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ABSTRACT

Repurposing pre-trained diffusion models has been proven to be effective for
novel view synthesis (NVS). However, these methods are mostly limited to a
single object; directly applying such methods to compositional multi-object scenar-
ios yields inferior results, especially incorrect object placement and inconsistent
shape and appearance under novel views. How to enhance and systematically
evaluate the cross-view consistency of such models remains under-explored. To
address this issue, we propose MOVIS to enhance the structural awareness of the
view-conditioned diffusion model for multi-object NVS in terms of model inputs,
auxiliary tasks, and training strategy. First, we inject structure-aware features,
including depth and object mask, into the denoising U-Net to enhance the model’s
comprehension of object instances and their spatial relationships. Second, we
introduce an auxiliary task requiring the model to simultaneously predict novel
view object masks, further improving the model’s capability in differentiating
and placing objects. Finally, we conduct an in-depth analysis of the diffusion
sampling process and carefully devise a structure-guided timestep sampling sched-
uler during training, which balances the learning of global object placement and
fine-grained detail recovery. To systematically evaluate the plausibility of synthe-
sized images, we propose to assess cross-view consistency and novel view object
placement alongside existing image-level NVS metrics. Extensive experiments on
challenging synthetic and realistic datasets demonstrate that our method exhibits
strong generalization capabilities and produces consistent novel view synthesis,
highlighting its potential to guide future 3D-aware multi-object NVS tasks.

1 INTRODUCTION

Novel view synthesis (NVS) from a single image is imperative for various applications, including
AR/VR, interior designs, robotics, etc. This is highly challenging as it requires understanding complex
spatial structures from a single 2D perspective observation while being able to extrapolate consistent
and plausible content for unobserved areas. The substantial demands for comprehensive knowledge
of the 3D world render it a difficult task, even for humans with rich priors of the 3D environments.

Recently, significant progress has been made in the realm of single-object image-to-3D genera-
tion (Tang et al., 2023b; Liu et al., 2023b; Shi et al., 2023a; Liu et al., 2023a; Shi et al., 2023b; Long
et al., 2024) empowered by the advances in 2D diffusion models (Rombach et al., 2022; Ho et al.,
2020). Among them, one prominent line of research (Liu et al., 2023b; Lin et al., 2023a; Qian et al.,
2023; Tang et al., 2023a; Weng et al., 2023; Lin et al., 2023b; Liu et al., 2023d; Huang et al., 2023;
Chen et al., 2023) has achieved compelling results by building on insights from Zero-1-to-3 (Liu
et al., 2023c): repurposing a pre-trained diffusion model as a novel view synthesizer by fine-tuning
on large 3D object datasets can provide promising 3D-aware prior for image-to-3D tasks.

However, these methods are mostly restricted to the single-object level. It remains unclear if this
paradigm can be effectively extended to the multi-object level to facilitate more complex tasks
like reconstructing an indoor scene. In Fig. 1, we visualize cross-view matching results of directly
applying the aforementioned novel view synthesizers (Liu et al., 2023c) in multi-object scenarios,
which showcases weak consistency with input views. Specifically, we believe that the lack of
structural awareness is the primary reason for the disappearance, distortion, incorrect position, and
orientation of objects under novel views. While several works (Sargent et al., 2023; Tung et al., 2024)
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Figure 1: Novel view synthesis and cross-view image matching. The first row shows that MOVIS
generalizes to different datasets on NVS. We also show visualizations of cross-view consistency
compared with Zero-1-to-3 (Liu et al., 2023c) and ground truth by applying image-matching. MOVIS
can match a significantly greater number of points, closely aligned with the ground truth.

have explored training on mixed real-world scene datasets, the complexity introduced by multiple
objects, such as spatial placement, per-instance geometry and appearance, and occlusion relationship,
makes incorporating such awareness non-trivial.

Inspired by the discussion above, our paper seeks to address the question: How to enhance the
structural awareness of current diffusion-based novel view synthesizers? We begin by identifying the
key challenges in extending single-object methods for multi-object NVS tasks. A multi-object image
possesses more complicated structural information than a single-object one. The model must first
grasp the hierarchical structure within, which includes both high-level global object placement, e.g.,
position and orientation, and low-level ones like per-object geometry and appearance. High-level
structural information significantly reduces the ambiguity in object composition while low-level
details are essential for accurately capturing the characteristics of each object instance. Subsequently,
the model needs to retain this hierarchical information captured from the input view while synthesizing
novel-view images to ensure cross-view structural consistency. These capabilities are less critical in
single-object level NVS tasks due to the reduced ambiguity in one-to-one mapping but are crucial for
effective multi-object NVS models.

Building on these insights, our technical designs are threefold. We first propose injecting structure-
aware features, i.e., depth and object mask, from the input view as additional inputs to provide
information on both high-level global placement and fine-grained local details. Secondly, we utilize
the prediction of novel view object masks as an auxiliary task during training for the model to
differentiate object instances, laying a solid foundation for fine-grained geometry and appearance
recovery. Finally, through an in-depth analysis of the model’s inference process, we highlight the
importance of revising the noise timestep sampling schedule, which influences the learning focus
in the training process. To be specific, larger timesteps emphasize global placement learning, while
smaller timesteps focus on local fine-grained object geometry and appearance recovery. To endow
the view-conditioned diffusion model with both capabilities, we propose a structure-guided timestep
sampling scheduler that prioritizes larger timesteps in the initial stage, gradually decreasing over time
to balance these two conflicting inductive biases. This design is fundamental to our proposed model’s
effectiveness in addressing the complexity of multi-object level NVS tasks.
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To systematically assess the plausibility of synthesized novel view images, we additionally evaluate
novel-view object mask and cross-view structural consistency apart from the existing NVS metrics.
Specifically, we employ image-matching techniques (Wang et al., 2024; Leroy et al., 2024) to compare
the input-view image with both the ground-truth and synthesized novel-view images. Cross-view
structural consistency evaluates how closely the matching results align, providing a measure of the
accuracy in recovering object placement, shape, and appearance. On the other hand, the object
mask, as measured by Intersection over Union (IoU), assesses the precision of object placement.
Extensive experiments demonstrate that our method excels at multi-object level NVS in indoor
scenes, achieving consistent object placement, shape, and appearance. Notably, it exhibits strong
generalization capabilities for generating novel views on unseen datasets, including both synthetic
ones 3D-FRONT (Fu et al., 2021a), Room-Texture (Luo et al., 2024) and Objaverse (Deitke et al.,
2023b), as well as the real-world SUNRGB-D (Song et al., 2015).

In summary, our paper focuses on enhancing structural awareness of view-conditioned diffusion
models, improving the quality and consistency of synthesized images. Our main contributions are:

1. We introduce structure-aware features as model inputs and incorporate novel view mask prediction
as an auxiliary task during training. This enhances the model’s understanding of hierarchical
structures in multi-object scenarios, leading to improved NVS performance.

2. We present a novel noise timestep sampling scheduler designed to balance the learning of global
object placement and fine-grained detail recovery, which is critical for addressing the increased
complexity in multi-object scenarios.

3. We introduce additional metrics to systematically evaluate the novel view structural consistency.
Through extensive experiments, our model demonstrates superiority in consistent object placement,
geometry, and appearance recovery, showcasing strong generalization capability to unseen datasets.

2 RELATED WORK

2.1 SINGLE OBJECT NVS WITH GENERATIVE MODELS

Synthesizing novel view images for single objects given a single-view image is an extremely ill-posed
problem that requires strong priors. With great advances achieved in diffusion models (Ho et al.,
2020; Rombach et al., 2022), research efforts (Xu et al., 2023; Tang et al., 2023b; Melas-Kyriazi
et al., 2023) seek to distill priors (Jain et al., 2022; Poole et al., 2022) learned from Text-to-Image
(T2I) diffusion models via image captioning like Li et al. (2023). However, this presents a huge gap
between the image and semantics due to the ambiguity of the text, hindering the 3D consistency of
these methods. On the other hand, view-conditioned diffusion models like Zero-1-to-3 (Liu et al.,
2023c) explore an Image-to-Image (I2I) generation paradigm that “teaches” the diffusion model to
control viewpoints to synthesize plausible images under novel views, providing a more consistent
3D-aware prior. Subsequent work focuses on accelerating the generation speed (Liu et al., 2023b;
Tang et al., 2023a), enhancing the view consistency (Chen et al., 2023; Lin et al., 2023b; Weng et al.,
2023; Liu et al., 2023d; Huang et al., 2023), or accelerating the training process (Jiang et al., 2023).
However, all these methods deal with single and complete object novel view synthesis tasks since
they usually fine-tune their model on Objaverse (Deitke et al., 2023b;a), an extensive single-object
level dataset, contrary to real images which normally consist of multiple or incomplete objects. The
lack of specific model designs for compositional scenes also leads to significant inconsistencies when
directly applying them to the multi-object scenarios, as can be seen from Fig. 1.

2.2 MULTI-OBJECT 3D RECONSTRUCTION WITH SINGLE OBJECT PRIORS

Following the advance in 3D-aware single object generative prior (Liu et al., 2023c; Shi et al., 2023a),
a line of research work (Chen et al., 2024b; Dogaru et al., 2024; Chen et al., 2024a) focuses on
extending their application to compositional multi-object scenarios. The core idea is to decompose
object compositions into individual objects, thereby fully leveraging the powerful generative priors of
single-object models. They first break down a multi-object composition into several components via
segmentation models like SAM (Kirillov et al., 2023), and then complete every single object with
amodal (Ozguroglu et al., 2024; Xu et al., 2024; Zhan et al., 2024) or inpainting (Rombach et al., 2022;
Lugmayr et al., 2022) techniques. The object instances are lifted to 3D via image-to-3D models (Tang
et al., 2023a; Wu et al., 2024; Liu et al., 2023c; Wang & Shi, 2023) and finally composited into
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Figure 2: Overview of MOVIS. Our model performs NVS from the input image and relative camera
change. We introduce structure-aware features as additional inputs and employ mask prediction as an
auxiliary task (Sec. 3.2). The model is trained with a structure-guided timestep sampling scheduler
(Sec. 3.3) to balance the learning of global object placement and local detail recovery.

a whole utilizing spatial-aware optimization, 3D bounding box detection (Brazil et al., 2023; Nie
et al., 2020) or carefully estimating the metric depth (Ke et al., 2024; Yang et al., 2024b). However,
this divide-and-conquer paradigm is limited by the user-specified spatial relations from language
prompts (Chen et al., 2024b) and relies heavily on the cascaded modules of detection (Kirillov et al.,
2023; Brazil et al., 2023; Ke et al., 2024), completion (Rombach et al., 2022; Lugmayr et al., 2022)
and 3D-aware object-level novel view synthesis (NVS) (Liu et al., 2023b; Wang & Shi, 2023) to
provide priors for reconstruction. Unlike any of the above, our method aims to build an end-to-end
image-conditioned novel view synthesis model that can directly cope with the increased complexity
in multi-object compositions, especially in indoor scenes with multiple furniture items.

2.3 SCENE-LEVEL NVS WITH SPARSE VIEW INPUT

Early efforts (Jain et al., 2021; Yu et al., 2021; Wang et al., 2021) attempted to directly perform scene-
level NVS tasks by extracting image features from input-view images and inferring the underlying
3D representation (Mildenhall et al., 2020). With the development of Gaussian Splatting (Kerbl et al.,
2023), recent works (Charatan et al., 2023; Chen et al., 2024c) attempt to switch the underlying
representation to Gaussian Splatting for efficiency. However, they mainly deal with synthesizing
views near input ones with limited generative capabilities to the unseen region. Inspired by the
great success of diffusion models (Rombach et al., 2022) and the object-level 3D-aware novel-view
synthesizer (Liu et al., 2023c; Wang & Shi, 2023), several recent works have also attempted to
perform scene-level NVS tasks by directly conditioning the generative models on a single-view scene
image or a monocular dynamic scene video (Van Hoorick et al., 2024). ZeroNVS (Sargent et al.,
2023) proposes to train a view-conditioned diffusion model on a mixture of real-world datasets,
MegaScenes (Tung et al., 2024) further scales up the training dataset with Internet-level data pairs for
stronger generalization capabilities. However, all these works mainly deal with small view-change and
simple scenarios in terms of object number, with few adaptations to tackle the multi-object complexity.
In this work, we systematically examine the cross-view consistency of NVS by proposing new metrics,
and explore the critical designs required to enhance the structural consistency of the view-conditioned
diffusion models in the multi-object scenarios.
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3 METHOD

In this section, we address the challenge of enhancing the structural awareness of diffusion-based
novel view synthesizers for better cross-view consistency in multi-object scenarios. We begin with
a brief introduction to diffusion models and view-conditioned diffusion models (Sec. 3.1). Next,
we detail the key architectural designs of MOVIS, including how we incorporate structural-aware
features as input to improve the model’s understanding of hierarchical structure information (Sec. 3.2)
and how we introduce novel view mask prediction as an auxiliary task, instructing the model to
differentiate the object instances with correct object placement (Sec. 3.2). Finally, we provide an
in-depth analysis of the inference process and adopt a structure-guided timestep sampling scheduler
(Sec. 3.3) to balance the learning of global object placement and local fine-grained object geometry
and appearance recovery. We provide an overview of our view-conditioned diffusion model in Fig. 2.

3.1 PRELIMINARIES

Diffusion Models Diffusion models learn to generate images by gradually adding noise to an image
(forward process) and recovering the original image from a noisy image (backward process) (Ho
et al., 2020). Specifically, in the forward process, Gaussian noise is progressively introduced to the
image via q(xt|xt−1). Due to the additivity of Gaussian distributions, this iterative process can be
written as q(xt|x0) = N (αtx0, σ

2
t I), where αt and σt are designed to converge to N (0, I) at the

end of the forward process (Kingma et al., 2021; Song et al., 2020b). In the backward process, the
model learns to progressively denoise from a noisy image pθ(xt−1|xt). This learning is formulated
as learning the noise estimator ϵθ(xt, t) following Ho et al. (2020):

E[||ϵθ(αtx0 + σtϵ, t)− ϵ||22], (1)
where ϵ is drawn from N (0, I) and the timestep t is uniformly sampled from U(1,1000). In the
inference stage, one can either apply a stochastic (Ho et al., 2020) or a deterministic (Song et al.,
2020a) sampler to generate high-quality images via iterative refinement.

View-conditioned Diffusion Models Diffusion models have been recently repurposed as a novel
view synthesizer. By training on posed image pairs {(x0, x̂0)} where x̂0 ∈ RH×W×3 denotes
the input view image and x0 ∈ RH×W×3 denotes the target view, view-conditioned diffusion
models (Watson et al., 2022; Liu et al., 2023c) use the input image x̂0 and camera pose transformation
as conditions to predict the target view image x0 from a different viewpoint. Specifically, the learning
objective of view-conditioned diffusion models is:

E[||ϵθ(αtx0 + σtϵ, t, C(x̂0, R, T ))− ϵ||22], (2)
where R, T represent the relative camera pose transformation between the target view x0 and the
input view x̂0. C(x̂0, R, T ) is the view-conditioned feature, combining the relative camera pose
transformation with encoded image features to form a new ‘pose-aware’ feature map, taking the place
of the origin CLIP (Radford et al., 2021) feature embedding. Moreover, input view image x0 will
be concatenated with the noisy image as the input of the denoising U-Net. As discussed in Sec. 2.1,
single-image-based NVS is extremely challenging, current methods inherit natural image priors from
large-scale pre-training (Rombach et al., 2022) and fine-tune diffusion models on large-scale 3D
object datasets like Objaverse (Deitke et al., 2023b) to learn the transformation between objects
in the input and novel views given the relative camera pose. Despite their ability to generalize to
in-the-wild objects, these view-conditioned diffusion models struggle with multi-object scenarios
like multi-furniture indoor scenes due to the scarcity of similar data and increased complexity arising
from intricate object compositions. Our method builds on the insight of repurposing the diffusion
model as a novel view synthesizer while emphasizing the inherent properties of multi-object scenarios
in both model design and training strategy to facilitate multi-object NVS.

3.2 MOVIS

Our proposed method extends view-conditioned diffusion models to multi-object level, as illustrated
in Fig. 2. The model leverages a pre-trained Stable Diffusion (Rombach et al., 2022) and concatenates
the 2D structural information from the input view with a noisy target image as input. Additionally, it
integrates a pre-trained image encoder (Oquab et al., 2023) to capture semantic information, which is
injected into the network through cross-attention alongside the relative camera pose. Moreover, it
predicts novel view mask simultaneously as an auxiliary task to aid global object placement learning.
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Structure-Aware Feature Amalgamation To synthesize plausible images under novel viewpoints,
the model must first grasp the compositional structural information from the input view, laying a
solid foundation for generation. To address the innate complexity in multi-object scenarios due
to the intricate object relationship, we propose to leverage structure-aware features to facilitate
model’s comprehension. Specifically, we use depth maps and object masks as proxies for image-level
structural information. Object masks provide a rough concept of object placement and shape as
well as distinguishing distinct object instances, while depth maps encode the rough relative position
and shape of the visible objects. Together with input-view images, these conditions provide both
global structural information like object placement and local fine-grained details like object shape.
Concretely speaking, we normalize the image rendered with object instance IDs of the input view
to create a continuous object mask image M̂. We then replicate the depth map D̂ and object mask
image M̂ into three channels to simulate RGB images. These two structural-aware feature images,
along with the input image x̂0, are passed into a VAE to obtain latent features, which will be later
concatenated with the noisy target view image xt as input to the denoising U-Net. Note that both
object mask and depth can be obtained with off-the-shelf detectors during the inference stage, such
as SAM (Kirillov et al., 2023) and Marigold (Ke et al., 2024). After introducing these additional
conditions, the learning objective of MOVIS becomes:

E[||ϵθ(αtx0 + σtϵ, t, CSA(x̂0, R, T, D̂, M̂))− ϵ||22]. (3)

We use CSA(·) as a shorthand for the structure-aware view-conditioned feature throughout the paper.

Auxiliary Novel View Mask Prediction Task Input-view depth maps and mask images are intended
to help the model indirectly understand the structure of multi-object compositions by incorporating
additional structure-aware information into the input. To encourage the model to better grasp overall
structure, particularly its ability to generate it, we propose leveraging structural information (i.e., mask
image) prediction under the target view as an auxiliary task, providing more direct supervision. Our
approach draws inspiration from classifier guidance (Dhariwal & Nichol, 2021), where a classifier
pϕ(y|xt, t) guides the denoising process of image xt to meet the criterion y via incorporating the
gradient ∇xt

log pϕ((y|xt, t)) during the inference process as an auxiliary guidance. Similarly, to
improve the model’s ability to learn compositional structure, particularly in synthesizing novel view
plausible object placement (position and orientation), we introduce an auxiliary task during training:
predicting object mask images Mt ∼ p(Mt|xt, t, CSA(·)) under target view. This prediction is
conditioned on the noisy target-view image xt, timestep t and input-view structure-aware feature
CSA(·), derived from the final layer of the denoising U-Net. The supervision could be formulated as:

∇xt
log p(xt,Mt|t, CSA(·)) = ∇xt

log p(xt|t, CSA(·)) +∇xt
log p(Mt|xt, t, CSA(·)). (4)

Following Eq. (4), we jointly train the mask predictor and denoising U-Net following:

E[||ϵθ(αtx0 + σtϵ, t, CSA(·))− ϵ||22 + γ||Mtgt −Mt||22], (5)

where we use Mtgt to denote the ground-truth target-view image, and we use the weight γ = 0.1 to
balance the diffusion loss and mask prediction loss.

3.3 STRUCTURE-GUIDED TIMESTEP SAMPLING SCHEDULER

Inspired by previous works (Jiang et al., 2023; Chen, 2023) that identify the importance of different
scheduling strategies, we first provide an in-depth analysis of the inference process of multi-object
novel view synthesis, where we adopt a DDIM (Song et al., 2020a) sampler:

xt−1 =
√
αt−1

(
xt −

√
1− αt · F√
αt

)
︸ ︷︷ ︸

predicted x0

+
√
1− αt−1 − σ2

t · F+ σtϵt. (6)

We use F as a shorthand for ϵθ(xt, t, CSA(·)) and ϵt ∼ N (0, I). We examine the predicted x0 (as
in Eq. (6)) and the predicted mask image Mt at various timesteps during the inference process as
they offer direct visualizations for analysis. These visualized results are presented in Fig. 3.

In Fig. 3, we observe that a blurry image, which indicates the approximate placement of each
object, is quickly restored in the early stages (i.e., larger t) of the inference process. This suggests
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pred mask

Figure 3: Visualization of inference. The early stage of the denoising process focuses on restoring
global object placements, while the prediction of object masks requires a relatively noiseless image
to recover fine-grained geometry. This motivates us to seek a balanced timestep sampling scheduler
during training. The model trained w/ shift yields better mask prediction and thus recovers an image
with more details and sharp object boundary. The w/o shift here refers to not shifting the µ value.

that global structural information is prioritized for the model to learn during this stage. Accurate
object placements are crucial for synthesizing reasonable novel view images, as incorrect placement
predictions indicate a fundamental misunderstanding of the compositional structure. This underscores
the importance of training the model with a larger t during the initial training periods, which is even
more important for multi-object NVS scenarios considering the increased compositional complexity
compared with a single object. Conversely, a mask with a clear boundary is not predicted until a
later stage of the sampling process (i.e., smaller t). This is because accurate mask prediction depends
heavily on a relatively noiseless image. Therefore, to capture fine-grained geometry and appearance
details of objects, it is essential to train the model with a smaller t during later training periods.

Recognizing the importance of timestep t in balancing the learning of global placement information
and local fine-grained details, we propose to adjust the original timestep sampling process to:

t ∼ U(1,1000)→ t ∼ N (µ(s), σ), where µ(s) = µlocal + (µglobal − µlocal) ·
s

Ts
(7)

where s denotes the model training iteration, Ts denotes the total number of training steps, σ = 200 is
a constant variance. We sample the timestep t from a Gaussian distribution with mean µ(s) following
a linear decay from a large value µglobal = 1000 to a small value µlocal = 500. This approach allows
the model to initially learn correct global object placement information and gradually turn its focus to
refining detailed object geometry in later training stages. In practice, we include a warmup period
with 4000 training steps sampling t with a fixed µ(s) = µglobal. After the warmup, we use the linear
decay schedule over 2000 steps, and then stabilize the learning for fine-grained details after 6000
steps where we use µ(s) = µlocal.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We focus on multi-object composite NVS tasks in indoor scenes, with an emphasis on foreground
objects, examining novel view structural plausibility regarding object placement, geometry, appear-
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Figure 4: Qualitative results of NVS and cross-view matching. Our method generates plausible
novel-view images across various datasets, surpassing baselines regarding object placement, shape,
and appearance. In cross-view matching, points of the same color indicate correspondences between
the input and target views. We achieve a higher number of matched points with more precise locations.

ance, and cross-view consistency with input view. This choice stems from the recent advancements in
object segmentation (Kirillov et al., 2023), while we leave the background modeling for future work.

Datasets. To facilitate the training and evaluation of our proposed method, we curate a scalable
synthetic dataset Compositional 3D-FUTURE (C3DF), comprising 100k composites for training
and 5k for testing. Each composite is created by composing pre-filtered furniture items from 3D-
FUTURE (Fu et al., 2021b) using a heuristic strategy to avoid collision and penetration. Beyond
C3DF, we emphasize testing the generalization capability by benchmarking our method on Room-
Texture (Luo et al., 2024) and Objaverse (Deitke et al., 2023b). We also evaluate our model on diverse
indoor scenes from both the synthetic dataset 3D-FRONT (Fu et al., 2021a) and the real-world dataset
SUNRGB-D (Song et al., 2015). Refer to Appx. B.2 for more dataset details.

Baselines. We compare our method against two recent novel view synthesis methods including
Zero-1-to-3 (Liu et al., 2023c) and ZeroNVS (Sargent et al., 2023). The original Zero-1-to-3 is
trained on extensive object-level datasets. Therefore, we also re-train Zero-1-to-3 on our synthetic
dataset C3DF, denoted as Zero-1-to-3†. ZeroNVS is trained on a mixture of real-world images with
background, so we use images with backgrounds as its input if possible for a fair comparison.
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Table 1: Quantitative results of multi-object NVS, Object Placement, and Cross-view Consis-
tency. We evaluate on C3DF test set, along with generalization experiments on Room-Texture (Luo
et al., 2024) and Objaverse (Deitke et al., 2023b). † indicates re-training on C3DF.

Dataset Method
Novel View Synthesis Placement Cross-view Consistency

PSNR(↑) SSIM(↑) LPIPS(↓) IoU(↑) Hit Rate(↑) Dist(↓)

C3DF

ZeroNVS 10.704 0.533 0.481 21.6 1.2 130.3
Zero-1-to-3 14.255 0.771 0.302 33.7 5.8 86.9
Zero-1-to-3† 14.811 0.794 0.283 34.4 1.6 120.3

Ours 17.432 0.825 0.171 58.1 37.0 44.8

Room-Texture

ZeroNVS 8.217 0.647 0.487 8.2 1.2 140.3
Zero-1-to-3 9.860 0.712 0.406 13.9 2.9 104.1
Zero-1-to-3† 8.342 0.657 0.452 13.5 0.5 157.4

Ours 10.014 0.718 0.366 24.2 6.1 78.1

Objaverse

ZeroNVS 10.557 0.513 0.486 17.3 2.3 126.9
Zero-1-to-3 15.850 0.810 0.259 34.7 10.7 80.7
Zero-1-to-3† 15.433 0.815 0.273 29.7 1.7 126.7

Ours 17.749 0.840 0.169 51.3 50.0 47.2

Metrics. We utilize PSNR, SSIM, and LPIPS as metrics for evaluating the quality of Novel View
Synthesis. To assess global object Placement, we compute the foreground-background IoU with
ground-truth masks. Finally, we propose metrics to evaluate Cross-view Consistency with image-
matching. More specifically, we first apply MASt3R (Leroy et al., 2024) to acquire the image
matching between the input-view image and target-view image for both ground truth and model
predictions. With the ground-truth matching as references, we compute each method’s Hit Rate and
the nearest matching distance (Dist.). Hit Rate measures the proportion of predicted matches that
align with the ground truth matches. Dist. quantifies the distance between the predicted matching and
ground-truth matching in the target view. Please refer to Appx. B.3 for more details about the metrics.

4.2 RESULTS AND DISCUSSIONS

Fig. 4 presents qualitative results of multi-object NVS and cross-view matching visualization on
different datasets, with quantitative results in Tab. 1. We summarize the following key observations:

1. Our method realizes the highest PSNR and generates high-quality images under novel views,
closely aligned with the ground truth images, especially regarding novel-view object placement
(position and orientation), shape, and appearance. In contrast, the baseline models struggle to
accurately capture the compositional structure under novel views. For example, in the first row, the
red bed is incorrectly oriented in Zero-1-to-3 and is either missing or distorted in other baselines.

2. From the visualized cross-view matching results and the metrics in Tab. 1, it is evident that our
method significantly outperforms the baseline approaches in Cross-view Consistency. It achieves
a much higher IoU and Hit Rate while exhibiting a considerably lower matching distance. The
visualized results are consistent with the metrics, further validating our method’s accuracy in
capturing cross-view structural consistency, which cannot be reflected by existing NVS metrics.

3. Our model exhibits strong generalization capabilities on unseen datasets, e.g., Room-Texture and
Objaverse. We demonstrate more qualitative results, including on 3D-FRONT and SUNRGB-D,
in Appx. B.4. We showcase potential applications, including object removal and reconstruction in
Appx. B.5. Further discussion about limitation and failure cases are presented in Appx. C.

Table 2: Ablation results on C3DF.

Dataset Method
Novel View Synthesis Placement Cross-view Consistency

PSNR(↑) SSIM(↑) LPIPS(↓) IoU(↑) Hit Rate(↑) Dist(↓)

C3DF

w/o depth 17.080 0.819 0.178 57.2 39.2 45.2
w/o mask 16.914 0.818 0.187 54.7 25.4 50.4
w/o sch. 16.166 0.808 0.212 49.1 11.9 48.6

Ours 17.432 0.825 0.171 58.1 37.0 44.8
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Input Target Ours w/o sch. w/o mask w/o depth

Figure 5: Qualitative comparison for ablation study. Removing depth or mask predictions weakens
the model’s understanding of object placement and existence, exemplified by the missing white
cabinet in the first example. Excluding mask predictions or the scheduler reduces the model’s ability
to learn object placement, as shown by the misoriented brown cabinet in the second example.

4.3 ABLATION STUDY

To verify the efficacy of each component, we perform an ablation study on our key technical designs,
including the depth input (w/o depth), mask prediction auxiliary task (w/o mask), and the scheduler
(w/o sch. learns with a uniform sampler t ∼ U(1,1000) ). Results in Tab. 2 show that the auxiliary
mask prediction task and the timestep sampler are the most critical components, significantly affecting
all the metrics and the realistic object recovery as demonstrated by the misoriented brown cabinet
in the second example from Fig. 5. Without the scheduler, the model produces less accurate object
positions, evident both qualitatively and quantitatively. Furthermore, removing depth or mask predic-
tions weakens the model’s understanding of spatial relationships and object existence, exemplified by
the completely missing white cabinet in the first example. This also shows incorporating structure-
aware features as inputs, though seemingly intuitive, offers the most straightforward approach to
enhancing the model’s structural awareness, particularly given recent advancements in monocular
predictors (Kirillov et al., 2023; Ke et al., 2024). We present a more comprehensive discussion on the
scheduler strategy in Appx. A.4 and ablations on more datasets are in Appx. B.4.

5 CONCLUSION

We extend diffusion-based novel view synthesizers to handle multi-object compositions in indoor
scenes. Our proposed model generalize well across diverse datasets with more accurate object
placement, shape, and appearance, showing a stronger cross-view consistency with input view. The
core of our approach lies in integrating structure-aware features as additional inputs, an auxiliary mask
prediction task, and a structure-guided timestep sampling scheduler. These components enhance the
model’s awareness of compositional structure while balancing the learning of global object placement
and fine-grained local shape and appearance. Given the prevalence of multi-object compositions
in real-world scenes, we believe that our model designs and comprehensive evaluations can offer
valuable insights for advancing scene-level NVS models in more complex environments.
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A MODEL DETAILS

A.1 DINO PATCH FEATURE AND CAMERA VIEW EMBEDDING

The original image encoder of Stable Diffusion is CLIP, which excels at aligning images with
text. Other image encoders like DINO-v2 (Oquab et al., 2023) or ConvNeXtv2 (Woo et al., 2023)
may provide denser image features that may benefit generation tasks as mentioned by previous
works (Jiang et al., 2023; Kong et al., 2024). Therefore, we opt to use the DINO feature instead of
the original CLIP feature in our network following Jiang et al. (2023). To inject the DINO patch
feature into our network, we encode the input view image using DINO-v2 (Oquab et al., 2023) “norm
patchtokens”, whose shape dimension is (b, 16, 16, 1024). We will simply flatten it into (b, 256, 1024)
to apply cross-attention, and b means batch size here.

As for the camera view embedding, we choose to embed it using a 6 degrees of freedom (6DoF)
representation. To be specific, let Ei be the extrinsic matrix under the input view and Ej be the
extrinsic matrix under the output view, we represent relative camera pose change as E−1

i Ej . We will
also flatten it into 16 dimensions to concatenate it to the image feature. Afterwards, we will replicate
the 16-dimension embedding 256 times to concatenate the embedding to every channel of the DINO
feature map. A projection layer will later be employed to project the feature map into (b, 256, 768)
to match the dimension of the CLIP encoder, which was originally used by Stable Diffusion so
that we can fine-tune the pre-trained checkpoint. It is worth noting that we also tried other novel
view synthesizer’s camera embedding like Zero-1-to-3 (Liu et al., 2023c) using a 3DoF spherical
coordinates in early experiments, but we found that it does not make much of a difference.

A.2 DEPTH AND MASK CONDITION

In this section, we will explain how input view depth and mask are incorporated as additional
conditioning inputs. For depth maps, regions with infinite depth values are assigned a value equal
to twice the maximum finite depth value in the rest of the image. After this adjustment, we apply
a normalization technique to scale the depth values to the range of [−1, 1], enabling the use of the
same VAE architecture as for images.

For mask images, we assign unique values to different object instances in the input view. For
instance, if there are four objects in the multi-object composite, they will be labeled as 1, 2, 3, and 4,
respectively, while the background will be assigned a value of 0. The same normalization technique
used for depth maps is applied to these mask images. These mask images, like all other inputs, are
processed by the VAE, with all images set to a resolution of 256× 256.

A.3 SUPERVISION FOR AUXILIARY MASK PREDICTION TASK

To implement the auxiliary mask prediction task, we encode the output view mask images into the
same latent space as the input view mask images. Object instances viewed from different angles
will be assigned the same value, which is ensured during the curation of our compositional dataset.
Supervision is directly applied to the latent mask features extracted from the final layer of the
denoising U-Net. Only the input view mask images are required during inference, simplifying the
process while preserving consistency across views.

A.4 TIMESTEP SCHEDULER

Though we finally employed a linearly declining strategy, we experimented with several alternatives.
Specifically, we tested linearly declining the mean of the Gaussian distribution (LDC), linearly
increasing the mean after a sudden drop (LIND), and keeping the mean constant (KMS). These
strategies are illustrated in Fig. A1. The metrics on the test set of our C3DF are provided in Tab. A1,
with some visual comparisons in Fig. A2. w/o sch. in Tab. A1 refers to applying a uniform sampler,
same as the one in the main paper. From the results, we observe that LDC achieves slightly better
performance than LIND and KMS, largely outperforming w/o sch.

However, we observed significant visual artifacts such as weird colors and extremely blurry mask
images when combining the auxiliary mask prediction task with the KMS sampling strategy, as
demonstrated in Fig. A2. For example, the bed in the second example possesses unclear object
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Figure A1: Illustration of different
timestep sampling strategies.

Table A1: Ablation on different strategies. Incor-
porating sampling strategies significantly improves
the model performance, while the linear decline
(LDC) achieves the best.

Dataset Method
Novel View Synthesis

PSNR(↑) SSIM(↑) LPIPS(↓)

C3DF

w/o sch. 16.166 0.808 0.212
KMS 17.148 0.823 0.175
LIND 17.279 0.824 0.172
LDC 17.432 0.825 0.171

Input Target LDC LIND KMS

Figure A2: Comparison of different strategies. The predicted images and mask images under novel
views using different strategies are visualized. We can observe that images predicted by the KMS
strategy possess weird and blurry color while LDC strategy seems to be slightly better than LIND.

boundaries and distorted texture. We believe this is due to KMS focusing primarily on denoising
at larger timesteps, which provides limited guidance for recovering mask images and refining fine-
grained geometry and appearance. Consequently, without a dedicated period for denoising smaller
timesteps, the per-object shape and appearance appear distorted and unrealistic.

B EXPERIMENT DETAILS

B.1 IMPLEMENTATION DETAILS

We solely utilize the data from C3DF as the training source for our model. The training process takes
around 2 days on 8 NVIDIA A100 (80G) GPUs, employing a batch size of 172 per GPU. The exact
training steps are 8,000 steps. During the inference process, we apply 50 DDIM steps and set the
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guidance scale to 3.0. We use DepthFM (Gui et al., 2024) and SAM (Kirillov et al., 2023) to extract
the depth maps and object masks when they are not available, as well as for all real-world images.

B.2 DATASETS

C3DF We use the furniture models from the 3D-FUTURE dataset (Fu et al., 2021b) to create
our synthetic multi-object compositional data. The 3D-FUTURE dataset contains 9,992 detailed
3D furniture models with high-resolution textures and labels. Following previous work Chen et al.
(2024a), we categorize the furniture into seven groups: bed, bookshelf, cabinet, chair, nightstand,
sofa, and table. To ensure unbiased evaluation, we further split the furniture into distinct training and
test sets, ensuring that none of the test set items are seen during training.

After filtering the furniture, we first determine the number of pieces to include in each composite,
which is randomly selected to be between 3 and 6. Next, we establish a probability distribution based
on the different types of furniture items and sample each piece according to this distribution. To
prevent collisions and penetration between furniture items, we employ a heuristic strategy. Specifi-
cally, for each furniture item to be added, we apply a random scale adjustment within the range of
[0.95, 1.05], as the inherent scale of the furniture models accurately reflects real-world sizes. We also
rotate each model by a random angle to introduce additional variability. Once these adjustments are
complete, we begin placing the furniture items in the scene. The first item is positioned at the center
of the scene at coordinates (0, 0, 0). Subsequent objects are added one by one, initially placed at the
same central location. Since this results in inevitable collisions, we randomly sample a direction
and gradually move the newly added item along this vector until there is no intersection between
the bounding boxes of the objects. By following these steps, we generate a substantial number of
multiple furniture items composites, ultimately creating a training set of 100,000 composites and a
test set of 5,000 to evaluate the capabilities of our network.

After placing all the furniture items, we render multi-view images to facilitate training, using
Blender (Community, 2018) as our renderer due to its high-quality output. We first normalize each
composite along its longest axis. To simulate real-world camera poses and capture meaningful
multi-object compositions, we employ the following method for sampling camera views.

Cameras are randomly sampled using spherical coordinates, with a radius range of [1.3, 1.7] and
an elevation angle range of [2◦, 40◦]. There are no constraints on the azimuth angle, allowing the
camera to rotate freely around multiple objects. The chosen ranges for the radius and elevation angles
are empirical. In addition to determining the camera positions, we establish a "look-at" point to
compute the camera pose. This point is randomly selected on a spherical shell with a radius range of
[0.01, 0.2].

To enhance the model’s compositional structural awareness, we also render depth maps and instance
masks (both occluded and unoccluded) from 12 different viewpoints. The unoccluded instance mask
ensures that if one object is blocked by another, the complete amodal mask of the occluded object
is still provided, regardless of any obstructions. Although these unoccluded instance masks are not
currently necessary for our network, we render them for potential future use.

Objaverse To evaluate our network’s generalization capability, we create a small dataset comprising
300 composites sourced from Objaverse (Deitke et al., 2023b). Specifically, we utilize the provided
LVIS annotations to select categories that are commonly found in indoor environments, such as beds,
chairs, sofas, dressers, tables, and others. Since the meshes from Objaverse vary in scale, we rescale
each object based on reference object scales from the 3D-FUTURE dataset (Fu et al., 2021b). The
composition and rendering processes follow the same strategy employed in C3DF.

Table A2: Availability of conditions.

C3DFS Room-Texture Objaverse SUNRGB-D 3D-FRONT

depth ✓ × ✓ × ×
mask ✓ ✓ ✓ × ×
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Inference Details Since our model requires input-view depth map and mask images as additional
inputs, we need to use DepthFM (Gui et al., 2024) and SAM (Kirillov et al., 2023) to extract the depth
maps and object masks when they are not available, as well as for all real-world images. We show
whether all the used datasets have provided depth maps and mask images in Tab. A2. ‘×’ means they
do not provide such conditions while ‘✓’ means they do provide such conditions.

B.3 METRICS

Intersection over Union (IoU) Since all baseline methods do not possess the concept of every
object instance, we compute a foreground-background IoU for comparison. This metric can provide
a rough concept of the overall placement alignment with ground truth images. We extract the
foreground object mask by converting the generated image to grayscale (IL). Given that the generated
image has a white background, we compute the foreground mask M as M = IL < βth, where βth is
a threshold that is fixed as 250.

Cross-view Matching As outlined in the main paper, we introduce two metrics to systematically
evaluate cross-view consistency with the input view: Hit Rate and Nearest Matching Distance.
Since direct assessment of cross-view consistency is not feasible by merely evaluating the success
matches between each method’s predicted novel view images and the input view image, we opt to
how far the predicted matches deviate from the ground-truth matches.

We first compute ground-truth matching points and every model’s matching points using
MASt3R (Leroy et al., 2024) upon the input view image and the output view image (ground truth
or predicted). Each matching pair is represented as a four-element tuple (x0,y0,x1,y1), where
(x0,y0) corresponds to the point on the input-view image, and (x1,y1) corresponds to the point on
the output-view image.

For each ground-truth matching pair (x0
gt,y

0
gt,x

1
gt,y

1
gt), we find the nearest predicted matching pair

in each model’s results, denoted as (x0,y0,x1,y1), based on the Euclidean distance between points
in the input view image. If both L2||(x0

gt,y
0
gt), (x

0,y0)|| and L2||(x1
gt,y

1
gt), (x

1,y1)|| is smaller
than a fixed threshold 20, the match is considered a successful hit. The Hit Rate is then calculated as
the ratio of successful hits to the total number of ground-truth matches.

For Nearest Matching Distance, we examine whether L2||(x0
gt,y

0
gt), (x

0,y0)|| is within the threshold.
For those passing this check, we compute the mean distance L2||(x1

gt,y
1
gt), (x

1,y1)|| as the Nearest
Matching Distance, averaging over all successful hits. A detailed pseudo-code explanation can be
found in Alg. 1 and Alg. 2.

Algorithm 1 Hit Rate Computation

1: // Obtain image-matching pairs using MASt3R and save in a list
2: Pairsgt = MASt3R(GT)
3: Pairsours = MASt3R(Ours)
4: // Each element in the list is a four-element tuple p = (x0,y0,x1,y1)
5: // (x0,y0) refers to the point in the input view image and (x1,y1) the point in output view image
6: Hits = 0
7: For pgt in Pairsgt

8: // piours is the i-th element of Pairsours
9: // p[:2] refers to the first two element in the tuple and p[2:] the last two

10: i⋆ = argmin
i

(L2(pgt[:2], pi
ours[:2]))

11: IF L2(pgt[:2], pi⋆

ours[:2]) < 20 and L2(pgt[2:], pi⋆

ours[2:]) < 20
12: // Successfully hit one, delete it from gt pairs and ours pairs
13: Hits←− Hits + 1
14: POP(Pairsours, pi

⋆

ours)
15: return Hits/len(Pairsgt)
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Algorithm 2 Nearest Matching Distance Computation

1: // The notations are the same as the one in Alg. 1
2: Pairsgt = MASt3R(GT)
3: Pairsours = MASt3R(Ours)
4: Dist = EmptyList()
5: For pgt in Pairsgt

6: i⋆ = argmin
i

(L2(pgt[:2], piours[:2]))

7: IF L2(pgt[:2], pi⋆

ours[:2]) < 20

8: Append(Dist,L2(pgt[2:], pi⋆

ours[2:]))
9: POP(Pairsours, pi

⋆

ours)
10: return Mean(Dist)
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Figure A3: Visualized comparison with baselines. Our method synthesizes more consistent novel
view images and can even hallucinate objects that exceed the edge of image as shown in the first row.
Conversely, baselines may predict unclear object boundary and omit objects under novel views.

B.4 RESULTS

We show more visualized results of our own methods along with ground truth on C3DF in Fig. A11,
on Objaverse (Deitke et al., 2023b) in Fig. A12, and on Room-Texture (Luo et al., 2024) in Fig. A13.
More visualized comparisons with baselines on SUNRGB-D (Song et al., 2015) and 3D-FRONT
Fu et al. (2021a) are shown in Fig. A3. A more complete ablation study on other datasets including
Objaverse and Room-Texture is shown in Tab. A3. Some continuous rotation examples on SUNRGB-
D are shown in Fig. A4, on 3D-FRONT are shown in Fig. A5, and more cross-view matching results
without ground-truth pairs as reference are shown in Fig. A6.

B.5 APPLICATIONS

Object Removal Since we can predict mask images under novel views, we can support simple
image editing tasks like novel view object removal by simply setting a threshold value in the mask
image and mask out corresponding pixels to achieve object removal. An example is shown in Fig. A8.

Reconstruction The capability to synthesize novel view images that are consistent with the input
view image demonstrates that the model possesses 3D-awareness, which can assist downstream tasks
such as reconstruction. We leverage an off-the-shelf reconstruction method DUSt3R (Wang et al.,
2024) using the input-view image and novel view images predicted by our method. Two visualized
examples are shown in Fig. A9.
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Input Randomly Sampled Novel Views

Figure A4: Continuous rotation examples on SUNRGB-D. We rotate the camera around the
multi-object composites, successfully synthesizing plausible novel-view images across a wide range
of camera pose variations.

Input Randomly Sampled Novel Views

Figure A5: Continuous rotation examples on 3D-FRONT.

B.6 MUTUAL OCCLUSION

In multi-object compositions, mutual occlusion between objects is very common. Although we did
not specifically design the method to make the model aware of mutual occlusion, the model has
learned some understanding of these occlusion relationships. A series of research efforts (Van Hoorick
et al., 2023; Ozguroglu et al., 2024; Xu et al., 2024; Zhan et al., 2024; Zhu et al., 2017; Zhan et al.,

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Input Predicted Input Predicted

3D-FRONT SUNRGB-D

Figure A6: Visualized cross-view matching results. Since we do not have ground truth image for
3D-FRONT and SUNRGB-D, we only visualize cross-view matching results using our predicted
images. But we can still observe a strong cross-view consistency from the accurate matching results.

Table A3: Ablation study on various datasets.

Dataset Method
Novel View Synthesis Placement Cross-view Consistency

PSNR(↑) SSIM(↑) LPIPS(↓) IoU(↑) Hit Rate(↑) Dist(↓)

Room-Texture

w/o depth 9.829 0.705 0.365 25.7 5.5 75.3
w/o mask 9.576 0.699 0.384 24.2 2.7 92.2
w/o sch. 9.173 0.689 0.392 22.4 2.3 88.6

Ours 10.014 0.718 0.366 24.2 6.1 78.1

Objaverse

w/o depth 17.457 0.835 0.178 50.5 23.0 52.6
w/o mask 17.176 0.834 0.187 47.3 11.1 57.1
w/o sch. 16.642 0.825 0.210 43.2 6.3 55.0

Ours 17.749 0.840 0.169 51.3 50.0 47.2

2020) specifically focus on addressing mutual occlusion relationships by predicting the amodal masks
or synthesizing amodal appearance, but these models typically do not consider scenarios involving
camera view change. Moreover, there may not be a well-established metric to measure how well the
model understands mutual occlusion from novel viewpoints. We provide a simple experiment and
discussion in this section to illustrate model’s comprehension of mutual occlusion.

First, in the context of novel view synthesis, the comprehension of occlusion relationships can be
divided into two parts. The first is the ability to synthesize parts that were occluded in the input view.
The second is the ability to synthesize new occlusion relationships under the novel view. We show
several examples of synthesizing occluded parts and synthesizing new occlusions in Fig. A7. We
believe this capability is learned in a data-driven way since the multi-object composites are physically
plausible regarding these occlusion relationships.

Secondly, we now propose a new metric to evaluate the capability of understanding mutual occlusion
under this setting. We first use visible mask and amodal mask in the input-view image to determine
how heavily an object is occluded:

1. If an object’s visible mask is exactly its full mask, there exists no occlusion.
2. If an object’s visible mask is more than 70% of its full mask, the object is occluded.
3. If an object’s visible mask is less than 70% of its full mask, the object is heavily occluded.
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Input Predicted Ground truth

(a) Synthesize occlusion

(b) Synthesize occluded

Figure A7: Occlusion Synthesis Capability. Our proposed method can synthesize new occlusion
relationship under novel views as shown in the highlighted area of sofa or cabinet in (a). Our method
can also hallucinate occluded parts as shown in the highlighted area of chairs in (b).

Input view Predicted view Input view Predicted view RemovalRemoval

Figure A8: Object Removal Example. We can remove an object under novel views by setting a
threshold to the predicted mask image and delete corresponding pixels.

Afterward, we segment the predicted view image with ground truth per-object visible mask. We
calculate the specific region’s PSNR, SSIM, and LPIPS metrics as shown in Tab. A4. It can reflect
how well our model and baseline models are at synthesizing novel view plausible images that are
originally occluded under the input view. There are 10903 fully visible objects, 6058 occluded
objects, and 2215 heavily occluded objects. This experiment is conducted on our own C3DF.

Table A4: Evaluation on objects with varying extents of occlusion.

Method
Visible Occluded Heavily Occluded

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Ours 11.45 0.56 0.13 11.33 0.55 0.14 10.57 0.55 0.14
Zero-1-to-3 9.46 0.54 0.16 9.33 0.52 0.17 9.00 0.53 0.16
Zero-1-to-3† 9.68 0.55 0.14 9.54 0.52 0.15 9.26 0.53 0.15

C FAILURE CASES AND LIMITATIONS

Failure Cases We showcase two failure cases in Fig. A10. We can observe that delicate structure
and texture like colorful pillows on the sofa or slim legs of chairs are hard for our model to learn.
Though object placement is approximately accurate, more fine-grained consistency is not quite ideal
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Input view

Rotate 50°

Rotate 40°Rotate 70°

Rotate 60°

Rotate 80° Rotate 20°

Rotate 40°

Rotate 60° Rotate 90°

Input view

Rotate 110°

Figure A9: Reconstruction results using DUSt3R. We rotate our camera around the multi-object
composite and use the predicted images along with the input-view image for reconstruction.

Input Predicted Ground truth Input Predicted Ground truth

Figure A10: Failure Cases. It is hard for our model to learn extremely fine-grained consistency on
objects with delicate structure and texture.

in these cases. We believe training with a higher resolution and incorporating epipolar constraints
will mitigate this problem in the future.

Limitations We identify two limitations of our work. Firstly, though we achieve stronger cross-view
consistency with the input view image, our model does not guarantee the multi-view consistency
between our synthesized images. It is plausible to synthesize any results in areas with ambiguity,
leading to potential multi-view inconsistency in our model. We believe incorporating multi-view
awareness techniques Shi et al. (2023b); Wang & Shi (2023); Shi et al. (2023a); Kong et al. (2024); Liu
et al. (2023d); Yang et al. (2024a) can mitigate this problem. Secondly, we do not model background
texture in our framework due to difficulty of realistically mimicking real-world background texture,
making it less convenient to directly apply our method to in-the-wild images. We believe training on
more realistic data with background in the future can make our model more convenient to use.

D POTENTIAL NEGATIVE IMPACT

The use of diffusion models to generate compositional assets can raise ethical concerns, especially
if used to create realistic yet fake environments. This could be exploited for misinformation or
deceptive purposes, potentially leading to trust issues and societal harm. Additionally, hallucinations
from diffusion generation models can produce misleading or false information within generated
images. This is particularly concerning in applications where accuracy and fidelity to the real world
are critical.
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Input Pred Target Mask Input Pred Target Mask

Figure A11: More visualized results on C3DFS dataset.
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Input Pred Target Mask Input Pred Target Mask

Figure A12: More visualized results on Objaverse dataset.
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Input Pred Target Mask Input Pred Target Mask

Figure A13: More visualized results on Room-Texture dataset.
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