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Besides 2D silhouettes and 3D point clouds, FreeGait provides di-
verse data representations, including 2D/3D poses and 3D Mesh &
SMPL models, fostering extensive research opportunities.

FreeGait enhances the gait dataset landscape with several novel
features:

• Naturalism: Data captured from real pedestrians in open
public spaces showcases more authentic walking behaviors
than lab-based datasets.

• Diversity: The dataset features a broader demographic spec-
trum, including varied ages, genders, clothing preferences,
etc.

• Environmental Variability: It captures variations in light-
ing, weather, and other conditions, crucial for developing
robust, adaptable gait recognition algorithms.

• Complex Interactions and Behaviors: The real-world
setting of our dataset allows for the observation of complex
behaviors such as navigating obstacles, walking in groups,
or carrying load. These real-world noises often absent in lab
data but vital for nuanced gait analysis.

Ethical and privacy considerations were paramount in the develop-
ment of FreeGait. We anonymized all subjects by blurring faces and
secured post-event informed consent to ensure ethical integrity in
our research.

Prevailing camera-based methods [4, 8, 9, 12, 19, 22, 35] encoun-
ters performance bottlenecks due to limited 2D visual ambiguities
with view-dependent, illumination-dependent, and depth-missing
properties of images. While RGB-D camera-based methods[11]
have been proposed to extract more depth information for gait fea-
tures, their limited range and inability to function outdoors hinder
their applications. In contrast, LiDAR can capture accurate depth
information in large-scale indoor and outdoor scenes, unaffected by
light conditions. LiDAR point clouds of subjects represent genuine
gait-related geometric and dynamic motion attributes, definitely
benefiting gait-based identification. A pioneering LiDAR-based gait
recognition study, LiDARGait[31], employs range view projected
from point clouds, demonstrating the capability and effectiveness
of LiDAR. However, its dimensionality reduction inevitably dimin-
ishes the undistorted geometric and dynamic gait information in
the original 3D point clouds.

Recognizing that dense and regular range views projected from
LiDAR point clouds enhance human body structure extraction,
which are what sparse and unordered raw point clouds lack, we
present a gait recognition approach using projected range view
and raw point cloud representations. It can be applied in large-
scale scenarios and varying light conditions, making it practical for
intelligent security and assistive robots. We introduce the Hierar-
chical Multi-representation Feature Interaction Network, dubbed
HMRNet, that synergizes the dense range view with raw point
clouds. The range branch focuses on dense and regular body struc-
ture, while the point branch extracts the geometric information and
explicitly models gait-related motion through our motion-aware
feature embedding. Given huge domain gap between two LiDAR
representations, we design an adaptive cross-representation map-
ping module to effectively fuse their features. By extracting multi-
resolution features, we ensure both local fine-grained and global

semantic gait features are captured. After obtaining comprehen-
sive fusion gait features, our gait-saliency feature enhancement
module, utilizing a channel-wise attention mechanism, enhance
gait-informative features for precise identification.

The main contributions can be summarized below.

• Based on a single LiDAR, we propose a novel gait recognition
method that effectively captures both dense body structure
features from LiDAR range views and gait-related geometric
and motion information from raw point clouds, which is
applicable for real-world scenarios without light and view
constraints.

• We propose a large-scale in-the-wild free-trajectory gait
recognition dataset with diverse real-world scenarios, data
modalities, and data representations, which can facilitate the
gait community to conduct rich exploration.

• Our method achieves state-of-the-arts performance on previ-
ous LiDAR-based gait dataset (SUSTech1K) and our FreeGait.

2 RELATEDWORK
Gait RecognitionMethods. Previous gait recognitionmethods [17,
21, 36, 39, 42, 46, 50] primarily use 2D image representation and
fall into appearance-based and model-based approaches. The for-
mer [4, 8, 9, 12, 14, 19, 22] relies on silhouettes from RGB images,
making performance dependent on segmentation quality and caus-
ing difficulty in identifying humans with changed clothes or cross
views. Model-based methods [20, 29, 35] employ skeletons to cap-
ture genuine gait characteristics, but are heavily limited by model-
based estimation methods. To address depth ambiguity in 2D, some
methods [3, 11, 27, 44] employ RGB-D cameras for 3D gait fea-
tures. Yet, depth cameras are limited to indoor scenes with confined
sensing range. Recent 3D representation-based approaches[49] gen-
erate 3D meshes from RGB images, but are sensitive to quality and
can introduce cumulative errors. [1, 2] explore view-robust gait
recognition frameworks based on LiDAR point cloud. However,
they all project 3D point cloud into 2D depth map for feature ex-
traction, losing original 3D geometric information and resulting
in limited performance. While LiDARGait [31] shows promising
results by projecting LiDAR point clouds into dense range views, it
still lacks essential geometric and dynamic information from raw
point clouds. Our approach synergizes range views with 3D point
clouds for superior gait recognition.
Gait Recognition Datasets. Existing open gait datasets [15, 18,
26, 32, 34, 40, 45, 51] primarily use silhouettes and are limited to
controlled environments, making them unsuitable for real-world
applications. GREW[51] addresses this by collecting a dataset in an
open area for practical applications. Gait3D[49] attempts to solve
the distortion problem in view-dependent images, but the auxiliary
3D mesh from RGB images still cannot represent the real depth
and 3D motion properties. SZTAKI-LGA[2] collects a LiDAR-based
gait dataset, capturing accurate depth information in large-scale
scenes, but includes only 28 subjects and limited sequences, insuf-
ficient for evaluating learning-based approaches. A recent work
introduces a LiDAR-based gait dataset, SUSTech1K[31], with 1,050
subjects. However, it is captured in constrained environments with
predefined routes, creating a gap compared to real-life scenarios.
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Figure 2: Examples of diverse visual modalities and 2D/3D representations in FreeGait.

To advance LiDAR-based gait recognition for real-world applica-
tions, we collect a novel dataset with multi-modal visual data and
diverse representations in large-scale, unconstrained environments,
providing a more accurate and realistic reflection of gait behaviors
in real-life situations.
LiDAR-based Applications. LiDAR captures accurate depth infor-
mation in large-scale scenarios and is unaffected by light conditions,
making it popular in autonomous driving and robotics. Numerous
LiDAR-based detection and segmentation methods [5, 24, 28, 41]
have emerged, playing a significant role in 3D perception. Subse-
quently, numerous human-centric applications[7, 23, 31, 43, 48],
such as pose estimation, motion capture, gait recognition, scene
reconstruction, etc., have incorporated LiDAR to expand usage sce-
narios and improve performance of solutions by utilizing location
and geometry features of LiDAR point clouds. We belive that the
accurate depth-sensing capability of LiDAR can aslo denefinitly
benefits in-the-wild gait recognition.

3 FREEGAIT DATASET
Most prevailing datasets[32, 33, 45] instruct actors to walk on pre-
defined paths in controlled settings. While some in-the-wild gait
datasets[49, 51] have been conducted in real-world contexts, they
rely solely on cameras and lack 3D human dynamics. Recently, [31]
claims a LiDAR-based gait dataset, but within constrained settings.
In contrast, our FreeGait is a totally free-gait dataset recorded in
varied real-world scenarios, from sparse to crowded pedestrian
areas. It contains rich data modalities and representations, offering
the potential for advanced gait recognition research in practical
settings.

3.1 Data Acquisition and Statistics
We create a multi-modal capture device assembling a 128-beam
OUSTER-1 LiDAR and a camera, calibrated and synchronized at
10fps. The LiDAR offers a 360° × 45° FOV, while the camera records
at 1,920 × 1,080. Positioned at 0°, 90°, and 180° angles in scenes, three
capture devices capture humans at a range of 25 meters. FreeGait
includes 1,195 subjects (660 males, 535 females), with 51 recorded in
low-light. The dataset is captured in real-world scenarios without
any predefined paths. We select 500 subjects for training and 695
for testing, totaling 11, 921 sequences. Each subject averages 10
sequences, more than other in-the-wild datasets like Gait3D (6
sequences) and GREW (5 sequences).

Figure 3: Examples of predifine walking path in constained
environments on SUSTech1K [31], contravenes the free gait
patterns observed in real-world scenarios.

3.2 Annotations
During data preprocessing, 2D silhouettes are obtained using a 2D
detection method[10] and segmentation method[38], while point
clouds are detected and cropped using a 3D detector[6]. In our
dataset, obtaining consecutive frames of personal gait is particu-
larly challenging due to multiple people in one scene. To achieve
more accurate tracking performance, we integrate LiDAR and cam-
era information. For point cloud-based 3D tracking, we employ
the Hungarian matching algorithm, while initial ID tracking is per-
formed using Byte-Track[47] to refine the results. Importantly, to
ensure high-quality annotations, we manually correct the tracking
ID for crowded scenarios with occlusions.

3.3 Characteristics
FreeGait offers special characteristics not available in existing LiDAR-
based gait datasets. We highlight three main distinctions below. A
detailed comparison with current public datasets can be found in
Table 1.

Large-scale Capture Distance. In real-world scenarios, gait serves
as a more practical biometric for long-distance person identification
than face or fingerprint recognition. Existing gait datasets[31, 32]
typically have a capture distance about 12 meters. With the ad-
vantages of LiDAR’s long-range sensing, FreeGait is captured in
diverse large-scale real-life scenarios, extending the effective human
perception distance to approximately 25 meters. This large-scale
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Table 1: Comparison with public datasets for gait recognition. “Silh”. and “Infr” mean silhouette and infrared, “Crowd” denotes
the capture scenes involving multiple persons at the same time in uncontrolled settings, and “D&N” represents day and night
during data acquisition. The dataset marked with ∗ is no longer available.

Dataset Sensor Subject Capture Distance(m) Data Type 3D Free Scene
Structure Trajectory Real-world Crowd D&N

CASIA-B [45] Camera 124 N/A RGB, Silh. % % % % %

CASIA-C [34] Camera 153 N/A Infrared, Silh. % % % % %

TUM-GAID∗ [11] RGB-D & Audio 305 3.6 Audio, Video, Depth % % % % %

SZTAKI-LGA [2] LiDAR 28 N/A Point Cloud ! ! % ! %

OU-MVLP [33] Camera 10,307 8 Silh. % % % % %

GREW [51] Camera 26,345 N/A Silh., 2D/3D Pose, Flow % ! ! ! %

Gait3D [49] Camera 4,000 N/A Silh., 2D/3D Pose, 3D Mesh&SMPL ! ! ! ! %

CASIA-E [32] Camera 1,014 8 Silh., Infr % % % % %

CCPG [18] Camera 200 N/A Silh., RGB % % % % %

SUSTech1K [31] LiDAR & Camera 1,050 12 Silh., RGB, Point Cloud ! % % % !

FreeGait LiDAR & Camera 1,195 25 Silh., Point Cloud, 2D/3D Pose,3D Mesh&SMPL ! ! ! ! !

capture range enhances FreeGait’s applicability in real-world gait
applications.

Real-world Scenarios. To authentically represent human gait,
FreeGait is recorded in real-world settings. Unlike prior datasets
that utilize predefined trajectories in controlled environments [31,
45], FreeGait’s subjects walk without any constraints, resulting
in diverse and practical view variations, as well as more natural
challenging factors such as various carrying and dressing, complex
and dynamic background clutters, illumination, walking style and
etc.

Crowd. Since FreeGait is captured in natural environments, fre-
quently features multiple persons per scenario, making gait recog-
nition more challenging than in recent SUSTech1K [31]. Notably,
occlusions in crowded settings bring challenges for gait recognition
due to incomplete or noisy data. While these crowded conditions
pose annotation challenges, they are crucial for evaluating algorith-
mic robustness and advancing real-world gait-related research and
applications. More dataset statistics and examples are detailed in our
supplementay.

3.4 Privacy Preservation
We obey privacy-preserving guidelines. FreeGait was constructed on
campus with authorized device placements along walkways. Ethical
discussions are detailed in the appendix.

4 METHODOLOGY
4.1 Problem Definition
Given a LiDAR-based gait recognition dataset P = {P 𝑗

𝑖
| 𝑖 =

1, 2 . . . , 𝑁 ; 𝑗 = 1, 2, . . . ,𝑚𝑖 } with N individuals and 𝑚𝑖 sequences
for each individual 𝑑𝑖 . Each sequence P 𝑗

𝑖
consists of fixed𝑇 frames

of raw LiDAR point clouds 𝑌 = {y𝑡 }𝑇𝑡=1 and projected LiDAR
range views 𝑋 = {x𝑡 }𝑇𝑡=1, where y𝑡 ∈ R𝑁×3 is the 𝑡𝑡ℎ frame of
point clouds and x𝑡 ∈ R𝐻×𝑊 is the 𝑡𝑡ℎ frame of range views.
For a given LiDAR point cloud of each subject, we convert each
point 𝑝𝑖 = (𝑥,𝑦, 𝑧) to spherical coordinates and finally to 2D pixel

coordinates, using the following projection function [16]:(
𝑢𝑛

𝑣𝑛

)
=

( 1
2

[
1 − arctan(𝑦, 𝑥 )𝜋−1] 𝑤[

1 −
(
arcsin

(
𝑧𝑟−1

)
+ fup

)
f−1

]
ℎ

)
, (1)

where (𝑢𝑛, 𝑣𝑛) denotes range view coordinates, (ℎ,𝑤) is the height
and width of the desired range view predefined by the inherent
parameters of the LiDAR. f = fup+fdown is the vertical field-of-view
of the sensor, and 𝑟 = ∥𝑝𝑖 ∥2 is the range of each point. Then, we
crop and resize the range view with each subject to a resolution of
64 × 64. We aim to learn a network 𝑁𝜃 (·) that can map the inputs
to feature embedding F 𝑗

𝑖
to represent the corresponding individual

𝑑𝑖 .

4.2 Overview
We propose a hierarchical multi-representation feature interaction
network (HMRNet), a novel point-range gait recognition solution
by taking advantage of LiDAR-projected range views and raw point
clouds. Our pipeline’s overview is shown in Figure 4, taking a
sequence of range viewss and point clouds as input to identify in-
dividuals based on their gait. There are three main procedures in
our network, including hierarchical adaptive cross-representation
mapping (H-ACM), motion-aware feature embedding(MAFE), and
gait-saliency feature enhancement(GSFE). We employ ResNet-like
CNNs [8] and MLPs [25] to extract multi-resolution features from
range views and point clouds, and fuse valuable geometric and
dynamic information hierarchically. Notably, we leverage motion-
aware feature embedding to explicitly model gait-related motion in-
formation frompoint clouds. After hierarchicalmulti-representation
feature interaction, temporal pooling and horizontal pyramid pool-
ing (HPP) are utilized following [8], to gather comprehensive fusion
features. Before final identification, we employ gait-saliency fea-
ture enhancement module to highlight gait-informative features,
benefiting from the channel-wise attention mechanism.

4.3 Hierarchical Adaptive Cross-representation
Mapping

Raw point clouds, while rich in gait characteristics, present chal-
lenges in fine-grained feature extraction due to their sparsity and
unordered nature. Conversely, range views projected from LiDAR
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Figure 4: The pipeline of our method.We extract dense body structure information from range views, and undistorted geometric
and motion features via motion-aware feature embedding (MAFE) from point clouds. Then, adaptive cross-representation
mapping module (ACM) is applied to fuse two-representation features at different levels hierarchically. Lastly, the gait-saliency
feature enhancement (GSFE) module is leveraged to highlight more gait-informative features for final identification.

point clouds offer dense and regular pixel representations, facil-
itating structural body feature extraction via CNNs. To combine
advantages of both, we hierarchically integrate the two LiDAR rep-
resentations for comprehensive features. However, fusing range
view and 3D point features is non-trivial due to their inherent dif-
ferences. Leveraging the transformer’s capability to glean valuable
global features, we utilize cross-attention to automatically search
correspondences between two representation features, fuse critical
gait-related information. Specifically, we structure 3D point features
using range features as Query 𝑄 and point features as Key 𝐾 and
Value 𝑉 . This dense querying from range to point yields a fusion
feature rich in geometric and dynamic motion details, further bene-
fiting distinguishing individuals. The adaptive cross-representation
mapping is depicted in the left part of Figure 4. We obtain the atten-
tion map via𝑄 ×𝐾 . Following softmax normalization, the attention
map weights point features to amplify the range feature.

Although raw point cloud contains rich gait characteristics, their
sparsity, and unordered nature brings challenges for fine-grained
feature extraction. Conversely, range views projected from LiDAR
point clouds offer dense and regular pixel representations, allowing
for easy extraction of structural body features using CNNs. To com-
bine advantages of both LiDAR representations, we hierarchically
integrate the two representation information to obtain a compre-
hensive feature. However, there exists a significant gap between
range view feature and 3D point feature, making it challenging to
effectively fuse the two representation features. Benefiting from
the transformer mechanism in acquiring valuable features in global

context, we adopt cross-attention to automatically search the cor-
respondences between two representation features, and then fuse
critical gait-related information. Especially, to organize 3D point
features in a structural representation, we take range feature as
Query 𝑄 and point feature as Key 𝐾 and Value 𝑉 for conducting
cross attention. By dense queries from range to point, we obtain a
multi-representation fusion feature, consisting of rich geometric
and dynamic motion information, which further benefits distin-
guishing individuals. Detailed operations of our adaptive cross-
representation mapping process are illustrated in the left part of
Figure 4. We obtain the similarity attention map by 𝑄 × 𝐾 . Then,
the attention map is further processed by a softmax normalization
and used to weight point features to enhance the range feature:

𝐹𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = softmax

(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉 . (2)

The final fusion feature 𝐹𝑓 𝑢𝑠𝑖𝑜𝑛 is acquired through the feed-forward
network (FFN) and layer normalization in transformer[37] by

𝐹𝑓 𝑢𝑠𝑖𝑜𝑛 = 𝐿𝑁 (𝐹𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 + 𝐹𝐹𝑁 (𝐹𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛)) . (3)

Considering that different levels of features usually represent dif-
ferent contents, we design a hierarchical feature fusion mechanism
to capture more comprehensive gait-related features. In particular,
we leverage the adaptive cross-representation mapping module
at two different levels to aggregate complementary low-level geo-
metric features and high-level semantic features, as shown in the
middle of Figure 4.
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Table 2: Comparison with SOTA methods of gait recognition on FreeGait and SUSTech1K.

Input Methods FreeGait SUSTech1K

Rank-1↑ Rank-5↑ mAP↑ Rank-1↑ Rank-5↑ mAP↑

Silhouette

GaitSet [4] 57.13 71.87 64.01 65.22 84.91 74.26
GaitPart [9] 52.26 64.95 58.54 59.29 80.79 69.18
GLN [12] 52.21 68.69 60.01 65.78 84.76 74.49

GaitBase [8] 62.64 75.30 68.57 77.50 90.22 83.44

Silhouette&SMPL SMPLGait [49] 53.39 69.25 60.93 66.34 85.08 74.95

Silhouette&Key Point SMPLGait [49] 57.97 73.02 65.12 69.75 86.68 77.60

3D Key Point GaitGraph [35] 14.69 27.81 21.74 2.09 6.59 5.27

Point Cloud
PointNet [30] 42.48 62.48 52.05 37.31 65.01 50.11
PointMLP [25] 57.61 76.68 66.30 68.86 90.32 78.55
LiDARGait [31] 74.15 88.75 80.66 86.81 95.98 91.08

Point Cloud HMRNet(ours) 80.76 93.64 86.53 90.23 97.54 93.66

4.4 Motion-aware Feature Embedding
Body part movements across successive frames are essential for ef-
fective gait recognition. However, existing LiDAR-based gait recog-
nition methods rarely model motion information explicitly. By in-
corporating 3D raw point clouds that retain comprehensive pedes-
trian motion information, we can explicitly model gait-related dy-
namic information through point-wise flow. In each stage of point
branch, imagine each anchor point 𝑝𝑡

𝑖
at frame 𝑡 after farthest

point sampling(FPS), 𝑝𝑡
𝑖
is represented by its Euclidean coordinates

x𝑡
𝑖
∈ R3 and a feature vector f𝑡

𝑖
∈ R𝑐 from point encoder with

MLPs [25]. We learn to aggregate its local geometric and dynamic
motion feature by the neighboring 𝑘 points (𝑘 = 16) of 𝑝𝑡

𝑖
in the

same frame N(𝑝𝑡
𝑖
) and nearby frame N ′ (𝑝𝑡−1

𝑖
). As shown in Fig-

ure 5, for each pair (𝑞𝑡
𝑗
, 𝑞𝑡−1

𝑗
) in N(𝑝𝑡

𝑖
) and N ′ (𝑝𝑡−1

𝑖
) respectively,

we pass the difference of their origin Euclidean coordinates into
MLPs to obtain the motion-aware feature embedding𝑚𝑡

𝑗
∈ R𝑐 in

hidden states of neighboring point 𝑞𝑡
𝑗
. Then, we get the local geo-

metric feature with motion information for neighboring points by
element-wise addition of their geometric feature 𝑓 𝑡

𝑗
and motion

embedding𝑚𝑡
𝑗
. Finally, we aggregate them by element-wise pooling

and update the feature vector for every anchor point 𝑝𝑡
𝑖
. The above

operations can be formulated as:

ℎ(𝑝𝑡𝑖 ) = 𝑀𝐴𝑋
𝑞𝑡
𝑗
∈N(𝑝𝑡

𝑖
)
{(𝑓 𝑡𝑗 + 𝜁 (𝑥𝑡𝑗 − 𝑥

𝑡−1
𝑗 )}, (4)

where 𝜁 means MLP layers,𝑀𝐴𝑋 denotes element-wise max pool-
ing, + is element-wise summation.

4.5 Gait-saliency Feature Enhancement
For the hierarchical fusion features, we use temporal pooling and
Horizontal Pyramid Pooling (HPP)[8], producing a comprehensive
feature vector with 𝑝 (𝑝 = 16) strips 𝑓𝑠 ∈ R𝑐 (𝑐 = 512).

Believing that different channel-wise feature maps represent
various gait-related attributes with differing importance for gait
recognition. To leverage this insight, we introduce a gait-saliency

t-1 t Flow

pt
i

pt−1
i

𝒩′ (pt−1
i )

𝒩(pt
i )

qt
j

qt−1
j

Figure 5: The procedure of point-wise flow to learn motion
relation between two adjacent frames.

feature enhancement module that utilizes a channel-wise attention
mechanism [13]. Our gait-saliency feature enhancement module
can adaptively recalibrate channel-wise feature responses by explic-
itly modeling interdependencies between channels, and reweight-
ing the input feature map to emphasize informative information.
Consequently, our network efficiently highlights significant gait-
related features while reducing the impact of redundant features,
leading to more accurate gait recognition. Lastly, we combine gait-
saliency enhancement features of various strips and obtain the final
gait feature 𝑓𝛽 ∈ R𝑐 (𝑐 = 256) for further loss computation through
a feature head with multi-FC layers.

5 EXPERIMENTS
5.1 Overview
In this section, we outline our evaluation, training, and inference
details, followed by comprehensive comparison results. Ablation
studies highlight our network’s effectiveness, and we also analyze
its robustness under cross-views, low-light conditions and various
sequence length.
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Table 3: Evaluation with different attributes on SUSTech1K valid + test set. We compare our method with silhouette-based
SOTA method GaitBase, LiDAR-based SOTA method PointMLP and LiDARGait.

Input Methods Probe Sequence (Rank-1 acc) Overall

Normal Bag Clothing Carrying Umbrella Uniform Occlusion Night Rank1 Rank5

Silhouette GaitBase [8] 83.09 79.34 50.95 76.98 77.34 77.31 83.46 26.65 77.50 90.22

Point Cloud PointMLP [25] 76.03 71.91 57.09 68.08 58.29 63.28 79.25 70.75 68.86 90.32
LiDARGait [31] 91.91 88.61 75.27 88.99 67.55 81.19 94.73 90.04 86.81 95.98

Point Cloud HMRNet(Ours) 92.71 92.34 79.55 90.27 83.14 86.19 95.15 90.35 90.23 97.54

5.2 Evaluation Protocol
For each test subject, one sequence is chosen randomly as the gallery
set, with remaining sequences as the probe sets. We use Rank-k
and mean Average Precision (mAP) as evaluation metrics. Rank-k
measures the likelihood of finding at least one true positive in the
top-k ranks, whereas mAP computes average precision across all
recall levels. We present the average Rank-1, Rank-5, and mAP for
the entire test set.

5.3 Implementation Details
For FreeGait, we resize the silhouettes to 128×88, similar to Gait3D [49].
Each LiDAR point cloud frame is resampled to 𝑁 = 256 points via
farthest point sampling(FPS), normalized by setting its center as
the origin while preserving original orientations. Range views are
cropped and resized to 64 × 64, following LiDARGait [31]. For
SUSTech1K [31], we resample the point clouds to 512 points using
FPS, as they have an average of 800 points compared to FreeGait’s
300 points. Other input settings remain consistent with the paper.
All methods, except LiDARGait and our HMRNet, are trained with
Adam optimizer with a weight decay of 0.0005 and an initial learn-
ing rate of 0.001 on the two benchmarks. We employ multi-step
learning rate reduction by a factor of 0.1 at the 10,000th and 30,000th
iterations, with a total of 50,000 iterations. For LiDARGait and our
HMRNet, we maintain the same training procedure on both bench-
marks. During the training stage, each input sequence consists of
10 frames, approximating the average length of a human gait cycle.
In the training stage, the loss can be formulated as follows:

𝐿𝑐𝑙𝑠 = −
𝑆∑︁

𝑝=1

𝐶∑︁
𝑐=1

𝑔𝑡𝑠,𝑐 log
(
softmax

(
𝑓𝛼𝑠

) )
𝑐 , (5)

where 𝑔𝑡𝑠,𝑐 indicates the identity information of the 𝑠𝑡ℎ strip, which
equals 0 or 1. 𝐿𝑡𝑟𝑖 is used to optimize the inter-class and intra-class
distance, which is computed by

𝐿𝑡𝑟𝑖 =

[
𝐷

(
𝑓
𝐴𝑖

𝛽
, 𝑓

𝐴 𝑗

𝛽

)
− 𝐷

(
𝑓
𝐴𝑖

𝛽
, 𝑓

𝐵𝑘

𝛽

)
+𝑚

]
+
, (6)

where 𝐴𝑖 and 𝐴 𝑗 are samples from the same class 𝐴, while 𝐵𝑘
denotes the sample from another class. 𝐷 (𝑑𝑖 , 𝑑 𝑗 ) is the Euclidean
distance between 𝑑𝑖 and 𝑑 𝑗 and𝑚 is the margin of the triplet loss.
The operation [𝛾]+ equals to𝑚𝑎𝑥 (𝛾, 0). The overall loss function
can be formulated as

𝐿 = 𝛼𝐿𝑡𝑟𝑖 + 𝛽𝐿𝑐𝑙𝑠 . (7)

We set the batch size to (𝑝 = 16, 𝑘 = 4) on our FreeGait and
(𝑝 = 8, 𝑘 = 8) on SUSTech1K [31], where 𝑝 and𝑘 denote the number
of subjects and their corresponding training samples, respectively.

5.4 Comparison with SOTA Methods
Table 2 compares our method with state-of-the-art (SOTA) gait
recognition techniques on the FreeGait and SUSTech1K datasets.
Our approach outperforms exisiting sota methods LiDARGait [31],
showing improvements of 6.61% and 3.42% in Rank-1 accuracy for
FreeGait and SUSTech1K, respectively. These achievements stem
from our effective combination of 3D geometry and dynamic mo-
tion gait features. Silhouette-based methods suffer from distorted
body shapes in view-dependent images, impacting performance.
Though 3D SMPL and KP of FreeGait and SUSTech1K are based
on the SOTA LiDAR-based mocap method [48], their accuracy
is yet to be validated. We evaluated point-based gait recognition
using PointNet[30] and PointMLP[25] extractors, followed by a
recognition head. These point-based methods grapple with sparse
representation especially in distant scenes, but PointMLP[25], lever-
aging local feature grouping, showcases the promise in point-based
gait recognition. LiDARGait [31] mitigates point sparsity and dis-
order by converting them into a dense range-view representation,
achieving notable results. However, this conversion can compro-
mise the original rich 3D geometric and dynamic motion data from
raw point clouds. Conversely, our HMRNet extracts dense body
structures from range views and accurately captures the raw point
clouds’ geometry and motion. It hierarchically processes both local
fine-grained and global semantic features, benefiting gait feature
extraction.

We also report the results with different attributes on SUSTech1K
in Table 3. Our method outperforms LiDARGait in Bag (+3.73%),
Clothing (+4.28%), Umbrella (+15.59%), Uniform (+5.00%) by
a large margin, especially in Umbrella (+15.59%). As shown in
Figure 6, this is because the distorted geometric body structure
from range view alone cannot bridge the gap in cases with serious
appearance variance between gallery set and probe set, due to the
lack of dynamic gait-related information. In contrast, our HMRNet
effectively captures both dense body structures and explicitly mod-
els gait-related motion, resulting in more robust performance even
in challenging scenarios.
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Figure 6: The exemplar range views on SUSTech1K [31] in
four different attributes with serious appearance variance
between gallery set and probe set.

5.5 Ablation for Network Design.
We verify the effectiveness of our proposed module by gradually
applying the hierarchical adaptive cross-representation mapping(H-
ACM) in a point-range setting, motion-aware feature embedding(MAFE),
and gait-saliency feature enhancement(GSFE). The baseline is to
keep only the range branch in our method, and the ablation results
are shown in Table 4. (1) The effective integration of dense and regu-
lar body structures from range-view representation, combined with
the undistorted geometric and dynamic motion information from
point clouds, effectively complements one another. This results in
a substantial enhancement in performance, thereby affirming the
significance of our H-ACM. (2)MAFE explicitly models gait-related
motion information through point clouds, preserving pedestrian
motion details in 3D scenes and resulting in better performance.
(3) Different features show varying importance for gait recognition
across channels. Our GSFE module enhances gait-saliency features
using a channel-wise attention mechanism, leading to further im-
provement in performance.

Table 4: Ablation studies for network modules on FreeGait.

Network Module Rank-1
Baseline H-ACM MAFE GSFE

! 74.29

! ! 78.85

! ! ! 80.28

! ! ! ! 80.76

Table 5: Rank-1 accuracy under cross views and low-light
conditions on FreeGait dataset.

Input Methods Cross views Night

Silhouette GaitBase [8] 30.31 30.83

Point Cloud LiDARGait [31] 59.62 73.33

Point Cloud HMRNet(Ours) 68.47 79.17

5.6 More Analysis of Robustness.
To assess HMRNet’s robustness in real-world conditions, we test its
performance under cross views and low-light scenarios. The results
affirm HMRNet’s robust adaptability.

(1) Cross Views. We select a subset from the probe set, angled
approximately 90◦ to the gallery set for evaluation. As shown in Ta-
ble 5, GaitBase’s performance declines significantly in cross-views
due to its reliance on appearance features, struggling with drastic
view changes. LiDARGait can capture geometric body features from
range-view, making it more view-tolerant. However, our method
is the most robust to cross views, benefiting from the injection of
dynamic gait cues from raw point clouds.

Figure 7: Average rank-1 accuracy with increasing testing
frames on FreeGait dataset.

(2) Low-light Conditions. To highlight the advantage of LiDAR’s
insensitivity to light and the robustness of our approach, we select
27 subjects with 120 sequences collected in low-light conditions for
evaluation. As shown in Table 5, the performance of 2D methods
drops significantly in low-light conditions. The quality of the image
can greatly impact the performance of the algorithm, resulting in
poor human segmentation results. However, LiDAR-based methods,
including LiDARGait and our HMRNet, can work both day and
night, achieving stable performance even in the Night subset.

(3) The Influence of Sequence Length. We sample continuous 5-30
frames from each test set sequence for experiments and obtain the
corresponding Rank-1 accuracy in Figure 7 to analyze the influence
of sequence length in inference. Our method achieves remarkable
results with just one gait cycle (about 10 frames) and maintains the
best performance as the sequence length increases.

6 CONCLUSION
In this paper, we propose a new gait recognition method with
an effective hierarchical multi-representation feature interaction
network. We also propose a large-scale gait recognition dataset,
which is collected in free environments and provides diverse data
modalities and 2D/3D representations. Our method achieves state-
of-the-art performance through extensive experiments. Both our
novel solution and dataset can benefit further research on in-the-
wild gait recognition.
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