
Accelerated PDEs for Construction and Theoretical
Analysis of an SGD Extension

Yuxin Sun1 Dong Lao2 Ganesh Sundaramoorthi3 Anthony Yezzi1
1Georgia Institute of Technology, 2UCLA & KAUST, 3Raytheon Technologies

{syuxin3,ayezzi}@gatech.edu, lao@cs.ucla.edu, ganesh.sundaramoorthi@rtx.com

Abstract

We introduce a recently developed framework (PDE acceleration), which is a
variational approach to accelerated optimization with partial differential equations
(PDE), in the context of optimization of deep networks. We derive the PDE evo-
lution equations for optimization of general loss functions using this variational
approach. We propose discretizations of these PDE based on numerical PDE dis-
cretizations, and establish a mapping between these discretizations and stochastic
gradient descent (SGD). We show that our framework can give rise to new PDEs
that can be mapped to new optimization algorithms, and thus theoretical insights
from the PDE domain can be used to analyze optimization algorithms. We show
an example by introducing a new PDE with diffusion that naturally arises from
the viscosity solution, which translates to a novel extension of SGD. We analyt-
ically analyze the stability and convergence using Von-Neumann analysis. We
apply the proposed extension to optimization of convolutional neural networks
(CNNs). We empirically validate the theory and evaluate our new extension on
image classification showing empirical improvement over SGD.

1 Introduction

Acceleration (momentum) and Nesterov acceleration are now standard in optimizing deep networks
by stochastic gradient descent (SGD) and its variants, although the underlying principles of these
methods are still under development. Understanding the principles behind these methods could
lead to new improved optimization methods. To this end, [27] showed that Nesterov’s accelerated
optimization [15] can be formulated as a discretization of an ordinary differential equation (ODE) [23]
arising from a variational principle, i.e., the Principle of Least Action in classical physics. Several
new optimization schemes have since arisen from different discretizations of the same ODE [22]. An
extension of this approach from the ODE framework into the PDE framework was done in [24, 3],
which allowed for the accelerated optimization of multi-dimensional problems. New optimization
methods were formulated arising in particular from various discretizations of the underlying PDE [3].

In this work, we study SGD with momentum within the framework of Accelerated PDE and PDE
numerical discretization. We establish a mapping from SGD with momentum to Accelerated PDE.
This allows one to derive new extensions of SGD by translating new PDE naturally arising within
the Accelerated PDE framework into numerical discretizations, which map back to extensions of
SGD. We propose a novel extension of SGD in this way, and apply it to optimization of CNNs. The
derivation of the method from numerical discretization of Accelerated PDE allows us to establish
stability and convergence results. More specifically, our contributions are

1. We show how SGD with momentum can be related to discretizations of an Accelerated PDE.
2. Within this Accelerated PDE framework, we introduce a diffusion term arising from the viscosity

solution (2) of the PDE.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

3. We show how the discretization of the viscosity solution of this Accelerated PDE translates to a
simple modification of the usual SGD with momentum, leading to a new optimization scheme.

4. We exploit the discretizations of the Accelerated PDE to show that our new optimization scheme
is stable/convergent provided that the original SGD with momentum scheme is stable/convergent.

1.1 Related Work

Many extensions of SGD (e.g. [7, 29, 10, 10, 2, 13]) have been proposed (see [4] for a survey) and
there has been rigorous analysis of some of these methods (e.g. [21]). A framework to derive methods
could lead to further understanding and new optimization schemes. Our goal is to take a small step
in this direction by applying the Accelerated PDE framework [24] to study SGD with momentum
under discretizations of PDE. In this regard, Wibisono, Wilson, and Jordan [27] showed that all
Nesterov type accelerated descent methods [15, 18, 19, 16, 17] can be realized as discretizations of
equations of motion (ODE) arising from an Action Integral of a generalized Lagrangian. Following
the Lagrangian formulation, [24, 3] developed an accelerated PDE framework and applied it to
computer vision problems. [24] introduced the use of diffusion motivated from Viscosity Theory [5],
allowing the use of entropy discretizations to address shocks/fans in the resulting PDE. The PDE
acceleration framework was further developed in [3] in the context of calculus of variations problems
defined for functions on Rn, including stability analysis for various discretization schemes. We apply
discretization methods considered there to the novel accelerated PDE that we consider in this paper.

In application to CNNs, our method induces smoothness into optimization by diffusing the velocity,
which has an effect similar to gradient smoothing. [20] considers smoothing the stochastic gradient by
applying a Laplacian smoothing operator. [11] smooths along certain 1D directions of convolutional
weight tensors using Sobolev gradients. While both methods [20, 11] are 1D, our diffusion can induce
multi-dimensional smoothing with little implementation effort and computational cost.

2 Continuum PDE Acceleration Theory

We consider minimizing a loss function of the form U : U → R where U = {u : Ω ⊂ RN → R} is a
set of N -dimensional functions. In subsequent sections, U will represent a continuum version of the
space of weight tensors at a particular layer of a network. The argument of u, denoted x, will be called
the "spatial" argument. We derive the continuum evolution equations for accelerated optimization,
which are PDE, and discretize the PDE in the next section for numerical implementation.

The formulation below to derive the optimization equations of a loss function is derived from
Hamilton’s principle of least action in classical physics [1, 14]. Following [24], we start with an
action integral, defined on possible optimization paths ut : Ω → R of U , where t denotes the
parameter (time) along the path, and its velocity (in the tangent space of U) Vt : Ω→ R. We suppress
t from now on for simplicity of notation. The action integral is defined as

A =

∫
[ãT (V)− b̃U(u)]dt, (1)

where the path and its velocity are related as ∂tu = V , ã, b̃ are functions only of time that give rise to
dissipative forces and will be specified, T (V) is the kinetic energy, and U is the loss function to be
minimized, analogous to the potential. For the purpose of this paper, the kinetic energy is defined as
T (V) =

∫
Ω

1
2ρ(x)|V (x)|2dx, where ρ(x) is the mass density, which for this paper is chosen to be 1.

The stationary conditions are derived by computing the first variation of A and result in the equations:

∂tu = V, ∂tV = −∇U(u)− aV + b∇2V, (2)
where ∂t denotes the time derivative,∇ is the spatial gradient,∇2 is the spatial Laplacian, a = ∂tã/ã

is chosen to be a positive constant, b̃ is chosen to be 1, and b > 0. Note that the diffusion term
(Laplacian term) results from the PDE viscosity solution to ensure existence of a solution [5]. The
above system of equations is a forward (in time) evolution that starts with initial conditions on u and
V . We may write the above first order PDE system as a second order in time PDE, which results in

∂ttu+ a∂tu = −∇U(u) + b∇2∂tu, (3)
where a, b > 0 are considered hyperparameters of the optimization, with a interpretated as a damping
coefficient that leads to convergence, and b interpretated as a diffusive coefficient. The above equation

2

resembles a wave equation, except for the fact that the spatial Laplacian term is on the velocity rather
than u; this induces regularity on the velocity or the optimization in contrast to regularity within the
loss function, which would have led to the standard wave equation.

3 Discretization of Accelerated PDE, Relation to SGD, and Analysis

3.1 Semi-Implicit Euler Discretization of the Accelerated PDE

We discretize the first two time derivatives in (3) using central differences, and the last time derivative
with a backward difference. The last time derivative uses a backward difference as a central difference
with the spatial derivative approximations would require an implicit scheme, requiring solution of a
linear system, which we would like to avoid for simplicity.

To obtain systems which more closely resemble the classic two-part Nesterov recursion, we propose
a semi-implicit Euler style discretization as considered in [3]. To do this, we replace the explicit
discretization ∇Un of the gradient with a "predicted estimate”, ∇̂Un+1, of ∇Un+1 evaluated at a
projected location of un, denoted wn, as follows:{

wn = un + 2−a∆t
2+a∆t∆u

n−1 + 2∆t
2+a∆tb∇

2∆un−1

un+1 = wn − 2∆t2

2+a∆t∇U (wn)
(4)

where ∆un = un − un−1, and ∆t is the time-step of the time discretizations. The spatial Laplacian
above is discretized using its standard discretization as

∇2d(x) =

N∑
k=1

d(x+ ek∆x)− 2d(x) + d(x− ek∆x)

∆x2
, d = ∆un−1 (5)

where x is the (spatial) argument of the tensor, ek is the unit vector in the kth direction, and ∆x is the
spatial discretization amount (assumed to be uniform in all N directions).

3.2 Relation to SGD With Nesterov Momentum

We establish a link between the Semi-Implicit Euler discretization (4) of the Accelerated PDE and
SGD, which shows how quantities in the PDE discretization (e.g., step size, damping) translate to the
quantities in SGD (e.g., learning rate, momentum), and vice-versa. This shows how the discretization
of the Accelerated PDE (3), which gives rise to a novel extension of SGD, can be implemented with
conventional deep learning frameworks.

Theorem 1. The semi-implicit scheme (4) can be written as the following modification of SGD with
Nesterov momentum1 (SGD-Nesterov):

vn+1 = γvn +∇θJ(θn) + β∇2vn (6)

θn+1 = θn − η[∇J(θn) + γvn+1 + β∇2vn+1] (7)

where γ, η, β are functions of the time step ∆t and damping a. γ is the momentum, and η is the
learning rate. The mapping of SGD-Nesterov to our Semi-Implicit Euler Scheme (4) is done by setting

θn = wn, vn+1 = −2 + a∆t

2∆t2
∆un, η =

2∆t2

2 + a∆t
, γ =

2− a∆t

2 + a∆t
, β =

2b∆t

2 + a∆t
, (8)

and J = U . Notice in the case that the diffusion coefficient is set to b = 0 (β = 0), (6), (7) reduce to
standard SGD with Nesterov momentum.

The mapping from SGD-Nesterov to the Semi-Implicit Euler Scheme (4) as

wn = θn, ∆un = −ηvn+1, ∆t =

√
2 · η
γ + 1

, a =
2− 2 · γ√

2 · η · (γ + 1)
. (9)

1Note the form above is Pytorch’s version of Nesterov momentum, which is equivalent to the classical version
in [25], see Appendix E.

3

3.3 Stability and Convergence Analysis

Using the mapping between the Accelerated PDE and SGD, we are able to use methods of analysis
in numerical PDE to analyze properties of our new SGD extension, in particular stability and conver-
gence of the new SGD extension. We compute the Courant–Friedrichs–Lewy (CFL) condition of the
schemes, which are necessary conditions for convergence, to analyze the stability and convergence of
the discretizations proposed in the previous section by applying Von-Neuman analysis [26], which
involves analysis in the Fourier domain. By doing so, we can show the following theorem.
Theorem 2 (CFL Conditions for Accelerated Discretizations). The Semi-Implicit Euler (4) Scheme
with addition of diffusion term will maintain stability and converge provided that the time step ∆t,
the spatial step ∆x, and the diffusion coefficient b satisfy the relation:

b∆t ≤ 1

2N
∆x2, (10)

where N is the dimension of the functions in U .

The maximum diffusion b (β) for a given time step that yields a stable/convergent scheme is

bmax =
1

2N∆t
=⇒ βmax =

1 + γ

4N
(11)

where we have chosen ∆x = 1. We experiment with varying amounts of diffusion relative to βmax.

4 Experiments
4.1 Empirical Validation of Stability Analysis

Figure 1: Stability of SGD extension

We empirically validate the condition in Theorem 2. We
use the Cifar10 dataset and ResNet56 [8] with diffusion
added to the BN weight tensor velocity (other tensors and
architectures show similar behavior) and with the rest of
the network trained on standard SGD with Nesterov. As
shown in Figure 1, the training is stable with the maximum
stable diffusion, βmax. However, if we raise the diffusion
amount to over βmax, the training becomes unstable and
fails to converge. The experiment shows the accuracy of
the bound in Theorem 2 and the validity of PDE analysis
for analyzing a deep learning optimization algorithm.

4.2 Empirical Analysis of Diffusion Effect

We analyze the behavior of the diffusion term on various choices of velocity tensors in optimization
of a CNN. We study diffusion over various dimensions of 4D conv tensors, i.e., spatial dimensions of
kernels, input/output directions, batch norm tensors. To isolate the effect of diffusion from empirically
chosen hyperparameters (e.g., learning rate schedules) that are optimized for standard SGD, we study
the case of fixed learning rates, which is also more common in PDE-driven optimization methods.

Test accuracy (average over 10 trials) against SGD-Nesterov (no diffusion) for Cifar-10 on ResNet-56
are shown in Table 1 (diffusion amounts are in terms of βmax and amounts above βmax are achieved
by lowering the step size) and Table 2. For diffusion coefficients which exceed the maximum stable
diffusion for a specific time step, the time is reduced to ensure the stability of the system. For 2
and 4 times of the maximum stable diffusion, we divide the time step by 2 and 4 respectively and
recalculate the corresponding learning rate and momentum with equation(4). Other hyperparameters
(e.g., momentum) are set to current practice. All diffusion amounts improve performance for batch
norm layers over all learning rates and conv directions except at small learning rates. We are currently
studying how to exploit the larger boosts for large learning rates to construct schedules for the learning
rate and diffusion. In the meantime, with current schedules and training techniques optimized for
standard optimizers, we do see statistically significant improved performance for diffusion to batch
norm layers (see appendix), though at a diminished level.

4

Diffusion

Layer 0.25 0.5 1 2 4

None(SGD) 80.52 80.52 80.52 80.52 80.52
Conv Output 84.90 85.62 86.15 87.02 87.70
Conv Input 83.72 83.45 83.00 84.20 84.55

Conv Spatial 81.50 82.97 81.50 81.66 81.29
BN Weight 81.54 82.28 81.51 82.61 83.78

BN Bias 81.04 81.43 80.81 81.57 82.01

Table 1: Fixed learning rate of 0.2 results.

Learning Rate

Layer 0.2 0.1 0.01

None(SGD) 80.52 85.84 90.25
Conv Output 86.15 88.91 86.87
Conv Input 83.00 86.63 85.64

Conv Spatial 81.50 86.04 88.42
BN Weight 81.51 86.49 90.27

BN Bias 80.81 86.11 90.32

Table 2: Fixed diffusion of βmax results.

References
[1] Vladimir Igorevich Arnol’d. Mathematical methods of classical mechanics. Vol. 60. Springer

Science & Business Media, 2013.
[2] Yoshua Bengio. “Rmsprop and equilibrated adaptive learning rates for nonconvex optimiza-

tion”. In: corr abs/1502.04390 (2015).
[3] Minas Benyamin et al. “Accelerated variational PDEs for efficient solution of regularized

inversion problems”. In: Journal of Mathematical Imaging and Vision 62.1 (2020), pp. 10–36.
[4] Léon Bottou, Frank E Curtis, and Jorge Nocedal. “Optimization methods for large-scale

machine learning”. In: Siam Review 60.2 (2018), pp. 223–311.
[5] Michael G Crandall and Pierre-Louis Lions. “Viscosity solutions of Hamilton-Jacobi equa-

tions”. In: Transactions of the American Mathematical Society 277.1 (1983), pp. 1–42.
[6] Ekin D Cubuk et al. “Autoaugment: Learning augmentation policies from data”. In: arXiv

preprint arXiv:1805.09501 (2018).
[7] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for online learning

and stochastic optimization”. In: Journal of machine learning research 12.Jul (2011), pp. 2121–
2159.

[8] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[9] Gao Huang et al. “Densely connected convolutional networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017, pp. 4700–4708.

[10] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[11] Dong Lao et al. “Channel-Directed Gradients for Optimization of Convolutional Neural
Networks”. In: arXiv preprint arXiv:2008.10766 (2020).

[12] Ilya Loshchilov and Frank Hutter. “Sgdr: Stochastic gradient descent with warm restarts”. In:
arXiv preprint arXiv:1608.03983 (2016).

[13] Liangchen Luo, Yuanhao Xiong, and Yan Liu. “Adaptive Gradient Methods with Dynamic
Bound of Learning Rate”. In: International Conference on Learning Representations. 2019.
URL: https://openreview.net/forum?id=Bkg3g2R9FX.

[14] Jerrold E Marsden and Tudor S Ratiu. Introduction to mechanics and symmetry: a basic
exposition of classical mechanical systems. Vol. 17. Springer Science & Business Media, 2013.

[15] Yurii Nesterov. “A method of solving a convex programming problem with convergence rate
O (1/k2)”. In: Soviet Mathematics Doklady. Vol. 27. 1983, pp. 372–376.

[16] Yurii Nesterov. “Accelerating the cubic regularization of Newton’s method on convex prob-
lems”. In: Math. Program. 112.1 (2008), pp. 159–181.

[17] Yurii Nesterov. “Gradient methods for minimizing composite functions”. In: Math. Program.
140.1 (2013), pp. 125–161.

[18] Yurii Nesterov. “Smooth minimization of non-smooth functions”. In: Math. Program. 103.1
(2005), pp. 127–152.

[19] Yurii Nesterov and Boris T. Polyak. “Cubic regularization of Newton method and its global
performance”. In: Math. Program. 108.1 (2006), pp. 177–205.

[20] Stanley Osher et al. “Laplacian smoothing gradient descent”. In: arXiv preprint
arXiv:1806.06317 (2018).

5

https://openreview.net/forum?id=Bkg3g2R9FX

[21] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. “On the convergence of adam and beyond”.
In: arXiv preprint arXiv:1904.09237 (2019).

[22] Bin Shi et al. “Acceleration via symplectic discretization of high-resolution differential equa-
tions”. In: arXiv preprint arXiv:1902.03694 (2019).

[23] Weijie Su, Stephen Boyd, and Emmanuel Candès. “A differential equation for modeling Nes-
terov’s accelerated gradient method: Theory and insights”. In: Advances in Neural Information
Processing Systems. 2014, pp. 2510–2518.

[24] Ganesh Sundaramoorthi and Anthony Yezzi. “Variational pdes for acceleration on manifolds
and application to diffeomorphisms”. In: Neural Information Processing Systems (2018).

[25] Ilya Sutskever et al. “On the importance of initialization and momentum in deep learning”. In:
Proceedings of the 30th International Conference on Machine Learning. Ed. by Sanjoy Das-
gupta and David McAllester. Vol. 28. Proceedings of Machine Learning Research 3. Atlanta,
Georgia, USA: PMLR, 17–19 Jun 2013, pp. 1139–1147. URL: https://proceedings.mlr.
press/v28/sutskever13.html.

[26] Lloyd Nicholas Trefethen. “Finite difference and spectral methods for ordinary and partial
differential equations”. In: (1996).

[27] Andre Wibisono, Ashia C Wilson, and Michael I Jordan. “A variational perspective on acceler-
ated methods in optimization”. In: proceedings of the National Academy of Sciences 113.47
(2016), E7351–E7358.

[28] Sergey Zagoruyko and Nikos Komodakis. “Wide Residual Networks”. In: CoRR
abs/1605.07146 (2016). arXiv: 1605.07146. URL: http://arxiv.org/abs/1605.07146.

[29] Matthew D Zeiler. “Adadelta: an adaptive learning rate method”. In: arXiv preprint
arXiv:1212.5701 (2012).

A Proof for theorem 1

Proof. First we rewrite the semi-implicit scheme (4) in a Nesterov form. Replacing un in the first
equation with second equation we obtain:

wn+1 = wn − 2∆t2

2 + a∆t
∇U (wn) +

2− a∆t

2 + a∆t
∆un +

2∆t

2 + a∆t
b∇2∆un (12)

Substituting wn in the second equation into the first equation, we obtain:

∆un =
2− a∆t

2 + a∆t
∆un−1 − 2∆t2

2 + a∆t
∇U (wn) +

2∆t

2 + a∆t
b∇2∆un−1 (13)

We now start to map the semi-implicit scheme to SGD with Nesterov momentum using the standard
form in PyTorch. This is in following form:{

vn+1 = γvn +∇θJ (θn)

θn+1 = θn − η
(
∇θJ (θn) + γvn+1

) (14)

where θ is the parameter and v is the momentum buffer, η for learning rate and γ for momentum.

Compared to the equation (12) and (13), we formulate the Nesterov momentum with diffusion as vn+1 = 2−a∆t
2+a∆tv

n +∇θJ (θn) + 2∆t
2+a∆tb∇

2vn

θn+1 = θn − 2∆t2

2+a∆t

(
∇θJ (θn) + 2−a∆t

2+a∆tv
n+1 + 2∆t

2+a∆tb∇
2vn+1

) (15)

Note we can also obtain the relationship between the variables in the two different schemes:

θn = wn

vn = − 2+a∆t
2∆t2 ∆un−1

η = 2∆t2

2+a∆t

γ = 2−a∆t
2+a∆t

wn = θn

∆un = −ηvn+1

∆t =
√

2η
γ+1

a = 2−2γ√
2η(γ+1)

(16)

6

https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1605.07146

B Proof for theorem 2

Proof. We base our analysis on the homogeneous part of the PDE, and neglect the inhomegenous part
of the PDE, i.e., the gradient component∇U , by setting it to zero 2. In this way, the PDE becomes
linear and we may apply the Discrete Fourier Transform (DFT) to the update schemes, which in the
absence of the gradient are identical.

Taking the DFT with respect to x on both sides of the homogeneous part yields

(2 + a∆t)ûn+1(ω) = [4 + 4 b∆t∆x2

∑N
k=1(cosωk∆x− 1)]ûn(ω)−

[2− a∆t+ 4 b∆t∆x2

∑N
k=1(cosωk∆x− 1)]ûn−1(ω)

, (17)

where ω = (ω1, . . . , ωN) represents the spatial frequency, and ûn represents the DFT of un. Assum-
ing a complex amplifier ξ(ω), we may substitute ûn+1(ω) = ξ(ω)ûn(ω) for all n, and thus find the
following equation for ξ:

A︷ ︸︸ ︷
(2 + a∆t) ξ2(ω)−

B︷ ︸︸ ︷
[4 + 4g(ω)] ξ(ω) + [2− a∆t+ 4g(ω)]︸ ︷︷ ︸

C

= 0, g(ω) =
b∆t

∆x2

N∑
k=1

(cosωk∆x− 1)

(18)

Noting that the coefficients of this quadratic polynomial in ξ are all real (and that the leading
coefficient is positive) we may use the Root Amplitude Lemma [3] to show that the stability condition
|ξ| ≤ 1 is obtained if and only if the following two inequalities are satisfied:

A ≥ C : a∆t ≥ 2 b∆t∆x2

∑N
k=1(cosωk∆x− 1)

A+ C ≥ |B| : 2 + 2 b∆t∆x2

∑N
k=1(cosωk∆x− 1)] ≥

∣∣∣2 + 2 b∆t∆x2

∑N
k=1(cosωk∆x− 1)]

∣∣∣ (19)

The upper inequality is satisfied as a, b,∆t,∆x ≥ 0. The bottom inequality is satisfied if and only if
its left hand side is non-negative, leaving us with

∆x2 ≥ b∆t
N∑
k=1

(cosωk∆x− 1) (20)

which, in turn, must be satisfied for all digital frequencies ωk. This yields the result specified in the
Theorem.

C PDE Acceleration Applied to Weight Tensors in CNNs

We now specify how Accelerated PDE are applied to CNNs. For a given layer, θ will denote the
convolutional filters or batch norm weight tensors. In the former case, θ is a 4D tensor, i.e., θ
is a function of h,w (the spatial dimensions of the filters) and i, o (the input and output channel
directions). In the case of batch norm weights, θ is a 1D tensor of the scalings or a 1D tensor of
the bias. See Figure 2.To implement our scheme as a modification of SGD-Nesterov, we specify
the computation of the diffusion term ∇2v, as the other terms are the same as SGD-Nesterov. In
the case of the convolutional filter weight tensor, we can compute the Laplacian in all or a subset
of directions. In experiments, we explore the 2D spatial diffusion, and 1D output and input as well
as the 1D diffusions of the batch norm tensors. The Laplacian is approximated in these directions
with central differences, using (5), but only in the desired subset of the N directions. A Neumann
boundary condition is used.

Our implementation is shown in Algorithm 1, which over standard SGD Nesterov requires just an
extra diffusion computation, as well as a few formulas to compute β to ensure a stable scheme.

2One could analyze the effects of the inhomogeneous component within this framework by linearizing the
gradient, which may have effects on the step size condition. In practice, we approximate the gradient with a
stochastic gradient, which we treat as zero mean noise. Our analysis can be thought of as the analysis where the
diffusive component dominates the effect of this noise.

7

Figure 2: A layer in a CNN visualizing weight tensors (the 4D convolutional filter and the batch
normalization weight tensors). Various directions in the tensors are shown. The diffusion term acting
on the velocity tensors in our Accelerated PDE can be defined along these directions, and we explore
these directional diffusions in the experiments.

Algorithm 1: Nesterov SGD with Diffusion (Semi-Implicit Euler Scheme)

Input: momentum γ, learning rate η,max iterations M, dimensions of diffusion N
Initialize: θ0, v0

1: Compute L0 = ∇2v0 using (5)
2: while n < M do
3: Compute ∆t =

√
2η
γ+1 , and a = 2−2γ√

2η(γ+1)

4: Compute bmax = 1
2N∆t

5: Compute β = 2bmax∆t
2+a∆t

6: Update vn+1 = γvn +∇θJ(θn) + βLn

7: Compute Ln+1 = ∇2vn+1 using (5)

8: Update θn+1 = θn − η[∇J(θn) + γvn+1 + βLn+1]

9: Update n← n+ 1
10: end while

D Image classification experiments

Experiments are shown here on CNNs (DenseNet [9], WideResNet[28]) and datasets (Cifar10,
Cifar100, SVHN, Fashion-MNIST) to evaluate the benefit of adding diffusion. We use the cosine
annealing schedule with warm restarts [12] for all experiments and Auto Augment [6] is also tested.

The diffusion is simply added to the weight of Batch Normalization layer, which is a 1-D tensor. So
the diffusion term in equation (7) is a 1-D spatial Laplacian and we use periodic padding for boundary
condition. And for the first epoch, we use the maximum stable diffusion computed from equation
11 and we reduce the diffusion linearly to zero until the last epoch to achieve the best performance.
Other parameters still use the standard SGD update scheme.

As seen in Table 4, diffusion outperforms standard SGD with statistical significance in these cases.
The experimental results represent the average of 5-10 independent trials. This is just the preliminary
result we have on the practical training schedule. However, we have not done enough research on
how to fit the diffusion in the practical case. There is more potential for the benefit of diffusion and
we will further explore it.

SVHN Fashion MNIST

CNN Augmentation SGD APDE SGD APDE

DenseNet-BC-100-12 Basic 98.18 ± 0.0030 98.25 ± 0.0006 95.22 ± 0.0100 95.38 ± 0.0051
AA 98.45 ± 0.0013 98.51 ± 0.0019 95.81 ± 0.0171 95.87 ± 0.0053

WideResNet-16-4 Basic 98.34 ± 0.0007 98.37 ± 0.0007 95.59 ± 0.0008 95.74 ± 0.0070
AA 98.72 ± 0.0003 98.76 ± 0.0008 95.87 ± 0.0074 95.90 ± 0.0053

Table 3: Test accuracy for SVHN and Fashion MNIST experiment

8

Cifar10 Cifar100

CNN Augmentation SGD APDE SGD APDE

ResNet56 Basic 94.42 ± 0.0253 94.57 ± 0.0081 72.83 ± 0.1344 73.00 ± 0.1600
AA 95.27 ± 0.0188 95.53 ± 0.0091 76.24 ± 0.0642 76.28 ± 0.0151

WideResNet-28-10 Basic 96.25 ± 0.0162 96.49 ± 0.0100 81.26 ± 0.0264 81.51 ± 0.0377
AA 97.35 ± 0.0050 97.52 ± 0.0034 83.70 ± 0.0193 83.80 ± 0.0263

Table 4: Test accuracy for Cifar experiment

E PYTORCH NESTEROV SGD ALGORITHM

In the official document, the authors claim they implement a modified version of Nesterov, which has
the following form: {

vn+1 = γvn +∇θJ(θn − γηvn)

θn+1 = θn − ηvn+1
(21)

Define θ′n = θn − γηvn
Then{

vn+1 = γvn +∇θ′J(θ′n)

θ′n+1 = θn+1 − γηvn+1 = θn − ηvn+1 − γηvn+1 = θ′n + γηvn − ηvn+1 − γηvn+1

(22)

And γηvn − ηvn+1 = −η(vn+1 − γvn) = −η∇θ′J(θ′n)
So the original form could be written as{

vn+1 = γvn +∇θ′J(θ′n)

θ′n+1 = θ′n − η(∇θ′J(θ′n) + γvn+1)
(23)

which is the algorithm implemented in the PyTorch SGD optimizer.

9

	Introduction
	Related Work

	Continuum PDE Acceleration Theory
	Discretization of Accelerated PDE, Relation to SGD, and Analysis
	Semi-Implicit Euler Discretization of the Accelerated PDE
	Relation to SGD With Nesterov Momentum
	Stability and Convergence Analysis

	Experiments
	Empirical Validation of Stability Analysis
	Empirical Analysis of Diffusion Effect

	Proof for theorem 1
	Proof for theorem 2
	PDE Acceleration Applied to Weight Tensors in CNNs
	Image classification experiments
	PYTORCH NESTEROV SGD ALGORITHM

