Optimal Noise Control of Sampling-Based
Predictive Control for Inference Time Scaling

Benjamin Riviere and Joel Burdick. Paper-ID [41]

Abstract—Robots that are controlled by evaluating an offline
trained model can fail in the presence of out-of-distribution data.
Real-time optimization, also known as inference time scaling, can
be a complementary approach to make learning-based systems
robust to this error. One such method, sampling-based predictive
control (SBPC), uses finite samples to approximate gradient steps
in trajectory optimization. SBPC methods are gaining attention
because they are less sensitive to dynamical modeling errors,
allow for naturally parallelizable implementations, and they can
be used in combination with pretrained models for inference
time scaling and out-of-domain generalization. However, the
performance of SBPC is dependent on hyperparameters, the most
important of which is the noise model that controls the finite
sample generation process. Whereas existing work considers the
noise model as a problem-specific hyperparameter, we take the
perspective of noise as a control input to the SBPC planning
process, develop the corresponding optimal control problem, and
propose a hierarchical search-and-sample solution. In particular,
we parameterize the noise model with parameters that control
the overall noise level and the noise level as a function of
simulation time, and optimize these parameters over the solver
iterations with Monte Carlo Tree Search. Our approach removes
hyperparameters, maintains finite-time theoretical convergence
guarantees, and improves empirical performance on robot plan-
ning problems.

I. INTRODUCTION

Machine learning models are rapidly being adopted for
robot planning and control. The standard strategy is to generate
a dataset, train a model offline, freeze the weights, and deploy
the model online. Perhaps the most fundamental challenge of
this approach is out-of-domain distribution data — when the
data distribution during the robot’s deployment is different
from the distribution on which the model was trained. A
possible solution is to augment the model evaluation with
additional inference-time computation to address the problem
of new state distributions or dynamics.

Sampling-Based Predictive Control (SBPC) is promising
approach at the intersection of existing ideas in robot learn-
ing and optimal control. SBPC with learned models can be
interpreted as a diffusion process from the model’s prior
distribution to a target optimal distribution. SBPC can also
be interpreted through the lens of classical optimization as an
approximate smoothed gradient flow.

However, the performance of SBPC is highly dependent
on the choice of parameters such as time horizon, time
discretization, number of finite samples, and noise schedule.
Whereas prior work treats these as manually-tuned problem-
specific hyperparameters, our work treats these as control
inputs to the SBPC gradient flow dynamical system, and
optimizes them for system performance, as shown in Fig. [T}
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Fig. 1: We propose a hierarchical formulation of inference-
time optimal control as search-based noise control and
sampling-based predictive control. Prior work uses either
constant noise (shown in purple) or a fixed annealing schedule
(shown in yellow), whereas we propose an adaptive optimiza-
tion. Here X! are covariance matrices, x; + y¢ are perturbed
control sequences, J is the cost-to-go, and 7 is the smoothed
target distribution.

In this preliminary work, we isolate the effect of the noise
schedule on SBPC performance, and introduce new methods
to adaptively schedule the noise in the solution process.

Our work makes the following contributions:

o We propose a novel and mathematically unified hierar-
chical formulation of the inference-time optimal control
problem using SBPC as a mid-level component.

o We propose a search and sample algorithm using noise
model parameterization and Monte Carlo Tree Search that



solves the hierarchical problem, removes hyperparame-
ters, and maintains theoretical guarantees.

o We validate our approach on numerical experiments,
where our solution improves performance and robustness
to hyperparameters.

II. RELATED WORK

Relevant to our work is sampling-based predictive control
(SBPC) methods in robotics that approximate gradients with
finite samples. These methods are mature and include Cross-
Entropy Method (CEM) [1]] and Model Predictive Path Integral
(MPPI) control [2]]. Because SBPC is easily parallelized,
recent trends in GPU computation have boosted their per-
formance, enabling new results in real-time manipulation [3|]
and locomotion [4]], as well as competitive baselines [JSl.
Furthermore, it is well known that SBPC can be integrated
with learned models [6] to benefit from prior knowledge
while remaining robust to out-of-domain distributions. SBPC
with learned and uncertain dynamics is a rich area that
spans economic cost functions [7]], active sensing [8], partial
information [9] and robustness to uncertainty [10]].

SBPC can be interpreted as a dynamical system, and its
convergence is perhaps best theoretically understood through
its stochastic extension, the Annealed Langevin Dynamics
(ALD) [11]. Recently, it has been shown that the ALD
have better convergence properties than standard Langevin
Dynamics [12H14]], where the time varying noise schedule
enables the ALD to avoid local minima through an annealing-
like procedure. Although it is known that the noise schedule
controls the exploration-exploitation trade-off, the selection of
a noise schedule to optimize convergence rate and real-time
performance remains an open question.

Similar to our approach, there exists work on optimal
noise scheduling. For example, in the diffusion and score-
based model literature, a standard treatment is to pre-specify a
linear [[15]], trigonometric [16] or polynomial [17] rate for all
problems. Ideally, however, we would like a problem-specific
adaptive solution to maximize convergence rate, e.g. if the
problem is unimodal and smooth, the noise should degrade
very quickly. Recent work considers adaptive timesteps and
noise levels such as using a fine-resolution teacher to inform
a coarse-resolution student to do fast model passes [4] or
learning adaptive noise levels [18], but these methods require
pretraining and data from the target distribution.

It is possible to adapt noise levels online, such as the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [19].
While CMA-ES updates noise based on feedback from the
current sample evaluations, our approach updates noise using
information from future sample evaluations using the tree
search’s backup operation. To the best of our knowledge,
we are the first to explore adaptive noise processes using
predictive information feedback. We believe this is a promising
direction because the noise process must balance exploration
and exploitation: high noise improves coverage and low noise
improves local optimality, and therefore it is difficult to
optimize noise levels using only local information.

III. BACKGROUND AND PROBLEM STATEMENT

We start with a standard formulation of the optimal control
problem: let S C R™ be the robot state space, U C R™ be
the action space, f : S x U — S be the system dynamics,
c: S xU — Rso be the stage cost, d : S — R be
the terminal cost, and K € Z- be the plan horizon. Let
J : 8 x UK — R+ be the cost-to-go of an action from an
initial state: J(sq,u1.5) = 22{:1 c(sg,uk) + d(sk) where k
is the timestep index and the state evolves according to the
dynamics si+1 = f(sg,ur+1), Yk € [1,..., K]. The optimal
control problem is to find the control sequence that minimizes
cost-to-go:

uj. g = argmin J(sg, 1.5 ) (1)
U1:K

The optimal control problem can be solved with sampling-
based predictive control (SBPC) [2, [20-22]]. Fixing the initial
robot state sy, SBPC iterations can be interpreted as a dynam-
ical system that evolves the control sequence with smoothed
gradient flow:

T4l = Ty — ntVIOg ﬁ'(l’t, Ef) (2)

where, x; is the control sequence x; = ul j, zo is the
initial control sequence sampled from a prior distribution
To ~ Tphor» 7t 1S the stepsize, 7 is the smoothed target
distribution 7(x, X) = (mx¢o,x)(x), 7 is the target distribution
m(z) o e7(50:2) ¢, s is a normal distribution with mean y and
covariance Y, and ¢ is an SBPC iteration index. The smoothed
gradient, sometimes called the score, is approximated with
finite samples:

N
Vieg#(z, %) ~ -t Zwlyl 3)
i=1

where y; ~ ¢ox, w; = eJ(””+y")/Z§y:1 e?(@+¥i) and N is
the number of samples. This identify is shown in [20} 22].

The interpretation of SBPC as smoothed gradient flow (or
its noisy extension, the Annealed Langevin Dynamics) is
useful for our algorithm design and for application of existing
theoretical convergence analyses [12} 23]. In the limit > — 0,
7 — m, and the iterations reduce to: x411 = ¢ —nVJ (S0, T¢),
recovering pure gradient flow.

The current algorithm iterate x; is a function of the initial
condition xy and the past noise schedule X, ie. xp =
xr(xo, X1.7). Whereas existing work in SBPC treats the noise
schedule as a problem-specific hyperparameter, we introduce
the optimal noise control problem, which is to find the noise
schedule that optimizes SBPC performance:

X1 = argmin J(sg, z7(z0, X1.7)) 4)
T
where T is the number of SBPC iterations. This optimization
framework provides a unifying framework for existing SBPC.
See Fig.

The optimization problems (I)) and (@) are similar because
they are a hierarchical formulation of the optimal control prob-
lem, Fig. [l Whereas conventional hierarchies use manually



designed abstraction layers (e.g. geometric path planning then
tracking control), ours uses the same objective and decision-
variable space (augmented with noise ), providing a simple
and mathematically unified hierarchy with a minimal number
of hyperparameters.

IV. METHOD

Our approach to the optimal noise control problem (@) is to
parameterize the noise schedule, formulate a discrete Markov
Decision Process, (MDP) [24, [25] and solve it with Monte
Carlo Tree Search (MCTS) [26]].

The key design of our algorithm is in the parameterization
of the noise:

1 2 v
X(0,¢) =16 (diag (K’K’”"l) >®Im (5)

where ® is the Kronecker product. Our parameterization
reduces search space complexity from Xi.p € §MET>xmKT
to 1.7 € R2T.

Next, we discuss the effect of the parameters 6 and v in (@),
also shown in Fig. @ The first parameter, 6, controls the overall
noise scale. Based on annealing literature, we expect that the
optimal evolution of this parameter is to start large or even
grow during a transient phase, but eventually decay over solver
iterations (denoted by t).

The second parameter, ) controls the noise of the control
actions based on their simulation timestep (denoted by k).
The vector (%, %,...,1) is a straight line from (0,0) to
(K, 1), and raising it to a power controls the warping —
a larger value of v causes the noise scale to grow more
slowly, delaying the admittance of noise into the trajectory
as a function of simulation time. We expect the optimal
evolution of this parameter is to start small and increase
over iterations, corresponding to decreasing the exploration
noise in the actions at early timestep in the trajectory and
“committing” to actions. In this context, we can interpret
this parameter as controlling the interpolation between model-
predictive control (MPC) and open-loop-planning. We present
experimental results consistent with this discussion in Sec.

We define the search MDP as follows: the state is the iterate
and noise level parameterization z; = [z, 0;] € Z, the action
a; € A scales the noise parameters where A is a discrete set,
the cost J : Z — R is the cost-to-go, and the horizon is the
SBPC budget 7. The algorithm state transition, F' : Z x A —
Z is:

Tip1 = 2 — 0V log (2, Xe(0r, Y1) (6)
9t+1 = 9ta1,t N
Yep1 = Yrazy 8

The MDP can be written compactly as (Z, A, F, J,T).

We solve this MDP with Monte Carlo Tree Search (MCTS).
Nodes of the tree store algorithm states z, edges store actions
a, and edges evaluate the MDP transition function F' and
reward function R. The tree’s policy selects which actions
to take based on a balance of exploration and exploitation

— (6, ) =(1.0,1.0)

— (6, p) = (1.0, 2.0)

x A/\M\

(6, w) = (2.0, 1.0) — (6, y) = (2.0, 2.0)

Simulation Timestep, k Simulation Timestep, k

Fig. 2: We show a single solution iterate x; and the first
quartile of the distribution of perturbed signals z; + yi for
different parameters ¢ and 1. The 6 parameter controls the
overall noise level, and the v parameter controls the time
windowing effect.

using the upper confidence bound selection rule. Because we
use a standard implementation, we refer the reader to the
existing literature [26) 27]. The pseudocode implementation
of our algorithm is detailed in Alg. [T]

MCTS is well-suited for this problem because the noise
process must balance exploration and exploitation: high noise
improves coverage and low noise improves local optimality.
Therefore, it is difficult to optimize noise levels using only
local information, and predictive information feedback through
the tree’s backup operator is necessary to adapt the noise
process.

Under mild assumptions, our algorithm has provable con-
vergence. Let ¢}, 07.1- be the best noise parameterization:

077, Y1.r = argmin J(so, 27 (z0, V.7 (1.7, Y1) (9)
O1.17,%1:17

and let J*(sg) be the corresponding cost-to-go, J*(sg) =
J(s0, zr(z0, X1.7(0F.7, ¥].7)). Because the MDP is discrete,
our algorithm inherits the value convergence of MCTS [26]]
to J *(s0), and we can apply triangle inequality with the cross
term .J*(so) to say our search converges towards the solution
of the original optimal control problem (T):

* 7 Co
" (s0) ~BLA(s0)]l < 5 e
where TE[J;(s0)] is the MCTS root node cost-to-go estimate,
[ is the number of iterations of the MCTS algorithm, ¢o > 0
is a problem-specific constant, and € is the hypothesis space
error € = |J*(s0) — J*(s0)].

In other words, if there exists a sequence of parameters
6,.7 and 1.7 such that the noise process drives the SBPC
dynamics to the optimal cost-to-go, then our algorithm will
have good asymptotic performance.

(10)

V. EXPERIMENTS

We present two numerical experiments: first, we isolate
the inference-time optimal control problem and show that
our optimal noise control method improves convergence and



Algorithm 1: Search-Based Noise Control (SBNC)

Input: Initial robot state sg, Initial algorithm state
20 = [0, 00, 0] R
Output: Cost-to-go Estimate .J
J = J(s0,2(20)) ;
while computation budget remains do
Z < 205
// Selection
while z is expanded do
visits(z)
visits(z/)  °

L Z <= MaX,/echildren(z) zﬁﬁ:gz/; =+
// Expansion
z « F(parent(z), action_to_node(z)) ;
// Save Best
J + min(J, J (s, 2(2)));
// Simulation
v < Rollout(z);
// Backpropagation
while 2 is not null do
visits(z) < visits(z) + 1 ;
value(z) « value(z) + v ;
z < parent of z;

return .J

robustness of sampling-based planners. Second, we show that
combining learned models and sampling-based planning can
improve convergence rate and compensate for sim-to-real
error. These two experiments show that our method improves
SBPC convergence, and this improvement immediately trans-
fers to fundamental problems in data-driven planning.

For both experiments, we use the following implementation
details. For task and baseline implementations, we use the
Hydrax repository [28] built on the vectorization and paral-
lelization tools in JAX [29] and MuJoCo MJX [30]. Whereas
the Hydrax repository runs SBPC in a model-predictive-
control mode (i.e. plan, take first action, replan), we focus on
only the planning subroutine. Unless otherwise specified, we
use the following parameters: for our method, we initialize
noise parameters as 6y = 0.3 and ¥y = 1 and we use
A = {0.2,1.0,5.0}? for all tasks. For baseline methods, we
use the existing tuned parameters in Hydrax for all tasks.
Each algorithm iteration corresponds to one step of () and
computes the systems dynamics and cost functions N K times,
where N is the number of finite samples used to estimate
the gradient in (2)) and K is the number of timesteps in one
trajectory. We give every method 100 total solver iterations.
Because the computation of each solver iteration dominates the
runtime and each solver uses the same number of iterations, the
runtime between all of the solvers is approximately equivalent.

A. Experiment 1: Inference Time Compute

We evaluate on the CubeRotation task, where the
LEAP [31] hand is tasked to manipulate the cube to a goal
orientation, shown in Fig. [T} This problem has 23 degrees-of-
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Fig. 3: Performance plot for CubeRotation with nominal
noise levels.

freedom, and is considered a challenging problem because of
rich contact dynamics with multiple switching modes and high
dimensionality. We implement our method, SBNC, and com-
pare performance with existing SBPC algorithms: MPPI [2],
MBD [20], DIAL [21]], and Predictive Sampling [5]].

First, we evaluate the performance of different solvers with
the nominal parameter settings, i.e. fp = 0.3, and we present
the results in Fig. 3| At this setting, the solvers all have similar
performance, with a slight advantage to our solver. Roughly
speaking, a cost-to-go on the order of 10 corresponds to a
terminal state where the cube is rotated 90 degrees towards
the goal, and a cost-to-go on the order of 5 corresponds to a
second 90 degrees rotation and completing the task.

Next, we run the same experiment, except we scale and
shrink the initial noise level 8y = 0.30 by a factor of 2
two times, and present the results in Tab. [Il In this case, the
performance of other methods degrades sharply, whereas our
approach is robust to suboptimal hyperparameter initialization
and maintains a low average cost-to-go. This behavior is
expected because our planner, unlike other approaches, adapts
the noise level 6 to grow or shrink over solver iterations to
optimize performance.

TABLE I: Cost-to-Go after 100 Calls with Varying 6.

0o DIAL MBD MPPI SBNC (Ours)
0.075 2525 2427 1227 12.74
0.15 1538 16.10  19.54 4.39
0.30 15.00  12.08 19.21 10.36
0.60 17.73 1836  16.23 10.10
1.20 5.42 13.41 10.52 12.45
Average 1576  16.84  15.55 10.01

We can analyze the noise process discovered by our solver
by visualizing the 6 and ¢ search traces, shown in Fig. @a/b,
where we show the best path on the left and the tree paths on
the right. The best 6 path grows in magnitude in early solver
iterations and then shrinks, matching the expected annealing
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Fig. 4: The path with the highest reward is shown in the left,
and the tree of all paths, colored by their relative visit count,
is shown in the right. The relative visit count of a node is an
indicator of its value because the exploration and exploitation
balance of Monte Carlo Tree Search.

pattern. Discovering, rather than designing, the path of 0 is
important for flexibility and performance — if the original 6,
is too small, our solution can first allow the noise level to grow
to escape some local minima before the shrinking the noise to
do local refinement. We believe local minima is the most likely
explanation for poor performance of monotonically decreasing
annealing solutions when initialized small noise levels, as
shown in Tab.[I] The best ¢» path grows with solver iterations,
and this behavior corresponds to shrinking the exploration
noise of the control action at the later timesteps of the solution.
Automatically discovering optimal 1 path can be interpreted
as deciding when to commit to an action, and roughly bridges
open loop planning and model predictive control behaviors.

Fig. 5: Crane System: the payload is the gray cylinder, the
target is the green dot, and we control the slew and luff at the
crane base, as well as the hoist at the tip of the boom.

Task: Crane
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Fig. 6: Solver iteration vs Cost-to-Go for the Crane task,
where mspp is the sampling-based predictive control, mspp+Lm
is the sampling-based predictive control with a learned model,
and 7 is just the learned model.

B. Experiment 2: Sim to Real Adaptation

We evaluate on the Crane task in Hydrax, where the crane
is tasked to move a payload to a target location, shown in
Fig. 5} This problem has a 17 dimensional state space and its
dynamics are underactuated and sensitive to actuator gains and
mass parameters. We construct a hybrid planner that combines
SBPC with a learned model, and we empirically demonstrate
this hybrid planner has better convergence rate than SBPC
alone, and better robustness to the sim-to-real problem than
the learned model alone.

We consider three policies: let msgpc be any SBPC
from [V-Al 7 v be a learned model, and let wsgpciim be the
hybrid planner. The hybrid policy 7sgpciLm 1S the same as
the SBPC, but warm-started from the learned model (i.e. the
learned model is the prior distribution in (2)). The learned



model is trained via standard self-play loop: initialize the
learned model as a zero mapping, generate a dataset of robot
state and action sequences using the hybrid model, update the
learned model parameters with supervised learning, and then
iterate over the last two steps.

7 0 S = Ok (11)
D' = {(sh,2") | sh ~ p, 2" ~ Tigpeam(s0) s (12)
7y = arg min Z Il7(s8) — 2|2 (13)

(s§,z?)eD!

where [ € [1, V] is the learning iteration.

We consider two dynamics models: let f, be the simulation
dynamics model and let f., be the real dynamics model. To
construct fiea, we modify the nominal fg, using the default
domain randomization parameters in Hydrax, which include
variations in mass, friction coefficient, and actuator gains. To
model the sim-to-real effect, we train the learned model using
data generated from fg, and evaluate the policies using fieq-
We assume that all of the SBPC policies evaluate their gradient
updates with the real dynamics fe,, which is a reasonable
assumption for systems that have runtime system identification
or adaptive control components [32].

The solvers are evaluated and the results are presented in
Fig. [6l As desired, the hybrid policy has fewer iterations-to-
convergence than the SBPC policy, and the hybrid policy has
a smaller terminal cost-to-go compared to the learned policy,
demonstrating robustness to the sim-to-real gap. This example
demonstrates that SBPC can be used to repair error from out-
of-distribution data.

VI. CONCLUSION

We study the inference-time optimal control problem as a
hierarchical combination, and presented a search-based noise
control and sampling-based predictive control solution. We
show that adapting noise parameters is practical approach for
ensuring robust performance, and is a mechanism to discover
intelligent meta-behavior like committing to early actions
during planning in order to reduce search complexity. We
also show how efficient inference-time optimal control can
directly contribute to out-of-domain generalization problems
for learned models. In future work, we will extend this frame-
work to control other parameters in the SBPC process, and we
will further develop simulation and hardware experiments.
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