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Abstract

Neural networks are known for their ability to approximate smooth functions,
yet they fail to generalize perfectly to unseen inputs when trained on discrete
operations. Such operations lie at the heart of algorithmic tasks such as arithmetic,
which is often used as a test bed for algorithmic execution in neural networks. In
this work, we ask: can neural networks learn to execute binary-encoded algorithmic
instructions exactly? We use the Neural Tangent Kernel (NTK) framework to study
the training dynamics of two-layer fully connected networks in the infinite-width
limit and show how a sufficiently large ensemble of such models can be trained to
execute exactly, with high probability, four fundamental tasks: binary permutations,
binary addition, binary multiplication, and Subtract and Branch if Negative (SBN)
instructions. Since SBN is Turing-complete, our framework extends to computable
functions. We show how this can be efficiently achieved using only logarithmically
many training data. Our approach relies on two techniques: structuring the training
data to isolate bit-level rules, and controlling correlations in the NTK regime to
align model predictions with the target algorithmic executions.

1 Introduction

There has been growing interest in the computational capabilities and efficiency of neural networks
both from a theoretical and empirical perspective [7, 16, 21, 28, 31, 34]. Most works have either
demonstrated the expressive power of different architectures through simulation results or learnability
from a probably approximately correct (PAC) viewpoint. While important, the mere existence of
parameter configurations that realize a specific computation or a generalization bound does not offer
insight into the ability to learn to execute an algorithm through gradient-based training. In fact,
simulating algorithmic instructions with neural networks often involves approximating discontinuous
functions that gradient descent is difficult to converge to with standard training datasets [1].

By modeling training with the Neural Tangent Kernel (NTK), we prove that two-layer fully connected
networks in the infinite-width limit can learn to iteratively execute binary permutations, binary
addition, binary multiplication, and SBN instructions with a logarithmic number of examples, or
equivalently, a number of examples polynomial in the input bit size. Rather than training on traditional
input-output pairs, we exploit the locality of these algorithms by casting each step as a set of templates.
We show that training with these local templates is sufficient for full algorithmic execution when
composed across iterations of a loop. To our knowledge, this is the first NTK-based proof of exact
learnability for these tasks. A high-level overview of our approach is shown in Figure 1.

Contributions. Our approach is built on two key innovations that overcome the interference and
ambiguity in training data that can usually create problems for neural learning for discrete tasks:

1. Algorithmic template representation: We demonstrate how to design training data that
represent local computations (i.e., operating only on a subset of bits) that can be composed
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8  return 
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Figure 1: Simplified illustration of the framework used in our analysis. The left panel shows an
example algorithm (binary addition) where each function, highlighted in blue and red, is translated
into binary training instructions shown in the central panel with matching colors. Each instruction
specifies a condition over part of the current algorithm state and maps it to a corresponding output.
Instructions are grouped into blocks, indicated by boxed column labels in X and Y , each representing
a subset of the input state. For binary addition, some blocks represent segments of the summands,
while others reflect the carry state. For the applications discussed in Section 6, this block structure
allows the number of instructions in X and Y to scale linearly with bit length ℓ. The right-most
panel shows how instructions are used within an iterative framework to update the state vector x̂i,
which serves as input to the neural network at the i-th step. The state is first encoded, as described in
Section 5, before being passed to the model. In the NTK regime, we show that the network performs
template matching against training samples to execute the appropriate instructions. As x̂i evolves, it
activates new templates, progressing through the algorithm. Predictions are rounded at each step to
mitigate noise, and repeating this process reproduces the algorithm’s full execution.

to execute complete algorithms. Each algorithmic instruction is represented by “templates”
and entire algorithms (e.g., binary permutations, binary addition, binary multiplication, and
SBN instruction execution) can be executed by iteratively matching these templates. The
total number of templates is logarithmic in the number of all possible inputs.

2. Provable exact learnability: We prove that, by training on an orthonormalized version
of our templates, we can control unwanted correlations in the NTK regime and show that
an ensemble of two-layer fully connected networks in the infinite-width limit can learn to
execute algorithmic instructions exactly with high probability.

2 Literature review

The NTK framework [14] provides insight into continuous-time gradient descent (gradient flow)
in fully connected feed-forward neural networks. It has been extended to discrete gradient descent
[18] and generalized to other architectures like recurrent neural networks (RNNs) and Transformers
[39, 40]. Although NTK theory has been widely developed, few works offer task-specific guarantees.
Notable examples include [3], which proves that Transformers can generalize to unseen symbols for
a class of pattern-matching language tasks. Our work addresses a different setting: we show that
shallow feed-forward neural networks in the infinite-width limit trained by gradient descent can learn
to exactly execute algorithmic instructions using a logarithmic number of examples.

Complementing NTK-based results, other studies have demonstrated the expressive power of neural
architectures by simulating algorithmic tasks. Following this approach, [34] proves that RNNs are
Turing-complete, and [11] demonstrates that RNNs can solve the shortest path problem and approxi-
mate solutions to the knapsack problem. Similarly, simulation results on Transformers also establish
Turing completeness [28] and present constructive solutions that generalize across input lengths for
arithmetic tasks [4], linear algebra [7, 41], graph-related problems [1], and parallel computation [2].
From a learnability perspective, [37] provides statistical guarantees for learning Turing-computable
functions, while [20] shows that predictors trained auto-regressively can approximate any such func-
tions. However, these approaches either depend on hand-crafted parameter configurations without
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training or build upon the PAC framework, and therefore do not address the core question of exact
learnability explored in this work.

Learning to execute algorithms has been the focus of numerous empirical studies. These works explore
architectural modifications and prompting techniques, particularly aimed at improving generalization
in arithmetic tasks [5, 6, 15, 21, 22, 23, 24, 27, 29, 31, 36, 38, 42]. In this context, [16] introduced the
Neural GPU, which learns binary addition and multiplication and generalizes to sequences longer than
those seen in training. Similarly, [35] proposed the Neural Arithmetic Logic Unit (NALU), which
incorporates arithmetic operations into network modules to improve generalization. This approach
was further refined in [19] with the introduction of the Neural Addition Unit (NAU) and Neural
Multiplication Unit (NMU), offering better stability and convergence. More recent work aims to
enhance the length generalization capabilities of Transformers through improved Positional Encodings
[15, 30, 32, 43], the use of scratchpads [26], and prompting techniques for large language models
(LLMs), such as Chain-of-Thought (CoT) programming [5, 6]. These empirical efforts provide
practical methods to improve both in-distribution and out-of-distribution performance of neural
networks on arithmetic tasks. However, they lack formal guarantees regarding the conditions under
which generalization occurs. Our theoretical analysis offers precise sufficient criteria under which a
neural network in the infinite-width limit can provably learn to execute algorithmic instructions.

3 Notation and preliminaries

Throughout the text, we use boldface to denote vectors. The symbols 1 and 0 denote the vector
of all ones and zeros of appropriate length, respectively. We use the notation [n] to refer to the set
{1, 2, . . . , n}. For a vector x ∈ Rn we denote by ∥x∥ :=

√∑n
i=1 x

2
i the Euclidean norm of x. We

denote the n× n identity matrix by In.

Model and NTK Results. We provide an overview of the theory used to derive our results. We refer
the reader to [9] for a comprehensive treatment of the NTK theory. We work with two-layer, ReLU-
activated fully connected feed-forward neural networks with no bias. Concretely, the architecture
is defined as the function F : Rk′ → Rk with F (x) = W 2 ReLU(W 1x) where W 1 ∈ Rnh×k′

,
W2 ∈ Rnh×k, and nh ∈ N is the hidden dimension. The weights are initialized according to the NTK
parametrization as W 1

ij = σω√
k′ω

1
ij and W 2

ij = σω√
nh

ω2
ij where ω1

ij and ω2
ij are trainable parameters

initialized i.i.d. from a standard Gaussian distribution. When nh →∞, the empirical NTK kernel
given by∇{W 1,W 2}F (x)⊤∇{W 1,W 2}F (x′) converges to the deterministic limit:

Θ(x,x′) =

(
x⊤x′

2πk′
(π − θ) +

∥x∥ · ∥x′∥
2πk′

((π − θ) cos θ + sin θ)

)
Ik ∈ Rk×k (1)

and the NNGP kernel is given by

K(x,x′) =

(
∥x∥ · ∥x′∥

2πk′
((π − θ) cos θ + sin θ)

)
Ik ∈ Rk×k, (2)

where θ = arccos
(
x⊤x′

/∥x∥·∥x′∥
)
. For a set of vectors X , we will use the notation Θ(X , ·), Θ(·,X )

and Θ(X ,X ) to refer to the limit NTK calculated when the the set {F (x) : x ∈ X} is vectorized
(the outputs are stacked vertically), and similarly for the NNGP kernel. Our learnability results rely
on the following theorem by [18], adapted to our architecture:
Theorem 3.1 (Theorem 2.2 from Lee et al. 18). Let X and Y be the training dataset (training inputs
and ground truth labels, respectively). Assume that Θ := Θ(X ,X ) is positive definite. Suppose the
network is trained with gradient descent (with small-enough step-size) or gradient flow to minimize
the empirical MSE loss.2 Then, for every x̂ ∈ Rk′

with ∥x̂∥ ≤ 1, as nh →∞, the output at training
time t, Ft(x̂), converges in distribution to a Gaussian with mean and variance given by

µ(x̂) = Θ(x̂,X )Θ−1Y (3)

Σ(x̂) = K(x̂, x̂) + Θ(x̂,X )Θ−1K(X ,X )Θ−1Θ(X , x̂)− (Θ(x̂,X )Θ−1K(X , x̂) + h.c) (4)

where Y in Equation (3) denotes the vectorization of all vectors y ∈ Y , and “h.c.” is an abbreviation
for the Hermitian conjugate.

2The empirical MSE loss is defined as L(D) = (2|D|)−1 ∑
(x,y)∈D ∥ft(x)− y∥2.
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4 Algorithmic execution via template matching

In this section, we introduce a template matching principle that offers a high-level intuition for
representing and executing algorithmic instructions in the NTK regime. This principle transforms
binary inputs into binary outputs by comparing input configurations against a set of predefined
templates. Matched templates are then used to compose the corresponding output. We use this
principle of templates and template matching functions to encode and execute algorithms. While
this approach may seem unrelated to neural networks, we show in the following sections that, by
carefully structuring training and test inputs, neural networks can emulate this template matching
mechanism. In doing so, they can learn algorithms on binary data through the lens of the Neural
Tangent Kernel. More concretely, we show that this principle, as described here, allows us to learn
and express arithmetic operations such as addition and multiplication. Furthermore, this approach
can be generalized to more general computations, as discussed in Section 5.

Input representation: Inputs are vectors of binary variables of length k, i.e., x̂ ∈ {0, 1}k. These
variables are grouped into disjoint blocks, partitioning x̂ into b blocks. Each block, denoted by Bi

for i ∈ [b], has a length si ∈ N. While block sizes may vary, each si is assumed to be O(1). Let
x̂[Bi] ∈ {0, 1}si denote the subvector for block Bi, i.e., the bits of x̂ that belong to that block.

Templates and functions: The transformation of the input vector depends on the configurations
present within each block. Each block Bi is associated with a finite set of templates Ti ⊆ {0, 1}si ×
{0, 1}k, where each template (x,y) maps a block configuration x to a complete output vector y. The
mapping is functional: for all (x,y), (x′,y′) ∈ Ti, if x = x′, then y = y′. In other words, no block
configuration maps to more than one output. Consequently, the cardinality of Ti is at most 2si

Using each Ti, we define a block-specific pattern matching function fi : {0, 1}si → {0, 1}k and an
aggregation function f : {0, 1}k → {0, 1}k by:

fi(x
′) :=

{
y if (x′,y) ∈ Ti
0 otherwise,

(5) f(x̂) :=

b∨
i=1

fi(x̂[Bi]) (6)

where 0 denotes the all-zero vector in {0, 1}k, and the bitwise disjunction (logical OR) is applied
elementwise across the output vectors fi(x̂[Bi]) inside Equation (6). Each of these template matching
functions is applied independently and simultaneously to the corresponding block.

In this framework, the block-specific templates Ti determine the local behavior of the algorithm,
specifying how each block contributes to the global state vector x̂. The global update function f ,
formed by aggregating the output of all fi, enforces this behavior across all blocks simultaneously. By
applying f iteratively, we propagate these local rules over time, effectively executing the algorithm.

4.1 Algorithmic example: computing binary addition

We now demonstrate how to apply the template matching principle to simulate binary addition.
Throughout this example – and the more formal algorithm descriptions provided in Appendix B –
we often assign descriptive variable names to improve clarity. These identifiers serve only as labels
and do not affect computation. For this example, we denote the two summands by p and q, each
consisting of ℓ = 2 bits. Consequently, their sum requires at most ℓ+ 1 = 3 bits to be represented.

The addition algorithm emulates a ripple-carry adder built from half-adders [10], performing bitwise
addition, while propagating carries to higher-order bits. The process alternates between ℓ summation
and ℓ carry-propagation steps, reaching a steady state after at most 2ℓ iterations. However, as
demonstrated in Appendix B.2, it is also possible to introduce a flag to indicate termination.

To simulate this behavior, the input structure is organized into blocks corresponding to the bits of
p and q, along with their associated carry bits. In this example, we use four blocks: two for the
individual bits pi and qi, and two others for the carries, denoted ci, for i = 1, 2. In our representation,
the final output comprises the most significant carry bit, followed by the bits of p as stored in x̂. As
shown in Figure 2, the result is formed by concatenating c2, p2, and p1, for a total of ℓ+1 = 3 output
bits. To capture the required operations in each block, we define a set of templates, as illustrated in
Figure 2. The even-numbered templates implement bitwise summation, while the odd-numbered
templates handle carry propagation to the next bit. These templates are designed to ensure that the
operations proceed without interfering with one another.
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Figure 2: Illustration of the addition algorithm based on the template matching approach from
Section 4. Two ℓ = 2 bit numbers, p = 2 (or 102) and q = 3 (or 112), are added by organizing their
bits and carries into blocks Bi. Blocks B2 and B4 represent the bits of p and q, while B1 and B3

handle the carries. The input x̂ is processed via template matching f , using templates Ti, producing
outputs y(k)i used to compose the output. Although the method is iterative, this example completes in
one step. The final result 5 (or 1012) is stored at the most-significant carry bit and the bits of p in x̂.

5 Exact learnability Part I: NTK predictor behavior

In this section, we analyze the exact learnability of algorithmic executions in neural networks by
studying the NTK predictor, defined as the mean of the limiting distribution for a two-layer network.
We show that it preserves sign-based information about the ground truth and can learn to execute
algorithms framed as template matching, following the framework in Section 4. The training dataset
is built from templates and, in the applications presented, its size scales with the number of bits,
hence logarithmic in the number of possible binary inputs.

5.1 Input specification

We begin our analysis by specifying the structure of the training and testing inputs. Following the
framework of Section 4, we construct the training inputs as block-partitioned vectors, where each
block corresponds to an input template set. Each training input is non-zero only within the block
determined by its associated input template in Ti. In contrast, test inputs may contain multiple
non-zero entries, each corresponding to a configuration appearing in the dataset. A visualization of
the input configuration is provided in Figure 3.

Training dataset We define the training set for any algorithmic task described as in Section 4. Let
each of the b block configurations Ti be a set of ti := |Ti| template-label tuples, i.e., each

Ti = {(x(i,1),y(i,1)), . . . , (x(i,ti),y(i,ti))} ⊆ {0, 1}si × {0, 1}k.

The input dimension to the neural network is k′ =
∑b

i=1 ti.
3 We view Rk′

as the direct sum
Rt1 ⊕ · · · ⊕ Rtb and for each subspace Rti , we choose an orthonormal basis {ui1, . . . ,uiti}. For
each i = 1, . . . , b, we encode the j-th template of Ti, (x(i,j),y(i,j)), as the block-partitioned vector

qij = (0t1 , . . . ,0ti−1
,uij , . . . ,0tb)

⊤ ∈ Rk′

with the i-th block being equal to uij . The sets of training inputs and corresponding ground-truth
labels are given by

X = {qij : i ∈ [b], j ∈ [ti]} ⊆ Rk′
and Y = {y(i,j) : i ∈ [b], j ∈ [ti]} ⊆ Rk,

3In applications such as binary multiplication and SBN, the dimension k′ is extended with auxiliary unitary
blocks, each containing a template. These extensions, detailed in Appendix C, ensure Assumption 5.1 is satisfied
without affecting the algorithm, as they are never matched during execution.
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Figure 3: Visualization of the input specification of Section 5.1 for binary summation of two ℓ = 2
bit numbers. On the left, we illustrate the block structure of a pre-encoded test sample. Each block
should either be zero or match the corresponding block of an element (row) of Xinit. On the left, we
showcase the encoding procedure that creates the training dataset. The initial examples (described in
Section 4) forming the rows of Xinit are augmented and orthogonalized. Notice that the colored parts
of each row of Xinit along with the corresponding row of Y match the Ti’s of Figure 2. Also note that
the orthogonalization presented here is only one of the many possible ones. Finally, each row of Y
depicts the corresponding ground-truth output for each training sample.

respectively. This encoding yields an orthonormal, block-partitioned set of training inputs, with no
cross-block interference. In total, the dataset has size k′ ∈ O(b), and b depends on the number of
bits used for number representation in each application. For example, to add two 10-bit numbers, 40
training examples are required.

Test inputs Based on the algorithmic execution framework of Section 4 every test input x̂ is
expressed as x̂ = 1√

nx̂
(x̂1, . . . , x̂b)

⊤ with each x̂i being either 0ti or matching one of the training
samples of X in its i-th block, i.e. x̂i is equal to the i-th block of qij for some j ∈ [ti]. In that case,
we say that x̂ matches qij . We denote by nx̂ the number of blocks of x̂ that match an entry of the
training set. Since each ti is O(1), the total number of test inputs is O(2b), which is exponentially
larger than the training dataset size. For instance, the total number of test inputs for the addition of
two 10-bit numbers is 410, which is exponentially larger than the training dataset size.

5.2 NTK predictor behavior theorem

To derive this result, we introduce and discuss one additional assumption. The specific structure of
our orthogonal training set and test inputs simplifies the mean of the limiting distribution, µ(x̂) =
Θ(x̂,X )Θ(X ,X )−1Y . This predictor can be expressed as a simple weighted sum of the ground-truth
training labels Y . This sum is governed by two distinct weights: a “signal” weight, w1 ≡ w1(x̂),
applied to training labels whose corresponding inputs match a block in the test input x̂, and an
“interference” weight, w0 ≡ w0(x̂), applied to all labels from unmatched training inputs. For any
given output bit, an “unwanted correlation” occurs when an unmatched training sample (which
receives the w0 weight) also has that bit set, thus contributing interference against the correct signal.
Informally, we can interpret the ratio −w1/w0 as a decision margin. Our assumption, stated below,
simply requires that the total number of these unwanted correlations is less than this margin, ensuring
the signal’s contribution outweighs the total interference. We now formally state the assumption that
guarantees learnability:
Assumption 5.1. For each test input x̂ and for each position i ∈ [k′] such that the ground-truth
output f(x̂)4 has the i-th bit set, the number of training examples that do not match x̂ and have the
i-th bit set (which we call unwanted correlations) is less than the ratio −w1(x̂)/w0(x̂).5

4There is a slight abuse of notation here when using f(x̂) since f does not operate on encoded inputs.
Depending on the context, we may use x̂ to denote both the pre-encoded and encoded test inputs.

5w0(x̂) is always non-positive and so the ratio is non-negative.
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While, at first, Assumption 5.1 may seem restrictive, we remark that for many algorithms, including
those examined in this work, the number of conflicts is low enough to guarantee that it is satisfied. In
particular, since the SBN instruction set is Turing-complete, it can, in principle, encode any algorithm.
Our framework leverages this property by simulating SBN instructions, allowing any algorithm to
be represented as input to the system. This does not mean that we directly learn arbitrary Turing-
computable functions, but it ensures that such functions can be expressed within our formulation
without violating Assumption 5.1. The behavior of the NTK predictor is given in the following
theorem:
Theorem 5.1 (NTK predictor behavior). Consider an algorithmic problem cast as template-matching
and encoded in a training set (X ,Y) ⊆ Rk′ × Rk as described in Section 5.1. Then, under
Assumption 5.1, the mean of the limiting NTK distribution µ(x̂) = Θ(x̂,X )Θ(X ,X )−1Y for any
test input x̂ ∈ Rk′

contains sign-based information about the ground-truth output, namely for each
coordinate of the output i = 1, . . . , k, µ(x̂)i ≤ 0 if the ground-truth bit at position i, f(x̂)i, is set,
and µ(x̂)i > 0 if the ground-truth bit at position i, f(x̂)i, is not set.

Proof outline. We aim to express each µ(x̂)i as a weighted bit-sum with weights w0 and w1, and
then rely on Assumption 5.1 to guarantee that the signs are preserved. The orthogonality of the
training dataset forces the train NTK to align with the local computation structure of the template
matching framework. In particular, both the train and test NTK kernels assume a scaled identity that
keeps different blocks from interfering with one another. Furthermore, since any test input activates at
most one vector per block, the test diagonal elements of the test NTK kernel (measuring the similarity
of the test input to each element of the training set) take only two possible values: one indicating
“this block is active” and one indicating “this block is empty”. Concretely, Θ−1 := Θ(X ,X )−1

takes the form Θ̃−1 ⊗ Ik where Θ̃−1 ∈ Rk′×k′
is a scaled identity plus a rank-1 perturbation (noise),

and Θ(x̂,X ) takes the form f⊤ ⊗ Ik where f ∈ Rk′
takes only two values, f1 and f0 denoting

match/no-match. By arranging the elements of Y as columns in a matrix Y and using vectorization,
we can rewrite the model as

µ(x̂) = Θ(x̂,X )Θ−1Y = ((fΘ̃−1)⊗ Ik) vec(Y ) = Y Θ̃−1f⊤.

We first show that Θ̃−1f⊤ ∈ Rk′
takes only two values w0 ≤ 0 and w1 > 0 depending on whether

the corresponding entry in f is equal to f0 or f1. To conclude, we write

µ(x̂)i =
∑

(j,l)∈I+(x̂)

f(qjl)iw
1 +

∑
(j,l)∈I−(x̂)

f(qjl)iw
0, (7)

where
I+(x̂) = {(j, l) : j ∈ [m], l ∈ [sj ] and x̂ matches qjl},

and
I−(x̂) = {(j, l) : j ∈ [m], l ∈ [sj ] and x̂ doesn’t match qjl}.

The sets I+(x̂) and I−(x̂) partition the training dataset into two disjoint sets: the indices of the
training dataset that match x̂ and the ones that do not. When f(x̂)i = 0, Equation (6) yields a
vanishing first summation and therefore µ(x̂)i ≤ 0. On the other hand, when f(x̂)i = 1, due to
the fact that x̂ matches exactly one of the training samples from the block containing the i-th bit,
Equation (7) reduces to µ(x̂)i = w1+ |I1−(x̂)| ·w0, where I1−(x̂) = {(j, l) ∈ I−(x̂) : f(qjl)i = 1}
denotes the index set of unwanted correlations. Under Assumption 5.1, we have µ(x̂)i > 0 and so
the sign-based ground truth information is preserved, concluding the proof. A pictorial version of the
above outline is given in Figure 4.

Regarding the algorithms discussed throughout this paper, we have the following remark6:
Remark 5.1. The tasks of binary permutations, binary addition, binary multiplication, and executing
SBN instructions all satisfy the assumptions of Theorem 5.1.

6Our results for permutation, addition, and multiplication were numerically verified on various random
instances by calculating the corresponding limiting mean. For code and implementation details, refer to the
supplementary material.
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Instructions Instructions

NTK predictor:

Figure 4: Illustration of the NTK predictor structure: inputs are first encoded (normalization omitted)
to compute the test NTK Θ(x̂,X ). Due to the test input structure, this kernel assumes two values
based on matches between test and training inputs within blocks. Multiplying by Θ̃−1 (which assumes
the form of scaled identity plus a rank-1 noise perturbation colored black) re-weights these similarities,
and the multiplication by Y gives the final prediction. When the contribution of the unmatched entries
is controlled (black similarities), the sign of each coordinate matches the ground-truth output.

The proof strategy for Remark 5.1 involves computing a lower bound for the decision margin
−w1(x̂)/w0(x̂) over all test inputs x̂ and showing that the number of unwanted correlations falls
below this minimum value. For example, in the case of binary addition, this threshold comes out
to be equal to 4 while the number of unwanted correlations can be at most 1. In Figure 3, this is
captured by the fact that each column of Y contains at most 2 ones. A complete proof of Theorem 5.1
and Remark 5.1 can be found in Appendix C.

6 Exact learnability Part II: high-probability guarantee

In this section, we continue our proof of exact learning of algorithmic instructions using neural
networks. The conclusion of Theorem 5.1 suggests a simple procedure: for each coordinate, if
the output of the network is greater than zero, round to 1, otherwise round to 0. To extend this
result from the NTK predictor to actual models and ensure high-probability guarantees of exact
learning, we can independently train enough models, average their outputs, and round accordingly.7
We define ensemble complexity as the number of models required to achieve a desired level of
post-rounding accuracy. In what follows, we derive a lower bound on the ensemble complexity of
learning algorithmic instructions and give its asymptotic order. This completes the proof that neural
networks can, with high probability, exactly learn algorithmic instructions.

Given a test input x̂ with ground truth ŷ = f(x̂), let F j(x̂) be the output of the j-th model in an
ensemble of N independently trained networks. By Theorem 3.1, each F j(x̂) is drawn i.i.d. from
N (µ(x̂),Σ(x̂)), so every coordinate F j(x̂)i follows N (µ(x̂)i, σ

2(x̂)).8 Define the ensemble mean
G(x̂) = 1

N

∑N
j=1 F

j(x̂). Because µ(x̂)i ≤ 0 when ŷi = 0 and µ(x̂)i > 0 when ŷi = 1, rounding
G(x̂)i is correct if |G(x̂)i − µ(x̂)i| < |µ(x̂)i|/2.

Applying a standard Gaussian concentration bound given in Lemma A.1 and the union bound, we
obtain, for any δ ∈ (0, 1), perfect post-rounding accuracy with probability 1−δ whenever the number
of averaged models N satisfies:

N ≥ 8 max
x̂,i∈[k]

{
σ2(x̂)

µ2(x̂)i

}
ln

(
2k′

δ

)
. (8)

7In practice, model-to-model variability is often controlled by training several copies (or by collecting
multiple checkpoints along one training run) and then averaging either their predictions [17] or their weights
[13]. Our “ensemble complexity” result gives a clean theoretical analogue of this variance-reduction trick, with
concrete high-probability guarantees on post-rounding accuracy.

8See Appendix D for the calculation of σ2(x̂).
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Figure 5: Numerical and theoretical estimates of ensemble complexity N (in log-scale) for per-
mutation, addition, and multiplication tasks as a function of bit length ℓ. Ensemble complexity is
computed via a union bound over all possible inputs and algorithmic executions for a given ℓ. Inset
blocks illustrate the ratio of variance to mean in Equation (8), estimated using input size k′. This
ratio increases linearly with k′ up to a constant. The same ratio is used in the theoretical estimate of
N , which matches the numerical estimate in growth rate, differing only by a constant factor.

To derive the order of the bound on the ensemble complexity of Equation (8), we need to analyze the
asymptotic orders of µ(x̂) and σ2(x̂). The result is summarized in the following technical lemma:

Lemma 6.1. Suppose we train on any of the four tasks (permutations, addition, multiplication, SBN
instructions), as described in Section 5. Let x̂ be a test input unseen during training matching nx̂ > 1
training entries and let µ(x̂) and σ2(x̂) be as in Theorem 3.1. Then σ2(x̂) ∈ O(1/k′), and, for each
i ∈ [k], depending on the relationship between nx̂ and k′ we have:

|µ(x̂)i| ∈



Θ
(

1
k′

)
if nx̂ is const.

Θ
(√

nx̂

k′

)
if nx̂ is non-const.

and sublinear in k′

Θ
(

1√
k′

)
if nx̂ = ck′ for

some c ∈ (0, 1]

and |µ(x̂)i| ∈



Θ(1) if nx̂ is const.

Θ
(

1√
nx̂

)
if nx̂ is non-const.

and sublinear in k′

Θ
(

1√
k′

)
if nx̂ = ck′ for

some c ∈ (0, 1)

Θ
(

1√
k′

)
if nx̂ = k and there

are unwanted corr.
Θ
(

1
k′

)
if nx̂ = k′ and there
are no unwanted corr.

when the ground-truth bit at position i is not set (f(x̂)i = 0) or set (f(x̂)i = 1), respectively.

The proof of Lemma 6.1 (including the calculation of σ2(x̂)) can be found in Appendix D. In light of
these asymptotic results, the uniform bound of Equation (8) behaves likeO(k′ log k′). An application
of the union bound shows that for an algorithm requiring m iterations, the ensemble complexity
bound when accounting for all O(2b) possible test inputs (where b is the number of templates as in
Section 4) and all m iterations behaves like O(k′b+ k′ logm). In particular, for the tasks considered,
we have the following remark:

Remark 6.1. For the tasks of binary permutation (b = k′ = ℓ, m = 1), binary addition (b = 2ℓ,
k′ = 4ℓ, m = 2ℓ), and binary multiplication (b = 11ℓ, k′ = 21ℓ, m = 4ℓ2 + 3ℓ) the ensemble
complexity scales like O(ℓ2), where ℓ is the bit length for each application.

Figure 5 plots numerical and theoretical estimates for the ensemble complexity of the permutation,
addition, and multiplication tasks, showcasing the conclusion of Remark 6.1. In Appendix E, we
verify our theory with an empirical estimate of the ensemble complexity for the permutation task.
This is done by training multiple two-layer fully connected feed-forward networks, each with 50,000
hidden units, using full-batch gradient descent to form an ensemble.
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7 Limitations and future work

In this work, we have demonstrated that two-layer fully connected feed-forward neural networks in
the infinite-width limit can learn to execute algorithmic instructions expressed within our template
matching framework (including binary permutations, binary addition, binary multiplication, and
execution of SBN instructions) using a training set of logarithmic size in the number of possible
binary inputs. This provides an affirmative answer to the question of whether neural networks can
learn to execute long sequences of binary-encoded instructions exactly.

Our analysis, however, relies on several simplifying assumptions that bound its generality. The
first concerns data orthogonality and explicit instruction access, which guarantee that each local
computation step is independently learnable. Future work could investigate whether exact learning
remains possible under correlated training examples or when the network must infer primitive
instructions from only partial input–output traces. The second limitation arises from the bounded
memory setting of our framework. Increasing the available memory changes the input dimensionality
of the model and, therefore, requires retraining, so extrapolation to longer inputs does not occur
automatically. Within this bounded memory regime, exact algorithmic execution remains achievable
using only logarithmically many short training examples, but extending these results to architectures
that naturally process variable-length inputs, such as RNNs, Transformers, or GNNs, would be a
valuable next step. For example, the use of GNNs on bounded degree graphs may enable controlled
forms of length generalization with respect to graph size while preserving the theoretical structure of
our exact learning framework.
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A Notation and Preliminaries

For two matrices A1 ∈ Rn1×m1 , A2 ∈ Rn2×m2 we denote by A1 ⊗ A2 ∈ Rn1n2×m1m2 their
Kronecker product. It is relatively easy to show that when A and B are square matrices (i.e. n1 = m1

and n2 = m2), the eigenvalues of A1 ⊗A2 are given exactly by the products of the eigenvalues of
A1 and A2. In particular, A1 ⊗A2 is positive definite if A1 and A2 are positive definite.

A.1 Useful Results

In this section, we state two results from linear algebra and probability theory that are used to derive
our main results. The first result is used to compute the train NTK matrix:
Theorem A.1 (Sherman and Morrison 33). Suppose A ∈ Rn×n is an invertible matrix and u,v ∈ Rn.
Then A+ uv⊤ is invertible if and only if 1 + v⊤A−1u ̸= 0. In this case,

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u

The second result is a concentration bound for sums of Gaussian random variables, which we used to
derive our ensemble complexity bounds:
Lemma A.1. Let X1, X2, . . . , Xn be independent Gaussian random variables with mean µ and
variance σ2 and let Xn =

∑n
i=1 Xi. Then for all t > 0, we have:

P
{
|Xn − µ| ≥ t

}
≤ 2 exp

(
− nt2

2σ2

)

Proof. We will use the Chernoff technique. Let λ > 0. We have Xn − µ ∼ N
(
0, σ2

n

)
and so by

symmetry and Markov’s inequality we get:

P
{
|Xn − µ| ≥ t

}
= 2P

{
Xn − µ ≥ t

}
= 2P

{
eλ(Xn−µ) ≥ eλt

}
≤ e−λt · E

[
eλ(Xn−µ)

]
(9)

The expectation on the right-hand side is equal to the moment-generating function of a normal
distribution with mean 0 and variance σ2/n and so it is equal to exp

(
σ2λ2

2n

)
. Now let

ϕ(λ) = exp

(
σ2λ2

2n
− λt

)
be the right-hand side of Equation (9). Minimizing ϕ(λ) with respect to λ we find that the minimum
occurs at λ∗ = nt

σ2 and plugging this back into Equation (9) gives the required bound.

B Constructive proofs

In this section, we outline the set of instructions used to illustrate the steps involved in the algorithms
described earlier. To ensure clarity and avoid unnecessary repetition, we adopt certain conventions in
the presentation of these instructions.

To ensure the correctness of our constructive proofs for the numerical tasks presented below, we
include a numerical validation.9 This validation uses the instructions defined below for permutation,
addition, and multiplication. Using the Neural Tangents package [25], we compute the NTK predictor
(as in Theorem 3.1). Applying the encoding and rounding procedures described in Section 5 and
Section 6, we demonstrate that the implementations are numerically correct for bit lengths up to
ℓ = 10. Additionally, we provide a demonstration script that more descriptively illustrates each step
of the algorithms as executed within our framework.

9Our source code can be found in the supplementary material.
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Conventions

Unless otherwise stated, all variables refer to Boolean values (i.e., elements of {0, 1}), arrays of
Boolean values, or natural numbers as appropriate. Let Index(A) denote the index set of an array A.

• Logical equivalence: For Boolean variables A and B,

A = B
def⇐⇒ (A = 1 AND B = 1) OR (A = 0 AND B = 0)

This represents equality of Boolean values, not assignment.

• Logical inequality:

A ̸= B
def⇐⇒ (A = 1 AND B = 0) OR (A = 0 AND B = 1)

• Assignment: We use the symbol← to denote assignment. For Boolean variables:

B ← A means that B is assigned the current value of A

• Universal indexing:
A[ALL] def⇐⇒ ∀i ∈ Index(A), A[i]

• Bitwise comparison:

A[ALL] = B[ALL] def⇐⇒ ∀i ∈ Index(A) : A[i] = B[i]

• Bitwise assignment:

A[ALL]← v
def⇐⇒ ∀i ∈ Index(A) : A[i]← v

• Binary representation: Let bin(v) denote the binary representation of a natural number v,
encoded as a Boolean array. The bit width is inferred from the context unless specified.

B.1 Binary permutation

In this section, we demonstrate how the template matching framework can be applied to execute
binary permutations. Let the binary input be denoted by a binary number p. We begin by defining the
input structure in terms of blocks and then construct the corresponding templates.

Blocks: For an ℓ-bit number p, we design ℓ blocks, each encoding a single bit of the number. Let
each block correspond to a bit p[i], thus we have:

• (p[i]) for i ∈ [ℓ]

Instructions: Given this block structure, we now define the instructions that encode the desired
permutation. Consider a mapping π : [ℓ]→ [ℓ] that specifies the permutation: it takes a bit position
as input and returns its new position after the permutation. For example, if the third bit of the input is
to be moved to the fifth bit position, then π(3) = 5.

Based on this mapping, we construct ℓ samples, one for each block, which encodes the transformation
defined by π.

Instructions: Permutation
INPUT: x[p[i]] = 1
OUTPUT: y[p[π(i)]] ← 1
Instruction count: ℓ

Each bit permutation is thus encoded as an individual instruction in the template set. This captures
the behavior that when a specific bit position is activated in the input, its permuted position must also
be activated in the output.
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B.2 Binary addition

With the established framework, we now illustrate how to apply the template matching principle to
simulate binary addition. Throughout this and other algorithmic examples, we often assign descriptive
variable names to improve clarity. These identifiers serve only as labels and do not affect computation.

Let the binary inputs be denoted p and q, each consisting of ℓ bits. The result of their sum requires
ℓ+ 1 bits. We begin by defining the block structure of x.

Blocks: In this implementation, we organize the input into 2ℓ blocks, ℓ blocks encode the bits of p
and q, and the ℓ blocks encode the corresponding carry bits c.

• (p[i], q[i]) for i ∈ [ℓ]

• (c[i]) for i ∈ [ℓ]

Assignments and conditions are written using square bracket notation. Since each block comprises
uniquely named variables, individual variables can be referenced directly by name. For example,
setting the second carry variable to 1 is expressed as x[c[2]] ← 1.

The addition algorithm follows a ripple-carry approach using half-adders [10]. It proceeds in two
alternating phases: bitwise summation and carry propagation.

In the summation phase, the algorithm adds the bits x[p[i]] and x[q[i]] for each i, storing
the result back in x[p[i]] and placing any resulting carry in x[c[i]]. In the subsequent carry
propagation phase, the carry x[c[i]] is transferred to x[q[i+1]], allowing it to participate in the
next summation step.

This iterative process alternates between ℓ summation steps and ℓ carry propagation steps. After 2ℓ
iterations, the computation reaches a steady state.

In our representation, the final output consists of the carry of the most-significant bit y[c[ℓ]]
concatenated with all bits i ∈ {ℓ, . . . , 1} in y[p[i]], yielding a total of ℓ+ 1 output bits.

The following instructions are purposely designed to minimize the number of unwanted correlations
when using the NTK predictor. Specifically, the highest number of such correlations (also referred
to as conflicts) occurs in the coordinates encoding the bits of the summand p[i] and the most
significant carry bit c[ℓ], where two instructions share a non-zero entry for the same coordinate.
Notably, however, the maximum number of conflicts per coordinate – equal to 1 in this case – remains
constant and does not increase with the bit count ℓ. This bounded conflict rate enables learnability, as
further discussed in Appendix C.

Instructions: To capture the aforementioned processes in the blocks, we define a set of represen-
tative instructions. By convention, we assume that any variable not explicitly set in the output is
assigned a value of zero.

Instructions: Bitwise addition
INPUT: x[p[i]] = 0 AND x[q[i]] = 1
OUTPUT: y[p[i]] ← 1
Instruction count: ℓ

INPUT: x[p[i]] = 1 AND x[q[i]] = 0
OUTPUT: y[p[i]] ← 1
Instruction count: ℓ

INPUT: x[p[i]] = 1 AND x[q[i]] = 1
OUTPUT: y[c[i+1]] ← 1
Instruction count: ℓ

The case where both x[p[i]] and x[q[i]] are zero does not require an instruction. Since no
template matches, the default behavior results in all outputs being zero for that block and its carry,
which is consistent with expected addition logic.
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Instructions: Carry propagation

INPUT: x[c[i]] = 1
OUTPUT: (i < ℓ): y[q[i+1]] ← 1

(i = ℓ): y[c[i]] ← 1
Instruction count: ℓ

This defines the carry-propagation behavior: when the carry at position i is one, its effect is passed
to the next summand block.

An important observation is that template matching across different blocks does not interfere between
phases. During bitwise summation, the carry blocks are set to zero and thus remain inactive.
Conversely, during carry propagation, all x[q[i]] entries are empty, so summation remains static,
allowing the carry from x[c[i-1]] to be transmitted to x[q[i]] without conflict.

Finally, note that once x[c[ℓ]] becomes non-zero, it remains set for the remainder of the algorithm.
This value represents the most significant bit (MSB) of the final result.

Termination: As previously mentioned, this implementation reaches a steady state after 2ℓ iterations.
However, it is also possible to introduce a termination flag that is triggered once a specific condition is
met. In this context, we define a termination flag that becomes active once 2ℓ iterations have elapsed.
To implement this, we introduce the following additional blocks:

• (counter[i]) for i ∈ [2ℓ]

Instructions: termination
INPUT: x[counter[i]] = 1
OUTPUT: (if i < 2ℓ): y[counter[i+1]] ← 1

(if i = 2ℓ): y[counter[i]] ← 1

This design introduces 2ℓ additional blocks. Once the first block is activated, each block subsequently
activates the next, until x[counter[2ℓ]] is reached. The activation of x[counter[2ℓ]] indicates
that the algorithm has finished.

B.3 Binary multiplication

In this section, we describe the structure and the components used to perform binary multiplication
between two ℓ-bit binary variables. Our implementation simulates the shift-and-add multiplication
algorithm [10].

In essence, the shift-and-add algorithm multiplies two binary numbers by scanning each bit of the
multiplier. If a bit is 1, the appropriately shifted multiplicand is added to the running total. This
method mirrors the principle of long multiplication, but relies solely on shifts and additions rather
than full multiplications.

To implement this algorithm, we divide it into four distinct processes:

1. Check the least significant bit (LSB) of the multiplier

2. Add multiplicand to the accumulating total

3. Copy the multiplicand to the addition scratchpad

4. Shift multiplicand and multiplier

Each of these processes is implemented using one or more blocks in the input. Because of how the
algorithm operates, we represent the multiplicand using 2ℓ bits, initializing the most significant ℓ bits
to zero. The bits are stored in little-endian form, so the first entry represents the least significant bit
(LSB).

Blocks: We begin by defining the block structure:

• (multiplier[1], to_shift_right[1], to_check_lsb)
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• (multiplier[i], to_shift_right[i]) for i ∈ [2, ℓ]

• (multiplicand[i], to_shift_left[i], to_copy_to_sum_q[i]) for i ∈ [2ℓ]

• (sum_p[i], sum_q[i]) for i ∈ [2ℓ]

• (sum_c[i]) for i ∈ [2ℓ]

• (sum_counter[i]) for i ∈ [4ℓ]

The first group of blocks stores the multiplier bits along with their associated shift flags. Flags do
not hold data themselves. Instead, they signal when a specific action should be triggered. These are
typically (though not exclusively) prefixed with to_. The block of the least significant bit of the
multiplier includes an additional flag for checking its value.

The multiplicand bits are also paired with their shift flags and an extra flag for copying. This copying
flag signals when to transfer the multiplicand into the summation scratchpad.

The remaining blocks represent the summation components, as introduced in Appendix B.2.

Therefore, in total, there are 11ℓ blocks. However, during execution, at most 7ℓ+ 1 can be active at
any time during execution. This restriction arises from the counter blocks, where only one block can
be active at a time.

The result of the multiplication is a 2ℓ-bit number, stored in x[sum_p][ALL]. Each iteration of the
algorithm may involve one or more of the four described processes, and some processes themselves
may span multiple iterations.

• Addition: 4ℓ iterations
• Check least significant bit (LSB): 1 iteration
• Copy multiplicand: 1 iteration
• Shift multiplicand to the left and multiplier to the right (simultaneously): 1 iteration

The worst-case runtime occurs when the multiplier consists entirely of 1s, triggering all operations in
each cycle. In this case, the algorithm performs ℓ full iterations, resulting in a total execution count
of 4ℓ2 + 3ℓ.

The following instructions exhibit a finite number of conflicts per coordinate, a crucial property for
ensuring NTK learnability, as discussed in more detail in Appendix C. These conflicts can be quanti-
fied by counting the number of outputs that share the same coordinate. In the case of multiplication,
the number of conflicts per coordinate is 2. This occurs in the coordinates corresponding to the
multiplier and multiplicand bits, which may be either modified or preserved depending on the
values of the flags within their respective blocks.

Instructions Based on processes and the block structure previously defined, we now define the
binary instructions for each of the processes and their corresponding blocks to perform binary
multiplication.

Instructions: preserve multiplier and multiplicand

While any other secondary process is being executed, the values in the multiplier and multiplicand
bits must be preserved. For that, we define:

INPUT: x[multiplier[1]] = 1 AND x[to_shift_right[1]] = 0 AND
x[to_check_lsb] = 0

OUTPUT: y[multiplier[1]] ← 1
Instruction count: 1

INPUT: x[multiplier[i]] = 1 AND x[to_shift_right[i]] = 0
OUTPUT: (i > 1) y[multiplier[i]] ← 1
Instruction count: ℓ− 1

18



INPUT: x[multiplicand[i]] = 1 AND x[to_shift_left[i]] = 0
OUTPUT: y[multiplicand[i]] ← 1
Instruction count: 2ℓ

Instructions: check least significant bit

For this stage, we have to define two instructions for when the to_check_lsb flag is activated. If
the LSB of the multiplier is equal to one, then we start the addition process by activating the flags to
copy the multiplicand to the addition stage. In contrast, if the LSB is zero, we trigger the shifting
process of both multiplicand and multiplier.

INPUT: x[multiplier[1]] = 1 AND x[to_shift_right[1]] = 0 AND
x[to_check_lsb] = 1

OUTPUT: y[multiplier[1]] ← 1 AND y[to_copy_to_sum_q[ALL]] ← 1
Instruction count: 1

and

INPUT: x[multiplier[1]] = 0 AND x[to_shift_right[1]] = 0 AND
x[to_check_lsb] = 1

OUTPUT: y[to_shift_right[ALL]]←1 AND y[to_shift_left[ALL]]←1
Instruction count: 1

Instructions: copy multiplicand to addition block

Once the multiplicand copy flag is activated, we have to send the data to the sum_q[i] variable.
While the copying should only cover the cases for which the multiplicand bit is equal to one, we
have an extra functionality for the first bit of the multiplicand, which triggers the counter to start the
addition process. Because of this, we require an additional instruction that also covers the case when
x[multiplicand[1]] = 0.

INPUT: x[multiplicand[1]] = 0 AND x[to_copy_to_sum_q[1]] = 1
OUTPUT: y[sum_counter[1]] ← 1
Instruction count: 1

INPUT: x[multiplicand[i]] = 1 AND x[to_copy_to_sum_q[i]] = 1
OUTPUT: (i = 1) y[multiplicand[i]] = 1 AND y[sum_q[i]] ← 1 AND

y[sum_counter[i]] ← 1
(i > 1) y[multiplicand[i]] = 1 AND y[sum_q[i]] ← 1

Instruction count: ℓ

Instructions: add multiplicand to the running total

For this operation, we define the same instructions that were defined in Appendix B.2 for the variables
p and q, which have 2ℓ bits in this context. These instructions cover the all the processes of bitwise
addition, carry propagation, and counter update. By the end of the addition process, signalled by
x[sum_counter[2ℓ]] = 1, we activate the shift process in the multiplicand and multiplier.

INPUT: x[sum_p[i]] = 1 AND x[sum_q[i]] = 0
OUTPUT: y[sum_p[i]] ← 1
Instruction count: 2ℓ

INPUT: x[sum_p[i]] = 0 AND x[sum_q[i]] = 1
OUTPUT: y[sum_p[i]] ← 1
Instruction count: 2ℓ

INPUT: x[sum_p[i]] = 1 AND x[sum_q[i]] = 1
OUTPUT: y[sum_c[i]] ← 1
Instruction count: 2ℓ
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INPUT: x[sum_c[i]] = 1
OUTPUT: (i < 2ℓ) y[sum_q[i+1]] ← 1
Instruction count: 2ℓ− 1

INPUT: x[sum_counter[i]] = 1
OUTPUT: (i < 4ℓ) y[sum_counter[i+1]] ← 1

(i = 4ℓ) y[to_shift_right[ALL]] ← 1 AND y[to_shift_left[ALL]] ← 1
Instruction count: 4ℓ

Instructions: shift multiplier to the right

The purpose of this function is to perform the following behavior: when the to_shift_right flag
is active, bit i of multiplier is assigned the value of the previous bit. If multiplier is already 0,
it is set to zero directly without further computation. An exception is made for i = 1: it does not shift
its value but triggers the to_check_lsb flag whenever to_shift_right[1] is active, regardless
of the corresponding multiplier bit.

INPUT: x[multiplier[i]] = 0 AND x[to_shift_right[i]] = 1
OUTPUT: (i = 1) y[to_check_lsb] ← 1
Instruction count: 1

INPUT: x[multiplier[i]] = 1 AND x[to_shift_right[i]] = 1
OUTPUT: (i = 1) y[to_check_lsb] ← 1

(i > 1) y[multiplier[i-1]] ← 1
Instruction count: ℓ

Instructions: shift multiplicand to the left

The goal of these instructions is to execute the following Instructions: when the to_shift_left flag
is active, shift the multiplicand by assigning each bit to the next lower-order position. If i = 2ℓ,
or if multiplicand is already 0, set the value to zero directly, as the shift is implicitly handled.

INPUT: x[multiplicand[i]] = 1 AND x[to_shift_left[i]] = 1
OUTPUT: (i < 2ℓ) y[multiplicand[i+1]] ← 1
Instruction count: 2ℓ− 1

B.4 General computation

In this subsection, we present results that address the generality of the template matching approach
previously described in Section 4. To this end, we demonstrate that we can build a block structure
and corresponding instructions to simulate a one-instruction set computer (OISC), thereby showing
that we can execute any computable function, provided with the right instructions and memory values.
More specifically, in this proof, we represent an OISC with a single instruction called “Subtract and
branch if negative” or SBN [8].

SBN: Named for its operation “subtract and branch if negative", SBN is a one-instruction set computer.
One way to express SBN is detailed in Algorithm 1, and it consists of subtracting the content at
address a from that at address b, and storing the result back at b. All these values are stored in a
memory array. If the result is positive, the computer executes the next instruction; otherwise, it jumps
to the instruction at address c. Despite this operational simplicity, SBN is Turing Complete [8].

Algorithm 1 SBN (a, b, c)

Require: Input: memory object M , addresses a, b, c
1: M [b]←M [b]−M [a]
2: if M [b] < 0 then
3: go to c
4: else
5: go to next instruction
6: end if

SBN is closely related to SUBLEQ (“Subtrach and branch if less than or equal to zero”), differing
only by the strict inequality instead of the inequality of SUBLEQ. This approach is fairly popular,
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Figure 6: Overview of the simulation of SBN using the template-matching framework. Each rectan-
gle in the diagram represents a block, with colors indicating specific block categories: Instructions,
Memory, Branching, and Subtraction. Within each block are variables, depicted as shapes: squares
represent data-holding variables, while triangles denote binary flags. Some blocks contain indexed
variables. For simplicity, the sketch illustrates only one representative block for each unique index
combination. Arrows between variables indicate interactions as defined by the instructions, repre-
senting the flow of data and control between variables and across different blocks. The star symbol
on the left highlights blocks active at the start of an iteration. During this phase, each instruction
is compared to the current one, triggering corresponding blocks on the right. An iterative bit-wise
comparison of instruction addresses follows, and if a match occurs, copy flags for addresses a, b,
and c are triggered in the three adjacent right-hand blocks. The process continues according to the
instructions detailed in the following sections.

with SUBLEQ being widely used in other works to demonstrate Turing Completeness in the context
of Transformers [7, 1].

To simulate SBN within our framework, several auxiliary functions must be implemented in addition
to those listed in Algorithm 1. These functions handle tasks such as retrieving an instruction from
the list of instructions, accessing memory values from specified addresses, determining the next
instruction based on the current one, and copying values between different fields, among other
operations required by SBN.

The purpose of each function will become clear as their corresponding instructions are introduced.
We will also explain the design choices behind them and provide the rationale for these decisions.

Before introducing the implementation details of our solution, we begin by outlining the structure we
aim to simulate.

Our simulation involves two distinct objects: one for storing instructions and another for storing
memory content. Conceptually, the instruction object can be viewed as a list of quadruples (t, a, b, c),
where t is the address of the instruction (used for identification), and a, b, and c are, respectively, two
memory addresses and an instruction address. The triplet (a, b, c) encodes the SBN instruction, as
illustrated in Algorithm 1. Memory is structured as a list of pairs (k, v), where k denotes a memory
address and v its corresponding value.

For the input structure, following the framework outlined in Section 4, we divide the input into sets
of blocks, each representing a large group of functions and variables. Each set of block is identified
using the prefix specified in parentheses. The major blocks are organized as follows:

• Instructions (I): Contains the list of instructions and their associated variables.

• Memory (M): Contains the list of memory elements and their associated variables.

• Branching (B): Handles the selection of the instruction based on the branching condition in
line 2 of Algorithm 1, as well as the computation of the next instruction address.

• Subtraction (D): Handles the subtraction of memory contents a and b, as described in
Algorithm 1.
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Since both the instructions and memory objects contain multiple entries, we introduce additional
notation. Let ℓI denote the number of instructions, which is assumed to be constant, as the number of
instructions in an algorithm remains fixed, even though they may be executed repeatedly. Let ℓM
denote the number of memory slots.

We define the number of bits required to address instructions as nI = ⌈log2 ℓI⌉, and similarly, the
number of bits required to address memory slots as nM = ⌈log2 ℓM⌉. Additionally, each memory
slot holds a value, whose bit-width we denote by nC . An overview of our solution is illustrated in
Figure 6.

In the following sections, we will derive the structure of the input x, using the quantities defined
above to determine the number of blocks and the corresponding instructions.

Blocks: The total number of blocks is

ℓM (5nM + 3nC + 3) + ℓI(4nI + nM + 1) + 4nI + 8nC + 2 = O(ℓM log ℓM ),

and the total length of the input x is given by:

ℓM (11nM + 6nC + 4) + ℓI(8nI + 4nM + 1) + 11nI + 12nC + 4 = O(ℓM log ℓM ).

The structure of the sets of blocks is defined as follows.

Instructions blocks: for k ∈ [ℓI ], i ∈ [nI ], j ∈ [nM ]:

• (I_to_compare[k][i], I_curr_instr[k][i], I_instr[k][i])

• (I_is_equal[k][i], I_counter[k][i])

• (I_a_addr[k][j], I_to_copy_a[k][j])

• (I_b_addr[k][j], I_to_copy_b[k][j])

• (I_c_addr[k][i], I_to_copy_c[k][i])

• (I_a_addr_delay[k][j])

• (I_b_addr_delay[k][j])

• (I_c_addr_delay[k][i])

• (I_copy_sync[k])

Memory blocks: for k ∈ [ℓM ], i ∈ [nM ], j ∈ [nC ]

• (M_to_compare[k][i], M_a_addr[k], M_b_addr[k][i], M_mem_addr[k][i])

• (M_is_equal_a[k][i], M_counter_a[k][i])

• (M_is_equal_b[k][i], M_counter_b[k][i])

• (M_mem_cont[k][j], M_to_copy_a_mem_cont[k][j], M_to_copy_inv_b_mem_cont[k][j],
M_is_match_b[k][j], M_to_copy_from_sub[k][j], M_sub_result[k][j])

• (M_a_cont_delay[k][i])

• (M_a_cont_sync[k])

• (M_b_cont_delay[k][i])

• (M_b_cont_sync[k])

Branching blocks: for i ∈ [nI ]

• (B_sum_p[i], B_sum_q[i], B_to_copy_p[i])

• (B_carry[i])

• (B_to_sync_c, B_to_sync_sub)

• (B_pre_candidate_1[i], B_to_copy_candidate_1[i])

• (B_candidate_0[i], B_candidate_1[i], B_is_condition_0[i], B_is_condition_1[i]
B_to_copy_curr_instr[i])
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Subtraction blocks: for i ∈ [nC ], j ∈ [2nC ]

• (D_tc_p[i], D_tc_q[i], D_to_copy_tc_p[i])

• (D_tc_sync_a, D_tc_sync_b)

• (D_tc_carry[i])

• (D_tc_counter[j])

• (D_sub_carry[i])

• (D_sub_p[i], D_sub_q[i], D_to_copy_sub_p[i])

• (D_sub_counter[j])

Instructions Based on Algorithm 1 and the block structure outlined earlier, we now define the binary
instructions for each process, grouped according to their corresponding block prefix. Considering all
the instructions presented below, the total number of instructions is

ℓM (13nM + 7nC + 1) + ℓI(8nI + 4nM + 2) + 14nC + 11nI + 9 = O(ℓM log ℓM ).

Instructions: persist addresses (I)

The purpose of this function is to ensure that instruction addresses are not inadvertently deleted.
Notably, we do not need to handle cases where the instruction address is zero, as any unmatched
sample will naturally leave the corresponding entry as zero.

Additionally, note that there are no instructions dedicated to preserving the current instruction address
I_curr_instr or the comparison flag I_to_compare. This omission is intentional, as both are
temporary variables activated only in one execution stage and do not retain their values beyond that
stage. Consequently, there is no need to explicitly preserve them.

INPUT: x[I_instr[k][i]] = 1 AND x[I_to_compare[k][i]] = 0 AND
x[I_curr_instr[k][i]] = 0

OUTPUT: y[I_instr[k][i]] ← 1
Instruction count: ℓI · nI

INPUT: x[I_a_addr[k][i]] = 1 AND x[I_to_copy_a[k][i]] = 0
OUTPUT: y[I_a_addr[k][i]] ← 1
Instruction count: ℓI · nM

INPUT: x[I_b_addr[k][i]] = 1 AND x[I_to_copy_b[k][i]] = 0
OUTPUT: y[I_b_addr[k][i]] ← 1
Instruction count: ℓI · nM

INPUT: x[I_c_addr[k][i]] = 1 AND x[I_to_copy_c[k][i]] = 0
OUTPUT: y[I_c_addr[k][i]] ← 1
Instruction count: ℓI · nI

Instructions: compare addresses (I)

In this function, the goal is to compare the current instruction address with the k-th instruction address,
bit by bit. The result of this bitwise comparison is stored in a dedicated variable (I_is_equal), and
a counter is activated to trigger a process that verifies whether all bits match. The set of instructions
defined below handles both possible outcomes: when the addresses match and when they do not.

INPUT: x[I_to_compare[k][i]] = 1 AND x[I_curr_instr[k][i]] = x[I_instr[k][i]]
OUTPUT: (i = 1) y[I_instr[k][i]] ← x[I_instr[k][i]] AND y[I_is_equal[k][i]] ← 1

AND y[I_counter[k][i]] ← 1
(i > 1) y[I_instr[k][i]] ← x[I_instr[k][i]] AND y[I_is_equal[k][i]] ← 1

Instruction count: 2ℓI · nI
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INPUT: x[I_to_compare[k][i]] = 1 AND x[I_curr_instr[k][i]] ̸= x[I_instr[k][i]]
OUTPUT: (i = 1) y[I_instr[k][i]] ← x[I_instr[k][i]] AND y[I_counter[k][i]] ← 1

(i > 1) y[I_instr[k][i]] ← x[I_instr[k][i]]
Instruction count: 2 · ℓI · nI

Instructions: check full address match and trigger copy (I)

Following the previous stage, each of the comparison flags is evaluated iteratively using the counter
variables. If all of them are equal to one, this indicates that the current instruction address ex-
actly matches the k-th instruction address, which activates the copy flags. In the case where the
I_is_equal variable is activated, but its corresponding I_counter has not yet been triggered, we
preserve the value of I_is_equal using the second instruction.

INPUT: x[I_counter[k][i]] = 1 AND x[I_is_equal[k][i]] = 1
OUTPUT: (i < nI) y[I_counter[k][i+1]] ← 1

(i = nI ) y[I_to_copy_a[k][ALL]] ← 1 AND
y[I_to_copy_b[k][ALL]] ← 1 AND
y[I_to_copy_c[k][ALL]] ← 1

Instruction count: ℓI · nI

INPUT: x[I_counter[k][i]] = 0 AND x[I_is_equal[k][i]] = 1
OUTPUT: y[I_is_equal[k][i]] ← 1
Instruction count: ℓI · nI

Instructions: copy address a, b and c (I)

The goal of this function is to copy the matching k-th instruction triple (a, b, c) into their respective
blocks. This is achieved through two distinct sets of instructions. The first set defines the conditions
under which copying should occur, while the second – denoted with the _delay and _sync suffix –
is responsible for propagating the copy.

Strictly following the framework in Section 4, this second instruction set is technically unnecessary.
One could, in principle, use the output from the final stage of the delayed process as the direct output
of the first set. However, we adopt this two-stage implementation due to the nature of Neural Tangent
Kernels (NTKs) and the challenge of managing write conflicts. If the alternative (single-stage)
approach were used, the number of instructions writing to the same coordinates would increase
with the number of instructions in the program, thereby leading to a proportional increase in write
conflicts.

To mitigate this, we introduce a delay structure that propagates information sequentially across the
instruction items. This design ensures that the number of write conflicts remains constant, regardless
of the program size. While this approach incurs additional computational cost – in the form of more
blocks and iterations – it does not hinder learnability, as discussed in Appendix C.

Additionally, since not all relevant variables are guaranteed to be set to 1, we introduce a sup-
plementary variable for each, prefixed by sync. These sync variables function similarly to their
delay counterparts but are always set to 1. This allows them to serve as a reliable synchronization
mechanism across different processes.

INPUT: x[I_to_copy_a[k][i]] = 1 AND x[I_a_addr[k][i]] = 1
OUTPUT: y[I_a_addr_delay[k][i]] ← 1 AND y[I_a_addr[k][i]] ← 1
Instruction count: ℓI · nM

INPUT: x[I_to_copy_b[k][i]] = 1 AND x[I_b_addr[k][i]] = 1
OUTPUT: y[I_b_addr_delay[k][i]] ← 1 AND y[I_b_addr[k][i]] ← 1
Instruction count: ℓI · nM

INPUT: x[I_to_copy_c[k][i]] = 1 AND x[I_c_addr[k][i]] = 1
OUTPUT: (i = 1) y[I_c_addr[k][i]] ← 1 AND y[I_c_addr_delay[k][i]] ← 1 AND

y[I_copy_sync[k]] ← 1
(i > 1) y[I_c_addr[k][i]] ← 1 AND y[I_c_addr_delay[k][i]] ← 1

Instruction count: ℓI · nI
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INPUT: x[I_a_addr_delay[k][i]] = 1
OUTPUT: (k < ℓI) y[I_a_addr_delay[k+1][i]] ← 1

(k = ℓI ) y[M_a_addr[ALL][i]] ← 1
Instruction count: ℓI · nM

INPUT: x[I_b_addr_delay[k][i]] = 1
OUTPUT: (k < ℓI) y[I_b_addr_delay[k+1][i]] ← 1

(k = ℓI ) y[M_b_addr][ALL][i] ← 1
Instruction count: ℓI · nM

INPUT: x[I_c_addr_delay[k][i]] = 1
OUTPUT: (k < ℓI) y[I_c_addr_delay[k+1][i]] ← 1

(k = ℓI ) y[B_pre_candidate_1[i]] ← 1
Instruction count: ℓI · nI

INPUT: x[I_copy_sync[k]] = 1
OUTPUT: (k < ℓI) y[I_copy_sync[k+1]] ← 1

(k = ℓI ) y[M_to_compare][ALL][ALL] ← 1 AND y[B_to_sync_c] ← 1
Instruction count: ℓI

Instructions: persist addresses (M)

As with the instruction block, the memory addresses must also be persisted. For the input block
below, there is no need to handle scenarios where the other variables are equal to 1, as those cases are
either already addressed during the comparison stage or do not arise during execution.

INPUT: x[M_to_compare[k][i]] = 0 AND x[M_mem_addr[k][i]] = 1 AND
x[M_a_addr[k][i]] = 0 AND x[M_b_addr[k][i]] = 0
OUTPUT: y[M_mem_addr[k][i]] ← 1
Instruction count: ℓM · nM

Instructions: compare addresses (M)

In this stage, each memory address k is compared to the addresses stored in the instruction fields a and
b. Note that the addresses from a and b have already been transmitted to their corresponding memory
blocks. Below, we describe the behavior for different combinations of the values of M_a_addr,
M_b_addr, and M_mem_addr.

INPUT: x[M_to_compare[k][i]] = 1 AND
x[M_a_addr[k][i]] = x[M_mem_addr[k][i]] AND
x[M_b_addr[k][i]] = x[M_mem_addr[k][i]]

OUTPUT: (i = 1) y[M_is_equal_a[k][i]] ← 1 AND y[M_is_equal_b[k][i]] ← 1 AND
y[M_counter_a[k][i]] ← 1 AND y[M_counter_b[k][i]] ← 1 AND
y[M_mem_addr[k][i]] ← x[M_mem_addr[k][i]]

(i > 1) y[M_is_equal_a[k][i]] ← 1 AND y[M_is_equal_b[k][i]] ← 1 AND
y[M_mem_addr[k][i]] ← x[M_mem_addr[k][i]]

Instruction count: 2ℓM · nM

INPUT: x[M_to_compare[k][i]] = 1 AND
x[M_a_addr[k][i]] ̸= x[M_mem_addr[k][i]] AND
x[M_b_addr[k][i]] = x[M_mem_addr[k][i]]

OUTPUT: (i = 1) y[M_is_equal_b[k][i]] ← 1 AND y[M_counter_b[k][i]] ← 1 AND
y[M_mem_addr[k][i]] ← x[M_mem_addr[k][i]]

(i > 1) y[M_is_equal_b[k][i]] ← 1 AND
y[M_mem_addr[k][i]] ← x[M_mem_addr[k][i]]

Instruction count: 2ℓM · nM
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INPUT: x[M_to_compare[k][i]] = 1 AND
x[M_a_addr[k][i]] = x[M_mem_addr[k][i]] AND
x[M_b_addr[k][i]] ̸= x[M_mem_addr[k][i]]

OUTPUT: (i = 1) y[M_is_equal_a[k][i]] ← 1 AND y[M_counter_a[k][i]] ← 1 AND
y[M_mem_addr[k][i]] ← x[M_mem_addr[k][i]]

(i > 1) y[M_is_equal_a[k][i]] ← 1 AND
y[M_mem_addr[k][i]] ← x[M_mem_addr[k][i]]

Instruction count: 2ℓM · nM

INPUT: x[M_to_compare[k][i]] = 1 AND
x[M_a_addr[k][i]] ̸= x[M_mem_addr[k][i]] AND
x[M_b_addr[k][i]] ̸= x[M_mem_addr[k][i]]

OUTPUT: x[M_mem_addr[k][i]] ← x[M_mem_addr[k][i]]
Instruction count: 2ℓM · nM

Instructions: check full address match and trigger copy (M)

After computing bitwise equalities for each address and each address bit, the comparison flags for
both a and b are checked iteratively. If all bits in a given comparison are equal to one, this indicates a
match with the corresponding memory address, and the relevant processes are activated.

In the case of a match with address a, this triggers the process of copying the content of memory
at address a to the subtraction block. For a match with address b, a similar copying operation is
triggered. However, instead of copying the bits directly, the inverse of each bit is copied. This
serves to negate the content of b, as required by the subtraction logic, which will be explained in the
following instructions.

Additionally, when a match is found in b, another flag is activated to indicate which memory slot
corresponds to the current match. This flag is used later to update that memory slot with the result of
the subtraction.

INPUT: x[M_counter_a][k][i] = 1 AND x[M_is_equal_a][k][i] = 1
OUTPUT: (i < nM) y[M_counter_a][k][i+1] ← 1

(i = nM ) y[M_to_copy_a_mem_cont][k][ALL] ← 1
Instruction count: ℓM · nM

INPUT: x[M_counter_a][k][i] = 0 AND x[M_is_equal_a][k][i] = 1
OUTPUT: y[M_is_equal_a][k][i] ← 1
Instruction count: ℓM · nM

INPUT: x[M_counter_b][k][i] = 1 AND x[M_is_equal_b][k][i] = 1
OUTPUT: (i < nM ) y[M_counter_b][k][i+1] ← 1

(i = nM ) y[M_to_copy_inv_b_mem_cont][k][ALL] ← 1 AND
y[M_is_match_b][k][ALL] ← 1

Instruction count: ℓM · nM

INPUT: x[M_counter_b][k][i] = 0 AND x[M_is_equal_b][k][i] = 1
OUTPUT: y[M_is_equal_b][k][i] ← 1
Instruction count: ℓM · nM

Instructions: copy memory content (M)

The following instructions cover all combinations of flags and memory content values. In this setting,
we ensure that every valid combination of memory content and flag activation is captured. The
transmission of memory information to the appropriate targets follows the same delay structure
previously described, which helps manage write conflicts.

Importantly, the memory content is preserved in all cases, and the M_is_match_b flag is retained to
indicate the corresponding memory slot for later updates to memory b.

Additionally, we must account for cases in which the memory content is null. This is necessary due to
the flag M_to_copy_inv_b_mem_cont, which signals that the inverse of the memory content should
be copied. As a result, its effect only arises when M_mem_cont is zero, whereas the effects of other
flags are triggered when the memory content is non-zero.
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INPUT: x[M_mem_cont][k][i] = 1 AND x[M_to_copy_a_mem_cont][k][i] = 1 AND
x[M_to_copy_inv_b_mem_cont][k][i] = 1 AND x[M_is_match_b][k][i] = 1 AND
x[M_to_copy_from_sub][k][i] = 0 AND x[M_sub_result][k][i] = 0

OUTPUT: (i = 1) y[M_mem_cont][k][i] ← 1 AND y[M_is_match_b][k][i] ← 1 AND
y[M_a_cont_delay][k][i] ← 1 AND y[M_b_cont_sync][k] ← 1 AND
y[M_a_cont_sync][k] ← 1

(i > 1) y[M_mem_cont][k][i] ← 1 AND y[M_is_match_b][k][i] ← 1 AND
y[M_a_cont_delay][k][i] ← 1

Instruction count: ℓM · nC

INPUT: x[M_mem_cont][k][i] = 0 AND x[M_to_copy_a_mem_cont][k][i] = 1 AND
x[M_to_copy_inv_b_mem_cont][k][i] = 1 AND x[M_is_match_b][k][i] = 1 AND
x[M_to_copy_from_sub][k][i] = 0 AND x[M_sub_result][k][i] = 0

OUTPUT: (i = 1) y[M_is_match_b][k][i] ← 1 AND y[M_b_cont_delay][k][i] ← 1 AND
y[M_b_cont_sync][k] ← 1 AND y[M_a_cont_sync][k] ← 1

(i > 1) y[M_is_match_b][k][i] ← 1 AND y[M_b_cont_delay][k][i] ← 1
Instruction count: ℓM · nC

INPUT: x[M_mem_cont][k][i] = 0 AND x[M_to_copy_a_mem_cont][k][i] = 0 AND
x[M_to_copy_inv_b_mem_cont][k][i] = 1 AND x[M_is_match_b][k][i] = 1 AND
x[M_to_copy_from_sub][k][i] = 0 AND x[M_sub_result][k][i] = 0

OUTPUT: (i = 1) y[M_is_match_b][k][i] ← 1 AND y[M_b_cont_delay][k][i] ← 1 AND
y[M_b_cont_sync][k] ← 1

(i > 1) y[M_is_match_b][k][i] ← 1 AND y[M_b_cont_delay][k][i] ← 1
Instruction count: ℓM · nC

INPUT: x[M_mem_cont][k][i] = 1 AND x[M_to_copy_a_mem_cont][k][i] = 0 AND
x[M_to_copy_inv_b_mem_cont][k][i] = 1 AND x[M_is_match_b][k][i] = 1 AND
x[M_to_copy_from_sub][k][i] = 0 AND x[M_sub_result][k][i] = 0

OUTPUT: (i = 1) y[M_mem_cont][k][i] ← 1 AND y[M_is_match_b][k][i] ← 1 AND
y[M_b_cont_sync][k] ← 1

(i > 1) y[M_mem_cont][k][i] ← 1 AND y[M_is_match_b][k][i] ← 1
Instruction count: ℓM · nC

INPUT: x[M_mem_cont][k][i] = 1 AND x[M_to_copy_a_mem_cont][k][i] = 1 AND
x[M_to_copy_inv_b_mem_cont][k][i] = 0 AND x[M_is_match_b][k][i] = 0 AND
x[M_to_copy_from_sub][k][i] = 0 AND x[M_sub_result][k][i] = 0

OUTPUT: y[M_mem_cont][k][i] ← 1 AND y[M_a_cont_delay][k][i] ← 1 AND
y[M_a_cont_sync][k] ← 1

Instruction count: ℓM · nC

INPUT: x[M_a_cont_delay[k][i]] = 1
OUTPUT: (k < ℓI) y[M_a_cont_delay[k+1][i]] ← 1

(k = ℓM ) y[D_sub_p[i]] ← 1
Instruction count: ℓM · nC

INPUT: x[M_b_cont_delay[k][i]] = 1
OUTPUT: (k < ℓI) y[M_b_cont_delay[k+1][i]] ← 1

(k = ℓM ) y[D_tc_p[i]] ← 1
Instruction count: ℓM · nC

INPUT: x[M_a_cont_sync[k]] = 1
OUTPUT: (k < ℓM) y[M_a_cont_sync[k+1]] ← 1

(k = ℓM ) y[D_tc_sync_a] ← 1
Instruction count: ℓM

27



INPUT: x[M_b_cont_sync[k]] = 1
OUTPUT: (k < ℓM) y[M_b_cont_sync[k+1]] ← 1

(k = ℓM ) y[D_tc_q[1]] ← 1 AND y[D_tc_counter[1]] ← 1
Instruction count: ℓM

Instructions: negate memory content in b (D)

This process takes place after the memory content has been effectively copied. The overall goal of
the subtraction blocks is to compute the difference between the memory contents at addresses a and
b. To achieve this, we adopt a two-step procedure.

Before describing the procedure, we clarify that memory content is represented using two’s comple-
ment encoding. Specifically, the least significant nC − 1 bits represent the magnitude, while the most
significant bit stores the sign.

Given this representation, subtraction is implemented by negating the content at address b and then
adding it to the content at address a.

In the previous step, the content from address a was forwarded to a holding stage, awaiting the
negated result of b. Meanwhile, we compute the two’s complement negation of b by first taking
its bitwise inverse and then adding 1. The instructions below implement this stage, covering each
operation involved in bitwise inversion, addition, carry propagation, and counter updates. These
instructions follow the same structure described in Appendix B.2, but are limited to nC bits, meaning
the final carry (MSB) is not propagated as an additional bit as it was done in Appendix B.2.

After 2nC iterations, the addition is completed. The final counter triggers the copy flags, which
forward the result to the same staging area as the content of a. In the second step, we sum these two
values, yielding the desired result: M [a]−M [b].

INPUT: x[D_tc_p[i]] = 1 AND x[D_tc_q[i]] = 0 AND x[D_to_copy_tc_p[i]] = 0
OUTPUT: y[D_tc_p[i]] ← 1
Instruction count: nC

INPUT: x[D_tc_p[i]] = 0 AND x[D_tc_q[i]] = 1 AND x[D_to_copy_tc_p[i]] = 0
OUTPUT: y[D_tc_p[i]] ← 1
Instruction count: nC

INPUT: x[D_tc_p[i]] = 1 AND x[D_tc_q[i]] = 1 AND x[D_to_copy_tc_p[i]] = 0
OUTPUT: y[D_tc_carry[i]] ← 1
Instruction count: nC

INPUT: x[D_tc_carry[i]] = 1
OUTPUT: (i < nC ) y[D_tc_q[i+1]] ← 1
Instruction count: nC − 1

INPUT: x[D_tc_counter[i]] = 1
OUTPUT: (i < 2nC ) y[D_tc_counter[i+1]] ← 1

(i = 2nC ) y[D_tc_sync_b] ← 1
Instruction count: 2nC

Instructions: synchronize and trigger copy of negated content of b (D)

In this operation, the copy is triggered only after confirming that both processes (negating the content
of b and copying the content of a) have been completed. This ensures no operation begins before all
necessary inputs are available at their designated locations. If either of the two flags has not yet been
activated, we preserve the current values until both are ready.

INPUT: x[D_tc_sync_a] = 1 AND x[D_tc_sync_b] = 1
OUTPUT: y[D_to_copy_tc_p][ALL] ← 1
Instruction count: 1
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INPUT: x[D_tc_sync_a] = 1 AND x[D_tc_sync_b] = 0
OUTPUT: y[D_tc_sync_a] = 1
Instruction count: 1

INPUT: x[D_tc_sync_a] = 0 AND x[D_tc_sync_b] = 1
OUTPUT: y[D_tc_sync_b] = 1
Instruction count: 1

Instructions: copy negated content of b (D)

Once the D_to_copy_tc_p flag is activated, the content of D_tc_p, which encodes the negation of
the content of b, is copied to D_sub_q. This is the location where it will later be summed with the
content of a.

In the following set of instructions, we do not include a case for when D_tc_q is 1, since after 2nC

iterations, D_tc_q is guaranteed to be zero.

INPUT: x[D_tc_p[i]] = 1 AND x[D_tc_q[i]] = 0 AND x[D_to_copy_tc_p[i]] = 1
OUTPUT: (i = 1) y[D_sub_q[i]] = 1 AND y[D_sub_counter][1] ← 1

(i > 1) y[D_sub_q[i]] = 1
Instruction count: nC

Instructions: add the content of a to the negated content of b (D)

Once the negated content of b has been copied to the same stage as the content of a, the final
subtraction result is obtained by performing a simple summation. The instructions below follow the
same addition structure described in Appendix B.2. After completing 2nC iterations, we trigger the
sync flag to proceed to the next stage.

INPUT: x[D_sub_p[i]] = 1 AND x[D_sub_q[i]] = 0 AND x[D_to_copy_sub_p[i]] = 0
OUTPUT: y[D_sub_p[i]] ← 1
Instruction count: nC

INPUT: x[D_sub_p[i]] = 0 AND x[D_sub_q[i]] = 1 AND x[D_to_copy_sub_p[i]] = 0
OUTPUT: y[D_sub_p[i]] ← 1
Instruction count: nC

INPUT: x[D_sub_p[i]] = 1 AND x[D_sub_q[i]] = 1 AND x[D_to_copy_sub_p[i]] = 0
OUTPUT: y[D_sub_carry][i] ← 1
Instruction count: nC

INPUT: x[D_sub_carry][i] = 1
OUTPUT: (i < nC ) y[D_sub_q][i+1] ← 1
Instruction count: nC − 1

INPUT: x[D_sub_counter][i] = 1
OUTPUT: (i < 2nC ) y[D_sub_counter][i+1] ← 1

(i = 2nC ) y[B_to_sync_sub] ← 1
Instruction count: 2nC

Instructions: copy subtraction result (D)

At this stage, the flag D_to_copy_sub_p indicates that the content of D_sub_p, which holds the
result of the subtraction, should be copied to all memory slots labeled as M_sub_result. This update
is carried out using the matching flag M_is_match_b and the copy trigger M_to_copy_from_sub,
as specified in Algorithm 1, in order to update the memory content at address b.

In the following set of instructions, we omit the case where D_sub_q is 1, since after 2n_C iterations
this variable should always be zero.

We also implement the condition from Algorithm 1 used to determine the next instruction. By
checking the most significant bit (MSB) of D_sub_p, which represents the sign of the result, we
decide the next step: if the MSB is 1, the result is negative and B_is_condition_1 is activated;
otherwise, B_is_condition_0 is triggered.
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INPUT: x[D_sub_p[i]] = 1 AND x[D_sub_q[i]] = 0 AND x[D_to_copy_sub_p[i]] = 1
OUTPUT: (i < nC ) y[M_sub_result[ALL][i]] ← 1

(i = nC ) y[B_is_condition_1[ALL]]← 1 AND y[M_sub_result[ALL][i]] ← 1 AND
y[M_to_copy_from_sub[ALL][ALL]]← 1

Instruction count: nC

INPUT: x[D_sub_p[i]] = 0 AND x[D_sub_q[i]] = 0 AND x[D_to_copy_sub_p[i]] = 1
OUTPUT: (i = nC ) y[B_is_condition_0[ALL]] ← 1 AND

y[M_to_copy_from_sub[ALL][ALL]] ← 1
Instruction count: 1

Instructions: increment current instruction address (B)

This set of instructions computes the address corresponding to the else condition in the branching
logic of Algorithm 1. Specifically, it calculates the address of the next instruction, denoted by
candidate_0, based on the current instruction address. The computation follows the same addition
structure described in Appendix B.2.

By default, the initial vector x̂ is configured such that the first current instruction is the all-zero vector,
and the variable x[B_sum_p][1] is set to 1. This setup ensures that the algorithm always begins
with the first instruction. After this initialization, the subsequent iterations proceed according to
the logic defined by the instruction set. During the selection of the instruction address based on the
branching condition, the chosen address is also copied to a scratchpad area, which is then used to
compute k + 1. Once the k + 1 address is calculated, it is stored in the B_sum_p bits and retained
until the appropriate copy flag is activated.

INPUT: x[B_sum_p[i]] = 1 AND x[B_sum_q[i]] = 0 AND x[B_to_copy_p[i]] = 0
OUTPUT: y[B_sum_p[i]] ← 1
Instruction count: nI

INPUT: x[B_sum_p[i]] = 0 AND x[B_sum_q[i]] = 1 AND x[B_to_copy_p[i]] = 0
OUTPUT: y[B_sum_p[i]] ← 1
Instruction count: nI

INPUT: x[B_sum_p[i]] = 1 AND x[B_sum_q[i]] = 1 AND x[B_to_copy_p[i]] = 0
OUTPUT: y[B_carry[i]] ← 1
Instruction count: nI

INPUT: x[B_carry[i]] = 1
OUTPUT: (i < nI ) y[B_sum_q][i+1] ← 1
Instruction count: nI − 1

Instructions: copy next instruction address (B)

Once the copying flag is activated, the contents of B_sum_p are copied to B_candidate_0. Simulta-
neously, we set B_sum_p[1] to 1 to ensure that it can increment the next instruction address during
the next instruction update.

INPUT: x[B_sum_p[i]] = 1 AND x[B_sum_q[i]] = 0 AND x[B_to_copy_p[i]] = 1
OUTPUT: (i = 1) x[B_candidate_0[i]] = 1 AND x[B_sum_p[i]] = 1

(i > 1) x[B_candidate_0[i]] = 1
Instruction count: nI

INPUT: x[B_sum_p[i]] = 0 AND x[B_sum_q[i]] = 0 AND x[B_to_copy_p[i]] = 1
OUTPUT: (i = 1) x[B_sum_p[i]] = 1
Instruction count: 1

Instructions: synchronize operations (B)

In this operation, we synchronize the two independent phases: the subtraction and the retrieval of
address c. Once both processes are complete, their results are simultaneously copied to the branching
block. To ensure proper synchronization, we also include instructions that preserve the state of one
flag if the other has not yet been activated.
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INPUT: x[B_to_sync_c] = 1 AND x[B_to_sync_sub] = 1
OUTPUT: x[D_to_copy_sub_p[ALL]] ← 1 AND y[B_to_copy_p[ALL]] ← 1 AND

y[B_to_copy_candidate_1[ALL]] ← 1
Instruction count: 1

INPUT: x[B_to_sync_c] = 1 AND x[B_to_sync_sub] = 0
OUTPUT: y[B_to_sync_c] ← 1
Instruction count: 1

INPUT: x[B_to_sync_c] = 0 AND x[B_to_sync_sub] = 1
OUTPUT: y[B_to_sync_sub] ← 1
Instruction count: 1

Instructions: copy instruction address c (B)

Once synchronization is complete, we copy the value of B_candidate_1 from the staging area
B_pre_candidate_1. The value in the staging area is preserved until the corresponding copy flag is
activated, as detailed in the instructions below.

INPUT: x[B_pre_candidate_1[i]] = 1 AND x[B_to_copy_candidate_1[i]] = 1
OUTPUT: y[candidate_1[i]] ← 1
Instruction count: nI

INPUT: x[B_pre_candidate_1[i]] = 1 AND x[B_to_copy_candidate_1[i]] = 0
OUTPUT: y[B_pre_candidate_1[i]] ← 1
Instruction count: nI

Instructions: update instruction address (B)

Both candidate addresses are synchronously copied from their respective fields, along with the
branching condition specified in Algorithm 1. Based on the activated condition, one of the candidates
is selected. The chosen candidate is then copied into I_curr_instr, and I_to_compare is activated
across all bits and instructions. Additionally, as previously noted, the selected instruction is also
copied to B_sum_q to enable the computation of the next instruction address.

INPUT: x[B_is_condition_1][i] = 1 AND x[B_is_condition_0][i] = 0 AND
x[B_candidate_1[i]] = 1 AND x[B_candidate_0[i]] = x[B_candidate_0[i]]

OUTPUT: (i < nI ) y[I_curr_instr][ALL][i] ← 1 AND y[B_sum_q[i]] ← 1
(i = nI ) y[I_curr_instr][ALL][i] ← 1 AND

y[I_to_compare][ALL][ALL] ← 1 AND y[B_sum_q[i]] ← 1
Instruction count: 2nI

INPUT: x[B_is_condition_1][i] = 1 AND x[B_is_condition_0][i] = 0 AND
x[B_candidate_1[i]] = 0 AND x[B_candidate_0[i]] = x[B_candidate_0[i]]

OUTPUT: (i = nI ) y[I_to_compare][ALL][ALL] ← 1
Instruction count: 2

INPUT: x[B_is_condition_1][i] = 0 AND x[B_is_condition_0][i] = 1 AND
x[B_candidate_0[i]] = 1 AND x[B_candidate_1[i]] = x[B_candidate_1[i]]

OUTPUT: (i < nI ) y[I_curr_instr][ALL][i] ← 1 AND y[B_sum_q[i]] ← 1
(i = nI ) y[I_curr_instr][ALL][i] ← 1 AND

y[I_to_compare][ALL][ALL] ← 1 AND y[B_sum_q[i]] ← 1
Instruction count: 2nI

INPUT: x[B_is_condition_1][i] = 0 AND x[B_is_condition_0][i] = 1 AND
x[B_candidate_0[i]] = 0 AND x[B_candidate_1[i]] = x[B_candidate_1[i]]

OUTPUT: (i = nI ) y[I_to_compare][ALL][ALL] ← 1
Instruction count: 2

As required by the NTK learnability results, detailed in Appendix C, the following instructions exhibit
a finite number of conflicts per coordinate. These conflicts are quantified by counting the number
of outputs that write over the same coordinate. In this implementation, the maximum number of
conflicts is 4. This occurs in the M_mem_addr bits, where memory values must be persisted under
different combinations of control variables within the same block.
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C Proof of the NTK predictor behavior Theorem

In this section, we give the complete proof of Theorem 5.1. For convenience, we restate both the
underlying assumption and the theorem below:
Assumption 5.1. For each test input x̂ and for each position i ∈ [k′] such that the ground-truth
output f(x̂)10 has the i-th bit set, the number of training examples that do not match x̂ and have the
i-th bit set (which we call unwanted correlations) is less than the ratio −w1(x̂)/w0(x̂).11

Theorem 5.1 (NTK predictor behavior). Consider an algorithmic problem cast as template-matching
and encoded in a training set (X ,Y) ⊆ Rk′ × Rk as described in Section 5.1. Then, under
Assumption 5.1, the mean of the limiting NTK distribution µ(x̂) = Θ(x̂,X )Θ(X ,X )−1Y for any
test input x̂ ∈ Rk′

contains sign-based information about the ground-truth output, namely for each
coordinate of the output i = 1, . . . , k, µ(x̂)i ≤ 0 if the ground-truth bit at position i, f(x̂)i, is set,
and µ(x̂)i > 0 if the ground-truth bit at position i, f(x̂)i, is not set.

Proof. The proof begins by calculating the kernels Θ(X ,X ) ∈ Rkk′×kk′
and Θ(x̂,X ) ∈ Rk×kk′

.
Using Equation (1)

Θ := Θ(X ,X ) =
(
(d− c)Ik′ + c11⊤)⊗ Ik ∈ Rkk′×kk′

(10)
where

d =
1

k′
and c =

1

2πk′
(11)

We can observe that since d > c > 0, Θ is positive definite. Indeed, since 11⊤ (the matrix of all
ones) is positive semidefinite, (d− c)Ik′ + c11⊤ is (strictly) positive definite and so the Kronecker
product with Ik is also positive definite (see Appendix A). Similarly, the test NTK is given by

Θ(x̂,X ) = f⊤ ⊗ Ik ∈ Rk×kk′

where for each i = 1, 2, . . . , k′:

fi =
cos θ̂i(π − θ̂i) + sin θ̂i

2k′π
+ ẑi

π − θ̂i
2k′π

(12)

and
θ̂i = arccos (ẑi) (13)

where zi is equal to 0 or 1/
√
nx̂ depending on whether x̂ matches the i-th training example. Since

z takes only two values, the resulting θ̂i takes two values θ̂0 and θ̂1 (corresponding to x̂i = 0 and
x̂i = 1/

√
nx̂) and subsequently each fi also takes two values f0 and f1. Finally, an application of

Theorem A.1 gives

Θ−1 =

(
1

d− c
Ik′ − c

(d− c)(d− c+ ck′)
11⊤

)
⊗ Ik

Substituting everything in Θ−1f , we find that this takes the two values w0(x̂) and w1(x̂) as discussed
in the main paper, namely:

(Θ−1f)i = w0(x̂) =
y2 −

√
y2 − 1y − 2π(y − 1) + 2y sec−1(y)− 1

(2π − 1)(k + 2π − 1)

if x̂ does not match the i-th training sample and

(Θ−1f)i = w1(x̂) = −

(√
y2 − 1− y

) (
y2 − k

)
(2π − 1)(k + 2π − 1)y

+
π
(
k − y2 + 2

√
y2 − 1− 1

)
(2π − 1)(k + 2π − 1)y

+
2
(
k − y2 + 2π − 1

)
csc−1(y)−

√
y2 − 1 + 2π2

(2π − 1)(k + 2π − 1)y

if x̂ matches the i-th training sample, where y =
√
nx̂. Using a symbolic calculation system

(Mathematica Inc. [12]) we can establish that for all possible values of y (i.e y =
√
m for m =

1, 2, . . . , b), w0(x̂) ≤ 0 and w1(x̂) > 0. The rest of the proof is exactly as given in the main
paper.

10There is a slight abuse of notation here when using f(x̂) since f does not operate on encoded inputs.
Depending on the context, we may use x̂ to denote both the pre-encoded and encoded test inputs.

11w0(x̂) is always non-positive and so the ratio is non-negative.

32



Satisfying Assumption 5.1 To verify that Assumption 5.1 holds for a particular application we
need to bound the number of unwanted correlations for each possible test input x̂. An easier way to
verify that Assumption 5.1 holds is by studying the number of conflicts, as defined in Appendix B.
Note that if the maximum number of conflicts is c, at most c+1 training examples can have a ground
truth label of 1 at the same position. In particular, this shows that the number of unwanted correlations
is at most c for any test input x̂. In what follows we show how we leverage this observation to show
that Assumption 5.1 is satisfied for all tasks discussed in the main paper:

• For the case of binary permutations of length ℓ, we have ℓ template configuration and the
input dimension is k′ = ℓ. Since we have no unwanted correlations, Assumption 5.1 is
trivially satisfied.

• For the case of binary addition of two ℓ-bit numbers, we have 2ℓ template configurations
and the input dimension is k′ = 4ℓ. We find symbolically that the ratio −w1(x̂)/w0(x̂)
is decreasing as a function of nx̂ (for fixed ℓ) and strictly greater than 1 for all ℓ ≥ 1 and
nx̂ ≤ 2ℓ. Since the maximum number of conflicts is 1, Assumption 5.1 is satisfied.

• For the case of binary multiplication of two ℓ-bit numbers, we have 11ℓ template configu-
rations and the input dimension is k′ = 20ℓ+ 2. By adding extra training examples with
corresponding ground truth labels of 0 that are never matched, we can augment the number
of training examples to k′ = 21ℓ. We find symbolically that the ratio −w1(x̂)/w0(x̂) is
decreasing as a function of nx̂ (for fixed ℓ) and strictly greater than 2 for all ℓ ≥ 1 and
nx̂ ≤ 7ℓ+ 1.12 Since the maximum number of conflicts is 2, Assumption 5.1 is satisfied.

• For the case of SBN with memory size ℓM = ℓ, we have b = 5ℓ(log2 ℓ+ c1) + c2 log ℓ+ c3
template configurations and the input dimension is k′ = 13ℓ(log2 ℓ+ c4) + c5 log2 ℓ+ c6,
where c1, . . . , c6 are positive constants based on other configurations of the algorithm being
executed. In particular, notice that b ≤ C1ℓ

2 for some C1 > 0. By a similar augmentation
as before, we can achieve a dataset size of k′ = 5C1ℓ

2. Again, we find symbolically that the
ratio −w1(x̂)/w0(x̂) is decreasing as a function of nx̂ (for fixed ℓ) and strictly greater than
5C1/C1 − 1 = 4 for all ℓ ≥ 1 and nx̂ ≤ C1ℓ

2 (and in particular for nx̂ ≤ b). Since there
are at most 4 unwanted correlations, Assumption 5.1 is satisfied. The previous argument
can be repeated with 1 + ε for any ε > 0 in place of 2 at the exponent of ℓ and a different
constant Cε > 0.

The above is enough to conclude Remark 5.1.

D Proof of the lemma for the order of the mean predictor and its variance

In this section, we provide the proof of Lemma 6.1. We do so by analyzing the mean and variance of
the NTK predictor, expressing them as functions of the test vector x̂. Specifically, we characterize
their dependence on the input length k′ and the number of matching blocks, nx̂. We establish that the
variance of the predictions scales as O (1/k′), while the mean coordinates exhibit different behaviors
depending on whether the corresponding ground-truth bit is set and the relation between x̂ and k′.
We begin by calculating the variance: a direct substitution on the formula for the variance Σ(x̂) of
Equation (4) we find that the variance for a test input x̂ is given by

Σ(x̂) =

(
d

2
+ f⊤AMAf − 2f⊤Ag

)
Ik

where

M =

(
d

2
− c

)
Ik′ + c11⊤ A =

1

d− c
Ik′ − c

(d− c)(d− c+ ck′)
11⊤

and for each i = 1, 2, . . . , k′:

gi =
cos θ̂i(π − θ̂i) + sin θ̂i

2k′π

12The maximum number of training examples that any test input can match is 7ℓ+ 1. Refer to Appendix B
for details.
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The scalars c and d, the vector f , and the angles θ̂i are as defined in Equation (11), Equation (12) and
Equation (13), respectively. This shows that the output coordinates are independent Gaussian random
variables with the same covariance. Notice that whenever the test input is part of the training set, as
expected, the variance vanishes.

Preliminary quantities To discharge notation and facilitate the subsequent proofs, we rewrite some
of the already defined quantities and introduce some auxiliary quantities. Recall that:

d =
1

k′
and c =

1

2πk′

We further introduce
d′ =

d

2
=

1

2k′
and c′ = c =

1

2πk′

For a test vector x̂, we introduce the binary indicator Ii(x̂) that indicates whether x̂ matches the i-th
training example. With that, we rewrite:

θ̂i =

{
arccos

(
1√
nx̂

)
if Ii(x̂) = 1

π
2 otherwise

From this, we directly obtain the cosine and sine of θ̂i:

cos θ̂i =

{
1√
nx̂

if Ii(x̂) = 1

0 otherwise
sin θ̂i =

{√
1− 1

nx̂
if Ii(x̂) = 1

1 otherwise

Using these quantities, we rewrite:

gi =

{
1

2πk
√
nx̂

(
π − arccos (1/√nx̂) +

√
nx̂ − 1

)
if Ii(x̂) = 1

1
2πk otherwise

and we get that Equation (12) is equal to

fi =

{
gi +

π−arccos(1/√nx̂)
2πk

√
nx̂

if Ii(x̂) = 1

gi otherwise

D.1 Computing the order of the variance

We begin by recalling the expression for the variance (substituting d′ and c′):

Σ(x̂) =
(
d′ + f⊤AMAf − 2f⊤Ag

)
Ik

where

M = (d′ − c′) Ik′ + c′11⊤ and A =
1

d− c
Ik′ − c

(d− c)(d− c+ ck′)
11⊤

We aim to show that the variance is bounded by O (1/k′). To facilitate this, we rewrite Σ(x̂) by
expanding the matrix multiplication:

Σ(x̂) = d′Ik + f⊤ (AMAf − 2A(f − z)) Ik

= d′Ik + f⊤ (AMAf − 2Af) Ik + 2f⊤AzIk

where we define z = f − g for notational simplicity. It is straightforward to observe that the first
term, d′Ik, is bounded by O (1/k′). Thus, we focus our attention on the remaining two terms. For
the second term, we begin by showing that AMA − 2A has a maximum eigenvalue of O(1), and
therefore:

f⊤(AMA− 2A)f ∈ O (1/k′)

We begin by expressing AMA in a more manageable form. A direct computation reveals:

AMA = uIk′ − v11⊤
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where

u =
d′ − c′

(d− c)
2 and v =

1

k′

(
d′ − c′ + k′c′

(d− c+ k′c)
2 −

d′ − c′

(d− c)
2

)
Subtracting 2A from this expression gives:

AMA− 2A = (u− 2a) Ik′ + (v + 2b)11⊤

where

a =
d− c

(d− c)
2 and b =

c

(d− c+ ck′) (d− c)

This matrix has two unique eigenvalues: u− 2a (with multiplicity k′ − 1) and u− 2a+ (v + 2b)k′.
We will show that the largest eigenvalue is O(1). To this end, we evaluate these two quantities,
starting with u− 2a:

u− 2a =
d′ − c′ − 2(d− c)

(d− c)2

= −2π(3π − 1)k′

(2π − 1)2

which is negative. For the second eigenvalue, we find:

u− 2a+ (v + 2b)k′ = −2π(3π − 1)k′

(2π − 1)2
+

2πk′ (π + k′ − 1)

(2π + k′ − 1)
2 − 2πk′(π − 1)

(2π − 1)
2

+
4πk′

(2π − 1) (2π + k′ − 1)
=

(
4π

2π + k′ − 1
+

π + k′ − 1

(2π + k′ − 1)2

)
k′

which is positive and clearly O(1). With this result, we can bound the multiplication by the norms of
its components. Since λmax(AMA− 2A) ∈ O(1) and ∥f∥2 ∈ O (1/k′) (since each fi ∈ O (1/k′)),
we conclude:

f⊤(AMA− 2A)f ∈ O (1/k′)

We now turn to the third term, 2f⊤Az. Expressing z component-wise we have:

zi =

{
π−arccos(1/√nx̂)

2πk′√nx̂
if Ii(x̂) ̸= 0

0 otherwise

We then decompose the product f⊤Az as:

f⊤Az = af⊤z− b(f⊤1)(1⊤z) (14)

where

a =
1

d− c
and b =

2πk′

(2π − 1)(2π + k′ − 1)

The first term af⊤z can be expressed as:

af⊤z =
1

(2π − 1)(2πk′)2
(
2π − 2 arccos (1/√nx̂)−

√
nx̂ − 1

)
(π − 2 arccos (1/√nx̂))

which is positive and O (1/k′). For the second term b(f⊤1)(1⊤z), we start by expressing the
individual quantities f⊤1 and 1⊤z:

f⊤1 =

√
nx̂

πk′
(π − arccos (1/√nx̂)) +

√
nx̂

√
nx̂ − 1

2πk′
+

k′ − nx̂

2πk′

and

1⊤z =

√
nx̂

2πk′
(π − arccos (1/√nx̂))
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Therefore, the entire term can be expressed as:

b(f⊤1)(1⊤z) =
1

2πk′(2π − 1)(2π − 1 + k′)

(
2nx̂ (π − arccos (1/√nx̂))

2

+ nx̂

√
nx̂ − 1 (π − arccos (1/√nx̂))

+ (k′ − nx̂)
√
nx̂ (π − arccos (1/√nx̂))

)
which is positive and O (1/k′), therefore, the subtraction of Equation (14) (which is equal to f⊤Az)
is O (1/k′). Combining the bounds on all three terms, we conclude that:

Σ(x̂) ∈ O (1/k′) Ik

completing the proof of the first part of Lemma 6.1.

D.2 Computing the order of the mean

Recall from Equation (7) that each coordinate of the NTK predictor mean is given as a weighted
sum of w1 ≡ w1(x̂) and w0 ≡ w0(x̂), where w1 = (Θ−1f)i for all coordinates i ∈ [k] such that x̂
matches the i-th training example, and w0(= (Θ−1f)i for all coordinates i ∈ [k] such that x̂i does
not match the i-th training example. In particular, the template-matching mechanism of Equation (6)
shows that whenever the i-th ground-truth bit of x̂, f(x̂)i, is set, the NTK predictor satisfies:

µ(x̂)i = w1 + |I1−(x̂)| · w0 (15)

where I1−(x̂) denotes the indices of training examples that do not match x̂ and have their i-th
ground-truth output bit set. Similarly, whenever f(x̂)i = 0, the NTK predictor satisfies:

µ(x̂)i = |I1−(x̂)| · w0 (16)

Since |I1−(x̂)| is bounded by the maximum number of conflicts (as defined in Appendix B) which is
constant for all four tasks (i.e. it doesn’t scale with k′), the asymptotic order of µ(x̂) is determined
solely by the asymptotic orders of w0 and w1. We can thus turn our attention to

Θ−1f =

(
1

d− c
Ik′ − c

(d− c)(d− c+ ck′)
11⊤

)
f

which we decompose into two terms:

Θ−1f =
f

d− c
− c11⊤f

(d− c)(d− c+ ck)
(17)

For the first term in Equation (17), we obtain for each i = 1, 2, . . . , k′:

fi
d− c

=

{
1

2π−1

(
π−arccos(1/√nx̂)√

nx̂
+
√

1− 1√
nx̂

)
if Ii(x̂) = 1

1
2π−1 otherwise

The second term is a constant vector with coefficient:

c11⊤f

(d− c)(d− c+ ck′)
=

1

(2π − 1)(2π − 1 + k′)

(
nx̂ (π − arccos (1/√nx̂))

2
√
nx̂

+ nx̂

√
1− 1

nx̂
+ k′ − nx̂

)

We now evaluate each case separately.

Case 1: For w0(x̂), that is, when Ii(x̂) = 0, we have:

w0(x̂) =
1

2π − 1

(
1− k − nx̂

2π + k′ − 1
− 2πk′nx̂

(2π + k′ − 1)πk′
√
nx̂

(π − arccos (1/√nx̂))

)
− 1

2π − 1

(
2πk′nx̂

(2π + k′ − 1) 2πk′

√
1− 1
√
nx̂

)
(18)
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The absolute value of Equation (18) behaves like Θ
(√

nx̂/k
′), and setting nx̂ to different regimes

yields the bounds:

|w0(x̂)| ∈


Θ(1/k′) if nx̂ is constant
Θ
(√

nx̂/k
′) if nx̂ is non-constant

and sublinear in k′

Θ
(
1/
√
k′
)

if nx̂ = ck′ for c ∈ (0, 1]

Case 2: For w1(x̂), that is, when Ii(x̂) = 1, we have:

w1(x̂) =
2π − 1

2π + k′ − 1

(
2

(2π − 1)
√
nx̂

(π − arccos (1/√nx̂)) +
1

2π − 1

√
1− 1
√
nx̂

)

+
k′ − nx̂

2π + k′ − 1

(
2

(2π − 1)
√
nx̂

(π − arccos (1/√nx̂))

+
1

2π − 1

√
1− 1
√
nx̂
− 1

2π − 1

)
(19)

When setting nx̂ = k′, we note that the second term becomes zero and the first term becomes Θ(1/k′).
Alternatively, the first term in Equation (19) is Θ(1/k′) and the second term is Θ

(
1/
√
nx̂

)
, implying

µ(x̂)1 ∈ Θ
(
1/
√
nx̂

)
. Setting nx̂ to different regimes yields the bounds established in Lemma 6.1,

namely:

|w1(x̂)| ∈


Θ
(
1/
√
nx̂

)
if nx̂ is non-constant
and sublinear in k′,

Θ
(
1/
√
k′
)

if nx̂ = ck′ for c ∈ (0, 1)

Θ (1/k′) if nx̂ = k′

Substituting the derived orders in Equation (16) and Equation (15) yields the orders of Lemma 6.1,
completing the proof of the second part of Lemma 6.1.

Remark D.1. The conclusion of Lemma 6.1 holds for any task such that the cardinality of I1−(x̂)
does not scale with k′ for any test input x̂. In particular, it holds for tasks such that the maximum
number of conflicts is bounded by a constant that does not scale with the number of bits. To interpret
the last condition visually, consider Y as in Figure 3. We require each column of Y to have a sum
bounded by a constant which does not scale with the number of bits (and hence the input dimension
k′). For example, that constant for addition is equal to 2.

E Training Experiments on Permutation

We present two experiments that empirically validate our theoretical findings for the algorithmic
task of permutation. We chose this task because it requires significantly fewer models to achieve
reasonable results compared to more complex tasks such as binary addition and multiplication, which
exhibit substantially higher ensemble complexity. Addressing those tasks would demand large-scale
computational infrastructure, which is currently beyond our available resources. Nonetheless, our
present results still offer strong empirical support for our theoretical conclusions.

For this task, we train a two-layer fully connected feed-forward network with a hidden layer of width
50,000 only using standard basis vectors and optimized using full-batch gradient descent. Our goal is
to learn some random permutation on normalized binary inputs of length k. For testing, we evaluate
the performance on 1000 random vectors with nx̂ = 2 nonzero entries. To match the assumptions of
our theoretical analysis, we initialize the weights exactly as given in Section 3.

1. Number of models to achieve 90% accuracy. Our first experiment examines how many indepen-
dently trained models need to be averaged to achieve a testing accuracy of 90% as a function of the
input length k.
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Figure 7: Experiment 1 (left) presents the required number of models (ensemble size) to achieve 90%
accuracy as a function of input size k, compared to the theoretical bound from Equation (8) with the
appropriate δ. Experiment 2 (right) presents accuracy as a function of ensemble size for different
input sizes k.

2. Accuracy vs ensemble size. Our second experiment fixes k ∈ {5, 10, 15, 20, 25, 30} and examines
how the post-rounding accuracy varies as the ensemble size increases.

In Figure 7, the left plot presents the results of Experiment 1 compared to the bound established in
Equation (8) for the appropriate choice of δ to guarantee 90% accuracy for all test inputs simultane-
ously. We observe that the empirical ensemble size remains below the theoretical bound, and that
both curves follow a similar pattern as a function of k. For Experiment 2, the results on the right
plot of Figure 7 illustrate the convergence to perfect accuracy as a function of the ensemble size for
different input sizes k. As shown, larger input sizes require more models to achieve perfect accuracy,
but with a sufficient number of models, all instances eventually reach perfect accuracy.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We do exactly what the question asks.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our experiments serve to verify our theoretical results. Code is written using
the Neural Tangents package and provided in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We do exactly what the question states.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We do exactly what the question states.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We do not have experiments that involve randomness.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We indicate the hardware used to train our models in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do exactly what the question states.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: As we mention above, our work is theoretical and we don’t believe it has a
direct path to negative societal impact. On the contrary, we hope that our thorough theoretical
analysis can help the community better understand the computational capabilities of neural
networks.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper is theoretical. It poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing, nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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